CN111797517B - A self-diagnosis method for on-orbit faults of magnetic torque devices based on linear regression - Google Patents
A self-diagnosis method for on-orbit faults of magnetic torque devices based on linear regression Download PDFInfo
- Publication number
- CN111797517B CN111797517B CN202010560501.0A CN202010560501A CN111797517B CN 111797517 B CN111797517 B CN 111797517B CN 202010560501 A CN202010560501 A CN 202010560501A CN 111797517 B CN111797517 B CN 111797517B
- Authority
- CN
- China
- Prior art keywords
- torque device
- magnetic torque
- output
- pulse width
- magnetic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 28
- 238000004092 self-diagnosis Methods 0.000 title claims abstract description 20
- 238000012417 linear regression Methods 0.000 title claims abstract description 12
- 238000009499 grossing Methods 0.000 claims abstract description 6
- 238000003079 width control Methods 0.000 claims description 51
- 230000005284 excitation Effects 0.000 claims description 38
- 238000005070 sampling Methods 0.000 claims description 21
- 239000006185 dispersion Substances 0.000 claims description 8
- 230000010354 integration Effects 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000008901 benefit Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000005358 geomagnetic field Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000013499 data model Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G1/00—Cosmonautic vehicles
- B64G1/22—Parts of, or equipment specially adapted for fitting in or to, cosmonautic vehicles
- B64G1/24—Guiding or controlling apparatus, e.g. for attitude control
- B64G1/244—Spacecraft control systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/10—Complex mathematical operations
- G06F17/18—Complex mathematical operations for evaluating statistical data, e.g. average values, frequency distributions, probability functions, regression analysis
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Data Mining & Analysis (AREA)
- Mathematical Analysis (AREA)
- General Engineering & Computer Science (AREA)
- Remote Sensing (AREA)
- Mathematical Physics (AREA)
- Pure & Applied Mathematics (AREA)
- Mathematical Optimization (AREA)
- Computational Mathematics (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Computer Hardware Design (AREA)
- Bioinformatics & Computational Biology (AREA)
- Operations Research (AREA)
- Probability & Statistics with Applications (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Algebra (AREA)
- Life Sciences & Earth Sciences (AREA)
- Evolutionary Biology (AREA)
- Software Systems (AREA)
- Automation & Control Theory (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Radar, Positioning & Navigation (AREA)
- Geometry (AREA)
- Aviation & Aerospace Engineering (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Control Of Electric Motors In General (AREA)
Abstract
一种基于线性回归的磁力矩器在轨故障自主诊断方法,通过建立磁力矩器输入输出模型,利用最小二乘法求解线性拟合后磁力矩器输入输出模型的配置参数,并针对磁力矩器在轨的输出特性,采用积分平滑处理方式在时域上对磁力矩器输出进行积分,通过对磁力矩器输出在给定周期内的积分运算求解磁力矩器输出在给定周期内的输出变化阈值,从而得到磁力矩器在轨数据的有效判据,提高磁力矩器这一重要执行机构在轨输出的有效性,能够实现磁力矩器在轨输出的有效判断。
A linear regression-based self-diagnosis method for on-orbit faults of the magnetic torquer. By establishing the input and output model of the magnetic torquer, the least square method is used to solve the configuration parameters of the input and output model of the magnetic torquer after linear fitting. The output characteristics of the rail, using the integral smoothing method to integrate the output of the magnetic torque device in the time domain, and solving the output change threshold of the magnetic torque device output within a given period by integrating the output of the magnetic torque device within a given period , so as to obtain the effective criterion of the on-orbit data of the magnetic torque device, improve the effectiveness of the on-orbit output of the magnetic torque device, an important actuator, and realize the effective judgment of the magnetic torque device's on-orbit output.
Description
技术领域technical field
本发明涉及一种基于线性回归的磁力矩器在轨故障自主诊断方法,属于航天器姿态控制领域。The invention relates to a method for self-diagnosing on-orbit faults of a magnetic torque device based on linear regression, and belongs to the field of spacecraft attitude control.
背景技术Background technique
磁力矩器作为航天器控制分系统中的重要执行机构,担负着航天器姿态控制、航天器整星角动量卸载等任务,直接关乎着航天器姿态控制的精度,它的输出有效性在很大程度上决定了航天器姿态控制的效果,显著提升航天器的任务收益。As an important executive mechanism in the spacecraft control subsystem, the magnetic torque device is responsible for the tasks of spacecraft attitude control and spacecraft angular momentum unloading. It is directly related to the accuracy of spacecraft attitude control, and its output effectiveness is very important. To a certain extent, it determines the effect of the attitude control of the spacecraft and significantly improves the mission benefits of the spacecraft.
磁力矩器的脉宽控制量是随着航天器实时姿态及轨道变化而实时变化的,这种变化非线性,且无法绝对预估。并且,随着轨道的变化,当磁力矩器与地磁场夹角的余弦值大于一定值时,磁力矩器无法切割地磁场磁感线,而导致脉宽控制量会瞬间跳变为零。这些变化,甚至从较大的脉宽控制量有效输出值到零的跳变,都是磁力矩器真实的工作特性,而这种非线性的变化,给磁力矩器实施在轨故障自主诊断带来了很大的困难。The pulse width control amount of the magnetic torquer changes in real time with the real-time attitude and orbit changes of the spacecraft. This change is nonlinear and cannot be absolutely predicted. Moreover, as the orbit changes, when the cosine value of the angle between the magnetic torque device and the geomagnetic field is greater than a certain value, the magnetic torque device cannot cut the magnetic induction line of the geomagnetic field, and the pulse width control value will instantly jump to zero. These changes, even the jump from a large effective output value of the pulse width control amount to zero, are the real working characteristics of the magnetic torque device, and this nonlinear change brings a belt for the magnetic torque device to implement on-orbit fault self-diagnosis. Great difficulty came.
发明内容Contents of the invention
本发明解决的技术问题是:针对目前现有技术中,传统磁力矩器输出判断方法难以应对脉宽控制量跳变情况的问题,提出了一种基于线性回归的磁力矩器在轨故障自主诊断方法。The technical problem solved by the present invention is: Aiming at the problem that in the current prior art, the traditional magnetic torque device output judgment method is difficult to cope with the jump of the pulse width control quantity, a linear regression-based self-diagnosis of magnetic torque device on-orbit faults is proposed method.
本发明解决上述技术问题是通过如下技术方案予以实现的:The present invention solves the problems of the technologies described above and is achieved through the following technical solutions:
一种基于线性回归的磁力矩器在轨故障自主诊断方法,步骤如下:A method for self-diagnosing on-orbit faults of magnetic torque devices based on linear regression, the steps are as follows:
(1)根据磁力矩器的输入输出建立磁力矩器输入输出模型,对磁力矩器输入输出模型的配置参数进行定义;(1) Establish the input and output model of the magnetic torque device according to the input and output of the magnetic torque device, and define the configuration parameters of the input and output model of the magnetic torque device;
(2)对步骤(1)所得磁力矩器输入输出模型进行线性拟合,并根据最小二乘法计算磁力矩器输入输出模型的配置参数;(2) carry out linear fitting to step (1) gained magnetic torque device input-output model, and calculate the configuration parameter of magnetic torque device input-output model according to least square method;
(3)通过积分平滑处理方式在给定周期内对磁力矩器的输出进行积分,根据积分运算结果确定磁力矩器输出变化阈值;(3) Integrate the output of the magnetic torque device in a given period by means of integral smoothing, and determine the output change threshold of the magnetic torque device according to the integral operation result;
(4)将步骤(3)所得磁力矩器输出变化阈值作为给定周期内磁力矩器的输出有效性判断依据,建立磁力矩器在轨故障自主诊断模型,实现磁力矩器在轨故障自主诊断。(4) Use the output change threshold of the magnetic torque device obtained in step (3) as the basis for judging the validity of the output of the magnetic torque device within a given period, and establish a self-diagnosis model for the on-orbit fault of the magnetic torque device, so as to realize the self-diagnosis of the on-orbit fault of the magnetic torque device .
所述步骤(1)中,磁力矩器输入输出模型具体为:In the described step (1), the input and output model of the magnetic torque device is specifically:
y=f(x,a)+by=f(x,a)+b
式中,x为磁力矩器的激磁电流,y为磁力矩器收到的由星载计算机计算输出的脉宽控制量,f(x,a)为与磁力矩器激磁电流相关的非线性连续函数,a、b均为描述磁力矩器激磁电流与脉宽控制量关系的配置参数。In the formula, x is the excitation current of the magnetic torque device, y is the pulse width control value received by the magnetic torque device and calculated and output by the on-board computer, f(x, a) is the nonlinear continuous current related to the magnetic torque device excitation current function, a and b are configuration parameters describing the relationship between the magnetic torque device excitation current and the pulse width control quantity.
所述步骤(2)中,计算磁力矩器输入输出模型的配置参数的具体方法为:In described step (2), the specific method of calculating the configuration parameter of magnetic torque device input and output model is:
(2-1)获取n组激磁电流与脉宽控制量样本数据,具体为:(2-1) Obtain n sets of sample data of excitation current and pulse width control amount, specifically:
[(x1,y1),(x2,y2),(x3,y3),...,(xn,yn)],(n∈Z+);[(x 1 ,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ),...,(x n ,y n )],(n∈Z+);
式中,x1~xn为n组激磁电流具体值,y1~yn为n组脉宽控制量具体值;In the formula, x 1 ~ x n are specific values of excitation current for n groups, and y 1 ~ y n are specific values for n groups of pulse width control quantities;
(2-2)对磁力矩器输入与输出进行线性拟合,利用最小二乘法计算样本数据离差Q,具体为:(2-2) Carry out linear fitting to the input and output of the magnetic torque device, and use the least square method to calculate the dispersion Q of the sample data, specifically:
y=ax+by=ax+b
式中,yi为y1~yn中任一样本,xi为x1~xn中任一样本;In the formula, y i is any sample from y 1 to y n , and xi is any sample from x 1 to x n ;
(2-3)计算当离差Q为最小值时,配置参数a、b具体为:(2-3) Calculation When the dispersion Q is the minimum value, the configuration parameters a and b are specifically:
式中,分别为x,y样本集的平均值。In the formula, are the mean values of the x and y sample sets, respectively.
所述步骤(3)中,确定磁力矩器输出变化阈值的具体步骤为:In described step (3), the concrete step of determining magnetic torque device output variation threshold is:
(3-1)对不满足线性关系的脉宽控制量及激磁电流曲线进行拟合,并对n组激磁电流与脉宽控制量样本数据于S个控制周期的时域上进行积分,获取脉宽控制量线性拟合理论值Yi及遥测采样真实值yi,具体为:(3-1) Fit the pulse width control quantity and excitation current curve that do not satisfy the linear relationship, and integrate n sets of excitation current and pulse width control quantity sample data in the time domain of S control cycles to obtain the pulse The theoretical value Y i of wide control quantity linear fitting and the real value y i of telemetry sampling are specifically:
式中,均为不满足线性关系的脉宽控制量及激磁电流拟合曲线的配置参数;In the formula, Both are the configuration parameters of the pulse width control quantity and the excitation current fitting curve that do not satisfy the linear relationship;
(3-2)对脉宽控制量线性拟合理论值Yi及遥测采样真实值yi积分后作差,其中:(3-2) Make a difference after integrating the theoretical value Y i of the linear fitting of the pulse width control quantity and the actual value Y i of telemetry sampling, where:
式中,ES为积分差值;In the formula, E S is the integral difference;
(3-3)将各控制周期内脉宽控制量线性拟合理论值Yi及遥测采样真实值yi的积分差值分别取最大值EnSmax、最小值EnSmin,进行次积分后确定遥测采样阈值bSmin、bSmax,具体为:(3-3) Take the maximum value E nSmax and the minimum value E nSmin of the integral difference of the pulse width control quantity linear fitting theoretical value Y i and the real value y i of telemetry sampling in each control period, respectively, and carry out Determine the telemetry sampling thresholds b Smin and b Smax after the second integration, specifically:
EnSmin=min(ES),EnSmax=max(ES),E nSmin =min(E S ), E nSmax =max(E S ),
bSmin=min(EnSmin),bSmax=max(EnSmax);b Smin = min(E nSmin ), b Smax = max(E nSmax );
(3-4)根据步骤(3-3)所得遥测采样阈值确定脉宽控制量遥测采样真实值需满足的磁力矩器输出变化阈值具体为:(3-4) According to the telemetry sampling threshold obtained in step (3-3), the magnetotorque output change threshold that needs to be satisfied by the pulse width control amount telemetry sampling true value is specifically:
所述步骤(4)中,若所选的S个控制周期内磁力矩器输出满足磁力矩器输出变化阈值判断,则输出数据有效,否则输出数据无效。In the step (4), if the output of the magnetic torque device in the selected S control cycles meets the judgment of the output change threshold of the magnetic torque device, the output data is valid, otherwise the output data is invalid.
本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:
本发明提供的一种基于线性回归的磁力矩器在轨故障自主诊断方法,针对磁力矩器的非线性输出特性,建立起磁力矩器的激磁电流与星载计算机输出的脉宽控制量的线性数据模型,通过线性拟合的方式建立了磁力矩器在轨故障自主诊断模型,提高磁力矩器这一重要执行机构在轨输出的有效性,能够实现磁力矩器在轨输出的有效判断,提高航天器姿态控制的有效性。在增加少量计算的情况下,根据线性回归拟合的曲线参数得到磁力矩器输出信息的有效性判读。The present invention provides a linear regression-based on-orbit fault self-diagnosis method for a magnetic torque device. Aiming at the nonlinear output characteristics of the magnetic torque device, a linear relationship between the excitation current of the magnetic torque device and the pulse width control output of the on-board computer is established. The data model establishes the on-orbit fault self-diagnosis model of the magnetic torque device by means of linear fitting, improves the effectiveness of the magnetic torque device, an important actuator, on-orbit output, and can realize the effective judgment of the magnetic torque device's on-orbit output, and improve the Effectiveness of spacecraft attitude control. In the case of adding a small amount of calculation, the validity judgment of the output information of the magnetic torque device is obtained according to the curve parameters fitted by the linear regression.
附图说明Description of drawings
图1为发明提供的磁力矩器在轨故障自主诊断方法流程示意图;Fig. 1 is a schematic flow chart of the on-orbit fault self-diagnosis method of the magnetic torque device provided by the invention;
图2为发明提供的线性拟合曲线与实际遥测值分布情况示意图;Fig. 2 is a schematic diagram of the distribution of the linear fitting curve and the actual telemetry value provided by the invention;
图3为发明提供的积分平滑处理后有效性判读阈值分布情况示意图;Fig. 3 is a schematic diagram of the validity judgment threshold distribution after integral smoothing processing provided by the invention;
具体实施方式Detailed ways
一种基于线性回归的磁力矩器在轨故障自主诊断方法,通过建立磁力矩器输入输出模型,定义磁力矩器输入输出模型参数配置,利用最小二乘法求解经线性拟合后的磁力矩器输入输出模型的配置数据,并针对磁力矩器在轨的输出特性,采用积分平滑处理方式在时域上对磁力矩器输出进行积分,通过对磁力矩器输出在给定周期内的积分运算,求解磁力矩器输出在给定周期内的输出变化阈值,以作为故障自主诊断的依据,如图1所示,具体步骤如下:A linear regression-based self-diagnosis method for on-orbit faults of the magnetic torquer, by establishing the input and output model of the magnetic torquer, defining the parameter configuration of the input and output model of the magnetic torquer, and using the least square method to solve the input of the magnetic torquer after linear fitting Output the configuration data of the model, and according to the output characteristics of the magnetic torque device on orbit, use the integral smoothing method to integrate the output of the magnetic torque device in the time domain, and solve the problem by integrating the output of the magnetic torque device within a given period The output change threshold of the magnetic torquer output within a given cycle is used as the basis for self-diagnosis of faults, as shown in Figure 1, and the specific steps are as follows:
(1)根据磁力矩器的输入输出建立磁力矩器输入输出模型,对磁力矩器输入输出模型的配置参数进行定义,明确磁力矩器的输出特性,具体包括:(1) Establish the input and output model of the magnetic torquer according to the input and output of the magnetic torquer, define the configuration parameters of the input and output model of the magnetic torquer, and clarify the output characteristics of the magnetic torquer, specifically including:
由于磁力矩器的输出与本身物理器件特性相关,且磁力矩器驱动电路中存在电感,再加上磁力矩器脉宽控制量和磁力矩器激磁电流的遥测量采样周期不同。因此,磁力矩器产生的激磁电流与其接收到的脉宽控制量具有相对滞后的关系。针对磁力矩器的激磁电流与脉宽输出,建立磁力矩器输入输出模型如下:Since the output of the magnetic torquer is related to its own physical device characteristics, and there is an inductance in the magnetic torquer drive circuit, plus the pulse width control amount of the magnetic torquer and the remote measurement sampling period of the magnetic torquer excitation current are different. Therefore, the excitation current generated by the magnetic torque device has a relatively hysteresis relationship with the pulse width control amount it receives. For the excitation current and pulse width output of the magnetic torquer, the input and output model of the magnetic torquer is established as follows:
y=f(x,a)+by=f(x,a)+b
式中,x为磁力矩器的激磁电流,y为磁力矩器收到的由星载计算机计算输出的脉宽控制量,f(x,a)为与磁力矩器激磁电流相关的非线性连续函数,a、b均为描述磁力矩器激磁电流与脉宽控制量关系的配置参数;In the formula, x is the excitation current of the magnetic torque device, y is the pulse width control value received by the magnetic torque device and calculated and output by the on-board computer, f(x, a) is the nonlinear continuous current related to the magnetic torque device excitation current function, a and b are configuration parameters describing the relationship between the magnetic torque device excitation current and the pulse width control quantity;
(2)对步骤(1)所得磁力矩器输入输出模型进行线性拟合,并根据最小二乘法计算磁力矩器输入输出模型的配置参数,其中:(2) Carry out linear fitting to step (1) gained magnetic torque device input and output model, and calculate the configuration parameter of magnetic torque device input and output model according to least square method, wherein:
a和b的取值与磁力矩器本身物理特性有关。首先通过地面实验获取足够多的样本数据,计算磁力矩器输入输出模型的配置参数的具体方法为:The values of a and b are related to the physical characteristics of the magnetic torque device itself. First, obtain enough sample data through ground experiments, and the specific method for calculating the configuration parameters of the input and output model of the magnetic torque device is as follows:
(2-1)获取n组激磁电流与脉宽控制量样本数据,具体为:(2-1) Obtain n sets of sample data of excitation current and pulse width control amount, specifically:
[(x1,y1),(x2,y2),(x3,y3),...,(xn,yn)],(n∈Z+);[(x 1 ,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ),...,(x n ,y n )],(n∈Z+);
式中,x1~xn为n组激磁电流具体值,y1~yn为n组脉宽控制量具体值;In the formula, x 1 ~ x n are specific values of excitation current for n groups, and y 1 ~ y n are specific values for n groups of pulse width control quantities;
(2-2)对磁力矩器输入与输出进行线性拟合,利用最小二乘法计算样本数据离差Q,具体为:(2-2) Carry out linear fitting to the input and output of the magnetic torque device, and use the least square method to calculate the dispersion Q of the sample data, specifically:
y=ax+by=ax+b
式中,yi为y1~yn中任一样本,xi为x1~xn中任一样本;In the formula, y i is any sample from y 1 to y n , and xi is any sample from x 1 to x n ;
(2-3)计算求解Q可得:(2-3) Calculate and solve Q to get:
求解Q值的等式右边可得,当离差Q为最小值时,配置参数a、b具体为:Solving the right side of the equation for the Q value can be obtained. When the dispersion Q is the minimum value, the configuration parameters a and b are specifically:
式中,分别为x,y样本集的平均值;In the formula, are the mean values of the x and y sample sets, respectively;
(3)通过积分平滑处理方式在给定周期内对磁力矩器的输出进行积分,根据积分运算结果确定磁力矩器输出变化阈值,其中:(3) Integrate the output of the magnetic torque device in a given period by means of integral smoothing, and determine the output change threshold of the magnetic torque device according to the integral operation result, wherein:
满足y=ax+b的曲线近似的表征了磁力矩器脉宽控制量和磁力矩器激磁电流的线性关系。然而脉宽控制量是根据姿态控制算法实时计算得出的,在时域上相邻的两个脉宽控制量无线性关系;The curve satisfying y=ax+b approximately characterizes the linear relationship between the pulse width control amount of the magnetic torque device and the excitation current of the magnetic torque device. However, the pulse width control quantity is calculated in real time according to the attitude control algorithm, and there is no linear relationship between two adjacent pulse width control quantities in the time domain;
(3-1)对不满足线性关系的脉宽控制量及激磁电流曲线进行拟合,并对n组激磁电流与脉宽控制量样本数据于S个控制周期的时域上进行积分,获取脉宽控制量线性拟合理论值Yi及遥测采样真实值yi,具体为:(3-1) Fit the pulse width control quantity and excitation current curve that do not satisfy the linear relationship, and integrate n sets of excitation current and pulse width control quantity sample data in the time domain of S control cycles to obtain the pulse The theoretical value Y i of wide control quantity linear fitting and the real value y i of telemetry sampling are specifically:
式中,均为不满足线性关系的脉宽控制量及激磁电流拟合曲线的配置参数;S≤n,S∈Z+;In the formula, Both are the configuration parameters of the pulse width control quantity and the excitation current fitting curve that do not satisfy the linear relationship; S≤n, S∈Z+;
(3-2)对脉宽控制量线性拟合理论值Yi及遥测采样真实值yi积分后作差,其中:(3-2) Make a difference after integrating the theoretical value Y i of the linear fitting of the pulse width control quantity and the actual value Y i of telemetry sampling, where:
式中,ES为积分差值;In the formula, E S is the integral difference;
(3-3)将各控制周期内脉宽控制量线性拟合理论值Yi及遥测采样真实值yi的积分差值分别取最大值EnSmax、最小值EnSmin,进行次积分后确定遥测采样阈值bSmin、bSmax,具体为:(3-3) Take the maximum value E nSmax and the minimum value E nSmin of the integral difference of the pulse width control quantity linear fitting theoretical value Y i and the real value y i of telemetry sampling in each control period, respectively, and carry out Determine the telemetry sampling thresholds b Smin and b Smax after the second integration, specifically:
EnSmin=min(ES),EnSmax=max(ES),E nSmin =min(E S ), E nSmax =max(E S ),
bSmin=min(EnSmin),bSmax=max(EnSmax);b Smin = min(E nSmin ), b Smax = max(E nSmax );
(3-4)根据步骤(3-3)所得遥测采样阈值确定脉宽控制量遥测采样真实值需满足的磁力矩器输出变化阈值具体为:(3-4) According to the telemetry sampling threshold obtained in step (3-3), the magnetotorque output change threshold that needs to be satisfied by the pulse width control amount telemetry sampling true value is specifically:
(4)将步骤(3)所得磁力矩器输出变化阈值作为给定周期内磁力矩器的输出有效性诊断依据,建立磁力矩器在轨故障自主诊断模型,实现磁力矩器在轨故障自主诊断,如图3所示,对于任意的磁力矩器激磁电流xi,若相应的磁力矩器脉宽控制量yi,在S个控制周期内的积分满足:(4) Use the output change threshold of the magnetic torque device obtained in step (3) as the output validity diagnosis basis of the magnetic torque device within a given period, establish a self-diagnosis model for the on-orbit fault of the magnetic torque device, and realize the self-diagnosis of the on-orbit fault of the magnetic torque device , as shown in Figure 3, for any magnetic torquer excitation current x i , if the corresponding magnetic torquer pulse width control value y i , the integral within S control cycles satisfies:
则该S个控制周期内的磁力矩器输出有效;反之,则无效。其中,[bSmin,bSmax]取决于磁力矩器本身的物理特性,也与S的取值有关。Then the output of the magnetic torque device in the S control cycles is valid; otherwise, it is invalid. Among them, [b Smin ,b Smax ] depends on the physical characteristics of the magnetic torque device itself, and is also related to the value of S.
下面结合具体实施例进行进一步说明:Further explanation is carried out below in conjunction with specific embodiment:
(1)针对磁力矩器的激磁电流与脉宽输出,建立磁力矩器输入输出模型如下:(1) For the excitation current and pulse width output of the magnetic torque device, the input and output model of the magnetic torque device is established as follows:
y=f(x,a)+by=f(x,a)+b
其中,x为磁力矩器的激磁电流,y为磁力矩器收到的由星载计算机计算输出的脉宽控制量,x,y分别为可观测的遥测量;f(x,a)表征与磁力矩器激磁电流相关的非线性连续函数。a和b为描述磁力矩器激磁电流与脉宽控制量关系的配置参数;Among them, x is the excitation current of the magnetic torque device, y is the pulse width control quantity received by the magnetic torque device and calculated and output by the on-board computer, x and y are the observable remote measurements respectively; f(x,a) represents the same as A nonlinear continuous function related to the excitation current of a magnetic torquer. a and b are configuration parameters describing the relationship between the magnetic torque device excitation current and the pulse width control quantity;
(2)通过地面实验获取三百万组样本数据,得出的磁力矩器输入与输出样本组为:(2) Three million sets of sample data are obtained through ground experiments, and the input and output sample sets of the magnetic torquer are obtained as follows:
[(x1,y1),(x2,y2),(x3,y3),...,(xn,yn)],(n≤3000000,n∈Z+)[(x 1 ,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ),...,(x n ,y n )],(n≤3000000,n∈Z+)
设磁力矩器输入输出模型拟合的曲线为线性的,满足:Assuming that the curve fitted by the input and output model of the magnetic torque device is linear, it satisfies:
y=ax+by=ax+b
对样本集中的离散点组合进行最小二乘法求解。设离差Q满足:The least squares method is used to solve the discrete point combination in the sample set. Let the dispersion Q satisfy:
当Q最小时,即得出满足拟合曲线方程的系数值,记样本集中x,y的平均值分别为求解Q可得:When Q is the smallest, the coefficient value that satisfies the fitting curve equation is obtained, and the average values of x and y in the sample set are respectively Solving Q can be obtained:
由以上求解Q值的等式右边可知,当:It can be seen from the right side of the equation for solving the Q value above that when:
离差Q为最小值。此时,磁力矩器输入输出的线性拟合模型为:The dispersion Q is the minimum value. At this time, the linear fitting model of the input and output of the magnetic torquer is:
y=70.8731x-170.2057y=70.8731x-170.2057
其中,x为磁力矩器激磁电流,y为磁力矩器收到的由星载计算机计算输出的脉宽控制量。此时,经过线性拟合的磁力矩器输入输出模型数据分布如图2所示。Among them, x is the excitation current of the magnetic torque device, and y is the pulse width control value received by the magnetic torque device and calculated and output by the on-board computer. At this time, the data distribution of the input and output model of the magnetic torque device after linear fitting is shown in Fig. 2 .
(3)满足y=70.8731x-170.2057的曲线近似的表征了磁力矩器脉宽控制量和磁力矩器激磁电流的线性关系。然而脉宽控制量是根据姿态控制算法实时计算得出的,在时域上相邻的两个脉宽控制量无线性关系。(3) The curve satisfying y=70.8731x-170.2057 approximately characterizes the linear relationship between the pulse width control amount of the magnetic torque device and the excitation current of the magnetic torque device. However, the pulse width control quantity is calculated in real time according to the attitude control algorithm, and there is no linear relationship between two adjacent pulse width control quantities in the time domain.
设拟合的曲线为:Let the fitted curve be:
y=70.8731x-170.2057y=70.8731x-170.2057
对于整个数据样本[(x1,y1),(x2,y2),(x3,y3),...,(xn,yn)],(n≤3000000,n∈Z+),一对数据样本对应一对控制周期遥测,对数据样本在时域上40个控制周期的值进行积分,可以得到40个控制周期内,由激磁电流输入产生的脉宽控制量线性拟合理论值Yi,以及遥测采样的真实值yi分别为:For the entire data sample [(x 1 ,y 1 ),(x 2 ,y 2 ),(x 3 ,y 3 ),...,(x n ,y n )], (n≤3000000,n∈Z+ ), a pair of data samples corresponds to a pair of control period telemetry, and the value of the data sample in the time domain is integrated for 40 control periods, and the linear fitting of the pulse width control quantity generated by the excitation current input within 40 control periods can be obtained The theoretical value Y i , and the real value y i of telemetry sampling are respectively:
对积分的脉宽控制量线性拟合理论值以及遥测真实值作差:Make a difference between the integral pulse width control quantity linear fitting theoretical value and the real value of telemetry:
经过75000次积分运算,存在使得样本中的脉宽控制量遥测采样真实值yi满足:After 75,000 integral operations, there is So that the actual value y i of the pulse width control quantity telemetry sampling in the sample satisfies:
配置参数的范围为[-798.2160,851.4999];configuration parameters The range is [-798.2160,851.4999];
(4)建立磁力矩器在轨故障自主诊断模型:(4) Establish the on-orbit fault self-diagnosis model of the magnetic torque device:
对于任意的磁力矩器激磁电流xi,其相应的磁力矩器脉宽控制量yi,在40个控制周期内的积分,若满足:For any magnetic torque device excitation current x i , the corresponding magnetic torque device pulse width control value y i , the integral within 40 control cycles, if it satisfies:
则该40个控制周期内的磁力矩器输出有效;Then the output of the magnetic torque device within the 40 control cycles is valid;
若不满足,则该40个控制周期内的磁力矩器输出无效,其中配置参数的范围[-798.2160,851.4999]取决于磁力矩器本身的物理特性,也与积分周期的取值有关。If it is not satisfied, the output of the magnetic torque device in the 40 control cycles is invalid, and the configuration parameters The range of [-798.2160,851.4999] depends on the physical characteristics of the magnetic torque device itself, and is also related to the value of the integration period.
本发明说明书中未作详细描述的内容属本领域技术人员的公知技术。The content that is not described in detail in the description of the present invention belongs to the well-known technology of those skilled in the art.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010560501.0A CN111797517B (en) | 2020-06-18 | 2020-06-18 | A self-diagnosis method for on-orbit faults of magnetic torque devices based on linear regression |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010560501.0A CN111797517B (en) | 2020-06-18 | 2020-06-18 | A self-diagnosis method for on-orbit faults of magnetic torque devices based on linear regression |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111797517A CN111797517A (en) | 2020-10-20 |
CN111797517B true CN111797517B (en) | 2023-07-14 |
Family
ID=72803504
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010560501.0A Active CN111797517B (en) | 2020-06-18 | 2020-06-18 | A self-diagnosis method for on-orbit faults of magnetic torque devices based on linear regression |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111797517B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1559895A1 (en) * | 2004-02-02 | 2005-08-03 | Peugeot Citroen Automobiles S.A. | Method for diagnosing the operational condition of a vehicle diesel engine |
CN101263499A (en) * | 2005-07-11 | 2008-09-10 | 布鲁克斯自动化公司 | Intelligent condition monitoring and fault diagnostic system |
WO2012152055A1 (en) * | 2011-05-10 | 2012-11-15 | 山东电力研究院 | Accurate waveform measuring method for lightning strike-induced malfunctions of electrical transmission line |
FR2999233A1 (en) * | 2012-12-11 | 2014-06-13 | Renault Sa | DEVICE AND METHOD FOR DIAGNOSING AN OXIDE TRAPPER OF NITROGEN |
CN106218923A (en) * | 2016-07-27 | 2016-12-14 | 中国科学院长春光学精密机械与物理研究所 | A kind of control method of magnetic torquer |
CN107862131A (en) * | 2017-11-06 | 2018-03-30 | 青岛科技大学 | A kind of method for diagnosing faults of the catalytic cracking main fractionating tower based on two tier approach |
CN109451773A (en) * | 2016-06-15 | 2019-03-08 | 高通股份有限公司 | Method and apparatus for positioning the vehicles |
CN111062533A (en) * | 2019-12-16 | 2020-04-24 | 国家能源集团谏壁发电厂 | Fan fault prediction method based on whale optimization algorithm optimization weighted least square support vector machine |
-
2020
- 2020-06-18 CN CN202010560501.0A patent/CN111797517B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1559895A1 (en) * | 2004-02-02 | 2005-08-03 | Peugeot Citroen Automobiles S.A. | Method for diagnosing the operational condition of a vehicle diesel engine |
CN101263499A (en) * | 2005-07-11 | 2008-09-10 | 布鲁克斯自动化公司 | Intelligent condition monitoring and fault diagnostic system |
WO2012152055A1 (en) * | 2011-05-10 | 2012-11-15 | 山东电力研究院 | Accurate waveform measuring method for lightning strike-induced malfunctions of electrical transmission line |
FR2999233A1 (en) * | 2012-12-11 | 2014-06-13 | Renault Sa | DEVICE AND METHOD FOR DIAGNOSING AN OXIDE TRAPPER OF NITROGEN |
CN109451773A (en) * | 2016-06-15 | 2019-03-08 | 高通股份有限公司 | Method and apparatus for positioning the vehicles |
CN106218923A (en) * | 2016-07-27 | 2016-12-14 | 中国科学院长春光学精密机械与物理研究所 | A kind of control method of magnetic torquer |
CN107862131A (en) * | 2017-11-06 | 2018-03-30 | 青岛科技大学 | A kind of method for diagnosing faults of the catalytic cracking main fractionating tower based on two tier approach |
CN111062533A (en) * | 2019-12-16 | 2020-04-24 | 国家能源集团谏壁发电厂 | Fan fault prediction method based on whale optimization algorithm optimization weighted least square support vector machine |
Also Published As
Publication number | Publication date |
---|---|
CN111797517A (en) | 2020-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN105785999B (en) | Unmanned boat course motion control method | |
Toussaint et al. | H/sup/spl infin//-optimal tracking control techniques for nonlinear underactuated systems | |
CN103034123B (en) | Based on the parallel robot control method of kinetic parameters identification | |
CN102620886B (en) | Two-step in-orbit recognition rotary inertia estimation method for combined spacecraft | |
Efimov et al. | A hybrid robust non-homogeneous finite-time differentiator | |
CN103472730B (en) | Double-frame control moment gyro high-precision frame rate servo system based on harmonic reducer torsional rigidity hysteresis model | |
CN107728138B (en) | Maneuvering target tracking method based on current statistical model | |
CN108228975B (en) | Parameter identification method of motor servo system and anti-backlash control method | |
US6711489B2 (en) | Method for estimating engine cylinder variables using second order sliding modes | |
CN101853243A (en) | Adaptive Kalman Filtering Method with Unknown System Model | |
CN111176118A (en) | Turntable servo system identification method based on robust adaptive algorithm | |
CN104571109A (en) | Agricultural vehicle independent navigation steering control method based on disturbance observer | |
JP6601577B2 (en) | Control objective function integration system, control objective function integration method, and control objective function integration program | |
CN111797517B (en) | A self-diagnosis method for on-orbit faults of magnetic torque devices based on linear regression | |
CN108762077B (en) | Mobile robot rolling time domain estimation method with communication constraint | |
CN104199291B (en) | Dissipative structure theory based TORA (Translation oscillators with a rotating actuator) system self-adaption control method | |
CN101691020A (en) | Sliding formwork control method used in motion control of virtual axis machine tool cutter | |
CN110703605A (en) | An adaptive fuzzy optimal control method and system for intelligent ship autopilot system | |
CN106289208A (en) | A kind of magnetic bearing system axes of inertia discrimination method based on nonlinear adaptive algorithm | |
CN108120452A (en) | The filtering method of MEMS gyroscope dynamic data | |
CN108657014B (en) | A signal processing method and device for a position sensor of a maglev train levitation system | |
CN107544250B (en) | A Less Conservative Trajectory Tracking Control Method for Permanent Magnet Spherical Motors | |
CN113950018A (en) | An Asynchronous Multi-sensor Network System and Global Ellipsoid State Estimation Method | |
CN114063458A (en) | Preset performance control method of non-triangular structure system independent of initial conditions | |
CN101403892B (en) | Controlled member parameter recognition method based on DC motor angular displacement control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |