CN111598390B - Server high availability evaluation methods, devices, equipment and readable storage media - Google Patents
Server high availability evaluation methods, devices, equipment and readable storage media Download PDFInfo
- Publication number
- CN111598390B CN111598390B CN202010276892.3A CN202010276892A CN111598390B CN 111598390 B CN111598390 B CN 111598390B CN 202010276892 A CN202010276892 A CN 202010276892A CN 111598390 B CN111598390 B CN 111598390B
- Authority
- CN
- China
- Prior art keywords
- server
- availability
- evaluation
- user
- resources
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 155
- 238000000034 method Methods 0.000 claims abstract description 39
- 239000013598 vector Substances 0.000 claims abstract description 32
- 238000004590 computer program Methods 0.000 claims description 30
- 238000004422 calculation algorithm Methods 0.000 claims description 29
- 238000013210 evaluation model Methods 0.000 claims description 20
- 238000003066 decision tree Methods 0.000 claims description 16
- 230000008569 process Effects 0.000 claims description 16
- 230000004044 response Effects 0.000 claims description 12
- 238000010801 machine learning Methods 0.000 claims description 11
- 238000004458 analytical method Methods 0.000 claims description 9
- 238000013468 resource allocation Methods 0.000 claims description 8
- 238000005457 optimization Methods 0.000 claims description 3
- 238000010586 diagram Methods 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 7
- 238000012549 training Methods 0.000 description 7
- 230000003068 static effect Effects 0.000 description 5
- 238000004088 simulation Methods 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 230000003542 behavioural effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000008676 import Effects 0.000 description 2
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0639—Performance analysis of employees; Performance analysis of enterprise or organisation operations
- G06Q10/06393—Score-carding, benchmarking or key performance indicator [KPI] analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
- G06Q10/063—Operations research, analysis or management
- G06Q10/0631—Resource planning, allocation, distributing or scheduling for enterprises or organisations
- G06Q10/06312—Adjustment or analysis of established resource schedule, e.g. resource or task levelling, or dynamic rescheduling
Landscapes
- Business, Economics & Management (AREA)
- Human Resources & Organizations (AREA)
- Engineering & Computer Science (AREA)
- Strategic Management (AREA)
- Economics (AREA)
- Entrepreneurship & Innovation (AREA)
- Development Economics (AREA)
- Operations Research (AREA)
- Game Theory and Decision Science (AREA)
- Marketing (AREA)
- Educational Administration (AREA)
- Quality & Reliability (AREA)
- Tourism & Hospitality (AREA)
- Physics & Mathematics (AREA)
- General Business, Economics & Management (AREA)
- General Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Debugging And Monitoring (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本申请涉及一种服务器高可用性评估方法、装置、计算机可读存储介质和计算机设备,方法包括:获取高可用服务目录;从所述高可用服务目录中选取目标特征向量作为评估指标;根据所述评估指标为目标用户分配服务器中对应的资源;获取所述目标用户在历史时段内使用所述服务器中资源的历史使用值;根据所述历史使用值,预测所述目标用户在预设时段内使用所述服务器中资源的预测值;获取所述预设时段内所述目标用户使用所述服务器中资源的实际使用值;根据所述实际使用值和所述预测值计算用户满意度;根据所述用户满意度确定所述服务器的可用性。本申请提供的方案可以实现对服务器的高可用性进行评估。
This application relates to a server high availability evaluation method, device, computer-readable storage medium and computer equipment. The method includes: obtaining a high-availability service catalog; selecting a target feature vector from the high-availability service catalog as an evaluation index; according to the The evaluation index allocates corresponding resources in the server to the target user; obtains the historical usage value of the resource in the server used by the target user within the historical period; and predicts the use by the target user within the preset period based on the historical usage value. Predicted values of resources in the server; obtaining actual usage values of resources in the server by the target user within the preset period; calculating user satisfaction according to the actual usage values and the predicted values; according to the User satisfaction determines the availability of the server. The solution provided by this application can evaluate the high availability of servers.
Description
本申请要求于2019年10月16日提交中国专利局,申请号为2019109841043,发明名称为“一种应用SLA的高可用性评估的方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。This application claims priority to the Chinese patent application submitted to the China Patent Office on October 16, 2019, with the application number 2019109841043 and the invention title "A method of high availability assessment using SLA", the entire content of which is incorporated by reference in in this application.
技术领域Technical field
本申请涉及计算机技术领域,特别是涉及一种服务器高可用性评估方法、装置、设备和可读存储介质。This application relates to the field of computer technology, and in particular to a server high availability evaluation method, device, equipment and readable storage medium.
背景技术Background technique
随着计算机技术的发展,商业和社会机构日常业务的计算机化要求达到了前所未有的程度。为了解决服务器关闭造成的严重价值损失,出现了高可用服务器集群,高可用服务器集群主要是向用户提供尽可能连续不断的服务。传统的高可用评估主要是基于高可用服务集群本身的功能、性能进行评估,评估结果往往不能够有效满足用户对高可用服务质量的要求。With the development of computer technology, the computerization requirements of daily operations of commercial and social institutions have reached an unprecedented level. In order to solve the serious value loss caused by server shutdown, high-availability server clusters emerged. High-availability server clusters mainly provide users with as continuous services as possible. Traditional high-availability evaluation is mainly based on the functions and performance of the high-availability service cluster itself. The evaluation results are often unable to effectively meet users' requirements for high-availability service quality.
发明内容Contents of the invention
基于此,有必要针对传统的高可用性评估不能满足用户对高可用服务质量要求的技术问题,提供一种服务器高可用性评估方法、装置、设备和可读存储介质。Based on this, it is necessary to provide a server high availability evaluation method, device, equipment and readable storage medium to address the technical problem that traditional high availability evaluation cannot meet users' requirements for high availability service quality.
一种服务器高可用性评估方法,包括:A server high availability assessment method, including:
获取高可用服务目录;Obtain the high availability service catalog;
从所述高可用服务目录中选取目标特征向量作为评估指标;Select target feature vectors from the high-availability service catalog as evaluation indicators;
根据所述评估指标为目标用户分配服务器中对应的资源;Allocate corresponding resources in the server to target users according to the evaluation indicators;
获取所述目标用户在历史时段内使用所述服务器中资源的历史使用值;Obtain the historical usage value of the resources in the server used by the target user within the historical period;
根据所述历史使用值,预测所述目标用户在预设时段内使用所述服务器中资源的预测值;According to the historical usage value, predict the predicted value of the resource in the server used by the target user within a preset period;
获取所述预设时段内所述目标用户使用所述服务器中资源的实际使用值;Obtain the actual usage value of the resources in the server used by the target user within the preset period;
根据所述实际使用值和所述预测值计算用户满意度;Calculate user satisfaction based on the actual usage value and the predicted value;
根据所述用户满意度确定所述服务器的可用性。The availability of the server is determined based on the user satisfaction level.
在一个实施例中,所述从所述高可用服务目录中选取目标特征向量作为评估指标,包括:In one embodiment, selecting a target feature vector from the high-availability service catalog as an evaluation index includes:
以决策树算法为基础,通过机器学习算法从所述高可用服务目录中选取目标特征向量作为评估指标。Based on the decision tree algorithm, the target feature vector is selected from the high-availability service catalog as an evaluation index through a machine learning algorithm.
在一个实施例中,所述根据所述评估指标为目标用户分配服务器中对应的资源,包括:In one embodiment, allocating corresponding resources in the server to target users based on the evaluation indicators includes:
采用α算法的一致性分析对用户数据进行分析,得到用户需求与实际过程的匹配度以及用户需求的适应度;Use the consistency analysis of α algorithm to analyze user data to obtain the matching degree of user needs and the actual process and the adaptability of user needs;
根据所述评估指标、所述匹配度和所述适应度,为目标用户分配服务器中对应的资源。According to the evaluation index, the matching degree and the fitness degree, corresponding resources in the server are allocated to the target user.
在一个实施例中,所述根据所述历史使用值,预测所述目标用户在预设时段内使用所述服务器中资源的预测值,包括:In one embodiment, predicting the predicted value of the target user's use of resources in the server within a preset period based on the historical usage value includes:
获取预设时段;Get the default time period;
将所述预设时段输入预测模型;所述预测模型是基于所述历史使用值得到的时间序列模型;Enter the preset period into a prediction model; the prediction model is a time series model obtained based on the historical usage value;
通过所述预测模型预测所述目标用户在所述预设时段内使用所述服务器中资源的预测值。The predicted value of the target user's use of resources in the server within the preset period is predicted through the prediction model.
在一个实施例中,所述方法还包括:In one embodiment, the method further includes:
判断预设时段内所述目标用户使用所述服务器中资源的实际使用值是否满足所述目标用户的用户需求;Determine whether the actual usage value of the resources in the server used by the target user within the preset period meets the user needs of the target user;
若否,则重新为所述目标用户分配服务器中对应的资源。If not, the corresponding resources in the server are re-allocated to the target user.
在一个实施例中,所述根据所述实际使用值和所述预测值计算用户满意度,包括:In one embodiment, calculating user satisfaction based on the actual usage value and the predicted value includes:
根据所述实际使用值和所述预测值构建评估模型;Construct an evaluation model based on the actual usage value and the predicted value;
通过所述评估模型进行可用性评估,得到可用性评估结果;Conduct usability evaluation through the evaluation model to obtain usability evaluation results;
根据所述可用性评估结果计算用户满意度。Calculate user satisfaction based on the usability evaluation results.
在一个实施例中,所述根据所述可用性评估结果计算用户满意度,包括:In one embodiment, calculating user satisfaction based on the usability evaluation results includes:
将所述预测值和所述可用性评估结果输入用户满意度公式中,得到用户满意度;所述用户满意度公式如下:The predicted value and the usability evaluation result are input into the user satisfaction formula to obtain user satisfaction; the user satisfaction formula is as follows:
其中,Q为用户满意度,YP为所述预测值,Y为所述可用性评估结果。Among them, Q is user satisfaction, Y P is the predicted value, and Y is the usability evaluation result.
一种服务器高可用性评估装置,所述装置包括:A server high availability evaluation device, the device includes:
高可用服务目录获取模块,用于获取高可用服务目录;The high-availability service catalog acquisition module is used to obtain the high-availability service catalog;
评估指标确定模块,用于从所述高可用服务目录中选取目标特征向量作为评估指标;An evaluation index determination module is used to select a target feature vector from the high-availability service catalog as an evaluation index;
服务器资源分配模块,用于根据所述评估指标为目标用户分配服务器中对应的资源;A server resource allocation module, configured to allocate corresponding resources in the server to target users based on the evaluation indicators;
资源使用值获取模块,用于获取所述目标用户在历史时段内使用所述服务器中资源的历史使用值;The resource usage value acquisition module is used to obtain the historical usage value of the resources in the server used by the target user within the historical period;
预测模块,用于根据所述历史使用值,预测所述目标用户在预设时段内使用所述服务器中资源的预测值;A prediction module, configured to predict the predicted value of the target user's use of resources in the server within a preset period based on the historical usage value;
所述资源使用值获取模块,还用于获取所述预设时段内所述目标用户使用所述服务器中资源的实际使用值;The resource usage value acquisition module is also used to obtain the actual usage value of the resources in the server used by the target user within the preset period;
用户满意度计算模块,用于根据所述实际使用值和所述预测值计算用户满意度;A user satisfaction calculation module, configured to calculate user satisfaction based on the actual usage value and the predicted value;
可用性确定模块,用于根据所述用户满意度确定所述服务器的可用性。Availability determining module, configured to determine the availability of the server according to the user satisfaction level.
在一个实施例中,所述评估指标确定模块,还用于:In one embodiment, the evaluation index determination module is also used to:
以决策树算法为基础,通过机器学习算法从所述高可用服务目录中选取目标特征向量作为评估指标。Based on the decision tree algorithm, the target feature vector is selected from the high-availability service catalog as an evaluation index through a machine learning algorithm.
在一个实施例中,所述服务器资源分配模块,还用于:In one embodiment, the server resource allocation module is also used to:
采用α算法的一致性分析对用户数据进行分析,得到用户需求与实际过程的匹配度以及用户需求的适应度;Use the consistency analysis of α algorithm to analyze user data to obtain the matching degree of user needs and the actual process and the adaptability of user needs;
根据所述评估指标、所述匹配度和所述适应度,为目标用户分配服务器中对应的资源。According to the evaluation index, the matching degree and the fitness degree, corresponding resources in the server are allocated to the target user.
在一个实施例中,所述预测模块,还用于:In one embodiment, the prediction module is also used to:
获取预设时段;Get the default time period;
将所述预设时段输入预测模型;所述预测模型是基于所述历史使用值得到的时间序列模型;Enter the preset period into a prediction model; the prediction model is a time series model obtained based on the historical usage value;
通过所述预测模型预测所述目标用户在所述预设时段内使用所述服务器中资源的预测值。The predicted value of the target user's use of resources in the server within the preset period is predicted through the prediction model.
在一个实施例中,所述装置还包括:In one embodiment, the device further includes:
用户需求判断模块,用于判断预设时段内所述目标用户使用所述服务器中资源的实际使用值是否满足所述目标用户的用户需求;A user demand judgment module, used to judge whether the actual usage value of the resources in the server used by the target user within a preset period meets the user demand of the target user;
所述服务器资源分配模块还用于,若所述预设时段内所述目标用户使用所述服务器中资源的实际使用值未满足所述目标用户的用户需求,则重新为所述目标用户分配服务器中对应的资源。The server resource allocation module is also configured to re-allocate a server to the target user if the actual usage value of the resources in the server used by the target user within the preset period does not meet the user needs of the target user. corresponding resources.
在一个实施例中,所述用户满意度计算模块,还用于:In one embodiment, the user satisfaction calculation module is also used to:
根据所述实际使用值和所述预测值构建评估模型;Construct an evaluation model based on the actual usage value and the predicted value;
通过所述评估模型进行可用性评估,得到可用性评估结果;Conduct usability evaluation through the evaluation model to obtain usability evaluation results;
根据所述可用性评估结果计算用户满意度。Calculate user satisfaction based on the usability evaluation results.
在一个实施例中,所述用户满意度计算模块,还用于:In one embodiment, the user satisfaction calculation module is also used to:
将所述预测值和所述可用性评估结果输入用户满意度公式中,得到用户满意度;所述用户满意度公式如下:The predicted value and the usability evaluation result are input into the user satisfaction formula to obtain user satisfaction; the user satisfaction formula is as follows:
其中,Q为用户满意度,YP为所述预测值,Y为所述可用性评估结果。Among them, Q is user satisfaction, Y P is the predicted value, and Y is the usability evaluation result.
一种计算机可读存储介质,存储有计算机程序,所述计算机程序被处理器执行时,使得所述处理器执行上述方法的步骤。A computer-readable storage medium stores a computer program. When the computer program is executed by a processor, it causes the processor to perform the steps of the above method.
一种计算机设备,包括存储器和处理器,所述存储器存储有计算机程序,所述计算机程序被所述处理器执行时,使得所述处理器执行上述方法的步骤。A computer device includes a memory and a processor. The memory stores a computer program. When the computer program is executed by the processor, the processor performs the steps of the above method.
上述服务器高可用性评估方法、装置、设备和可读存储介质,在获取高可用服务目录之后,从高可用服务目录中选取目标特征向量作为评估指标,根据评估指标为目标用户分配服务器中对应的资源,获取目标用户在历史时段内使用服务器中资源的历史使用值,根据历史使用值预测目标用户在预设时段内使用服务器中资源的预测值,获取预设时段内目标用户使用服务器中资源的实际使用值,从而根据实际使用值和预测值计算用户满意度,并根据用户满意度确定服务器的可用性。从而能够在满足用户对高可用服务质量需求的前提下,对服务器的高可用性进行评估。The above-mentioned server high availability evaluation method, device, equipment and readable storage medium, after obtaining the high availability service catalog, selects the target feature vector from the high availability service catalog as the evaluation index, and allocates corresponding resources in the server to the target user according to the evaluation index , obtain the historical usage value of the resources in the server used by the target user within the historical period, predict the predicted value of the resources in the server used by the target user in the preset period based on the historical usage value, and obtain the actual usage of resources in the server by the target user in the preset period. Usage values, thereby calculating user satisfaction based on actual usage values and predicted values, and determining server availability based on user satisfaction. In this way, the high availability of the server can be evaluated on the premise of meeting the user's demand for high availability service quality.
附图说明Description of the drawings
图1为一个实施例中服务器高可用性评估方法的应用环境图;Figure 1 is an application environment diagram of the server high availability evaluation method in one embodiment;
图2为一个实施例中服务器高可用性评估方法的模型图;Figure 2 is a model diagram of a server high availability evaluation method in one embodiment;
图3为一个实施例中服务器高可用性评估方法的流程示意图;Figure 3 is a schematic flowchart of a server high availability evaluation method in one embodiment;
图4为另一个实施例中服务器高可用性评估方法的流程示意图;Figure 4 is a schematic flowchart of a server high availability evaluation method in another embodiment;
图5为一个实施例中模拟系统使用VMware工作站示意图;Figure 5 is a schematic diagram of a simulated system using a VMware workstation in one embodiment;
图6为一个实施例中服务器高可用性评估装置的结构框图;Figure 6 is a structural block diagram of a server high availability evaluation device in one embodiment;
图7为另一个实施例中服务器高可用性评估装置的结构框图;Figure 7 is a structural block diagram of a server high availability evaluation device in another embodiment;
图8为一个实施例中计算机设备的结构框图。Figure 8 is a structural block diagram of a computer device in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solutions and advantages of the present application more clear, the present application will be further described in detail below with reference to the drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application and are not used to limit the present application.
本申请提供的服务器高可用性评估方法,可以应用于如图1所示的应用环境中。其中,终端102通过代理服务器104与高可用服务器106进行网络通信。以上述服务器高可用性评估方法执行于代理服务器104为例,并结合图2所示的服务器高可用性评估模型图进行说明,代理服务器104获取高可用服务目录;从高可用服务目录中选取目标特征向量作为评估指标;根据评估指标为目标用户分配服务器中对应的资源;获取目标用户在历史时段内使用服务器中资源的历史使用值;根据历史使用值,预测目标用户在预设时段内使用服务器中资源的预测值;获取预设时段内目标用户使用服务器中资源的实际使用值;根据实际使用值和预测值计算用户满意度。The server high availability evaluation method provided by this application can be applied to the application environment as shown in Figure 1. Among them, the terminal 102 carries out network communication with the high availability server 106 through the proxy server 104. Taking the above server high availability evaluation method executed on the proxy server 104 as an example, and illustrating it in conjunction with the server high availability evaluation model diagram shown in Figure 2, the proxy server 104 obtains a high availability service catalog; selects a target feature vector from the high availability service catalog As an evaluation index; allocate corresponding resources in the server to the target user based on the evaluation index; obtain the historical usage value of the target user's use of the server's resources within the historical period; predict the target user's use of the server's resources within the preset period based on the historical usage value predicted value; obtain the actual usage value of resources in the server used by target users within a preset period; calculate user satisfaction based on the actual usage value and predicted value.
其中,终端102可以但不限于是各种个人计算机、笔记本电脑、智能手机、平板电脑和便携式可穿戴设备,代理服务器104可以是服务等级代理,存储有服务等级协议,高可用服务器106是为终端提供业务服务的高可用服务器代理服务器104和高可用服务器106可以用独立的服务器或者是多个服务器组成的服务器集群来实现。Among them, the terminal 102 can be, but is not limited to, various personal computers, laptops, smart phones, tablets and portable wearable devices. The proxy server 104 can be a service level proxy that stores service level agreements. The high availability server 106 is a terminal. The high-availability server proxy server 104 and the high-availability server 106 that provide business services can be implemented as an independent server or a server cluster composed of multiple servers.
如图3所示,在一个实施例中,提供了一种服务器高可用性评估方法。本实施例主要以该方法应用于上述图1中的代理服务器104来举例说明。参照图3,该服务器高可用性评估方法具体包括如下步骤:As shown in Figure 3, in one embodiment, a server high availability evaluation method is provided. This embodiment mainly illustrates the application of this method to the proxy server 104 in Figure 1 above. Referring to Figure 3, the server high availability evaluation method specifically includes the following steps:
S302,获取高可用服务目录。S302, obtain the high availability service catalog.
其中,高可用服务目录中包含有高可用服务器针对不同用户所提供的服务类型和服务内容等信息。Among them, the high-availability service directory contains information such as service types and service contents provided by the high-availability server for different users.
在一个实施例中,代理服务器在获取高可用服务目录之前,接收高可用服务器发送的服务等级协议(Service Level Agreement,SLA),然后根据该服务等级协议创建高可用服务目录,并将该高可用服务目录存储到数据库中。当对高可用服务器的高可用性进行评估时,从数据库中读取高可用服务目录。其中,服务等级协议是服务提供商和用户双方经协商而确定的关于服务质量等级的协议或合同,而制定该协议或合同的目的是使服务提供商和用户对服务品质、水准、性能、优先权、责任等达成共识,服务等级协议中包含有服务等级协议的相关参数,参数及其对应的描述如下表所示。In one embodiment, before obtaining the high-availability service catalog, the proxy server receives the service level agreement (Service Level Agreement, SLA) sent by the high-availability server, then creates a high-availability service catalog according to the SLA, and stores the high-availability service catalog. The service catalog is stored in the database. When evaluating the high availability of a high availability server, the high availability service catalog is read from the database. Among them, the service level agreement is an agreement or contract on the service quality level determined by both the service provider and the user through negotiation. The purpose of formulating this agreement or contract is to make the service provider and the user understand the service quality, level, performance and priority. Reach a consensus on rights, responsibilities, etc. The service level agreement contains relevant parameters of the service level agreement. The parameters and their corresponding descriptions are shown in the table below.
表1服务等级协议参数表Table 1 Service Level Agreement Parameter Table
S304,从高可用服务目录中选取目标特征向量作为评估指标。S304: Select the target feature vector from the high-availability service catalog as the evaluation index.
其中,目标特征向量为能够体现出不同终端所对应用户的个体特征的特征向量,特征向量具体可以是内存容量(Memory)、响应时间(Time)和存储 (Storage)中的至少一个,高可用服务目录包含所有可以测量的特征向量。Among them, the target feature vector is a feature vector that can reflect the individual characteristics of users corresponding to different terminals. The feature vector can be at least one of memory capacity (Memory), response time (Time) and storage (Storage). High-availability service The catalog contains all measurable feature vectors.
在一个实施例中,代理服务器在获取高可用服务目录之后,采用机器学习算法从高可用服务目录中选取目标特征向量,其中所采用的机器学习算法可以是基于决策树的机器学习算法,具体可以是ID3算法,决策树是一种依托决策而建立起来的一种树。在机器学习中,决策树是一种预测模型,代表的是一种对象属性与对象值之间的一种映射关系,每一个节点代表某个对象,树中的每一个分叉路径代表某个可能的属性值,而每一个叶子节点则对应从根节点到该叶子节点所经历的路径所表示的对象的值。决策树仅有单一输出,如果有多个输出,可以分别建立独立的决策树以处理不同的输出,ID3算法是一种贪心算法,用来构造决策树。In one embodiment, after obtaining the high-availability service directory, the proxy server uses a machine learning algorithm to select the target feature vector from the high-availability service directory. The machine learning algorithm used may be a machine learning algorithm based on a decision tree. Specifically, It is the ID3 algorithm, and the decision tree is a tree built based on decision-making. In machine learning, a decision tree is a prediction model that represents a mapping relationship between object attributes and object values. Each node represents an object, and each bifurcated path in the tree represents an object. Possible attribute values, and each leaf node corresponds to the value of the object represented by the path from the root node to the leaf node. The decision tree has only a single output. If there are multiple outputs, independent decision trees can be established to process different outputs. The ID3 algorithm is a greedy algorithm used to construct decision trees.
作为一个示例对上述实施例进行说明。首先设给定训练集为TR,TR的元素由特征向量及其分类结果表示,分类对象的属性表Attrlist为[Al,A2,...An],全部分类结果构成的集合Class为{Cl,C2...Cm},一般的有n≥1和m≥2。对于每一属性Ai,其值域为ValueType(Ai),值域是离散的。这样,TR的一个元素就可以表示成<X,C>的形式,其中X=(a1,...an),ai对应于实例X第i个属性的取值,C∈Class为实例X的分类结果;然后随机选择训练实例的子集,构成一个训练窗口,重复执行下列步骤:The above embodiment is explained as an example. First, let the given training set be TR. The elements of TR are represented by feature vectors and their classification results. The attribute table Attrlist of the classification object is [A l , A 2 ,...A n ]. The set Class composed of all the classification results is {C l , C 2 ...C m }, generally n≥1 and m≥2. For each attribute A i , its value range is ValueType(A i ), and the value range is discrete. In this way, an element of TR can be expressed in the form of <X, C>, where X = (a 1 ,...a n ), a i corresponds to the value of the i-th attribute of instance Classification results of instance X; then randomly select a subset of training instances to form a training window, and repeat the following steps:
①对窗口内的实例集构造决策树;① Construct a decision tree for the instance set in the window;
②寻找决策树的一个反例;②Find a counterexample to the decision tree;
③如果反例存在,将其加入到训练窗口,并执行步骤①;若反例不存在,则返回得到的决策树。选取获得信息量最大的属性作为扩展属性。这一启发式规则又称为最小熵原理,使获得的信息量最大等价于使不确定性最小,即使熵最小。给定正负实例的子集为S,构成训练窗口。当决策有k个不同的输出时,则S的熵为:③If the counterexample exists, add it to the training window and perform step ①; if the counterexample does not exist, return the obtained decision tree. Select the attribute with the largest amount of information as the extended attribute. This heuristic rule is also called the principle of minimum entropy, which means that maximizing the amount of information obtained is equivalent to minimizing uncertainty, even if entropy is minimized. The given subset of positive and negative instances is S, which constitutes the training window. When the decision has k different outputs, the entropy of S is:
其中,Pi为取值为k个不同的输出中的第i个值的概率。Among them, Pi is the probability of taking the i-th value among k different outputs.
为了检测每个属性的重要性,可以通过每个属性的信息增益Gain来评估其重要性。对于属性A,假设其值域为(Vl,V2,...Vn),则训练实例S中属性A 的信息增益可以定义如下:In order to detect the importance of each attribute, its importance can be evaluated by the information gain of each attribute. For attribute A, assuming its value range is (V l , V 2 ,...V n ), the information gain of attribute A in training instance S can be defined as follows:
其中,Si表示训练实例S中属性A的值为Vi的子集,|Si|表示集合的势。在实际情况中,Gain(S,A)最大的属性A包括三个特征向量,分别为:内存容量、响应时间和存储。Among them, S i represents the subset of attribute A in the training instance S whose value is V i , and |S i | represents the potential of the set. In actual situations, the largest attribute A of Gain(S,A) includes three feature vectors, namely: memory capacity, response time and storage.
S306,根据评估指标为目标用户分配服务器中对应的资源。S306: Allocate corresponding resources in the server to the target user according to the evaluation index.
其中,服务器中对应的资源为高可用服务器的资源,其中服务器的资源包括服务器的计算资源、存储资源和网络资源。Among them, the corresponding resources in the server are the resources of the high-availability server, where the resources of the server include the computing resources, storage resources and network resources of the server.
在一个实施例中,代理服务器在从高可用服务目录中选取目标特征向量作为评估指标之后,采用α算法的一致性分析对用户数据进行分析,得到用户需求与实际过程的匹配度以及用户需求的适应度,然后根据评估指标、匹配度和适应度,为目标用户分配服务器中对应的资源。In one embodiment, after the proxy server selects the target feature vector from the high-availability service directory as the evaluation index, it uses the consistency analysis of the alpha algorithm to analyze the user data to obtain the matching degree between the user needs and the actual process and the degree of user needs. Fitness, and then allocate corresponding resources in the server to the target user based on the evaluation index, matching degree and fitness.
对α算法的功能进行说明:匹配事件日志L到一个Petri网,则该Petri网成为事件日志的行为表现。α算法的输入为基于任务T的事件日志L,输出为一个Petfi网,我们的SLA限制了供应商,在整个对用户服务过程中确保质量。Explain the function of the α algorithm: match the event log L to a Petri net, then the Petri net becomes the behavioral expression of the event log. The input of the α algorithm is an event log L based on task T, and the output is a Petfi net. Our SLA limits the supplier and ensures quality throughout the entire service process for users.
由于参与者在完成任务时可能访问一些不包含在期望模型中的状态或者期望模型可能包含日志文件中未出现的事件,所以定义了一个变量(日志覆盖率C) 来评测期望模型(用户需求)和实际过程的匹配度。Since participants may access some states that are not included in the expected model when completing tasks or the expected model may contain events that do not appear in the log file, a variable (log coverage C) is defined to evaluate the expected model (user requirements) Match with the actual process.
其中,|E|表示所有的事件数,|e∈E|表示实际发生的事件数。Among them, |E| represents the number of all events, and |e∈E| represents the number of actual events.
适应度是指实际的操作轨迹与期望模型的关联程度。通过期望模型对实际的实例过程进行一致性分析,可以得到每个实例以及整个任务相对于期望模型的适应度(基于Petri网)。每个实例过程的期望模型的适应度定义如下:Fitness refers to the degree of correlation between the actual operation trajectory and the expected model. Through the consistency analysis of the actual instance process through the expectation model, the fitness of each instance and the entire task relative to the expectation model can be obtained (based on Petri net). The fitness of the desired model for each instance process is defined as follows:
其中:m为实际过程在Petri网模型上重现时丢失的令牌(token)数;c为消耗的令牌数;r为任务完成后仍然存在的令牌数;p为产生的令牌数。Among them: m is the number of tokens lost when the actual process is reproduced on the Petri net model; c is the number of tokens consumed; r is the number of tokens that still exist after the task is completed; p is the number of tokens generated .
S308,获取目标用户在历史时段内使用服务器中资源的历史使用值。S308: Obtain the historical usage value of the resources in the server used by the target user within the historical period.
S310,根据历史使用值,预测目标用户在预设时段内使用服务器中资源的预测值。S310: Predict the predicted value of resources in the server used by the target user within a preset period based on historical usage values.
在一个实施例中,代理服务器在根据评估指标为目标用户分配高可用服务器中对应的资源之后,实时监测目标用对应终端所运行的应用程序的实用绩效和资源的使用情况,并将对应的资源使用值存储到数据库。In one embodiment, after the proxy server allocates corresponding resources in the high-availability server to the target user based on the evaluation indicators, it monitors the practical performance and resource usage of the application running on the corresponding terminal of the target in real time, and assigns the corresponding resources to the target user. Use the value to store into the database.
在一个实施例中,代理服务器从数据库中获取目标用户在历史时段内使用服务器中资源的历史使用值,然后根据所获取的历史使用值构建预测模型,所创建的预测模型用于预测目标用户在预设时段使用服务器中资源的预测值,该预测模型具体可以是时间序列预测模型。In one embodiment, the proxy server obtains the historical usage value of the resources in the server used by the target user within the historical period from the database, and then builds a prediction model based on the obtained historical usage value. The created prediction model is used to predict the target user's use of resources in the server during the historical period. The preset period uses the predicted value of the resources in the server, and the prediction model may specifically be a time series prediction model.
在一个实施例中,代理服务器获取所要进行预测的预设时段,并将预设时段输入预测模型,通过预测模型预测目标用户在预设时段内使用高可用服务器中资源的预测值。例如,当评估指标为内存容量时,所获取的是目标用户在历史时段内使用服务器内存容量的历史使用值,所预测的是目标用户在预设时段使用服务器内存容量的预测值;当评估指标为响应时间时,所获取的是目标用户在历史时段内使历史响应时间,所预测的是目标用户在预设时段内使用服务器中的资源对目标用户请求进行响应的预测响应时间。In one embodiment, the proxy server obtains a preset period to be predicted, inputs the preset period into a prediction model, and uses the prediction model to predict the predicted value of the target user's use of resources in the high-availability server within the preset period. For example, when the evaluation indicator is memory capacity, what is obtained is the historical usage value of the server memory capacity used by the target user in the historical period, and what is predicted is the predicted value of the server memory capacity used by the target user in the preset period; when the evaluation indicator When it is the response time, what is obtained is the historical response time of the target user within the historical period, and what is predicted is the predicted response time of the target user using resources in the server to respond to the target user's request within the preset period.
S312,获取预设时段内目标用户使用服务器中资源的实际使用值。S312: Obtain the actual usage value of resources in the server used by the target user within the preset period.
S314,根据实际使用值和预测值计算用户满意度。S314: Calculate user satisfaction based on actual usage value and predicted value.
在一个实施例中,代理服务器在预测出目标用户在预设时段内使用服务器中资源的预测值之后,获取所预测的预设时段内目标用户使用服务器中资源的实际使用值,并根据该实际使用值和预测值计算用户满意度。In one embodiment, after predicting the predicted value of the target user's use of the resources in the server within the preset period, the proxy server obtains the predicted actual usage value of the target user's use of the resources in the server within the preset period, and based on the actual Calculate user satisfaction using values and predicted values.
在一个实施例中,代理服务器在预测出目标用户在预设时段内使用服务器中资源的预测值之后,根据实际使用值和预测值构建评估模型;通过评估模型进行可用性评估,得到可用性评估结果,然后根据可用性评估结果计算满意度,具体可以是将预测值和可用性评估结果输入用户满意度公式,从而计算出用户满意度。In one embodiment, after the proxy server predicts the predicted value of the target user's use of the resources in the server within a preset period, it constructs an evaluation model based on the actual usage value and the predicted value; performs availability evaluation through the evaluation model to obtain the availability evaluation result. Then the satisfaction is calculated based on the usability evaluation results. Specifically, the predicted value and the usability evaluation results can be input into the user satisfaction formula to calculate the user satisfaction.
S316,根据用户满意度确定服务器的可用性。S316: Determine server availability based on user satisfaction.
在一个实施例中,在计算出用户满意度之后,获取目标用户对应的服务等级协议,并从服务协议等级中提取出可用性阈值,当用户满意度大于可用性阈值时,确定对应的高可用服务器的可用性为正常,当用户满意度小于可用性阈值时,确定对应的高可用服务器的可用性为异常。In one embodiment, after calculating user satisfaction, the service level agreement corresponding to the target user is obtained, and the availability threshold is extracted from the service agreement level. When the user satisfaction is greater than the availability threshold, the corresponding high availability server is determined. Availability is normal. When user satisfaction is less than the availability threshold, the availability of the corresponding high-availability server is determined to be abnormal.
作为一个示例对上述实施例进行说明。分别用f1、f2和f3代表已采样得到的内存容量、响应时间、存储,将历史数据整理成时间序列并用Sn表示,分别用 f1、f2和f3预测出预设时段对应的时间序列S'n,预测结果Yp分别用Y1、Y2和 Y3表示。设Sit为t时刻第i个可用性评估指标实际使用值,Yit为t时刻由预测模型预测第i个可用性评估指标获得的预测值,则预测误差为:The above embodiment is explained as an example. Use f 1 , f 2 and f 3 to represent the sampled memory capacity, response time and storage respectively. Organize the historical data into a time series and use Sn to represent it. Use f 1 , f 2 and f 3 to predict the corresponding preset period. The time series S' n , the prediction results Y p are represented by Y 1 , Y 2 and Y 3 respectively. Let S it be the actual usage value of the i-th availability evaluation indicator at time t, and Y it be the predicted value obtained by predicting the i-th availability evaluation indicator by the prediction model at time t, then the prediction error is:
误差平方和为:The sum of squared errors is:
其中,ωi为第i个评估指标对应的权重。以预测误差平方和最小为优化目标确定f1、f2和f3的最优加权系数ω1、ω2和ω3,则评估模型可表示为:Among them, ω i is the weight corresponding to the i-th evaluation index. Taking the minimum sum of squares of prediction errors as the optimization goal to determine the optimal weighting coefficients ω 1 , ω 2 and ω 3 for f 1 , f 2 and f 3 , the evaluation model can be expressed as:
f=f1ω1+f2ω2+f3ω3,ω1+ω2+ω3=1f=f 1 ω 1 +f 2 ω 2 +f 3 ω 3 ,ω 1 +ω 2 +ω 3 =1
在构建出评估模型之后,将评估指标对应的目标特征向量输入该评估模型,计算得到可用性评估结果Y,然后将预测值Yp和可用性评估结果Y输入用户满意度公式中,从而计算出用户满意度,用户满意度公式如下:After constructing the evaluation model, input the target feature vector corresponding to the evaluation index into the evaluation model, calculate the usability evaluation result Y, and then input the predicted value Y p and the usability evaluation result Y into the user satisfaction formula to calculate user satisfaction Degree, the formula of user satisfaction is as follows:
其中,Q为用户满意度,YP为所述预测值,Y为所述可用性评估结果。Among them, Q is user satisfaction, Y P is the predicted value, and Y is the usability evaluation result.
在计算出用户满意度Q之后,获取目标用户对应的可用性阈值Qt,然后根据用户满意度Q和性阈值Qt计算高可用服务器的可用性A,其中:After calculating the user satisfaction Q, obtain the availability threshold Q t corresponding to the target user, and then calculate the availability A of the high-availability server based on the user satisfaction Q and the availability threshold Q t , where:
其中,A=1可表示高可用服务器的可用性为正常,A=0表示高可用服务器的可用性为异常,Among them, A=1 indicates that the availability of the high-availability server is normal, and A=0 indicates that the availability of the high-availability server is abnormal.
下表为通过模拟系统(图3)计算的高可用服务器的可用性,模拟系统选择时间点t1至t7记录由决策树所决定的T、M两个评价指标来计算用户满意度,T为响应时间,对应的单位是μs、M为内存容量率、Q是用户满意度和A是系统的可用性。其中,在时间点t4时刻,人为调整了模拟系统的状态,使得时间点t4所对应的预测值有较大偏差,从下表中可以看出当高可用服务器的可用性是被人为破坏时,T、M和S也相应发生了变化,且在服务器的可用性较低时,通过本申请的服务器高可用性评估方法,可准确的报告服务器可用性的变化。The following table shows the availability of high-availability servers calculated through the simulation system (Figure 3). The simulation system selects time points t 1 to t 7 to record the two evaluation indicators T and M determined by the decision tree to calculate user satisfaction, T is Response time, the corresponding unit is μs, M is the memory capacity rate, Q is user satisfaction and A is system availability. Among them, at time point t 4 , the state of the simulation system was artificially adjusted, causing a large deviation in the predicted value corresponding to time point t 4. As can be seen from the table below, when the availability of the high-availability server is artificially destroyed , T, M and S have also changed accordingly, and when the availability of the server is low, changes in server availability can be accurately reported through the server high availability evaluation method of this application.
表2高可用服务器的可用性Table 2 Availability of high-availability servers
在一个实施例中,代理服务器监测目标用户对应终端所运行的应用程序的实用绩效和资源的使用情况,并判断预设时段内目标用户使用服务器中资源的实际使用值是否满足目标用户的用户需求;若否,则重新为目标用户分配服务器中对应的资源。具体地设定fitness的阈值F,当|fitness|>F时,系统进入中断,根据用户的具体实例,选择自动或手动reset。In one embodiment, the proxy server monitors the practical performance and resource usage of applications run by the target user's corresponding terminal, and determines whether the actual usage value of the resources in the server used by the target user within a preset period meets the user needs of the target user. ; If not, re-allocate the corresponding resources in the server to the target user. Specifically set the fitness threshold F. When |fitness|>F, the system enters an interruption and selects automatic or manual reset according to the user's specific instance.
上述实施例中,代理服务器在获取高可用服务目录之后,从高可用服务目录中选取目标特征向量作为评估指标,根据评估指标为目标用户分配服务器中对应的资源,获取目标用户在历史时段内使用服务器中资源的历史使用值,根据历史使用值预测目标用户在预设时段内使用服务器中资源的预测值,获取预设时段内目标用户使用服务器中资源的实际使用值,从而根据实际使用值和预测值计算用户满意度,并根据用户满意度确定服务器的可用性。从而能够在满足用户对高可用服务质量需求的前提下,对服务器的高可用性进行评估。In the above embodiment, after obtaining the high-availability service catalog, the proxy server selects the target feature vector from the high-availability service catalog as the evaluation index, allocates corresponding resources in the server to the target user according to the evaluation index, and obtains the target user's usage in the historical period. The historical usage value of resources in the server is used to predict the predicted value of the target user's use of the server's resources within the preset period based on the historical usage value, and the actual usage value of the target user's use of the server's resources within the preset period is obtained, so as to calculate the actual usage value and The predicted value calculates user satisfaction and determines server availability based on user satisfaction. In this way, the high availability of the server can be evaluated on the premise of meeting the user's demand for high availability service quality.
在一个实施例中,还提供了一种服务器高可用性评估方法,以该方法应用于上述图1中的代理服务器104来举例说明。参照图4和图5,该服务器高可用性评估方法具体包括如下步骤:In one embodiment, a server high availability evaluation method is also provided, and this method is applied to the proxy server 104 in Figure 1 as an example. Referring to Figure 4 and Figure 5, the server high availability evaluation method specifically includes the following steps:
步骤1,高可用服务评估,包括高可用服务目录的建立。Step 1, high-availability service evaluation, including the establishment of a high-availability service catalog.
步骤2,SLA评估系统设计,包括SLA静态评估系统和实施评估系统。Step 2: SLA evaluation system design, including SLA static evaluation system and implementation evaluation system.
通过机器学习算法从用户相应评估和模拟系统的记录数据来提高评估的准确率。The accuracy of assessments is improved through machine learning algorithms based on recorded data from users' corresponding assessments and simulated systems.
步骤3,SLA分配。Step 3, SLA allocation.
开发了一种基于α算法的一致性分析对用户数据进行发掘,匹配事件日志L 到一个Petri网,则该Petri网成为事件日志的行为表现。A consistency analysis based on α algorithm is developed to explore user data and match the event log L to a Petri net, then the Petri net becomes the behavioral representation of the event log.
步骤4,SLA监测。Step 4, SLA monitoring.
原始数据应该针对SLA目标或SLA阈值处理和分析之后来反映SLA的性能。具体地,设定fitness的阈值F,当|fitness|>F时,系统进入中断,根据用户的具体实例,选择自动或手动reset。Raw data should be processed and analyzed against SLA targets or SLA thresholds to reflect SLA performance. Specifically, the fitness threshold F is set. When |fitness|>F, the system enters an interruption and selects automatic or manual reset according to the user's specific instance.
步骤5,SLA评估。Step 5, SLA evaluation.
根据SLA静态评估系统和SLA实施评估系统对高可用服务器进行评估。Evaluate high-availability servers based on the SLA static evaluation system and SLA implementation evaluation system.
步骤6,SLA修正。Step 6, SLA revision.
整合来自SLA静态评估系统和SLA实施评估系统的信息,以获得高可用性服务供应商可信度的最终价值。Integrate information from SLA static evaluation systems and SLA implementation evaluation systems to obtain the final value of high availability service provider trustworthiness.
应该理解的是,虽然图3和4的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,这些步骤可以以其它的顺序执行。而且,图3和4中的至少一部分步骤可以包括多个步骤或者多个阶段,这些步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,这些步骤或者阶段的执行顺序也不必然是依次进行,而是可以与其它步骤或者其它步骤中的步骤或者阶段的至少一部分轮流或者交替地执行。It should be understood that although the various steps in the flowcharts of Figures 3 and 4 are shown in sequence as indicated by arrows, these steps are not necessarily executed in the order indicated by arrows. Unless explicitly stated in this article, there is no strict order restriction on the execution of these steps, and these steps can be executed in other orders. Moreover, at least some of the steps in Figures 3 and 4 may include multiple steps or multiple stages. These steps or stages are not necessarily executed at the same time, but may be executed at different times. The execution of these steps or stages The sequence is not necessarily sequential, but may be performed in turn or alternately with other steps or at least part of steps or stages in other steps.
在一个实施例中,如图6所示,提供了一种服务器高可用性评估装置,包括:高可用服务目录获取模块602、服务器资源分配模块606、资源使用值获取模块608、预测模块610、用户满意度计算模块612和可用确定模块614,其中:In one embodiment, as shown in Figure 6, a server high availability evaluation device is provided, including: a high availability service directory acquisition module 602, a server resource allocation module 606, a resource usage value acquisition module 608, a prediction module 610, a user Satisfaction calculation module 612 and availability determination module 614, wherein:
高可用服务目录获取模块602,用于获取高可用服务目录;The high-availability service catalog acquisition module 602 is used to obtain the high-availability service catalog;
评估指标确定模块604,用于从所述高可用服务目录中选取目标特征向量作为评估指标;The evaluation index determination module 604 is used to select a target feature vector from the high-availability service catalog as an evaluation index;
服务器资源分配模块606,用于根据所述评估指标为目标用户分配服务器中对应的资源;Server resource allocation module 606, used to allocate corresponding resources in the server to target users according to the evaluation indicators;
资源使用值获取模块608,用于获取所述目标用户在历史时段内使用所述服务器中资源的历史使用值;The resource usage value acquisition module 608 is used to obtain the historical usage value of the resources in the server used by the target user within the historical period;
预测模块610,用于根据所述历史使用值,预测所述目标用户在预设时段内使用所述服务器中资源的预测值;The prediction module 610 is configured to predict the predicted value of the resource in the server used by the target user within a preset period according to the historical usage value;
所述资源使用值获取模块608,还用于获取所述预设时段内所述目标用户使用所述服务器中资源的实际使用值;The resource usage value acquisition module 608 is also used to obtain the actual usage value of the resources in the server used by the target user within the preset period;
用户满意度计算模块612,用于根据所述实际使用值和所述预测值计算用户满意度;User satisfaction calculation module 612, used to calculate user satisfaction based on the actual usage value and the predicted value;
可用确定模块614,用于根据所述用户满意度确定所述服务器的可用性。The availability determination module 614 is used to determine the availability of the server according to the user satisfaction level.
在一个实施例中,所述评估指标确定模块604,还用于:In one embodiment, the evaluation index determination module 604 is also used to:
以决策树算法为基础,通过机器学习算法从所述高可用服务目录中选取目标特征向量作为评估指标。Based on the decision tree algorithm, the target feature vector is selected from the high-availability service catalog as an evaluation index through a machine learning algorithm.
在一个实施例中,所述服务器资源分配模块606,还用于:In one embodiment, the server resource allocation module 606 is also used to:
采用α算法的一致性分析对用户数据进行分析,得到用户需求与实际过程的匹配度以及用户需求的适应度;Use the consistency analysis of α algorithm to analyze user data to obtain the matching degree of user needs and the actual process and the adaptability of user needs;
根据所述评估指标、所述匹配度和所述适应度,为目标用户分配服务器中对应的资源。According to the evaluation index, the matching degree and the fitness degree, corresponding resources in the server are allocated to the target user.
在一个实施例中,所述预测模块610,还用于:In one embodiment, the prediction module 610 is also used to:
获取预设时段;Get the default time period;
将所述预设时段输入预测模型;所述预测模型是基于所述历史使用值得到的时间序列模型;Enter the preset period into a prediction model; the prediction model is a time series model obtained based on the historical usage value;
通过所述预测模型预测所述目标用户在所述预设时段内使用所述服务器中资源的预测值。The predicted value of the target user's use of resources in the server within the preset period is predicted through the prediction model.
在一个实施例中,如图7所示,所述装置还包括:用户需求判断模块616,其中:In one embodiment, as shown in Figure 7, the device further includes: a user demand judgment module 616, wherein:
用户需求判断模块616,用于判断预设时段内所述目标用户使用所述服务器中资源的实际使用值是否满足所述目标用户的用户需求;The user demand judgment module 616 is used to judge whether the actual usage value of the resources in the server used by the target user within the preset period meets the user demand of the target user;
所述服务器资源分配模块606还用于,若所述预设时段内所述目标用户使用所述服务器中资源的实际使用值未满足所述目标用户的用户需求,则重新为所述目标用户分配服务器中对应的资源。The server resource allocation module 606 is also configured to re-allocate resources to the target user if the actual usage value of the resources in the server used by the target user within the preset period does not meet the user needs of the target user. The corresponding resources in the server.
在一个实施例中,所述用户满意度计算模块612,还用于:In one embodiment, the user satisfaction calculation module 612 is also used to:
根据所述实际使用值和所述预测值构建评估模型;Construct an evaluation model based on the actual usage value and the predicted value;
通过所述评估模型进行可用性评估,得到可用性评估结果;Conduct usability evaluation through the evaluation model to obtain usability evaluation results;
根据所述可用性评估结果计算用户满意度。Calculate user satisfaction based on the usability evaluation results.
在一个实施例中,所述用户满意度计算模块612,还用于:In one embodiment, the user satisfaction calculation module 612 is also used to:
将所述预测值和所述可用性评估结果输入用户满意度公式中,得到用户满意度;所述用户满意度公式如下:The predicted value and the usability evaluation result are input into the user satisfaction formula to obtain user satisfaction; the user satisfaction formula is as follows:
其中,Q为用户满意度,YP为所述预测值,Y为所述可用性评估结果。Among them, Q is user satisfaction, Y P is the predicted value, and Y is the usability evaluation result.
上述实施例中,代理服务器在获取高可用服务目录之后,从高可用服务目录中选取目标特征向量作为评估指标,根据评估指标为目标用户分配服务器中对应的资源,获取目标用户在历史时段内使用服务器中资源的历史使用值,根据历史使用值预测目标用户在预设时段内使用服务器中资源的预测值,获取预设时段内目标用户使用服务器中资源的实际使用值,从而根据实际使用值和预测值计算用户满意度,并根据用户满意度确定服务器的可用性。从而能够在满足用户对高可用服务质量需求的前提下,对服务器的高可用性进行评估。In the above embodiment, after obtaining the high-availability service catalog, the proxy server selects the target feature vector from the high-availability service catalog as the evaluation index, allocates corresponding resources in the server to the target user according to the evaluation index, and obtains the target user's usage in the historical period. The historical usage value of resources in the server is used to predict the predicted value of the target user's use of the server's resources within the preset period based on the historical usage value, and the actual usage value of the target user's use of the server's resources within the preset period is obtained, so as to calculate the actual usage value and The predicted value calculates user satisfaction and determines server availability based on user satisfaction. In this way, the high availability of the server can be evaluated on the premise of meeting the user's demand for high availability service quality.
关于服务器高可用性评估装置的具体限定可以参见上文中对于服务器高可用性评估方法的限定,在此不再赘述。上述服务器高可用性评估装置中的各个模块可全部或部分通过软件、硬件及其组合来实现。上述各模块可以硬件形式内嵌于或独立于计算机设备中的处理器中,也可以以软件形式存储于计算机设备中的存储器中,以便于处理器调用执行以上各个模块对应的操作。For specific limitations on the server high availability evaluation device, please refer to the above limitations on the server high availability evaluation method, which will not be described again here. Each module in the above-mentioned server high availability evaluation device can be implemented in whole or in part by software, hardware and combinations thereof. Each of the above modules may be embedded in or independent of the processor of the computer device in the form of hardware, or may be stored in the memory of the computer device in the form of software, so that the processor can call and execute the operations corresponding to the above modules.
在一个实施例中,提供了一种计算机设备,该计算机设备可以是服务器,其内部结构图可以如图8所示。该计算机设备包括通过系统总线连接的处理器、存储器和网络接口。其中,该计算机设备的处理器用于提供计算和控制能力。该计算机设备的存储器包括非易失性存储介质、内存储器。该非易失性存储介质存储有操作系统、计算机程序和数据库。该内存储器为非易失性存储介质中的操作系统和计算机程序的运行提供环境。该计算机设备的数据库用于存储资源使用值数据。该计算机设备的网络接口用于与外部的终端通过网络连接通信。该计算机程序被处理器执行时以实现一种服务器高可用性评估方法。In one embodiment, a computer device is provided. The computer device may be a server, and its internal structure diagram may be shown in Figure 8 . The computer device includes a processor, memory, and network interfaces connected through a system bus. Wherein, the processor of the computer device is used to provide computing and control capabilities. The memory of the computer device includes non-volatile storage media and internal memory. The non-volatile storage medium stores operating systems, computer programs and databases. This internal memory provides an environment for the execution of operating systems and computer programs in non-volatile storage media. The computer device's database is used to store resource usage value data. The network interface of the computer device is used to communicate with external terminals through a network connection. The computer program, when executed by a processor, implements a method of evaluating server high availability.
本领域技术人员可以理解,图8中示出的结构,仅仅是与本申请方案相关的部分结构的框图,并不构成对本申请方案所应用于其上的计算机设备的限定,具体的计算机设备可以包括比图中所示更多或更少的部件,或者组合某些部件,或者具有不同的部件布置。Those skilled in the art can understand that the structure shown in Figure 8 is only a block diagram of a partial structure related to the solution of the present application, and does not constitute a limitation on the computer equipment to which the solution of the present application is applied. Specific computer equipment can May include more or fewer parts than shown, or combine certain parts, or have a different arrangement of parts.
在一个实施例中,提供了一种计算机设备,包括存储器和处理器,存储器存储有计算机程序,计算机程序被处理器执行时,使得处理器执行以下的步骤:获取高可用服务目录;从高可用服务目录中选取目标特征向量作为评估指标;根据评估指标为目标用户分配服务器中对应的资源;获取目标用户在历史时段内使用服务器中资源的历史使用值;根据历史使用值,预测目标用户在预设时段内使用服务器中资源的预测值;获取预设时段内目标用户使用服务器中资源的实际使用值;根据实际使用值和预测值计算用户满意度,根据用户满意度确定服务器的可用性。In one embodiment, a computer device is provided, including a memory and a processor. The memory stores a computer program. When the computer program is executed by the processor, the processor performs the following steps: obtain a high-availability service directory; Select the target feature vector from the service catalog as the evaluation index; allocate corresponding resources in the server to the target user based on the evaluation index; obtain the historical usage value of the resources in the server used by the target user in the historical period; predict the target user's expected use time based on the historical usage value. Set the predicted value of resources in the server used within a period; obtain the actual usage value of resources in the server used by target users within the preset period; calculate user satisfaction based on the actual usage value and predicted value, and determine the availability of the server based on user satisfaction.
在一个实施例中,计算机程序被处理器执行从高可用服务目录中选取目标特征向量作为评估指标的步骤时,使得处理器具体执行以下步骤:以决策树算法为基础,通过机器学习算法从高可用服务目录中选取目标特征向量作为评估指标。In one embodiment, when the computer program is executed by the processor to select the target feature vector as the evaluation index from the high-availability service catalog, the processor is caused to specifically perform the following steps: based on the decision tree algorithm, using the machine learning algorithm to The target feature vector is selected from the available service catalog as the evaluation index.
在一个实施例中,计算机程序被处理器执行根据评估指标为目标用户分配服务器中对应的资源的步骤时,使得处理器具体执行以下步骤:采用α算法的一致性分析对用户数据进行分析,得到用户需求与实际过程的匹配度以及用户需求的适应度;根据评估指标、匹配度和适应度,为目标用户分配服务器中对应的资源。In one embodiment, when the computer program is executed by the processor to allocate corresponding resources in the server to the target user according to the evaluation index, the processor is caused to specifically perform the following steps: analyze the user data using consistency analysis of the α algorithm, and obtain The degree of matching between user needs and the actual process and the degree of adaptability of user needs; based on the evaluation indicators, degree of matching and degree of adaptability, allocate corresponding resources in the server to target users.
在一个实施例中,计算机程序被处理器执行根据历史使用值,预测目标用户在预设时段内使用服务器中资源的预测值的步骤时,使得处理器具体执行以下步骤:获取预设时段;将预设时段输入预测模型;预测模型是基于历史使用值得到的时间序列模型;通过预测模型预测目标用户在预设时段内使用服务器中资源的预测值。In one embodiment, when the computer program is executed by the processor to predict the predicted value of the target user's use of resources in the server within a preset period based on historical usage values, the processor is caused to specifically perform the following steps: obtain the preset period; The preset period is input to the prediction model; the prediction model is a time series model based on historical usage values; the predicted value of the target user's use of resources in the server within the preset period is predicted through the prediction model.
在一个实施例中,计算机程序被处理器执行时,使得处理器还执行以下的步骤:判断预设时段内目标用户使用服务器中资源的实际使用值是否满足目标用户的用户需求;若否,则重新为目标用户分配服务器中对应的资源。In one embodiment, when the computer program is executed by the processor, the processor also performs the following steps: determine whether the actual usage value of the resources in the server used by the target user within the preset period meets the user needs of the target user; if not, then Re-allocate the corresponding resources in the server to the target user.
在一个实施例中,计算机程序被处理器执行根据实际使用值和预测值计算用户满意度的步骤时,使得处理器具体执行以下步骤:根据实际使用值和预测值构建评估模型;通过评估模型进行可用性评估,得到可用性评估结果;根据可用性评估结果计算用户满意度。In one embodiment, when the computer program is executed by the processor to calculate user satisfaction based on the actual usage value and the predicted value, the processor is caused to specifically perform the following steps: construct an evaluation model based on the actual usage value and the predicted value; perform the evaluation through the evaluation model Usability evaluation, obtain the usability evaluation results; calculate user satisfaction based on the usability evaluation results.
在一个实施例中,计算机程序被处理器执行根据可用性评估结果计算用户满意度的步骤时,使得处理器具体执行以下步骤:将预测值和可用性评估结果输入用户满意度公式中,得到用户满意度;用户满意度公式如下:In one embodiment, when the computer program is executed by the processor to calculate user satisfaction based on usability evaluation results, the computer program causes the processor to specifically perform the following steps: input the predicted value and usability evaluation results into the user satisfaction formula to obtain user satisfaction ;The formula for user satisfaction is as follows:
其中,Q为用户满意度,YP为预测值,Y为可用性评估结果。Among them, Q is user satisfaction, Y P is the predicted value, and Y is the usability evaluation result.
在一个实施例中,提供了一种计算机可读存储介质,存储有计算机程序,计算机程序被处理器执行时,使得处理器执行以下的步骤:获取高可用服务目录;从高可用服务目录中选取目标特征向量作为评估指标;根据评估指标为目标用户分配服务器中对应的资源;获取目标用户在历史时段内使用服务器中资源的历史使用值;根据历史使用值,预测目标用户在预设时段内使用服务器中资源的预测值;获取预设时段内目标用户使用服务器中资源的实际使用值;根据实际使用值和预测值计算用户满意度,根据用户满意度确定服务器的可用性。In one embodiment, a computer-readable storage medium is provided, which stores a computer program. When the computer program is executed by a processor, it causes the processor to perform the following steps: obtain a high-availability service directory; select from the high-availability service directory. The target feature vector is used as an evaluation index; allocate corresponding resources in the server to the target user according to the evaluation index; obtain the historical usage value of the resources in the server used by the target user in the historical period; predict the use of the target user in the preset period based on the historical usage value Predicted values of resources in the server; obtain actual usage values of resources in the server used by target users within a preset period; calculate user satisfaction based on actual usage values and predicted values, and determine server availability based on user satisfaction.
在一个实施例中,计算机程序被处理器执行从高可用服务目录中选取目标特征向量作为评估指标的步骤时,使得处理器具体执行以下步骤:以决策树算法为基础,通过机器学习算法从高可用服务目录中选取目标特征向量作为评估指标。In one embodiment, when the computer program is executed by the processor to select the target feature vector as the evaluation index from the high-availability service catalog, the processor is caused to specifically perform the following steps: based on the decision tree algorithm, using the machine learning algorithm to The target feature vector is selected from the available service catalog as the evaluation index.
在一个实施例中,计算机程序被处理器执行根据评估指标为目标用户分配服务器中对应的资源的步骤时,使得处理器具体执行以下步骤:采用α算法的一致性分析对用户数据进行分析,得到用户需求与实际过程的匹配度以及用户需求的适应度;根据评估指标、匹配度和适应度,为目标用户分配服务器中对应的资源。In one embodiment, when the computer program is executed by the processor to allocate corresponding resources in the server to the target user according to the evaluation index, the processor is caused to specifically perform the following steps: analyze the user data using consistency analysis of the α algorithm, and obtain The degree of matching between user needs and the actual process and the degree of adaptability of user needs; based on the evaluation indicators, degree of matching and degree of adaptability, allocate corresponding resources in the server to target users.
在一个实施例中,计算机程序被处理器执行根据历史使用值,预测目标用户在预设时段内使用服务器中资源的预测值的步骤时,使得处理器具体执行以下步骤:获取预设时段;将预设时段输入预测模型;预测模型是基于历史使用值得到的时间序列模型;通过预测模型预测目标用户在预设时段内使用服务器中资源的预测值。In one embodiment, when the computer program is executed by the processor to predict the predicted value of the target user's use of resources in the server within a preset period based on historical usage values, the processor is caused to specifically perform the following steps: obtain the preset period; The preset period is input to the prediction model; the prediction model is a time series model based on historical usage values; the predicted value of the target user's use of resources in the server within the preset period is predicted through the prediction model.
在一个实施例中,计算机程序被处理器执行时,使得处理器还执行以下的步骤:判断预设时段内目标用户使用服务器中资源的实际使用值是否满足目标用户的用户需求;若否,则重新为目标用户分配服务器中对应的资源。In one embodiment, when the computer program is executed by the processor, the processor also performs the following steps: determine whether the actual usage value of the resources in the server used by the target user within the preset period meets the user needs of the target user; if not, then Re-allocate the corresponding resources in the server to the target user.
在一个实施例中,计算机程序被处理器执行根据实际使用值和预测值计算用户满意度的步骤时,使得处理器具体执行以下步骤:根据实际使用值和预测值构建评估模型;通过评估模型进行可用性评估,得到可用性评估结果;根据可用性评估结果计算用户满意度。In one embodiment, when the computer program is executed by the processor to calculate user satisfaction based on the actual usage value and the predicted value, the processor is caused to specifically perform the following steps: construct an evaluation model based on the actual usage value and the predicted value; perform the evaluation through the evaluation model Usability evaluation, obtain the usability evaluation results; calculate user satisfaction based on the usability evaluation results.
在一个实施例中,计算机程序被处理器执行根据可用性评估结果计算用户满意度的步骤时,使得处理器具体执行以下步骤:将预测值和可用性评估结果输入用户满意度公式中,得到用户满意度;用户满意度公式如下:In one embodiment, when the computer program is executed by the processor to calculate user satisfaction based on usability evaluation results, the computer program causes the processor to specifically perform the following steps: input the predicted value and usability evaluation results into the user satisfaction formula to obtain user satisfaction ;The formula for user satisfaction is as follows:
其中,Q为用户满意度,YP为预测值,Y为可用性评估结果。Among them, Q is user satisfaction, Y P is the predicted value, and Y is the usability evaluation result.
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和易失性存储器中的至少一种。非易失性存储器可包括只读存储器(Read-Only Memory,ROM)、磁带、软盘、闪存或光存储器等。易失性存储器可包括随机存取存储器(Random Access Memory,RAM)或外部高速缓冲存储器。作为说明而非局限,RAM可以是多种形式,比如静态随机存取存储器(Static Random Access Memory, SRAM)或动态随机存取存储器(Dynamic Random Access Memory,DRAM)等。Those of ordinary skill in the art can understand that all or part of the processes in the methods of the above embodiments can be completed by instructing relevant hardware through a computer program. The computer program can be stored in a non-volatile computer-readable storage. In the media, when executed, the computer program may include the processes of the above method embodiments. Any reference to memory, storage, database or other media used in the embodiments provided in this application may include at least one of non-volatile and volatile memory. Non-volatile memory may include read-only memory (ROM), magnetic tape, floppy disk, flash memory or optical memory, etc. Volatile memory may include random access memory (Random Access Memory, RAM) or external cache memory. By way of illustration but not limitation, RAM can be in various forms, such as static random access memory (Static Random Access Memory, SRAM) or dynamic random access memory (Dynamic Random Access Memory, DRAM).
以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。The technical features of the above embodiments can be combined in any way. To simplify the description, not all possible combinations of the technical features in the above embodiments are described. However, as long as there is no contradiction in the combination of these technical features, all possible combinations should be used. It is considered to be within the scope of this manual.
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。The above-mentioned embodiments only express several implementation modes of the present application, and their descriptions are relatively specific and detailed, but they should not be understood as limiting the scope of the invention patent. It should be noted that, for those of ordinary skill in the art, several modifications and improvements can be made without departing from the concept of the present application, and these all fall within the protection scope of the present application. Therefore, the scope of protection of this patent application should be determined by the appended claims.
Claims (10)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910984104 | 2019-10-16 | ||
CN2019109841043 | 2019-10-16 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111598390A CN111598390A (en) | 2020-08-28 |
CN111598390B true CN111598390B (en) | 2023-12-01 |
Family
ID=72188775
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010276892.3A Active CN111598390B (en) | 2019-10-16 | 2020-04-10 | Server high availability evaluation methods, devices, equipment and readable storage media |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111598390B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115994070B (en) * | 2023-03-21 | 2023-08-04 | 深圳市明源云科技有限公司 | System availability detection method and device, electronic equipment and readable storage medium |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6912568B1 (en) * | 1999-07-27 | 2005-06-28 | Hitachi, Ltd. | Service management system |
US7571149B1 (en) * | 2006-05-15 | 2009-08-04 | Rockwell Collins, Inc. | Inferential evaluation and control for matching requirements to system capabilities |
WO2018119568A1 (en) * | 2016-12-26 | 2018-07-05 | Morgan Stanley Services Group Inc. | Predictive asset optimization for computer resources |
CN108762885A (en) * | 2018-04-27 | 2018-11-06 | 北京奇艺世纪科技有限公司 | A kind of virtual machine creation method, device, management equipment and terminal device |
CN109284871A (en) * | 2018-09-30 | 2019-01-29 | 北京金山云网络技术有限公司 | Resource adjustment method, device and cloud platform |
CN109614231A (en) * | 2018-12-04 | 2019-04-12 | 广东亿迅科技有限公司 | Idle server resource discovery method, device, computer equipment and storage medium |
CN110059858A (en) * | 2019-03-15 | 2019-07-26 | 深圳壹账通智能科技有限公司 | Server resource prediction technique, device, computer equipment and storage medium |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140229026A1 (en) * | 2013-02-13 | 2014-08-14 | Al Cabrini | Prediction of future energy and demand usage using historical energy and demand usage |
US10439870B2 (en) * | 2015-11-24 | 2019-10-08 | International Business Machines Corporation | Assessment and dynamic provisioning of computing resources for multi-tiered application |
-
2020
- 2020-04-10 CN CN202010276892.3A patent/CN111598390B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6912568B1 (en) * | 1999-07-27 | 2005-06-28 | Hitachi, Ltd. | Service management system |
US7571149B1 (en) * | 2006-05-15 | 2009-08-04 | Rockwell Collins, Inc. | Inferential evaluation and control for matching requirements to system capabilities |
WO2018119568A1 (en) * | 2016-12-26 | 2018-07-05 | Morgan Stanley Services Group Inc. | Predictive asset optimization for computer resources |
CN108762885A (en) * | 2018-04-27 | 2018-11-06 | 北京奇艺世纪科技有限公司 | A kind of virtual machine creation method, device, management equipment and terminal device |
CN109284871A (en) * | 2018-09-30 | 2019-01-29 | 北京金山云网络技术有限公司 | Resource adjustment method, device and cloud platform |
CN109614231A (en) * | 2018-12-04 | 2019-04-12 | 广东亿迅科技有限公司 | Idle server resource discovery method, device, computer equipment and storage medium |
CN110059858A (en) * | 2019-03-15 | 2019-07-26 | 深圳壹账通智能科技有限公司 | Server resource prediction technique, device, computer equipment and storage medium |
Also Published As
Publication number | Publication date |
---|---|
CN111598390A (en) | 2020-08-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110851529B (en) | Computing power scheduling method and related equipment | |
TWI620075B (en) | Server and cloud computing resource optimization method thereof for cloud big data computing architecture | |
US9805140B2 (en) | Striping of directed graphs and nodes with improved functionality | |
US10783002B1 (en) | Cost determination of a service call | |
CN113037877B (en) | Optimization method for time-space data and resource scheduling under cloud edge architecture | |
CN114667507A (en) | Resilient execution of machine learning workload using application-based profiling | |
Unuvar et al. | Selecting optimum cloud availability zones by learning user satisfaction levels | |
CN113204429A (en) | Resource scheduling method and system of data center, scheduling equipment and medium | |
CN108390775A (en) | A kind of user experience quality evaluation method and system based on SPICE | |
WO2023236239A1 (en) | Multi-round sampling based data screening rule validation method, and apparatus thereof | |
US10313457B2 (en) | Collaborative filtering in directed graph | |
CN117033261A (en) | Cache allocation method, device, equipment, medium and program product | |
CN111598390B (en) | Server high availability evaluation methods, devices, equipment and readable storage media | |
Lu et al. | VM scaling based on Hurst exponent and Markov transition with empirical cloud data | |
US20140214826A1 (en) | Ranking method and system | |
CN118963941A (en) | Task allocation method and device | |
CN115509733A (en) | Data migration method and device, computer equipment and storage medium | |
CN113298115A (en) | User grouping method, device, equipment and storage medium based on clustering | |
CN117972367A (en) | Data storage prediction method, data storage subsystem and intelligent computing platform | |
US11374869B2 (en) | Managing bandwidth based on user behavior | |
CN116074323B (en) | Edge computing node selection method, device, computer equipment and medium | |
CN116962419A (en) | Method and device for generating server allocation policy, electronic equipment and storage medium | |
CN110020129B (en) | Click rate correction method, prediction method, device, computing equipment and storage medium | |
CN116737373A (en) | Load balancing method, device, computer equipment and storage medium | |
WO2023110059A1 (en) | Method and system trace controller for a microservice system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |