CN111681999A - A vacuum heat-conducting cavity soaking plate and an air-cooled heat sink - Google Patents
A vacuum heat-conducting cavity soaking plate and an air-cooled heat sink Download PDFInfo
- Publication number
- CN111681999A CN111681999A CN202010420553.8A CN202010420553A CN111681999A CN 111681999 A CN111681999 A CN 111681999A CN 202010420553 A CN202010420553 A CN 202010420553A CN 111681999 A CN111681999 A CN 111681999A
- Authority
- CN
- China
- Prior art keywords
- heat
- plate
- air
- cooled
- fins
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002791 soaking Methods 0.000 title claims abstract description 38
- 230000017525 heat dissipation Effects 0.000 claims abstract description 51
- 239000007788 liquid Substances 0.000 claims abstract description 45
- 239000004065 semiconductor Substances 0.000 claims abstract description 32
- 230000008016 vaporization Effects 0.000 claims abstract description 8
- 238000009413 insulation Methods 0.000 claims abstract description 7
- 238000009834 vaporization Methods 0.000 claims abstract description 7
- 230000008859 change Effects 0.000 claims description 28
- 238000001816 cooling Methods 0.000 claims description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 238000009434 installation Methods 0.000 claims description 11
- 239000000741 silica gel Substances 0.000 claims description 11
- 229910002027 silica gel Inorganic materials 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 238000007789 sealing Methods 0.000 claims description 6
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 239000010949 copper Substances 0.000 claims description 4
- 238000013461 design Methods 0.000 claims description 4
- 230000000694 effects Effects 0.000 claims description 4
- 238000005057 refrigeration Methods 0.000 abstract description 26
- 238000010521 absorption reaction Methods 0.000 abstract 1
- 239000012071 phase Substances 0.000 description 21
- 239000000243 solution Substances 0.000 description 8
- 230000004907 flux Effects 0.000 description 6
- 239000012782 phase change material Substances 0.000 description 5
- 238000012546 transfer Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000994 depressogenic effect Effects 0.000 description 2
- 238000004146 energy storage Methods 0.000 description 2
- 239000011344 liquid material Substances 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 230000005679 Peltier effect Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/367—Cooling facilitated by shape of device
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3736—Metallic materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/38—Cooling arrangements using the Peltier effect
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/427—Cooling by change of state, e.g. use of heat pipes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/46—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids
- H01L23/467—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements involving the transfer of heat by flowing fluids by flowing gases, e.g. air
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
技术领域technical field
本发明涉及散热装置领域,尤其涉及一种真空导热腔均热板及风冷式散热装置。The invention relates to the field of heat dissipation devices, in particular to a vacuum heat conduction chamber soaking plate and an air-cooled heat dissipation device.
背景技术Background technique
随着电子器件向高性能、高集成度发展使其功率密度增加,单位容积电子器件的发热量和热流密度也随之大幅度增加。为了保证器件能够处于良好的工作温度环境,需将热量快速散发出去。With the development of electronic devices to high performance and high integration, the power density increases, and the heat generation and heat flux density per unit volume of electronic devices also increase significantly. In order to ensure that the device can be in a good working temperature environment, the heat needs to be dissipated quickly.
热管是一种利用气液相变的传热元件,由于其传热能力要远远优于金属材料的,因此被广泛应用于电子等设备散热领域。半导体制冷片的原理是基于帕尔贴原理,利用半导体材料的Peltier效应,当直流电通过两种不同半导体材料串联成的电偶时,在电偶的两端可分别吸收热量和放出热量,实现制冷的目的。翅片2以强制对流和辐射的方式加热周围的空气将热量散发出去。相变材料(PCM)在热能储存和利用上潜力巨大,利用相变液体材料吸热汽化液化的优势弥补相变材料导热系数低的问题,能作为良好的储热和热传递媒介。A heat pipe is a heat transfer element that utilizes gas-liquid phase transition. Because its heat transfer capability is far superior to that of metal materials, it is widely used in the field of heat dissipation of electronics and other equipment. The principle of semiconductor refrigeration sheet is based on the Peltier principle, using the Peltier effect of semiconductor materials, when the direct current passes through the galvanic couple formed by two different semiconductor materials in series, the two ends of the galvanic couple can absorb heat and release heat respectively to achieve refrigeration. the goal of. The
电子元件的可靠性研究表明,随着温度的增加,元器件的失效率呈指数增长,导致其可靠性大幅度降低。传统的空冷散热装置效果不佳,液冷散热装置虽然散热能力较强,但存在着漏液等危险以及需要消耗泵功,相变材料(PCM)在热能储存上潜力巨大,但是其散热效果不好。电子器件的散热势在必行,对于本领域的技术人员来说,如何设计一种导热散热效果更好、更加安全可靠的散热装置,是目前本领域技术员人急需解决的问题。Reliability studies of electronic components show that with the increase of temperature, the failure rate of components increases exponentially, resulting in a substantial decrease in their reliability. The traditional air-cooled radiator is not effective. Although the liquid-cooled radiator has a strong heat dissipation capacity, it has risks such as liquid leakage and needs to consume pump power. Phase change materials (PCM) have great potential for thermal energy storage, but their heat dissipation effect is not good it is good. The heat dissipation of electronic devices is imperative. For those skilled in the art, how to design a heat dissipation device with better heat conduction and heat dissipation effect, and more safety and reliability is an urgent problem for those skilled in the art.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于克服现有技术的不足,提供一种真空导热腔均热板及风冷式散热装置。The purpose of the present invention is to overcome the deficiencies of the prior art, and to provide a vacuum heat-conducting chamber soaking plate and an air-cooled heat dissipation device.
本发明的目的通过下述技术方案实现:The object of the present invention is achieved through the following technical solutions:
一种真空导热腔均热板及风冷式散热装置,主要包括均热板模块和风冷模块。所述均热板模块设置在热源上,吸收热源的热量。所述风冷模块安装在均热板模块上,帮助均热板模块散热。A vacuum heat-conducting cavity soaking plate and an air-cooled heat dissipation device mainly include a soaking plate module and an air-cooling module. The soaking plate module is arranged on the heat source and absorbs the heat of the heat source. The air cooling module is installed on the vapor chamber module to help the vapor chamber module to dissipate heat.
具体的,所述均热板模块包括相变液体、底板、热沉板、密封圈、支撑柱、以及凸起结构。所述底板设置在热源上,其内设有容纳相变液体的凹腔。所述热沉板设置在底板上,其边缘通过密封圈与底板密封连接,形成供相变液体汽化和液化的导热腔。所述支撑柱位于底板的凹腔内,其底部与底板固定连接,顶部热沉板的底部抵接。所述凸起结构设置在热沉板底部,并向底板方向延伸,其位置与支撑柱错开设置。所述相变液体填充在底板与热沉板构成的导热腔内,帮助热源快速散热。Specifically, the vapor chamber module includes a phase change liquid, a bottom plate, a heat sink plate, a sealing ring, a support column, and a raised structure. The bottom plate is arranged on the heat source, and a concave cavity for accommodating the phase change liquid is arranged in the bottom plate. The heat sink plate is arranged on the bottom plate, and its edge is sealed with the bottom plate through a sealing ring to form a heat conduction cavity for the vaporization and liquefaction of the phase change liquid. The support column is located in the cavity of the bottom plate, the bottom of which is fixedly connected with the bottom plate, and the bottom of the top heat sink plate abuts. The protruding structure is arranged at the bottom of the heat sink plate and extends toward the bottom plate, and its position is staggered from the support column. The phase change liquid is filled in the heat conduction cavity formed by the bottom plate and the heat sink plate, which helps the heat source to dissipate heat quickly.
具体的,所述风冷模块包括隔热板、制冷片、导热硅胶、散热翅片、以及热管。所述隔热板设置在热沉板上,与热沉板和底板固定连接,其中部设有用于安装制冷片的安装缺口。所述制冷片设置在隔热板上,嵌入安装缺口内,其制冷端与热沉板连接接触。所述散热翅片设置在制冷片上,并通过导热硅胶与制冷片的散热端连接。所述散热翅片的侧面设有热管安装孔,所述热管安装孔贯穿散热翅片。所述热管设置在散热翅片内,通过热管安装孔与散热翅片连接接触。Specifically, the air cooling module includes a heat insulation plate, a cooling sheet, a thermally conductive silica gel, a heat dissipation fin, and a heat pipe. The heat insulating plate is arranged on the heat sink plate and is fixedly connected with the heat sink plate and the bottom plate, and a mounting notch for installing the cooling sheet is arranged in the middle thereof. The refrigerating sheet is arranged on the heat insulating plate, embedded in the installation notch, and the refrigerating end of the refrigerating plate is in contact with the heat sink plate. The cooling fins are arranged on the cooling fins and are connected to the cooling ends of the cooling fins through thermally conductive silica gel. The side surfaces of the heat dissipation fins are provided with heat pipe mounting holes, and the heat pipe mounting holes pass through the heat dissipation fins. The heat pipes are arranged in the heat dissipation fins, and are connected and contacted with the heat dissipation fins through the installation holes of the heat pipes.
进一步的,所述隔热板上还设有供制冷片的导线穿过的通孔。所述通孔设置在隔热板的侧面,并贯穿至安装缺口内。Further, the heat insulating plate is also provided with a through hole through which the wire of the cooling fin passes. The through hole is arranged on the side surface of the heat insulation board and penetrates into the installation notch.
作为本发明的优选方案,所述制冷片采用半导体制冷片。As a preferred solution of the present invention, the refrigerating sheet adopts a semiconductor refrigerating sheet.
作为本发明的优选方案,所述热管采用烧结型铜棒热管。As a preferred solution of the present invention, the heat pipe adopts a sintered copper rod heat pipe.
作为本发明的优选方案,所述凸起结构为铜粉制成。As a preferred solution of the present invention, the protruding structure is made of copper powder.
作为本发明的优选方案,所述风冷模块设为若干组,若干组风冷模块向上叠加而提高散热效果。As a preferred solution of the present invention, the air-cooling modules are arranged in several groups, and several groups of air-cooling modules are stacked upward to improve the heat dissipation effect.
进一步的,所述底板上还设有用于注入相变液体的注入口。所述注入口设置在底板的侧边,其一端与底板的凹腔连通,另一端与外界连通。Further, the bottom plate is also provided with an injection port for injecting the phase change liquid. The injection port is arranged on the side of the bottom plate, one end of which is communicated with the cavity of the bottom plate, and the other end is communicated with the outside world.
作为本发明的优选方案,所述相变液体填充的填充率为35%至50%。As a preferred solution of the present invention, the filling rate of the phase change liquid filling is 35% to 50%.
作为本发明的优选方案,所述凸起结构采用圆锥式凸起结构设计,其底部与热沉板底部固定,锥部向下延伸,其高度小于支撑柱的高度。As a preferred solution of the present invention, the convex structure adopts a conical convex structure design, the bottom of which is fixed to the bottom of the heat sink plate, the conical portion extends downward, and its height is smaller than that of the support column.
与现有技术相比,本发明还具有以下优点:Compared with the prior art, the present invention also has the following advantages:
(1)本发明所提供的真空导热腔均热板及风冷式散热装置采用合理的结合均热板、半导体制冷以及风冷式散热装置,其结构简单,高效环保,维护简单,可以提高电子产品的工作性能、可靠性和使用寿命。(1) The vacuum heat-conducting chamber soaking plate and the air-cooled heat dissipation device provided by the present invention adopt a reasonable combination of soaking plate, semiconductor refrigeration and air-cooled heat dissipation device, which have simple structure, high efficiency and environmental protection, simple maintenance, and can improve the electronic Product performance, reliability and service life.
(2)本发明所提供的真空导热腔均热板及风冷式散热装置利用相变液体材料汽化液化的高导率、半导体制冷以及热管的高导热将翅片热流密度较高端的热量导到热流密度较低端进行散热,实现更高的导热散热效率。(2) The vacuum heat-conducting chamber soaking plate and the air-cooled heat dissipation device provided by the present invention utilize the high conductivity of the vaporization and liquefaction of the phase-change liquid material, the semiconductor refrigeration and the high thermal conductivity of the heat pipe to conduct the heat at the higher end of the fin heat flow density to the The lower heat flux density is used for heat dissipation to achieve higher heat conduction and heat dissipation efficiency.
附图说明Description of drawings
图1是本发明所提供的真空导热腔均热板及风冷式散热装置的爆炸图。FIG. 1 is an exploded view of the vacuum heat-conducting chamber soaking plate and the air-cooled heat dissipation device provided by the present invention.
图2是本发明所提供的底板的结构示意图。FIG. 2 is a schematic structural diagram of the bottom plate provided by the present invention.
图3是本发明所提供的热沉板的结构示意图。FIG. 3 is a schematic structural diagram of the heat sink plate provided by the present invention.
图4是本发明所提供的风冷模块的结构示意图。FIG. 4 is a schematic structural diagram of the air cooling module provided by the present invention.
图5是本发明所提供的真空导热腔均热板及风冷式散热装置的结构示意图。5 is a schematic structural diagram of a vacuum heat-conducting chamber soaking plate and an air-cooled heat dissipation device provided by the present invention.
上述附图中的标号说明:Description of the symbols in the above drawings:
1-热管,2-翅片,21-安装孔,3-制冷片,31-导线,4-隔热板,41-避位孔,5-均热板,51-热沉板,511-凸起结构,52-底板,521-支撑柱,522-注入口。1- Heat pipe, 2- Fin, 21- Mounting hole, 3- Cooling plate, 31- Conductor, 4- Insulation plate, 41- Escape hole, 5- Vaporizing plate, 51- Heat sink plate, 511- Convex From the structure, 52 - bottom plate, 521 - support column, 522 - injection port.
具体实施方式Detailed ways
为使本发明的目的、技术方案及优点更加清楚、明确,以下参照附图并举实施例对本发明作进一步说明。In order to make the objectives, technical solutions and advantages of the present invention clearer and clearer, the present invention will be further described below with reference to the accompanying drawings and examples.
实施例1:Example 1:
如图1至图5所示,本实施例公开了一种真空导热腔均热板及风冷式散热装置,包括两部分:As shown in FIG. 1 to FIG. 5 , this embodiment discloses a vacuum heat-conducting chamber soaking plate and an air-cooled heat dissipation device, including two parts:
第一部分为真空导热腔均热板导热块,包括:The first part is the heat-conducting block of the vacuum heat-conducting cavity vapor chamber, including:
均热板5,用于接触热源,其内部设置有与外界密封隔离的导热腔,导热腔中填充设置有吸热汽化的相变液体;The soaking
所述均热板5包括热沉板51和底板52,所述均热板5可作为一种平板热管;The
所述热沉板51设置有圆锥凸起结构511,能够打破真空腔中相变液体汽化在热沉板51表面形成的液膜,减小热阻;另外,所述圆锥凸起结构511还可以作为相变液体汽化被冷却后的液体引流作用;The
所述底板52设置有凹槽与所述热沉板51形成真空导热腔,所述底板52凹槽低面上凸出设置支撑柱521,所述支撑柱521能够与所述热沉板51底部接触且与圆锥凸起结构511错开,防止凹槽外表面受力不均造成凹槽变形凹陷;The
可选地,所述底板52的凹槽外周设置一缺口/注入口522,缺口处装配注液管;Optionally, a gap/
可选地,所述圆锥凸起结构511为铜粉制成;Optionally, the conical
可选地,所述真空导热腔通过注液管填充吸热可汽化的相变液体,所述相变液体填充率为35%~50%;Optionally, the vacuum heat conduction chamber is filled with an endothermic and vaporizable phase change liquid through a liquid injection pipe, and the filling rate of the phase change liquid is 35% to 50%;
可选地,所述填充相变液体,在不受热时,真空腔下表面积集相变液体,当底板52受热时,相变液体吸热汽化,将热量送到热沉板51,半导体制冷片3对其主动散热;Optionally, when the phase-change liquid is filled, the lower surface of the vacuum chamber collects the phase-change liquid when it is not heated. When the
可选地,所述热沉板51和底板52之间可为可拆装连接固定,并通过方形状的密封圈密封;外周也可以通过焊接成一体,形成密闭真空导热腔空间;Optionally, the
第二部分为风冷式散热装置,包括:The second part is an air-cooled heat sink, including:
可选地,所述半导体制冷片3冷凝端接触热沉板51上表面,相变液体可吸热汽化,相变气体在热沉板51被冷却成相变液体,通过所述圆锥凸起结构511引流回到底板52吸热端表面;Optionally, the condensation end of the
可选地,半导体制冷片3热端通过导热硅胶与散热翅片2相连,导热腔中的相变液体导出来的热量通过半导体制冷片3主动冷却,进一步,通过翅片2散热;Optionally, the hot end of the
可选地,所述风冷式散热装置包括两层半导体制冷和两层散热翅片2以及若干热管1;Optionally, the air-cooled heat dissipation device includes two layers of semiconductor refrigeration, two layers of
可选地,所述第一层翅片2和热沉板51之间设置有隔热板4,所述隔热板4设置有安装槽,半导体制冷片3嵌入隔热板4通过导热硅胶与热沉板51接触;Optionally, a
可选地,所述第一层与第二层翅片2之间设置有隔热板4,所述隔热板4设置有安装槽,半导体制冷片3嵌入隔热板4通过导热硅胶与第一层翅片2接触;Optionally, a
可选地,所述隔热板4上设置有半导体制冷片3出线的避位孔41,所述半导体制冷片3上的导线31从所述出现避位孔41穿出与电源连接;Optionally, the
采用上述方案的有益效果是:通过在隔热板4上开设安装槽,并将半导体制冷片3设置在安装槽内,使得半导体制冷片3的安装更加方便,稳固;The beneficial effect of adopting the above scheme is: by opening a mounting groove on the
可选地,所述翅片2均设置有若干用于配置热管1的孔/安装孔21;Optionally, each of the
可选地,热管1的蒸发端设置于翅片2连接半导体制冷片3端,冷凝端设置于翅片2另一端;利用热管1靠自身内部工作液体相变来实现传热的元件,具有高导热性将翅片2热流密度较高端的热量导到热流密度较低端散热,实现更高的导热散热效率;Optionally, the evaporating end of the heat pipe 1 is arranged at the end of the
可选地,所述热管1大小以及嵌入的热管1数根据实际需求设定;所述热管1可选但不限于U型热管1;Optionally, the size of the heat pipe 1 and the number of embedded heat pipes 1 are set according to actual needs; the heat pipe 1 is optional but not limited to the U-shaped heat pipe 1;
可选地,热管1作为热传递媒介,具体为烧结型铜棒热管1;Optionally, the heat pipe 1 is used as a heat transfer medium, and is specifically a sintered copper rod heat pipe 1;
可选地,所述翅片2的材料可为但不限于铜;Optionally, the material of the
实施例2:Example 2:
本实施例公开了:如图1所示,为本发明提供的散热装置各部件的爆炸图,其中包括均热板5、半导体制冷片3和风冷式散热装置等结构,其中均热板5用于接触热源,在均热板5中设置有热沉板51和底板52形成的真空导热腔,真空导热腔与外界密封隔离为一独立的腔体结构,其填充有吸热汽化的相变液体,均热板5受热时,热源产生的热量传递给均热板5,均热板5导热腔中的相变液体吸热汽化,相变为气态向上移动;第一层翅片2和热沉板51之间设置有隔热板4,所述隔热板4设置有安装槽,半导体制冷片3嵌入隔热板4通过导热硅胶与热沉板51接触;到达上表面的气态相变材料被第一层半导体制冷片3主动冷却,热量通过第一层翅片2散发,热管1将第一层翅片2接热源高热流密度端的热量导热到低热流密度端,所述第一层与第二层翅片2之间设置有隔热板4,所述隔热板4设置有安装槽,半导体制冷片3嵌入隔热板4通过导热硅胶与第一层翅片2接触;热量被二层半导体制冷片3主动冷却,通过翅片2散发,相变液体温度降低,重新凝结为液态通过圆锥凸起结构511引流回流到导热腔的下表面,重新吸收热量,不断循环导热散热。This embodiment discloses: as shown in FIG. 1, an exploded view of each component of the heat dissipation device provided by the present invention, which includes structures such as a soaking
均热板5包括底板52和热沉板51,底板52设置有凹槽与所述热沉板51形成真空导热腔,热沉板51和底板52之间可为可拆装连接固定,并通过方形状的密封圈密封;外周也可以通过焊接成一体,形成密闭真空导热腔空间。The soaking
更具体地,如图2所示为本发明底板52,在凹槽低面上凸出设置支撑柱521,所述支撑柱521能够与所述热沉板51底部接触且与圆锥凸起结构511错开,防止凹槽外表面受力不均造成凹槽变形凹陷;底板52的凹槽外周设置缺口,缺口处装配注液管,相变液体通过注液管进入真空导热腔。More specifically, as shown in FIG. 2 is the
如图3所示为本发明热沉板51,与底板52配合形成真空导热腔;热沉板51设置有圆锥凸起结构511,能够打破真空腔中相变液体汽化在热沉板51表面形成的液膜,减小热阻;另外,所述圆锥凸起结构511还可以作为相变液体汽化被冷却后的液体引流作用,当相变液体温度降低,重新凝结为液态通过圆锥凸起结构511引流回流到导热腔的下表面,重新吸收热量,不断循环导热。As shown in FIG. 3 , the
在上述均热板5具有高导热的基础上,本发明还设计一种风冷式散热装置,如图4所示为本发明的风冷式散热装置的一层,翅片2和热沉板51之间设置有隔热板4,所述隔热板4设置有安装槽,半导体制冷片3嵌入隔热板4安装槽,导线31穿过避位孔41与外界电源连接;半导体制冷片3热端通过导热硅胶与散热翅片2相连,冷端通过导热硅胶与热沉板51接触导,热腔中的相变液体导出来的热量通过半导体制冷片3主动冷却,进一步,通过翅片2散热。On the basis of the high thermal conductivity of the above-mentioned
采用隔热板4的有益效果是:通过在隔热板4上开设安装槽,并将半导体制冷片3设置在安装槽内,使得半导体制冷片3的安装更加方便,稳固;热量不能通过隔热板4与热沉板51形成热堆积而通过半导体制冷片3主动散热,提高散热效率。The beneficial effect of adopting the
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above-mentioned embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited by the above-mentioned embodiments, and any other changes, modifications, substitutions, combinations, The simplification should be equivalent replacement manners, which are all included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010420553.8A CN111681999A (en) | 2020-05-18 | 2020-05-18 | A vacuum heat-conducting cavity soaking plate and an air-cooled heat sink |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010420553.8A CN111681999A (en) | 2020-05-18 | 2020-05-18 | A vacuum heat-conducting cavity soaking plate and an air-cooled heat sink |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111681999A true CN111681999A (en) | 2020-09-18 |
Family
ID=72451919
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010420553.8A Pending CN111681999A (en) | 2020-05-18 | 2020-05-18 | A vacuum heat-conducting cavity soaking plate and an air-cooled heat sink |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111681999A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112201637A (en) * | 2020-11-03 | 2021-01-08 | 深圳市森若新材科技有限公司 | Phase change liquid cooling heat abstractor |
CN112256113A (en) * | 2020-11-13 | 2021-01-22 | 大连理工大学 | Flat heat pipe type CPU heat dissipation device based on thermoelectric refrigeration |
CN113050352A (en) * | 2021-03-09 | 2021-06-29 | 深圳市火乐科技发展有限公司 | Radiator for DMD chip and projection equipment |
CN113099707A (en) * | 2021-05-21 | 2021-07-09 | 苏州格曼斯温控科技有限公司 | Heat dissipation device and equipment |
CN114980667A (en) * | 2022-05-12 | 2022-08-30 | 西安交通大学 | A passive thermal control system |
WO2022259240A1 (en) * | 2021-06-10 | 2022-12-15 | Double Check Ltd | Thermoelectric module |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030029071A (en) * | 2003-02-18 | 2003-04-11 | 김대호 | The Cooler using PCM(Phase change material) and Thermoelectric module |
US20060108105A1 (en) * | 2004-11-23 | 2006-05-25 | Forward Electronics Co., Ltd. | Modularized cooler |
CN202111975U (en) * | 2011-05-12 | 2012-01-11 | 陈文进 | Vapor chamber with support structure |
US20140247557A1 (en) * | 2013-03-04 | 2014-09-04 | The Hong Kong University Of Science And Technology | Phase-change chamber with patterned regions of high and low affinity to a phase-change medium for electronic device cooling |
CN107479151A (en) * | 2017-09-22 | 2017-12-15 | 比赫电气(太仓)有限公司 | A kind of heat pipe semiconductor temperature control module for All-in-One optical module |
KR20180077403A (en) * | 2016-12-28 | 2018-07-09 | 한국철도기술연구원 | Active cooling-teg fusion system |
CN110035642A (en) * | 2019-05-21 | 2019-07-19 | 广东工业大学 | A kind of liquid-cooled heat-conducting block and water-cooling type radiator |
CN110425510A (en) * | 2019-08-26 | 2019-11-08 | 南京工业大学 | Parallel small-diameter heat pipe enhanced heat exchange device for recycling waste heat of medium-low temperature flue gas and preparation method thereof |
-
2020
- 2020-05-18 CN CN202010420553.8A patent/CN111681999A/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030029071A (en) * | 2003-02-18 | 2003-04-11 | 김대호 | The Cooler using PCM(Phase change material) and Thermoelectric module |
US20060108105A1 (en) * | 2004-11-23 | 2006-05-25 | Forward Electronics Co., Ltd. | Modularized cooler |
CN202111975U (en) * | 2011-05-12 | 2012-01-11 | 陈文进 | Vapor chamber with support structure |
US20140247557A1 (en) * | 2013-03-04 | 2014-09-04 | The Hong Kong University Of Science And Technology | Phase-change chamber with patterned regions of high and low affinity to a phase-change medium for electronic device cooling |
KR20180077403A (en) * | 2016-12-28 | 2018-07-09 | 한국철도기술연구원 | Active cooling-teg fusion system |
CN107479151A (en) * | 2017-09-22 | 2017-12-15 | 比赫电气(太仓)有限公司 | A kind of heat pipe semiconductor temperature control module for All-in-One optical module |
CN110035642A (en) * | 2019-05-21 | 2019-07-19 | 广东工业大学 | A kind of liquid-cooled heat-conducting block and water-cooling type radiator |
CN110425510A (en) * | 2019-08-26 | 2019-11-08 | 南京工业大学 | Parallel small-diameter heat pipe enhanced heat exchange device for recycling waste heat of medium-low temperature flue gas and preparation method thereof |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112201637A (en) * | 2020-11-03 | 2021-01-08 | 深圳市森若新材科技有限公司 | Phase change liquid cooling heat abstractor |
CN112256113A (en) * | 2020-11-13 | 2021-01-22 | 大连理工大学 | Flat heat pipe type CPU heat dissipation device based on thermoelectric refrigeration |
CN113050352A (en) * | 2021-03-09 | 2021-06-29 | 深圳市火乐科技发展有限公司 | Radiator for DMD chip and projection equipment |
CN113050352B (en) * | 2021-03-09 | 2022-04-22 | 深圳市火乐科技发展有限公司 | Radiator for DMD chip and projection equipment |
CN113099707A (en) * | 2021-05-21 | 2021-07-09 | 苏州格曼斯温控科技有限公司 | Heat dissipation device and equipment |
WO2022259240A1 (en) * | 2021-06-10 | 2022-12-15 | Double Check Ltd | Thermoelectric module |
CN114980667A (en) * | 2022-05-12 | 2022-08-30 | 西安交通大学 | A passive thermal control system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111681999A (en) | A vacuum heat-conducting cavity soaking plate and an air-cooled heat sink | |
US8737071B2 (en) | Heat dissipation device | |
JP6049752B2 (en) | Newly structured bus bar | |
CN111246706B (en) | Double-sided heat dissipation device | |
WO2011150798A1 (en) | Tec refrigerating installation and electrical apparatus using same | |
CN110035642A (en) | A kind of liquid-cooled heat-conducting block and water-cooling type radiator | |
CN104197612B (en) | A kind of high efficiency and heat radiation assembly of semiconductor freezer | |
CN106784441A (en) | It is a kind of for the radiating case lid of electric automobile battery box and its application | |
CN209930821U (en) | Liquid-cooled heat conduction block and water-cooled radiator | |
CN101340798A (en) | Evaporative condensing cooler and application thereof | |
CN111664733A (en) | Heat radiator combining micro-channel heat exchanger with heat pipe | |
JP5874935B2 (en) | Flat plate cooling device and method of using the same | |
TW202103543A (en) | Circuit board structure | |
CN211451987U (en) | Heat conduction device | |
CN208606627U (en) | A kind of evaporative phase-change radiator based on drop spring | |
CN211457823U (en) | Air conditioner and fin type phase change heat dissipation control box thereof | |
CN210014476U (en) | Radiator, air condensing units and air conditioner | |
CN210014475U (en) | Radiator, air condensing units and air conditioner | |
CN210014478U (en) | Radiator, air condensing units and air conditioner | |
CN210014477U (en) | Radiator, air condensing units and air conditioner | |
CN110043975B (en) | Radiator, air conditioner outdoor unit and air conditioner | |
JP2008021697A (en) | Heat dispersion radiator | |
CN215269268U (en) | Integrated high-power heat dissipation module | |
CN216752585U (en) | Radiator and electronic equipment | |
CN116744546A (en) | Superconductive heat dissipation battery protection board |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200918 |