CN111526720B - 用于治疗罕见病的方法和组合物 - Google Patents
用于治疗罕见病的方法和组合物 Download PDFInfo
- Publication number
- CN111526720B CN111526720B CN201880069365.6A CN201880069365A CN111526720B CN 111526720 B CN111526720 B CN 111526720B CN 201880069365 A CN201880069365 A CN 201880069365A CN 111526720 B CN111526720 B CN 111526720B
- Authority
- CN
- China
- Prior art keywords
- gene
- domain
- genetic
- expression
- protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0066—Manipulation of the nucleic acid to modify its expression pattern, e.g. enhance its duration of expression, achieved by the presence of particular introns in the delivered nucleic acid
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7088—Compounds having three or more nucleosides or nucleotides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0008—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'non-active' part of the composition delivered, e.g. wherein such 'non-active' part is not delivered simultaneously with the 'active' part of the composition
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/005—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the 'active' part of the composition delivered, i.e. the nucleic acid delivered
- A61K48/0058—Nucleic acids adapted for tissue specific expression, e.g. having tissue specific promoters as part of a contruct
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0075—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy characterised by an aspect of the delivery route, e.g. oral, subcutaneous
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
- A61K48/0091—Purification or manufacturing processes for gene therapy compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0019—Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0043—Nose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0085—Brain, e.g. brain implants; Spinal cord
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P21/00—Drugs for disorders of the muscular or neuromuscular system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/46—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates
- C07K14/47—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals
- C07K14/4701—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans from vertebrates from mammals not used
- C07K14/4702—Regulators; Modulating activity
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/50—Fusion polypeptide containing protease site
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/70—Fusion polypeptide containing domain for protein-protein interaction
- C07K2319/71—Fusion polypeptide containing domain for protein-protein interaction containing domain for transcriptional activaation, e.g. VP16
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/80—Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor
- C07K2319/81—Fusion polypeptide containing a DNA binding domain, e.g. Lacl or Tet-repressor containing a Zn-finger domain for DNA binding
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2750/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
- C12N2750/00011—Details
- C12N2750/14011—Parvoviridae
- C12N2750/14111—Dependovirus, e.g. adenoassociated viruses
- C12N2750/14141—Use of virus, viral particle or viral elements as a vector
- C12N2750/14143—Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Epidemiology (AREA)
- Organic Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Neurology (AREA)
- Biochemistry (AREA)
- Zoology (AREA)
- Neurosurgery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Wood Science & Technology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Physical Education & Sports Medicine (AREA)
- Psychiatry (AREA)
- Hospice & Palliative Care (AREA)
- General Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Gastroenterology & Hepatology (AREA)
- Toxicology (AREA)
- Microbiology (AREA)
- Dermatology (AREA)
- Manufacturing & Machinery (AREA)
- Otolaryngology (AREA)
- Psychology (AREA)
- Immunology (AREA)
Abstract
本公开内容属于参与罕见病的基因的调控领域,包括用于罕见病,如安格尔曼综合征、面肩肱型肌营养不良(FHMD)、肌萎缩侧索硬化(ALS)、额颞痴呆(FTD)和脊髓性肌萎缩(SMA)的诊断学和治疗学。
Description
对相关申请的交叉引用
本申请要求2017年10月24日提交的美国临时申请No.62/576,584的权益,其公开内容在此通过引用完整并入。
发明领域
本公开内容属于罕见病的诊断学和治疗学领域。
发明背景
许多(也许大多数)生理和病理生理过程可以与基因表达的异常上调或下调相关。例子包括类风湿性关节炎中促炎性细胞因子的不适当表达、高胆固醇血症中肝LDL受体的表达不足、实体瘤生长中促血管生成因子的过表达和抗血管生成因子的表达不足,等等。另外,可以通过改变基因表达来控制病原性生物体,例如病毒、细菌、真菌和原生动物。
基因的启动子区域通常包含近端、核心和下游元件,并且转录可以由多种增强子调节。这些序列含有用于多种转录因子的多个结合位点,并且可以不依赖于相对于启动子序列的位置、距离或方向激活转录。为了实现基因表达调节,增强子结合的转录因子环通输出居间序列并接触启动子区域。另外,真核基因的激活可以需要染色质结构的解压缩,这可以通过募集组蛋白修饰酶或ATP依赖性染色质重塑复合物来实现,从而改变染色质结构并且增加DNA对参与基因表达的其它蛋白质的可及性(Ong and Corces(2011)Nat RevGenetics 12:283)。DNA甲基化也可以是基因表达调节中的一个因素。例如,DNA链中的胞嘧啶可以被甲基化而变成5-甲基胞嘧啶,并且当鸟嘌呤附近存在胞嘧啶(也称为“CpG”构造)时,这可以以高频率发生。实际上,启动子区域中的高浓度CpG(所谓的CpG岛)通常被甲基化或去甲基化以调节启动子功能(见Listeret al(2009)Nature 462(7271):315-22)。
染色质结构的扰动可以通过几种机制发生——一些机制对于特定基因是局部化的,而另一些机制是全基因组的并且在细胞过程期间发生,例如需要染色质浓缩的有丝分裂。组蛋白上的赖氨酸残基可以被乙酰化,从而有效中和组蛋白与染色体DNA之间的电荷相互作用。在高乙酰化和高度转录的β-球蛋白基因座上已经观察到了这点,该基因座也已经显示是DNA酶敏感的,一般可及性的标志。已经观察到的其它类型的组蛋白修饰包括甲基化、磷酸化、脱氨基、ADP核糖基化、β-N-乙酰氨基葡糖的添加、泛素化和SUMO化(见Bannister and Kouzarides(2011)Cell Res 21:381)。似乎DNA甲基化也可影响组蛋白修饰。在一些情况下,甲基化的DNA与增加的组蛋白修饰相关,导致染色质的更浓缩形式(Cedar and Bergman(2009)Nature Rev Gene 10:295-304)。
已经通过使用工程化的转录因子实现了疾病相关基因的阻抑或激活。设计和使用工程化锌指转录因子(ZFP-TF)的方法已得到充分证明(例如见美国专利6,534,261),并且最近还已经描述了转录激活物样效应物转录因子(TALE-TF)和成簇规则间隔短回文重复Cas基转录因子(CRISPR-Cas-TF)两者(见综述Kabadi and Gersbach(2014)Methods 69(2):188-197)。靶向基因的非限制性实例包括受磷蛋白(Zhang et al(2012)Mol Ther 20(8):1508-1515),GDNF(Langaniere et al(2010)J.Neurosci 39(49):16469)和VEGF(Liuet al(2001)J Biol Chem 276:11323-11334)。另外,已经通过使用CRIPSR/Cas-乙酰基转移酶融合物实现基因的激活(Hilton et al(2015)Nat Biotechnol 33(5):510-517)。也已经显示了阻抑基因表达的工程化TF(阻抑物)可以有效调控参与三核苷酸病症,如亨廷顿氏病(HD)和tau病变(tauopathies)的基因。见例如美国专利No.9,234,016;8,841,260;和8,956,8282和美国专利公开文本No.20180153921和20150335708。另外,基因表达可以通过工程核酸酶(例如锌指核酸酶、TALE核酸酶、CRISPR/Cas系统等)来调节,其中基因被工程化核酸酶特异性切割。切割位点的易错修复通常导致核苷酸的插入和缺失(“插入/缺失”),这将导致基因表达的敲除。
罕见病通常对患者及其家庭可以是毁灭性的。例如,安格尔曼综合征(Angelman’sSyndrome)、面肩肱型肌营养不良(FHMD)、脊髓性肌萎缩(SMA)以及肌萎缩侧索硬化(Amyotrophic Lateral Sclerosis)(ALS)和家族性额颞痴呆(Frontotemporal dementia)(FTD)中的C9orf72牵涉都是可以具有终生影响的疾病,例如智力低下(安格尔曼综合征)、认知缺陷(例如FTD)和/或肌肉虚弱(FHMD、SMA和ALS)。
因此,仍然需要用于调控参与罕见病的基因(包括优先调控异常表达的基因和/或突变体等位基因)的方法,包括用于预防和/或治疗罕见病诸如安格尔曼综合征、FHMD、ALS、FTD和SMA的方法。
发明概述
本文中公开了用于诊断、预防和/或治疗罕见病如安格尔曼综合征、FHMD、ALS、FTD和SMA的方法和组合物。特别地,本文中提供了修饰特定基因(例如,调节特定基因表达)以治疗这些疾病的方法和组合物,包括使用工程化的转录因子阻抑物和核酸酶。
本文中提供了C9orf72基因的遗传调控剂,该调控剂包含结合C9orf72基因中至少12个核苷酸的靶位点的DNA结合域(例如锌指蛋白(ZFP)、TAL效应物域蛋白(TALE)或单引导RNA);和转录调节域(例如阻抑域或激活域)或核酸酶域。还提供了一种或多种编码本文中所述的一种或多种遗传调控剂的多核苷酸(例如,病毒或非病毒基因递送媒介物,例如AAV载体)。在其它方面,本文中描述了包含如本文提供的一种或多种多核苷酸和/或一种或多种基因递送媒介物的药物组合物。在遗传调控剂包含核酸酶域的方面,遗传调控剂(和包含一种或多种遗传调控剂或编码一种或多种遗传调控剂的多核苷酸的药物组合物)切割C9orf72基因,而在遗传调控剂包含调节物域的方面,遗传调控剂(和包含一种或多种遗传调控剂或编码一种或多种遗传调控剂的多核苷酸的药物组合物)调控(例如阻抑或激活)C9orf72基因的表达。可以结合和/或调控基因的有义和/或反义链。包含一种或多种核酸酶遗传调控剂的药物组合物可以进一步包含整合到经切割的C9orf72基因中的供体分子。本文中还提供了分离的细胞(包括细胞群体),其包含如本文所述的一种或多种遗传调控剂;一种或多种多核苷酸;一种或多种基因递送媒介物;和/或一种或多种药物组合物。还提供了用于在细胞中(体外、体内或离体)调控表达(例如阻抑)C9orf72基因的方法和用途,所述方法包括对细胞施用(通过任何方法,包括但不限于脑室内、鞘内、颅内、眶后(RO)、静脉内或脑池内)如本文所述的一种或多种遗传调控剂;一种或多种多核苷酸;一种或多种基因递送媒介物;和/或一种或多种药物组合物。方法可用于治疗和/或预防受试者中的肌萎缩侧索硬化(ALS)或额颞痴呆(FTD)。还提供了一种或多种遗传调控剂;一种或多种多核苷酸;一种或多种基因递送媒介物;和/或一种或多种药物组合物的用途,用于治疗和/或预防受试者中的肌萎缩侧索硬化(ALS)或额颞痴呆(FTD)。还提供了试剂盒,其包含如本文所述的一种或多种遗传调控剂;一种或多种多核苷酸;一种或多种基因递送媒介物;和/或一种或多种药物组合物,以及任选地使用说明。
因此,在一方面,提供了一种或多种基因的工程化(非天然存在的)遗传调控剂(例如阻抑物)。这些遗传调控剂可以包含调控(例如抑制)等位基因表达的系统(例如锌指蛋白、TAL效应物(TALE)蛋白或CRISPR/dCas-TF)。可以调控野生型和/或突变体等位基因的表达。在某些实施方案中,与野生型等位基因相比,突变体等位基因的调控水平更高(例如,与未处理的对照相比,野生型等位基因被阻抑不超过正常的50%,但是突变体等位基因被阻抑至少70%)。例如,在一个实施方案中,工程化的转录因子可以用于阻抑Ube3a-ATS RNA的表达以治疗安格尔曼综合征。在FSHD1中,突变导致体细胞组织中的DUX4表达(在种系发育后通常在表观遗传上沉默,见van der Maarel et al(2011)Trends Mol Med.17(5):252-8.doi:10.1016/j.molmed.2011.01.001)。因此,在一些实施方案中,工程化的转录因子可用于阻抑其表达以治疗FSHD1。类似地,C9orf72等位基因中的扩充突变导致与ALS和FTD相关的有义和反义RNA产物两者的表达,因此在一个实施方案中,提供了工程化的转录因子,其被设计为阻抑这些突变体C9orf72等位基因的表达以治疗ALS或FTD。在一些实施方案中,提供了工程化改造为诱导SMN1和/或SMN2基因表达以治疗SMA或诱导UBE34的父本等位基因表达以治疗AS的转录因子。工程化的锌指蛋白或TALE是非天然存在的锌指或TALE蛋白,其DNA结合域(例如,识别螺旋或RVD)已被改变(例如,通过选择和/或合理设计)以结合预先选择的靶位点。本文描述的任何锌指蛋白可包括1、2、3、4、5、6个或更多个锌指,每个锌指具有识别螺旋,该识别螺旋与选择的序列(例如,基因)中的靶亚位点结合。在某些实施方案中,ZFP-TF包括具有如表1的单行所示的识别螺旋区域的ZFP。类似地,本文描述的任何TALE蛋白可包括任何数量的TALE RVD。在一些实施方案中,至少一种RVD具有非特异性DNA结合。在一些实施方案中,至少一个识别螺旋(或RVD)是非天然存在的。在某些实施方案中,TALE-TF包含与如表1所示的靶位点的至少12个碱基对结合的TALE。CRISPR/Cas-TF包含与靶序列结合的单指导RNA。在某些实施方案中,工程化转录因子结合(例如,通过ZFP、TALE或sgRNADNA结合域)疾病相关基因中的至少9-12个碱基对的靶位点,例如包含至少9-20个碱基对(例如9、10、11、12、13、14、15、16、17、18、19、20或更多)的靶位点,包括这些靶位点(例如如表1所示的靶位点)内的连续或非连续序列。在某些实施方案中,遗传调控剂包含与转录阻抑域(以形成遗传阻抑物)或转录激活域(以形成遗传阻抑物)可操作地连接的如本文所述的DNA结合分子(ZFP、TALE、单引导RNA)。在其它实施方案中,遗传阻抑物(例如,其通过修饰序列来阻抑基因的表达)包括与至少一个核酸酶域(例如,一个、两个或多个核酸酶域)可操作地连接的如本文所述的DNA结合分子(ZFP、TALE、单引导RNA)。所得的人工核酸酶能够(例如通过插入和/或缺失)遗传修饰靶基因,例如,在DNA结合域靶序列内;在切割位点内;靶序列和/或切割位点附近(1-50个或更多碱基对);和/或当使用一对核酸酶切割使得基因的表达被阻抑(失活)时在配对的靶位点之间的靶基因。
因此,如本文所述的锌指蛋白(ZFP)、CRISPR/Cas系统的Cas蛋白或TALE蛋白可以与作为融合分子的一部分的调节域(或功能域)可操作地连接。该功能域可以是例如转录激活域、转录阻抑域和/或核酸酶(切割)域。通过选择与DNA结合分子一起使用的激活域或阻抑域,此类分子可用于激活或抑制基因表达。在某些实施方案中,功能或调节域可以在组蛋白翻译后修饰中起作用。在某些情况下,域是组蛋白乙酰基转移酶(HAT)、组蛋白脱乙酰基酶(HDAC)、组蛋白甲基化酶或将组蛋白进行SUMO化或生物素化的酶或其它酶域,其允许翻译后的组蛋白修饰调节的基因阻抑(Kousarides(2007)Cell128:693-705)。在一些实施方案中,提供了一种分子,其包含与可用于下调基因表达的转录阻抑域融合的靶向如本文所述的基因(例如C9orf72,Ube3a-ATS,DUX4)的ZFP、dCas或TALE。在其它实施方案中,提供了包含靶向基因(例如,C9orf72,UBE34,SMN1或SMN2)以激活基因表达的ZFP、dCAS或TALE的分子。在一些实施方案中,本发明的方法和组合物可用于处理真核生物。在某些实施方案中,调节域的活性由外源小分子或配体调节,使得在缺少外源性配体的情况下不会发生与细胞转录机制的相互作用。此类外部配体控制ZFP-TF、CRISPR/Cas-TF或TALE-TF与转录机制的相互作用程度。调节域可以可操作地连接至ZFP、dCas或TALE中一种或多种的任何部分,包括在一个或多个ZFP、dCas或TALE之间,一个或多个ZFP、dCas或TALE外部、以及它们的任何组合。在优选的实施方案中,调节域导致靶定基因(例如,C9orf72,Ube3a-ATS,DUX4)的基因表达的阻抑。在其它优选的实施方案中,调节域导致靶定基因(例如,C9orf72,UBE34,SMN1和/或SMN2)的基因表达的激活。本文所述的任何融合蛋白可以配制成药物组合物。
在一些实施方案中,本发明的方法和组合物包括使用如本文所述的两种或更多种融合分子,例如两种或更多种C9orf72、Ube3a-ATS和/或DUX4调控剂(人工转录因子和/或人工核酸酶)。两种或更多种融合分子可以结合不同靶位点并包含相同或不同的功能域。或者,如本文所述的两种或更多种融合分子可以结合相同的靶位点,但是包括不同的功能域。在一些情况下,使用三种或更多种融合分子,在其它情况下,使用四种或更多种融合分子,而在其它情况下,使用5种或更多种融合分子。在优选的实施方案中,将两种或更多种、三种或更多种、四种或更多种或五种或更多种融合分子(或其组分)作为核酸递送至细胞。在优选的实施方案中,融合分子引起靶定基因表达的阻抑。在一些实施方案中,以每个分子自身具有活性,但是组合时阻抑活性为叠加的剂量给予两种融合分子。在优选的实施方案中,以都不具有活性,但是在组合时阻抑活性协同的剂量给予两种融合分子。
在一些实施方案中,如本文所述的工程化DNA结合域可以与作为融合酶的一部分的核酸酶(切割)域可操作连接。在一些实施方案中,核酸酶包含Ttago核酸酶。在其它实施方案中,核酸酶系统例如CRISPR/Cas系统可以与特定的单引导RNA一起使用,以将核酸酶靶向到DNA中的靶位置。在某些实施方案中,提供了包含经修饰的干细胞、肌肉和/或神经元细胞的药物组合物。
在另一方面,提供了编码本文所述的任何DNA结合域的多核苷酸。
在其它方面,本发明包括将供体核酸递送至靶细胞。供体可以在编码核酸酶的核酸之前,之后或与之一起递送。供体核酸可以包含要整合到细胞基因组,例如内源基因座中的外源序列(转基因)。在一些实施方案中,供体可包含全长基因或其片段,其侧翼为与靶定的切割位点的同源性区域。在一些实施方案中,供体缺乏同源区域并且通过不依赖于同源性的机制(即NHEJ)整合到靶基因座中。供体可以包含任何核酸序列,例如如下的核酸,其当用作用于核酸酶诱导的双链断裂的同源性指导修复的底物时,导致在内源染色体基因座处产生供体规定的缺失,或备选(或除此之外),创建内源基因座的新等位形式(例如,消除转录因子结合位点的点突变)。在一些方面,供体核酸是寡核苷酸,其中整合导致基因校正事件或靶向缺失。在一些实施方案中,供体编码能够阻抑靶基因表达的转录因子。在其它实施方案中,供体编码抑制靶定蛋白表达的RNA分子。
在一些实施方案中,编码DNA结合蛋白的多核苷酸是mRNA。在一些方面,mRNA可以被化学修饰(见例如Kormann et al,(2011)Nature Biotechnology 29(2):154-157)。在其它方面,mRNA可以包含ARCA帽(见美国专利7,074,596和8,153,773)。在进一步的实施方案中,mRNA可以包含未修饰的和修饰的核苷酸的混合物(见美国专利公开2012-0195936)。
在另一方面,提供了包含如本文所述的任何多核苷酸(例如阻抑物)的基因递送媒介物。在某些实施方案中,载体是腺病毒载体(例如,Ad5/F35载体),慢病毒载体(LV),其包括具有整合能力或整合缺陷的慢病毒载体,或腺病毒相关病毒载体(AAV)。在某些实施方案中,AAV载体是AAV2、AAV6、AAV8或AAV9载体或假型化AAV载体,例如AAV2/8、AAV2/5、AAV2/9和AAV2/6。在一些实施方案中,AAV载体是能够穿过血脑屏障的AAV载体(例如,美国20150079038)。在其它实施方案中,AAV是自互补AAV(sc-AAV)或单链(ss-AAV)分子。本文还提供了腺病毒(Ad)载体、LV或腺病毒相关病毒载体(AAV),其包含编码至少一种核酸酶(ZFN或TALEN)的序列和/或用于靶向整合到靶基因中的供体序列。在某些实施方案中,Ad载体是嵌合Ad载体,例如Ad5/F35载体。在某些实施方案中,慢病毒载体是整合酶缺陷型慢病毒载体(IDLV)或有整合能力的慢病毒载体。在某些实施方案中,载体是用VSV-G包膜或其它包膜假型化的。
另外,还提供了药物组合物,其包含核酸,和/或融合物诸如人工转录因子或核酸酶(例如,ZFP、Cas或TALE或包含ZFP、Cas或TALE的融合分子)。例如,某些组合物包括与药学上可接受的载体或稀释剂组合的核酸,该核酸包含与调节序列可操作连接的编码本文中描述的ZFP、Cas或TALE之一的序列,其中调节序列允许在细胞中表达核酸。在某些实施方案中,编码的ZFP、Cas、CRISPR/Cas或TALE调控野生型和/或突变体等位基因。在一些实施方案中,突变体等位基因优先被调控,例如被阻抑或激活,超过野生型等位基因。在一些实施方案中,药物组合物包含优先调控突变体等位基因的ZFP、CRISPR/Cas或TALE和调控神经营养因子的ZFP、CRISPR/Cas或TALE。基于蛋白质的组合物包括如本文公开的ZFP、CRISPR/Cas或TALE中的一种或多种和药学上可接受的载体或稀释剂。
在又一方面,还提供了分离的细胞,其包含如本文所述的任何蛋白质、融合分子、多核苷酸和/或组合物。分离的细胞可以用于非治疗用途,例如提供用于诊断和/或筛选方法和/或用于治疗用途,例如离体细胞疗法的细胞或动物模型。
在另一方面,还提供了药物组合物,其包含如本文所述的一种或多种遗传调控剂、一种或多种多核苷酸(例如,基因递送媒介物)和/或一种或多种分离的细胞(例如,群体)。在某些实施方案中,药物组合物包含两种或更多种遗传调控剂。例如,某些组合物包括核酸,该核酸包含编码如本文所述的与罕见病相关的基因(例如,C9orf72,Ube3a-ATS,DUX4)之一的一种或多种遗传调控剂的序列。在某些实施方案中,遗传调控剂(例如,包括本文所述的ZFP、Cas或TALE)与调节序列可操作地连接,并与药学上可接受的载体或稀释剂组合,其中调节序列允许在细胞中表达核酸。在某些实施方案中,编码的ZFP、CRISPR/Cas或TALE对突变体或野生型等位基因(例如,C9orf72)是特异性的。在一些实施方案中,药物组合物包含ZFP-TF、CRISPR/Cas-TF或TALE-TF,其调控突变体和/或野生型等位基因(例如,C9orf72),包括与野生型等位基因相比优先调控(以更大水平激活或阻抑)突变体等位基因的TF。基于蛋白质的组合物包括如本文公开的一种或多种遗传调控剂和药学上可接受的载体或稀释剂。
本发明还提供了在有此需要的受试者(例如,具有如本文所述的罕见病的受试者)中阻抑基因表达的方法和用途,包括通过对受试者提供如本文所述的一种或多种多核苷酸、一种或多种基因递送媒介物和/或药物组合物。在某些实施方案中,本文所述的组合物用于阻抑受试者中突变体C9orf72的表达,包括用于治疗和/或预防ALS或FTD。本文所述的组合物在脑(包括但不限于额皮质叶,包括但不限于前额叶皮质、顶皮质叶、枕皮质叶、颞皮质叶,包括但不限于内嗅皮质、海马、脑干、纹状体、丘脑、中脑、小脑)和脊髓(包括但不限于腰、胸和颈区)中阻抑基因表达,达持续的时间段(4周、3个月、6个月至一年或更长)。可以通过任何施用手段给受试者提供本文所述的组合物,所述施用手段包括但不限于脑室内、鞘内、颅内、静脉内、眶(眶后(RO))、鼻内和/或脑池内施用。还提供了试剂盒,其包含如本文所述的组合物中的一种或多种(例如,遗传调控剂、多核苷酸、药物组合物和/或细胞)以及这些组合物的使用说明。
在另一方面,本文提供了使用本文描述的方法和组合物治疗和/或预防CNS(例如AS、ALS、FTD和/或SMA)或肌肉病症(例如FSHD)的方法。在一些实施方案中,方法涉及组合物,其中可以使用病毒载体、非病毒载体(例如质粒)和/或其组合递送多核苷酸和/或蛋白质。在一些实施方案中,方法涉及包含干细胞群体的组合物,所述干细胞群体包含人工转录因子或人工核酸酶(例如,ZFP-TF、TALE-TF、Cas-TF、ZFN、TALEN、Ttago)或本发明的CRISPR/Cas核酸酶系统。如本文所述的组合物(蛋白质、多核苷酸、细胞和/或包含这些蛋白质、多核苷酸和/或细胞的药物组合物)的施用导致治疗(临床)作用,包括但不限于改善或消除与AS、FSHD、ALS、FTD和/或SMA相关的任何临床症状,以及CNS细胞(例如神经元、星形胶质细胞、髓磷脂等)或肌细胞的功能和/或数量增加。在某些实施方案中,与不接受如本文所述的人工阻抑物的对照相比,本文所述的组合物和方法将其靶基因(例如,C9orf72)的表达降低至少30%或40%,优选至少50%,甚至更优选至少70%,或至少80%或至少90%,或至少95%或大于95%。在一些实施方案中,实现至少50%的减少。在某些实施方案中,与野生型等位基因相比,人工阻抑物将突变体等位基因(例如,扩充的等位基因)优先抑制例如至少20%(例如,将野生型等位基因阻抑不超过50%和将突变等位基因阻抑至少70%)。
在另一方面,本文描述了使用病毒或非病毒载体将基因阻抑物递送至受试者的脑的方法。在某些实施方案中,病毒载体是AAV9载体。可以通过任何合适的手段,包括通过使用插管对任何脑区域,例如海马或内嗅皮质递送。提供遗传调控剂(例如阻抑物)广泛递送到受试者脑的任何AAV载体,包括通过顺行和逆行轴突运输到未直接施用载体的脑区(例如,递送至壳核导致递送至其它结构,例如皮质、黑质、丘脑等)。在某些实施方案中,受试者是人,并且在其它实施方案中,受试者是非人灵长类。施用可以为单剂量,或者同时给予的一系列剂量,或者为多次施用(在施用之间的任何时机)。
因此,在其它方面,本文描述了预防和/或治疗受试者中的疾病(例如,AS、FSHD、ALS、FTD和/或SMA)的方法,该方法包括使用AAV对受试者施用基因的阻抑物。在某些实施方案中,对受试者的CNS(例如,海马和/或内嗅皮质)或PNS(例如,脊髓/脊髓液)施用阻抑物。在其它实施方案中,静脉内施用阻抑剂。在某些实施方案中,本文描述了在受试者中预防和/或治疗ALS或FTD的方法,该方法包括使用一种或多种AAV载体对受试者施用C9orf72等位基因(野生型和/或突变体)的阻抑物。在某些实施方案中,通过任何递送方法对CNS(脑和/或CSF)施用编码遗传调控剂的AAV,所述递送方法包括但不限于脑室内、鞘内、颅内、静脉内、鼻内、眶后或脑池内递送。在其它实施方案中,将编码阻抑物的AAV直接施用于受试者的实质(例如海马和/或内嗅皮质)中。在其它实施方案中,静脉内(IV)施用编码阻抑物的AAV。在本文描述的任何方法中,可以以每次施用相同或不同的剂量进行施用一次(单次施用)或可以进行施用多次(施用之间的任何时间)。当多次施用时,可以使用相同或不同剂量和/或施用模式的递送媒介物(例如,IV和/或ICV施用的不同AAV载体)。方法包括减少肌肉功能丧失、身体协调丧失、肌肉僵硬、肌肉痉挛、言语功能丧失、吞咽困难、认知障碍的方法,减少运动功能丧失的方法和/或减少ALS受试者中一种或多种认知功能丧失的方法,均与不接受该方法的受试者相比,或与接受该方法之前的受试者本身相比。因此,本文所述的方法导致减少罕见病,诸如ALS或FTD的生物标志物和/或症状,包括以下一种或多种:肌肉功能丧失、身体协调丧失、肌肉僵硬、肌肉痉挛、言语功能丧失、吞咽困难、认知障碍、与ALS相关的血液和/或脑脊液化学的变化,包括G-CSF、IL-2、IL-15、IL-17、MCP-1、MIP-1α、TNF-α和VEGF水平(见Chen et al(2018)Front Immunol.9:2122.doi:10.3389/fimmu.2018.02122),中央前和中央后皮质的基于寰椎的背侧和腹侧细分的皮质厚度减少的降低,ALSFRS-R,和用于小指展肌(musculus abductor digiti minimi)的MUNIX(见Wirth et al(2018)Front Neurol.9:614.doi:10.3389/fneur.2018.00614)和/或本领域已知的其它生物标志物。在某些实施方案中,方法可以进一步包括例如在患有FTD的受试者中施用一种或多种tau遗传阻抑物(MAPT)。见例如美国公开文本No.20180153921。
在本文描述的任何方法中,靶定等位基因的阻抑物可以是ZFP-TF,例如包含特异性结合等位基因的ZFP和转录阻抑域(例如KOX,KRAB等)的融合蛋白。在其它实施方案中,靶定等位基因的阻抑物可以是TALE-TF,例如包含特异性结合基因等位基因的TALE多肽和转录阻抑域(例如KOX,KRAB等)的融合蛋白。在一些实施方案中,靶定等位基因阻抑物是CRISPR/Cas-TF,其中Cas蛋白中的核酸酶域已经失活,使得该蛋白质不再切割DNA。将得到的Cas RNA引导的DNA结合域与转录抑制子(例如KOX,KRAB等)融合,以阻抑靶定的等位基因。在一些实施方案中,工程化的转录因子能够阻抑突变的等位基因而非野生型等位基因的表达。在其它实施方案中,DNA结合分子优先识别六聚体GGGGCC扩充。
在一些实施方案中,将编码如本文所述的遗传阻抑物(例如,ZFP-TF、TALE-TF或CRISPR/Cas-TF)的序列插入(整合)到基因组中,而在其它实施方案中,编码阻抑物的序列以附加体维持。在一些情况下,将编码TF融合物的核酸插入(例如,通过核酸酶介导的整合)在包含启动子的安全港位点处,从而内源性启动子驱动表达。在其它实施方案中,将阻抑物(TF)供体序列插入(通过核酸酶介导的整合)到安全港位点中,并且供体序列包含驱动阻抑物表达的启动子。在一些实施方案中,启动子序列被广泛表达,而在其它实施方案中,启动子是组织或细胞/类型特异性的。在优选的实施方案中,启动子序列是神经元细胞特异性的。在其它优选的实施方案中,启动子序列是肌细胞特异性的。在特别优选的实施方案中,选择的启动子的特征在于其具有低表达。优选启动子的非限制性实例包括神经特异性启动子NSE、突触蛋白、CAMKiia和MECP。遍在的启动子的非限制性实例包括CMV、CAG和Ubc。进一步的实施方案包括如美国专利公开文本No.2015/0267205中所述的自调节启动子的使用。进一步的实施方案包括如美国公开文本No.20150267205中所述的自调节启动子的使用。
在本文描述的任何方法中,方法可以在受试者(例如,患有ALS的受试者)的一个或多个神经元中产生约50%或更大、55%或更大、60%或更大、65%或更大、约70%或更大、约75%或更大、约85%或更大、约90%或更大、约92%或更大、或约95%或更大、98%或更大、或99%或更大的靶等位基因(例如,突变体或野生型C9orf72)。在某些实施方案中,野生型等位基因的表达在受试者中被阻抑不超过50%(与未治疗的受试者相比),而突变体等位基因在受试者中被阻抑至少70%(70%或以上的任何值)(与未治疗的受试者相比)。
在另外的实施方案中,阻抑物可以包含核酸酶(例如,ZFN、TALEN和/或CRISPR/Cas系统),该核酸酶通过切割并从而使靶定的等位基因失活来抑制靶定的等位基因。在某些实施方案中,核酸酶在被核酸酶切割后经由非同源末端连接(NHEJ)引入插入和/或缺失(“插入/缺失”)。在其它实施方案中,核酸酶引入供体序列(通过同源或非同源指导的方法),其中供体整合使靶定的等位基因失活。在一些实施方案中,靶定的基因是野生型或突变体C9orf72,Ube32-ATS和/或DUX4基因,其包含与DNA结合域结合的9-20个以上核苷酸的靶位点。
在本文描述的任何方法中,可以作为蛋白质、多核苷酸或蛋白质和多核苷酸的任何组合对受试者(例如,脑或肌肉)递送调控剂(例如核酸酶、阻抑物或激活剂)。在某些实施方案中,使用AAV载体递送阻抑物。在其它实施方案中,调控剂的至少一种组分(例如,CRISPR/Cas系统的sgRNA)以RNA形式递送。在其它实施方案中,使用本文所述的任何表达构建体的组合递送调控剂,例如一种表达构建体(AAV9)上的一种阻抑物(或其部分)和不同表达构建体(AAV或其它病毒或非病毒构建体)上的一种阻抑物(或其部分)。
此外,在本文所述的任何方法中,可以以提供期望效果的任何浓度(剂量)对细胞递送(离体或体内)调控剂(例如阻抑物)。在优选的实施方案中,使用腺伴随病毒(AAV)载体以10,000-500,000个载体基因组/细胞(或其间的任何值)递送调控剂。在某些实施方案中,使用慢病毒载体以在250和1,000之间(或其间的任何值)的MOI递送调控剂。在其它实施方案中,使用质粒载体以0.01-1,000ng/100,000个细胞(或其间的任何值)递送调控剂。在其它实施方案中,以150-1,500ng/100,000个细胞(或其间的任何值)以mRNA递送阻抑物。此外,对于体内使用,在本文所述的任何方法中,可以以在有此需要的受试者中提供期望效果的任何浓度(剂量)递送遗传调控剂(例如阻抑物)。在优选的实施方案中,使用腺伴随病毒(AAV)载体以10,000-500,000个载体基因组/细胞(或其间的任何值)递送阻抑物。在某些实施方案中,使用慢病毒载体以250和1,000之间(或其间的任何值)的MOI递送阻抑物。在其它实施方案中,使用质粒载体以0.01-1,000ng/100,000个细胞(或其间的任何值)递送阻抑物。在其它实施方案中,以mRNA以0.01-3000ng/细胞数(例如50,000-200,000(例如100,000)个细胞(或其间的任何值))递送阻抑物。使用腺伴随病毒(AAV)以1E11-1E14 VG/ml以固定体积1-300ul对脑实质递送阻抑物。在其它实施方案中,以固定体积0.5-10ml以1E11-1E14 VG/ml使用腺伴随病毒(AAV)载体对CSF递送阻抑物。
在本文描述的任何方法中,方法可在受试者的一个或多个细胞中产生约50%或更大、55%或更大、60%或更大、65%或更大、约70%或更大、约75%或更大、约85%或更大、约90%或更大、约92%或更大、或约95%或更大的靶定等位基因的调控(例如,阻抑)。在一些实施方案中,野生型和突变体等位基因被不同地调节,例如,与野生型等位基因相比,突变体等位基因被优先修饰(例如,突变体等位基因被抑制至少70%,而野生型等位基因被抑制不超过50%)。
在其它方面,使用如本文所述的转录因子,例如包含锌指蛋白(ZFP TF)、TALE(TALE-TF)和CRISPR/Cas-TF中的一种或多种,例如ZFP-TF、TALE-TF或CRISPR/Cas-TF的转录因子来阻抑受试者的脑(例如神经元)或肌细胞中突变体和/或野生型等位基因的表达。阻抑可以为与受试者的未处理(野生型)细胞相比受试者的一个或多个细胞中靶定的等位基因的约50%或更大、55%或更大、60%或更大、65%或更大、70%或更大、约75%或更大、约85%或更大、约90%或更大、约92%或更大、或约95%或更高的阻抑。在某些实施方案中,野生型等位基因的阻抑不超过50%(与未处理的细胞或受试者相比),并且突变体(患病或同等型变体)的阻抑为至少70%(与未处理的细胞或受试者相比)。在某些实施方案中,靶向调控转录因子可用于实现本文描述的一种或多种方法。
因此,本文描述了用于调控与本文公开的罕见病相关的基因表达的方法和组合物,包括在表达或不表达外源序列(例如人工TF)的情况下的阻抑。组合物和方法可以在体内使用(例如,用于提供细胞以通过其调控研究靶基因;用于药物发现;和/或用于制备转基因动物和动物模型),体内或离体使用,并且包括施用人工转录因子或核酸酶,其包含靶向到与罕见病相关基因的DNA结合分子,任选地在核酸酶的情况下,包含在核酸酶切割后整合到基因中的供体。在一些实施方案中,供体基因(转基因)在细胞外染色体外维持。在某些实施方案中,细胞在患有疾病的患者中。在其它实施方案中,通过本文所述的任何方法修饰细胞,并将经修饰的细胞施用于由此需要的受试者(例如,患有罕见病的受试者)。还提供了包含经遗传修饰的基因(例如,外源序列)的经遗传修饰的细胞(例如,干细胞、前体细胞、T细胞、肌细胞等),包括通过本文所述的方法制备的细胞。这些细胞可用于对患有罕见病的受试者提供治疗性蛋白质,例如通过将细胞施用于有此需要的受试者,或者备选,通过分离由细胞产生的蛋白质并将蛋白质施用于有此需要的受试者(酶替代疗法)。
还提供了试剂盒,其包含如本文中描述的遗传调控剂(例如,阻抑物)和/或多核苷酸中的一种或多种,所述多核苷酸包含靶调控剂的组分和/或编码靶调控剂(或其组分)。试剂盒可进一步包含细胞(例如神经元或肌肉细胞)、试剂(例如用于例如在CSF中检测和/或定量蛋白质的试剂)和/或使用说明,包括如本文所述的方法。
附图简述
图1A和1B是人染色体15q11-13区域的示意图,并显示了母本(图1B)和父本(图1A)等位基因中的差异。父本表达的基因显示为灰色框,并且母本表达的基因显示为黑色框。双等位基因显示为深灰色框。右箭头指示“+”链上的基因转录,而左箭头指示“-”链上的基因转录。AS-IC(三角形)和PWS-IC(椭圆)为阴影的,取决于区域中组蛋白的修饰。AS-IC在父本染色体上为潜伏的(灰色三角形),而在母本染色体上,其在H3-lys4处被乙酰化和甲基化(三角形),因此具有活性。PWS-IC在父本染色体(上椭圆)上有活性,因为它在H3-lys4处也被乙酰化和甲基化。然而,母本染色体处的PWS-IC在H3-lys9处被甲基化并被阻抑(下椭圆)。不同地,小核核糖核蛋白多肽N(SNRPN)外显子1中的CpG甲基化区域(差异甲基化区域1[DMR1])与PWS-IC部分重叠。注意,母本而非父本染色体上的DMR1被甲基化(黑针)。起源于SNRPN上游的泛素蛋白连接酶E3A反义转录物(UBE3A-ATS)可以与UBE3A转录物形成可降解的复合物或者阻止泛素蛋白连接酶E3A(UBE3A)转录物的延伸(碰撞或上游组蛋白修饰,以“X”表示)。
图2A至2D显示了使用指示的人工转录因子(ZFP-TF)在指示的细胞类型中阻抑C9orf72表达“总C9”。另外,图显示了对包含内含子1A的较长mRNA同等型的表达的阻抑,该内含子1A主要但不是专门由扩充的突变体等位基因产生:“同等型特异性”。图2A描述了用于总C9测定法和同等型特异性测定法的PCR测定法。图的顶部描绘了野生型和扩充等位基因的基因组序列,而图的底部显示了从每个等位基因生成的mRNA产物。mRNA图上的箭头集描绘了总C9测定法和同等型特异性测定法中使用的PCR靶标。图2B至2D在图中显示了不同示例性ZFP-TF的测定法结果,所述图描绘第三轮筛选(“第3轮”)中的野生型细胞系中的总C9orf72表达;左第二幅图显示在第三轮筛选(“第3轮”)中“C9”细胞系中总C9orf72的表达(定义为“5/>145”;指野生型等位基因上G4C2重复的数目,(5)/与扩充等位基因上的G4C2重复相比,>145);右第二幅图显示了在第二轮筛选(“第2轮”)中如上文定义的C9细胞系中的总C9orf72表达;并且最右边的图显示了来自同等型特异性C9orf72测定法的结果(见实施例2)。在第2轮中,在来自ZFP处理后评估同等型(或疾病)特异性C9与总C9水平的患者的C9系中完成筛选。在第3轮中,将患者的C9系中的总C9与来自健康个体的野生型(WT)系进行比较,以评估ZFP对C9 WT等位基因的影响。对于每个ZFP,从左到右显示1、3、10、30、100和300ng mRNA的浓度(关于详情,见实施例2)。图2B显示了包含ZFP的ZFP-TF的结果,所述ZFP在顶图中称为74949、74951、74954、74955和74964,在底图中称为74969、74971、74973、74978和74979。图2C显示了包含ZFP的ZFP-TF的结果,所述ZFP在顶图中称为74983、74984、74986、74987和74988,且在底图中称为74997、74998、75001和75003。图2D显示了包含ZFP的ZFP-TF的结果,所述ZFP在顶图中称为75023、75027、75031、75032、75055和75078,且在底图中称为75090、75105、75109、75114和75115。图底部的序列代表该ZFP的DNA结合基序。每个ZFP将结合三个含有该基序的六核苷酸重复。
图3显示了微阵列分析结果,其显示了指示的阻抑物(75027和75115)对C9orf72基因的特异性。以300ng以mRNA形式对C9021细胞施用阻抑物后24小时进行分析。左图显示了使用ZFP阻抑物75027的结果,并且右图显示了使用ZFP阻抑物75115的结果。也在实施例3中讨论了结果。
发明详述
本文公开了用于预防和/或治疗罕见病安格尔曼综合征、FHMD、ALS和/或SMA的组合物和方法。特别地,本文所述的组合物和方法用于阻抑疾病相关基因的表达以预防或治疗这些疾病。
安格尔曼综合征(AS)是一种具有1/10,000至1/20,000个体之间的患病率的神经发育病症。AS患者的特征在于智力失能、缺乏言语、动作急躁、睡眠障碍和癫痫发作,他们还表现出愉快的举止,经常被水吸引而大笑。这些患者在生命的第一年内明显出现发育迟缓,并且通常在生命的24到30个月之间他们达到发育平台期。另外,在80%的AS患者中,癫痫发作表现出特征性的EEG特征,其可用于确认诊断,其中癫痫发作发生于生命的三年左右,并持续到成年(Clayton-Smith(2003)J Med Genet 40(2):87-95)。尽管溺水在较幼年的患者中以一定频率发生,但AS患者的预期寿命几乎是正常的(见Bird(2014)Appl Clin Gene(7):93-104)。
AS与编码E6相关蛋白(E3泛素连接酶)的UBE3A基因表达缺乏有关。E6相关蛋白参与结合的蛋白质的泛素化以进行破坏,因此该疾病的表型特征可涉及这些底物的积累。UBE3A基因位于15号染色体上的15q11-13区间(见图1,改编自Bird,同上)。此基因座受到遗传印记的影响,所述遗传印记是一种表观遗传调控类型,导致优先表达来自父本或母本等位基因的基因。印记发生在配子发生中,其中根据配子为男性还是女性,DNA的某些区域被差异甲基化。在卵母细胞中,超甲基化的CpG岛与活性的转录区域相关,而在男性种系中,甲基化不那么集中在印迹基因中,并且与父本印迹的基因相比,这些会携带父本印记的基因的启动子较少富含CpG(Stewart et al(2016)Epigenomics 8(10):1399-1413)。UBE3A是一种除脑的某些特定细胞外在整个身体中双等位表达的基因。在发育中和成年脑两者中的神经元中,UBE3A仅在母本等位基因上的启动子被高度甲基化的情况下才从母本等位基因表达。因此,若在母本等位基因的该区域中存在突变,则父本等位基因无法补偿。在具有分子诊断的AS患者中,约78.2%的患者具有某种形式的缺失,涵盖母本UBE3A基因,11.2%具有UBE3A基因自身内的特定突变,并且7.7%具有与错误的基因印记相关的突变(Bird,同上)。
为了确保神经元中父本UBE3A等位基因的沉默,在称为Ube3a-ATS的父本等位基因上产生了长的反义RNA(见图1)。该反义RNA是来自父本印迹基因座的非典型RNA聚合酶II转录物,其似乎顺式阻抑父本UBE3A的表达。Ube3a-ATS的启动子似乎位于称为Prader-Willi综合征(PWS)/安格尔曼综合征(AS)区域印记中心(也称为PWS IC)的DNA甲基化中心处以及其上游,并且显示了小鼠中PWS IC的缺失阻抑Ube3a-ATS的表达,并减轻父本UBE3A等位基因的阻抑(Meng et al(2012)Hum Mol Genet 21(13):3001-3012)。另外,Bailus等人(2016,Mol Ther 24(3):548-55)显示了使用针对父本UBE34启动子的人工锌指转录因子在AS小鼠模型中引起脑中UBE3A的广泛表达。
目前尚无AS的治愈,并且这些患者的治疗聚焦于减轻疾病症状的支持疗法和方法。因此,本文描述了用于上调父本UBE3A表达的组合物和方法(例如,使用与靶等位基因中至少9-20个核苷酸的靶位点结合的如本文所述的人工转录因子)和/或通过将供体插入受试者的细胞中,所述供体编码野生型(功能性)UBE3A。因此,激活父本UBE3A可用于治疗和/或预防AS。
或者,或在激活父本UBE3A表达外,本文所述的组合物和方法也可用于抑制Ube3a-ATS RNA的表达以提供对该疾病的治疗。类似地,可以使用一种或多种工程化核酸酶的使用来敲除Ube3a-ATS编码序列和/或启动子,从而治疗和/或预防AS及其症状。
与大多数肌营养不良一样,面肩肱型肌肉营养不良(FSHD)是一种神经肌肉疾病,以受累最严重的身体区域,面部(面)、肩胛骨(肩胛骨)和上臂(肱骨)命名。这是杜兴氏(Duchenne’s)和贝克(Becker)肌营养不良后的第三常见肌病。涉及面部肌肉或肩的虚弱通常是该疾病的第一症状。面部肌无力常常使得难以用吸管饮食、吹口哨或微笑时嘴角上翻。睛周围肌肉的无力会阻止人在睡眠中完全闭眼,从而导致干眼和其它眼问题。FSHD的体征和症状通常在青春期出现。然而,病况的发作和严重程度广泛变化,并且也可以不对称地表现(Bao et al(2016)Intractable Rare Dis Res 5(3):168-176)。较轻的病例直到晚年才可以变得明显,而罕见的严重病例在婴儿期或儿童早期就变得明显。该疾病是常染色体显性疾病,发病率范围为1/8300至1/20,000(Ansseau et al(2017)Genes 8(3):p.93)。
最近的研究已经主要将FSHD的发病机理归因于正常休眠基因DUX4的异常表达。DUX4是在D4Z4串联重复序列内编码的双重同源域转录因子(双重同源盒蛋白,4)。在一个健康的个体中,染色体4q的亚端粒区域含有11-100个3.3kb D4Z4大卫星重复序列的拷贝,每个有一个DUX4拷贝。然而,DUX4在正常发挥功能的体细胞组织(例如分化良好的肌肉纤维)中不表达。虽然DUX4在早期发育中表达,但是在体细胞组织的细胞分化过程中,其被D4Z4重复序列的CpG甲基化转录沉默。该基因编码可参与干细胞中转录途径激活的转录因子。
D4Z4阵列是染色体4上重复串联的3.3-kb重复单元的区域。这些阵列在4q和10q的亚端粒区域中并且具有1-100个重复单元。FSHD与4q35处的1-10个单位的阵列相关。大多数在D4Z4阵列中具有<11个重复单元的FSHD患者到20岁龄时会以约95%的外显率经历症状的发作。尽管有可以缓解症状的药物(例如NSAID)和程序(例如,通过肩部手术来稳定肩胛骨),但尚无能停止或逆转FSHD效应的治疗。
存在有两种类型的FSHD:FSHD 1型(FSDH1)和FSHD 2型(FSHD2),其中95%的情况是FSHD1。FSHD1是由4号染色体上的多态性D4Z4大卫星重复序列阵列的收缩引起的。D4Z4大卫星重复序列由重复1-100次的3.3kb D4Z4DNA单元组成,其中重复序列还含有通常在睾丸中表达但在体细胞中被表观遗传阻抑的DUX4可读框。在大于10个重复序列的大小处,该阵列采用与高水平的CpG甲基化和组蛋白修饰有关的体细胞中的受抑制的染色质结构。在FSHD1患者中,D4Z4阵列缩短或收缩至1-10个拷贝,此时该区域呈现部分松弛的结构,并且DUX4在转录上脱阻抑。DUX4基因缺少polyA信号,但是在脱阻抑后,由于表达的RNA可被剪接到附近pLAM基因座的polyA尾部,因此稳定表达末端DUX4基因。DUX4基因编码一种转录因子,该转录因子通常与同源盒基序结合,并调节与干细胞和种系发育相关的基因的表达。DUX4在骨骼肌中的错误表达导致细胞凋亡和萎缩肌管形成,并可导致种系特异性基因的上调。另外,DUX4表达导致对无义介导的RNA衰变的抑制,这意味着细胞积聚通常会降解的大量RNA转录物(Daxinger et al(2015)Curr Opin Genet Dev 33:56-61)。因此,本文所述的组合物和方法可用于阻抑(包括失活)DUX4表达以治疗和/或预防FSHD和/或其某些或全部症状。
在FSHD2患者中,临床特征与FSHD1患者相同,但是患者具有更正常大小的D4Z4阵列。然而,D4Z4阵列在FSHD2患者中甲基化不足,提示表观遗传调节的损害。实际上,已证明在85%的FSHD2患者中,该疾病与含有染色体结构维持铰链域1(Structural Maintenanceof Chromosomes Hinge Domain Containing 1,SMCHD1)基因有关。似乎SMCHD1蛋白与端粒结合,并且实际上可能与D4Z4阵列结合。因此,突变可以阻止或放松蛋白质与阵列的结合,并允许DUX4的错误表达(Daxinger,同上)。因此,靶向到SMCHD1的人工转录因子和/或核酸酶可用于治疗和/或预防FSHD2和/或其症状。在一些实施方案中,方法和组合物还包括引入野生型SMCHD1基因,其中使用核酸酶依赖性靶向整合将野生型SMCHD1整合到基因组中,或者将该基因在染色体外维持。
肌萎缩侧索硬化(ALS)是最常见的成年发作的运动神经元病症,并且对于从出现首次症状时起的小于三年的大多数患者是致命的。通常,似乎在约90-95%的患者中ALS(散发性ALS,sALS)的发展是完全随机的,仅5-10%的患者表现出任何种类的鉴定的遗传风险(家族性ALS,fALS)。ALS具有每100,000人1-3例的年发病率。几个基因(包括C9orf72(患者的30-40%)、SOD1(20-25%)、TDP43/TARDBP、FUS1、(TDP43/TARDBP和Fus1一起占5%)、ANG、ALS2、SETX和VAPB基因)中的突变导致家族性ALS,并有助于散发性ALS的形成。在美国和欧洲,C9orf72基因中的突变占家族性ALS的30%至40%,并且占散发性ALS的5-10%。C9orf72突变通常是C9orf72基因的第一个内含子中GGGGCC的六核苷酸扩充,并且患者通常是杂合的,因为此种扩充导致常染色体显性表型。与此种扩充相关的病理学(从野生型人基因组中的约30个拷贝到fALS患者中的数百个或甚至数千个)似乎与有义和反义转录物两者的表达以及DNA中不常见的结构的形成以及某些类型的RNA介导的毒性相关(Taylor(2014)Nature507:175)。扩充的GGGGCC的不完整RNA转录物在fALS患者细胞中形成核焦点,并且RNA也可以进行重复相关的非ATP依赖性翻译,从而导致产生三种易于聚集的蛋白质(Gendron etal(2013)Acta Neuropathol 126:829)。ALS没有种族或人种倾向,并且在70至80岁龄之间的群体中发病率最高,并且与其它神经变性性病症相比,该疾病进展迅速(3-5年)。因此,如本文所述的C9orf72的遗传调控剂可用于治疗和/或预防有此需要的受试者的ALS。
额颞痴呆(FTD)是一种可影响行为、语言和运动的进行性脑病症。见例如Benussiet al.(2015)Front Ag Neuro 7,art.171。C9orf72中的突变已经与FTD有关。因此,本文所述的调节C9orf72的组合物和方法可用于治疗和/或预防FTD。另外,FTD也鉴定为tau病变,本文所述的方法和组合物可进一步包括对FTD受试者施用一种或多种tau调控剂(阻抑物)。关于示例性tau阻抑物,见例如美国专利公开文本No.20180153921。与阻抑域连接的锌指蛋白已成功用于通过与CAG的扩充束结合来优先阻抑源自亨廷顿患者的细胞中扩充的Htt等位基因的表达以治疗HD。还见美国专利No.9,234,016和8,841,260。类似地,本发明的方法和组合物(靶向ALS相关基因诸如C9orf72,SOD1,TDP43/TARDBP,FUS1的TF和/或核酸酶)可用于治疗、延缓或预防ALS。例如,可以构建工程化的DNA结合分子(例如ZFP、TALE、引导RNA)以结合C9orf72疾病相关等位基因的扩充束,并阻抑有义和反义表达两者。或者/另外,可以将缺乏异常扩充的GGGGCC束的C9orf72的野生型形式插入基因组中,以允许基因产物的正常表达。这些人工转录因子、核酸酶、编码这些分子的多核苷酸以及包含这些分子或被这些分子修饰的细胞可以用于治疗和/或预防ALS。
神经系统的另一种遗传疾病是脊髓性肌萎缩(SMA)。SMA是婴儿和幼儿中最常见的遗传死亡因素(6-10,000例出生中约1例),并且涉及进行性和对称性肌无力,包括上臂和腿肌肉以及头和躯干肌肉和肋间肌肉。另外,脊髓中存在运动神经元的变性。SMA的发作分为以下三类:I型,最常见,约占SMA患者的60%,在约6个月龄时发作并且导致到约2岁的死亡;II型具有6和18个月之间的发作,其中患者可以具有坐立但不能走路的能力;III类是在18个月后发作,其中患者具有一定的行走能力,持续一定时间量。所有类型的SMA的95%与存活运动神经元1(SMN1)蛋白的纯合丧失有关。SMN1蛋白经由其在剪接体复合体装配以实现RNA成熟中作为辅因子的功能是所有真核细胞存活力所需要的(Talbot and Tizzano(2017)Gene Ther 24(9):529-533)。SMA的严重程度可以通过SMN2蛋白的表达来抵消,所述SMN2蛋白除在RNA信息的剪接中起作用的单突变外与SMN1几乎相同。然而,SMN2是截短的并迅速降解,因此尽管SMN2的高表达可以部分缓解SMN1的丧失,但它不能完全补偿(见Iascone et al(2015)F1000 Pri Rep 7:04)。实际上,似乎与SMN2mRNA的量和SMA疾病的严重程度成反比。由于SMA与SMN1基因的纯合丧失相关,因此一些研究人员尝试通过AAV9病毒载体在SMA动物模型中引入SMN1基因(见Bevanet al(2011)Mol Ther 19(11):1971-1980)。这项早期工作显示了基因可以通过IV施用或通过直接注射入脑脊液中来递送。然而,病毒的渗透和与穿越血脑屏障有关的并发症仍然存在。
因此,本发明的方法和组合物可用于预防或治疗SMA。可以设计对SNM2特异性的工程化转录因子以增加此基因的表达。工程化的核酸酶还可用于切割和纠正SMN2突变,并通过将其基本上转变为SMN1基因来引起稳定表达。此外,可以通过使用工程化核酸酶进行靶向插入将野生型SMN1cDNA插入基因组。可以将野生型SMN1基因插入内源SMN1基因中,因此在SMN1启动子的调节下表达,或者可以将其插入安全港基因(例如,AAVS1)中。也可以通过核酸酶定向靶向整合将基因插入神经元干细胞中,在那里然后将工程化干细胞再引入患者中,以使源自这些干细胞的神经元正常发挥功能。最后,野生型SMN1基因可以通过AAV输送作为设计用于附加体维持而非整合到基因组中的cDNA载体引入脑中。在此种治疗方式中,cDNA载体将包含用于神经特异性表达的启动子,例如SYN1或SMN1。
通用
除非另有说明,否则本文中公开的方法的实践以及组合物的制备和使用采用分子生物学、生物化学、染色质结构和分析、计算化学、细胞培养、重组DNA和相关领域中的常规技术,它们在本领域技术范围内。这些技术在文献中已得到充分解释。见例如Sambrook etal.MOLECULAR CLONING:A LABORATORY MANUAL,第二版,Cold Spring Harbor LaboratoryPress,1989和第三版,2001;Ausubel et al.,CURRENT PROTOCOLS IN MOLECULARBIOLOGY,John Wiley&Sons,New York,1987及定期更新;METHODS IN ENZYMOLOGY丛书,Academic Press,San Diego;Wolffe,CHROMATIN STRUCTURE AND FUNCTION,第三版,Academic Press,San Diego,1998;METHODS IN ENZYMOLOGY,第304卷,“Chromatin”(P.M.Wassarman和A.P.Wolffe编),Academic Press,San Diego,1999;和METHODS INMOLECULAR BIOLOGY,第119卷,“Chromatin Protocols”(P.B.Becker编)Humana Press,Totowa,1999。
定义
术语“核酸”、“多核苷酸”和“寡核苷酸”可互换使用,并且是指线性或环状构造以及单链或双链形式的脱氧核糖核苷酸或核糖核苷酸聚合物。为了本公开内容的目的,这些术语不应解释为对聚合物长度的限制。该术语可涵盖天然核苷酸的已知类似物,以及在碱基、糖和/或磷酸部分(例如硫代磷酸酯主链)中修饰的核苷酸。通常,特定核苷酸的类似物具有相同的碱基配对特异性。即A的类似物将与T碱基配对。
术语“多肽”、“肽”和“蛋白质”可互换使用,是指氨基酸残基的聚合物。术语还适用于氨基酸聚合物,其中一个或多个氨基酸是相应的天然存在的氨基酸的化学类似物或修饰的衍生物。
“结合”是指大分子之间(例如,蛋白质与核酸之间)的序列特异性、非共价相互作用。只要相互作用整体上是序列特异性的,并不是结合相互作用的所有组分都需要序列特异性的(例如,与DNA主链中的磷酸酯残基接触)。此种相互作用通常以10-6M-1或更低的解离常数(Kd)为特征。“亲和力”是指结合强度:增加的结合亲和力与较低的Kd相关。“非特异性结合”是指在不依赖靶序列的任何目的分子(例如,工程化核酸酶)和大分子(例如,DNA)之间发生的非共价相互作用。
“DNA结合分子”是可以结合DNA的分子。此类DNA结合分子可以是多肽、蛋白质的域、较大蛋白质内的域或多核苷酸。在一些实施方案中,多核苷酸是DNA,而在其它实施方案中,多核苷酸是RNA。在一些实施方案中,DNA结合分子是核酸酶的蛋白质域(例如FokI域),而在其它实施方案中,DNA结合分子是RNA引导的核酸酶(例如Cas9或Cfp1)的指导RNA组分。
“结合蛋白”是能够非共价结合另一分子的蛋白质。结合蛋白可以结合例如DNA分子(DNA结合蛋白)、RNA分子(RNA结合蛋白)和/或蛋白质分子(蛋白质结合蛋白)。在蛋白质结合蛋白的情况下,它可以结合自身(以形成同二聚体,同三聚体等)和/或它可以结合不同蛋白质的一个或多个分子。结合蛋白可以具有超过一种类型的结合活性。例如,锌指蛋白具有DNA结合、RNA结合和蛋白质结合活性。
“锌指DNA结合蛋白”(或结合域)是通过一个或多个锌指以序列特异性方式结合DNA的蛋白质或较大蛋白质内的域,所述锌指是结合域内氨基酸序列的区域,其结构通过锌离子的配位得以稳定。术语锌指DNA结合蛋白通常缩写为锌指蛋白或ZFP。术语“锌指核酸酶”包括一个ZFN以及一对二聚体以切割靶基因的ZFN。
“TALE DNA结合域”或“TALE”是包含一个或多个TALE重复域/单元的多肽。重复域参与TALE与其关联靶DNA序列的结合。单个“重复单元”(也称为“重复序列”)的长度通常为33-35个氨基酸,并且与天然存在的TALE蛋白内的其它TALE重复序列表现出至少一些序列同源性。见例如美国专利No.8,586,526。锌指和TALE DNA结合域可以被“工程化改造”以结合到预定的核苷酸序列,例如通过工程化改造天然存在的锌指蛋白的识别螺旋区(改变一个或多个氨基酸)或通过工程化改造参与DNA结合的氨基酸(重复可变双残基或RVD区)。因此,工程化锌指蛋白或TALE蛋白是非天然存在的蛋白。用于工程化改造锌指蛋白和TALE的方法的非限制性实例是设计和选择。设计的蛋白质是自然界中不存在的蛋白质,其设计/组成主要源自合理的标准。合理的设计标准包括应用取代规则和用于处理数据库中的信息的计算机算法,所述数据库存储现有ZFP或TALE设计(规范和非规范RVD)信息和结合数据。见例如美国专利No.9,458,205;8,586,526;6,140,081;6,453,242;和6,534,261;还见WO 98/53058;WO 98/53059;WO 98/53060;WO 02/016536和WO 03/016496。术语“TALEN”包括一个TALEN和二聚化以切割靶基因的一对TALEN。
在自然界中未找到“选定的”锌指蛋白、TALE蛋白或CRISPR/Cas系统,并且其产生主要源自经验过程,例如噬菌体展示、相互作用陷阱或杂交选择。见例如U.S.5,789,538;U.S.5,925,523;U.S.6,007,988;U.S.6,013,453;U.S.6,200,759;WO 95/19431;WO 96/06166;WO 98/53057;WO 98/54311;WO 00/27878;WO 01/60970;WO 01/88197和WO 02/099084。
“TtAgo”是认为参与基因沉默的原核Argonaute蛋白。TtAgo源自细菌嗜热栖热菌(Thermus thermophilus)。见例如Swarts et al(2014)Nature 507(7491):258-261,G.Sheng et al.,(2013)Proc.Natl.Acad.Sci.U.S.A.111,652)。“TtAgo系统”是所需要的所有组分,包括例如用于由TtAgo酶切割的引导DNA。“重组”是指两个多核苷酸之间交换遗传信息的过程,包括但不限于通过非同源末端连接(NHEJ)和同源重组捕获供体。为了本公开内容的目的,“同源重组(HR)”是指此类交换的特殊形式,其例如在通过同源性指导的修复机制修复细胞中的双链断裂期间发生。此过程需要核苷酸序列同源性,使用“供体”分子对“靶”分子(即经历双链断裂的分子)进行模板修复,因此被广泛称为“非交叉基因转化”或“短道基因转换”,因为它导致遗传信息从供体到靶标的转移。不希望受到任何特定理论的束缚,此类转移可以涉及在断裂的靶标与供体之间形成的异双链体DNA的错配校正,和/或“合成依赖性链退火”,其中供体用于重新合成遗传信息,其将成为靶标和/或相关过程的一部分。此类专门的HR通常导致靶分子序列的改变,使得供体多核苷酸的部分或全部序列掺入到靶多核苷酸中。
锌指结合域或TALE DNA结合域可以被“工程化改造”以结合至预定的核苷酸序列,例如通过工程化改造天然存在的锌指蛋白的识别螺旋区(改变一个或多个氨基酸)或通过工程化改造TALE蛋白的RVD。因此,工程化锌指蛋白或TALE是非天然存在的蛋白质。用于工程化改造锌指蛋白或TALE的方法的非限制性实例是设计和选择。“设计的”锌指蛋白或TALE是自然界中不存在的蛋白,其设计/组成源自合理的标准。合理的设计标准包括应用取代规则和用于处理数据库中的信息的计算机算法,所述数据库存储现有ZFP设计信息和结合数据。“选择的”锌指蛋白或TALE是自然界中不存在的蛋白,其产生主要源自经验过程,例如噬菌体展示、相互作用陷阱或杂交选择。见例如美国专利8,586,526;6,140,081;6,453,242;6,746,838;7,241,573;6,866,997;7,241,574和6,534,261;也见WO 03/016496。
术语“序列”是指任何长度的核苷酸序列,其可以是DNA或RNA;可以是线性、环状或分支的,并且可以是单链或双链的。术语“供体序列”是指插入基因组中的核苷酸序列。供体序列可以具有任何长度,例如长度在2至10,000个核苷酸之间(或其间或其上的任何整数值),优选长度在约100至1,000个核苷酸之间(或其间的任何整数),更优选地长度在约200至500个核苷酸之间。在本文描述的任何方法中,第一核苷酸序列(“供体序列”)可包含与目标区域中的基因组序列同源但不相同的序列,从而刺激同源重组以在目标区域中插入不同序列的序列。因此,在某些实施方案中,与目标区域中的序列同源的供体序列的部分与替换的基因组序列表现出约80至99%(或其间的任何整数)的序列同一性。在其它实施方案中,供体和基因组序列之间的同源性高于99%,例如,若超过100个连续碱基对的供体和基因组序列之间仅1个核苷酸不同。在某些情况下,供体序列的非同源部分可以含有目标区域中不存在的序列,从而将新的序列引入目标区域中。在这些情况下,非同源序列通常侧翼为与目标区域中的序列同源或相同的50-1,000个碱基对(或其间的任何整数值)或大于1,000的任意数量的碱基对的序列。在其它实施方案中,供体序列与第一序列是非同源的,并且通过非同源重组机制插入到基因组中。
本文所述的任何方法可用于通过靶向整合破坏目标基因表达的供体序列而使细胞中的一个或多个靶序列部分或完全失活。还提供了具有部分或完全失活的基因的细胞系。
此外,如本文所述的靶向整合的方法也可用于整合一个或多个外源序列。外源核酸序列可包含例如一个或多个基因或cDNA分子,或任何类型的编码或非编码序列,以及一个或多个控制元件(例如启动子)。另外,外源核酸序列可以产生一个或多个RNA分子(例如小发夹RNA(shRNA)、抑制性RNA(RNAi)、微小RNA(miRNA)等)。
“染色质”是包含细胞基因组的核蛋白结构。细胞染色质包含核酸(主要是DNA)和蛋白质,包括组蛋白和非组蛋白染色体蛋白质。大多数真核细胞染色质以核小体的形式存在,其中核小体核心包含与八聚体缔合的约150个碱基对的DNA,所述八聚体包含组蛋白H2A、H2B、H3和H4各2个;并且接头DNA(随生物体而具有可变长度)在核小体核心之间延伸。组蛋白H1分子通常与接头DNA缔合。为了本公开内容的目的,术语“染色质”是指涵盖原核和真核的所有类型的细胞核蛋白。细胞染色质包括染色体和附加体染色质两者。
“染色体”是包含细胞基因组的全部或部分的染色质复合物。细胞的基因组通常以其核型表征,所述核型是构成细胞基因组的所有染色体的集合。细胞的基因组可以包含一个或多个染色体。
“附加体”是包含不作为细胞染色体核型的部分的核酸的复制核酸、核蛋白复合物或其它结构。附加体的例子包括质粒和某些病毒基因组。
“靶位点”或“靶序列”是限定与结合分子结合的核酸的一部分的核酸序列,条件是存在足够的结合条件。例如,序列5’GAATTC 3’是Eco RI限制性内切核酸酶的靶位点。
“外源”分子是通常不存在于细胞中但可以通过一种或多种遗传、生化或其它方法引入细胞中的分子。关于细胞的特定发育阶段和环境条件确定“细胞中的正常存在”。因此,例如,仅在肌肉的胚胎发育期间存在的分子是相对于成年肌肉细胞的外源分子。类似地,相对于非热激细胞,由热激诱导的分子是外源分子。外源分子可包括例如功能失常的内源性分子的功能形式或功能正常的内源性分子的功能失调形式。
外源分子特别可以是小分子,例如通过组合化学过程产生的小分子,或者大分子,例如蛋白质、核酸、碳水化合物、脂质、糖蛋白、脂蛋白、多糖、上述分子的任何修饰衍生物,或包含一种或多种上述分子的任何复合物。核酸包括DNA和RNA,可以是单链或双链;可以是线性、分支或环状;并且可以是任何长度的。核酸包括能够形成双链体的核酸以及形成三链体的核酸。见例如美国专利No.5,176,996和5,422,251。蛋白质包括但不限于DNA结合蛋白、转录因子、染色质重塑因子、甲基化DNA结合蛋白、聚合酶、甲基化酶、脱甲基酶、乙酰化酶、脱乙酰基酶、激酶、磷酸酶、整合酶、重组酶、连接酶、拓扑异构酶、促旋酶和解旋酶。
外源分子可以是与内源分子相同类型的分子,例如外源蛋白质或核酸。例如,外源核酸可以包含感染性病毒基因组、引入细胞中的质粒或附加体或细胞中通常不存在的染色体。将外源分子引入细胞的方法是本领域技术人员已知的,并且包括但不限于脂质介导的转移(即脂质体,包括中性和阳离子脂质)、电穿孔、直接注射、细胞融合、颗粒轰击、磷酸钙共沉淀、DEAE-葡聚糖介导的转移和病毒载体介导的转移。外源分子也可以是与内源分子相同类型的分子,但源自不同于细胞来源的物种。例如,可以将人核酸序列引入最初源自小鼠或仓鼠的细胞系。
相反,“内源”分子是通常在特定环境条件下在特定发育阶段存在于特定细胞中的分子。例如,内源性核酸可包含染色体,线粒体,叶绿体或其它细胞器的基因组,或天然存在的附加体核酸。另外的内源性分子可以包括蛋白质,例如转录因子和酶。
“融合”分子是其中两个或更多个亚基分子连接(优选共价连接)的分子。亚基分子可以是相同化学类型的分子,或者可以是不同化学类型的分子。第一类融合分子的实例包括但不限于融合蛋白(例如,ZFP或TALE DNA结合域和一个或多个激活域之间的融合)和融合核酸(例如,编码上述融合蛋白的核酸)。第二类融合分子的实例包括但不限于形成三链体的核酸与多肽之间的融合和小沟结合剂和核酸之间的融合。该术语还包括其中多核苷酸组分与多肽组分缔合以形成功能分子的系统(例如,其中单一引导RNA与功能域缔合以调控基因表达的CRISPR/Cas系统)。
细胞中的融合蛋白表达可以源自融合蛋白对细胞的递送或编码融合蛋白的多核苷酸对细胞的递送,其中转录多核苷酸,并且翻译转录物以产生融合蛋白。反式剪接、多肽切割和多肽连接也可以参与蛋白质在细胞中的表达。用于多核苷酸和多肽递送至细胞的方法在本公开内容的其它地方提出。
“多聚化域”(也称为“二聚化域”或“蛋白质相互作用域”)是ZFP TF或TALE TF的氨基、羧基或氨基和羧基末端区域处掺入的域。这些域允许多个ZFP TF或TALE TF单元的多聚化,从而三核苷酸重复域的较大束相对于具有野生型长度数目的较短束优先被多聚化ZFPTF或TALE TF结合。多聚化域的实例包括亮氨酸拉链。多聚化域也可以由小分子调节,其中多聚化域呈现适当的构象,以仅在存在小分子或外部配体的情况下才允许与另一个多聚化域相互作用。如此,外源性配体可用于调节这些域的活性。
为了本公开内容的目的,“基因”包括编码基因产物的DNA区域(见下文),以及调节基因产物的产生的所有DNA区域,无论此类调节序列是否与编码和/或转录序列相邻。因此,基因包括但不必限于启动子序列、终止子、翻译调节序列如核糖体结合位点和内部核糖体进入位点、增强子、沉默子、绝缘子、边界元件、复制起点、基质附着位点和基因座控制区。
“基因表达”是指将基因中包含的信息转换成基因产物。基因产物可以是基因的直接转录产物(例如,mRNA、tRNA、rRNA、反义RNA、核酶、结构RNA或任何其它类型的RNA)或通过mRNA翻译产生的蛋白质。基因产物还包括通过诸如加帽、聚腺苷酸化、甲基化和编辑等过程修饰的RNA,以及通过例如甲基化、乙酰化、磷酸化、泛素化、ADP-核糖基化、肉豆蔻化和糖基化修饰的蛋白质。
基因表达的“调控”是指基因活性的变化。表达的调控可包括但不限于基因激活和基因阻抑。基因组编辑(例如切割、改变、失活、随机突变)可用于调控表达。基因失活是指与不包含如本文所述的ZFP或TALE蛋白的细胞相比,基因表达的任何降低。因此,基因失活可以是部分或完全的。
“目标区域”是细胞染色质的任何区域,诸如例如基因或在基因内或附近的非编码序列,其中期望结合外源分子。结合可以出于靶向DNA切割和/或靶向重组的目的。例如,目标区域可以存在于染色体、附加体、细胞器基因组(例如线粒体,叶绿体)或感染性病毒基因组中。目标区域可以在基因的编码区域内,在转录的非编码区域内,诸如例如前导序列、尾随(trailer)序列或内含子,或在非转录区域内,在编码区域的上游或下游。目标区域可以小到单核苷酸对或最多2,000个核苷酸对的长度,或者任何整数值的核苷酸对。
“真核”细胞包括但不限于真菌细胞(例如酵母)、植物细胞、动物细胞、哺乳动物细胞和人细胞(例如T细胞)。
术语“可操作连接”和“可操作连接的”(或“可操作连接”)就两个或更多个组分(例如序列元件)的并置而言可互换使用,其中组分被排列成使得这两个组分正常发挥功能,并允许如下的可能性,即至少一个组分可以介导对至少一个其它组分施加的功能。举例来说,若转录调节序列响应一种或多种转录调节因子的存在或不存在来控制编码序列的转录水平,则将转录调节序列如启动子可操作地连接至编码序列。转录调节序列通常与编码序列顺式可操作地连接,但是不必直接与其相邻。例如,增强子是与编码序列可操作连接的转录调节序列,即使它们不是连续的。
就融合分子而言,术语“可操作连接”可以指如下的事实,即每种组分在与其它组分的连接中实施与其不如此连接时的情况相同的功能。例如,就ZFP或TALE DNA结合域与激活域融合的融合多肽而言,若在融合多肽中,ZFP或TALE DNA结合域部分能够结合其靶位点和/或其结合位点,而激活域能够上调基因表达,则ZFP或TALE DNA结合域和激活域是可操作连接的。与能够调节基因表达的域融合的ZFP统称为“ZFP-TF”或“锌指转录因子”,而与能够调节基因表达的域融合的TALE统称为“TALE-TF”或“TALE转录因子。”当ZFP DNA结合域与切割域(“ZFN”或“锌指核酸酶”)融合的融合多肽时,若在融合多肽中,ZFP DNA结合域部分能够结合其靶位点和/或其结合位点,而切割域能够在靶位点附近切割DNA,则ZFP DNA结合域和切割域是可操作连接的。当TALE DNA结合域与切割域(“TALEN”或“TALE核酸酶”)融合的融合多肽时,若在融合多肽中,TALE DNA结合域部分能够结合其靶位点和/或其结合位点,而切割域能够切割靶位点附近的DNA,则TALE DNA结合域和切割域是可操作连接的。就Cas DNA结合域与激活域融合的融合多肽而言,若在融合多肽中,Cas DNA结合域部分能够结合其靶位点和/或其结合位点,而激活域能够上调基因表达,Cas DNA结合域和激活域是可操作连接的。当Cas DNA结合域与切割域融合的融合多肽时,若在融合多肽中,Cas DNA结合域部分能够结合其靶位点和/或其结合位点,而切割域能够在靶位点附近切割DNA,CasDNA结合域和切割域是可操作连接的。
蛋白质、多肽或核酸的“功能性片段”是如下的蛋白质、多肽或核酸,其序列与全长蛋白质、多肽或核酸不同,但仍保留与全长蛋白质、多肽或核酸相同的功能。功能性片段可拥有与相应的天然分子相比更多、更少或相同数目的残基,和/或可包含一个或多个氨基酸或核苷酸取代。测定核酸功能(例如,编码功能,与另一种核酸杂交的能力)的方法是本领域公知的。类似地,测定蛋白质功能的方法是公知的。例如,可以通过例如滤器结合、电泳迁移率改变或免疫沉淀测定法测定多肽的DNA结合功能。DNA切割可以通过凝胶电泳来测定。见上文的Ausubel等。一种蛋白质与另一种蛋白质相互作用的能力可以例如通过共免疫沉淀、双杂交测定法或互补(遗传和生物化学两者)来测定。见例如Fields et al.(1989)Nature340:245-246;美国专利No.5,585,245和PCT WO 98/44350。
“载体”能够将基因序列转移至靶细胞。通常,“载体构建体”、“表达载体”和“基因转移载体”是指能够指导目的基因表达并且可以将基因序列转移至靶细胞的任何核酸构建体。因此,术语包括克隆和表达载体,以及整合载体。
“报告基因”或“报告物”是指产生容易测量(优选但不必在常规测定法中)的蛋白质产物的任何序列。合适的报告基因包括但不限于编码介导抗生素抗性(例如氨苄青霉素抗性、新霉素抗性、G418抗性、嘌呤霉素抗性)的蛋白质的序列、编码有色或荧光或发光蛋白(例如绿色荧光蛋白、增强型绿色荧光蛋白、红色荧光蛋白,萤光素酶)的序列和介导增强的细胞生长和/或基因扩增的蛋白质(例如,二氢叶酸还原酶)。表位标签包括例如FLAG、His、myc、Tap、HA或任何可检测的氨基酸序列的一个或多个拷贝。“表达标签”包括编码可与期望的基因序列可操作连接以监测目的基因的表达的报告物的序列。
术语“受试者”和“患者”可互换使用,并且是指哺乳动物,例如人患者和非人灵长类,以及实验动物,例如兔、狗、猫、大鼠、小鼠和其它动物。因此,如本文所用的术语“受试者”或“患者”是指可以可以施用本发明的表达盒的任何哺乳动物患者或受试者。本发明的受试者包括患有病症或有形成病症的风险的那些受试者。
如本文所用,术语“治疗”和“处理”是指症状的严重性和/或频率的降低、症状和/或根本原因的消除、症状和/或其根本原因的发生的预防和损害的改善或补救。癌症和移植物抗宿主病是可以使用本文所述的组合物和方法治疗的病况的非限制性实例。因此,“治疗”和“处理”包括:
(i)预防疾病或病况在哺乳动物中发生,特别是当此类哺乳动物易患该病况但尚未被诊断为患有它时;
(ii)抑制疾病或病况,即阻止其发展;
(iii)减轻疾病或病况,即导致疾病或病况的消退;和/或
(iv)缓解或消除由疾病或病况引起的症状,即在解决或不解决根本的疾病或病况的情况下缓解疼痛。
如本文所用,术语“疾病”和“病况”可以互换使用或不同之处可以在于特定的疾病或病况可以没有已知的病原体(因此病因学尚未得到解决)和因此,它尚未被识别为疾病,而仅被识别为不期望的病况或综合症,其中临床医生已鉴定出或多或少的特定症状组。
“药物组合物”是指本发明的化合物和本领域公认的用于将生物活性化合物递送至哺乳动物(例如人)的介质的制剂。此类介质包括所有药学上可接受的载体、稀释剂或赋形剂。
“有效量”或“治疗有效量”是指本发明化合物当施用于哺乳动物,优选人时,足以在哺乳动物,优选人中实现治疗的量。构成“治疗有效量”的本发明组合物的量将根据化合物、病况及其严重程度、施用方式和待治疗的哺乳动物的年龄而变化,但本领域普通技术人员就他自己的知识和本公开内容而言可以常规确定。
DNA结合域
本文所述的方法利用组合物,例如基因调控转录因子,其包含与内源DUX4、C9orf72、SMN1、SMN2、UBE34或Ube34-ATS基因中的靶序列(例如9-20个或更多个连续或非连续核苷酸的靶位点)特异性结合的DNA结合域。任何多核苷酸或多肽DNA结合域可用于本文公开的组合物和方法中,例如DNA结合蛋白(例如ZFP或TALE)或DNA结合多核苷酸(例如单引导RNA)。因此,描述了DUX4、C9orf72、SMN1、SMN2、UBE34或Ube34-ATS基因的遗传阻抑物。
在某些实施方案中,阻抑物或其中的DNA结合域包含锌指蛋白。靶位点的选择;ZFP和用于设计和构建融合蛋白(和其编码多核苷酸)的方法对于本领域技术人员而言是已知的,并且详细记载于美国专利No.6,140,081;5,789,538;6,453,242;6,534,261;5,925,523;6,007,988;6,013,453;6,200,759;WO 95/19431;WO 96/06166;WO 98/53057;WO 98/54311;WO 00/27878;WO 01/60970WO 01/88197;WO 02/099084;WO 98/53058;WO 98/53059;WO 98/53060;WO 02/016536和WO 03/016496。
DUX4、C9orf72、SMN1、SMN2、UBE34或Ube34-ATS靶向性ZFP通常包括至少一个锌指,但可以包括多个锌指(例如2、3、4、5、6或更多个指)。在某些实施方案中,ZFP包括至少三个指。某些ZFP包括4、5或6个指,而某些ZFP包括8、9、10、11或12个指。包含3个指的ZFP通常识别包含9或10个核苷酸的靶位点;包含4个指的ZFP通常识别包含12至14个核苷酸的靶位点;而具有6个指的ZFP可以识别包含18至21个核苷酸的靶位点。ZFP也可以是融合蛋白,其包括一个或多个调节域,该域可以是转录激活或阻抑域。在一些实施方案中,融合蛋白包含连接在一起的两个ZFP DNA结合域。因此,这些锌指蛋白可以包含8、9、10、11、12或更多个指。在一些实施方案中,两个DNA结合域通过可延伸的柔性接头连接,使得一个DNA结合域包含4、5或6个锌指,而第二DNA结合域包含另外的4、5或5个锌指。在一些实施方案中,接头是标准的指间接头,使得指阵列包含一个DNA结合域,所述DNA结合域包含8、9、10、11或12个或更多个指。在其它实施方案中,接头是非典型接头,例如柔性接头。DNA结合域与至少一个调节域融合,并且可以视为“ZFP-ZFP-TF”构造。这些实施方案的具体实例可以称为“ZFP-ZFP-KOX”,其包含两个与柔性接头连接并融合至KOX阻抑物的DNA结合域,和“ZFP-KOX-ZFP-KOX”,其中两个ZFP-KOX融合蛋白通过接头融合在一起。
或者,DNA结合域可以源自核酸酶。例如,归巢内切核酸酶和大范围核酸酶如I-SceI、I-CeuI、PI-PspI、PI-Sce、I-SceIV、I-CsmI、I-PanI、I-SceII、I-PpoI、I-SceIII、I-CreI、I-TevI、I-TevII和I-TevIII的识别序列是已知的。还见美国专利No.5,420,032;美国专利No.6,833,252;Belfort et al.(1997)Nucleic Acids Res.25:3379–3388;Dujon etal.(1989)Gene 82:115–118;Perler et al.(1994)Nucleic Acids Res.22,1125–1127;Jasin(1996)Trends Genet.12:224–228;Gimble et al.(1996)J.Mol.Biol.263:163–180;Argast et al.(1998)J.Mol.Biol.280:345–353和New England Biolabs产品目录。另外,归巢内切核酸酶和大范围核酸酶的DNA结合特异性可以被工程化改造以结合非天然靶位点。见例如Chevalier et al.(2002)Molec.Cell 10:895-905;Epinat et al.(2003)Nucleic Acids Res.31:2952-2962;Ashworth et al.(2006)Nature 441:656-659;Paqueset al.(2007)Current Gene Therapy 7:49-66;美国专利公开文本No.20070117128。
“双手”锌指蛋白是如下的那些蛋白质,其中锌指DNA结合域的两个簇通过居间氨基酸分开,从而两个锌指域与两个不连续的靶位点结合。双手型锌指结合蛋白的一个例子是SIP1,其中四个锌指的簇位于蛋白质的氨基末端,并且三个指的簇位于羧基末端(见Remacle et al,(1999)EMBO Journal 18(18):5073-5084)。这些蛋白质中的锌指的每个簇能够结合独特的靶序列,并且两个靶序列之间的间隔可以包含许多核苷酸。双手ZFP可以包括功能域,例如与ZFP之一或两者融合。因此,将明显的是,功能域可以附着于一个或两个ZFP的外部,或者可以位于ZFP之间(附着于这两个ZFP)。在某些实施方案中,ZFP包括如表1所示的ZFP。
在某些实施方案中,DNA结合域包含天然存在或工程化(非天然存在的)TAL效应物(TALE)DNA结合域。见例如美国专利No.8,586,526,通过引用整体并入本文。在某些实施方案中,TALE DNA结合蛋白包含与靶位点的12、13、14、15、16、17、18、19、20或更多个连续核苷酸结合,如表1所示。与靶位点结合的TALE DNA结合蛋白的RVD可以是天然存在的或非天然存在的RVD。见美国专利No.8,586,5226和9,458,205。
已知黄单胞菌属(Xanthomonas)的植物致病细菌在重要的农作物中引起许多疾病。黄单胞菌的致病性取决于保守的III型分泌(T3S)系统,该系统向植物细胞中注射超过25种不同的效应蛋白。在这些注射的蛋白质中是模仿植物转录激活剂并操纵植物转录物组的转录激活剂样效应物(TALE)(见Kay et al(2007)Science 318:648-651)。这些蛋白质含有DNA结合域和转录激活域。最充分表征的TALE之一是来自野油菜黄单胞菌疱病致病变种(Xanthomonas campestgris pv.Vesicatoria)的AvrBs3(见Bonas et al(1989)Mol GenGenet 218:127-136和WO2010079430)。TALE含有串联重复序列的集中域,每个重复序列含有约34个氨基酸,它们是这些蛋白质的DNA结合特异性的关键。另外,它们含有核定位序列和酸性转录激活域(关于综述,见Schornack S,et al(2006)J Plant Physiol 163(3):256-272)。另外,在植物致病性细菌茄青枯雷尔氏菌(Ralstonia solanacearum)中,在茄青枯雷尔氏菌生物变种1菌株GMI1000和生物变种4菌株RS1000中发现了两种基因,称为brg11和hpx17,它们与黄单胞菌的AvrBs3家族同源(见Heuer et al(2007)Appl and EnvirMicro 73(13):4379-4384)。这些基因在核苷酸序列上彼此是98.9%相同的,但在hpx17的重复域中相差1,575bp的缺失。然而,这两种基因产物与黄单胞菌的AvrBs3家族蛋白具有小于40%的序列同一性。
这些TALE的特异性取决于在串联重复序列中发现的序列。重复的序列包含约102bp,并且重复序列通常彼此是91-100%同源的(Bonas等,同上)。重复序列的多态性通常位于第12和13位,并且在第12和13位的高变二残基的身份与TALE靶序列中连续核苷酸的身份之间似乎存在一一对应的对应性(见Moscou and Bogdanove(2009)Science 326:1501and Boch et al(2009)Science 326:1509-1512)。在实验上,已经确定这些TALE的DNA识别编码,使得12和13位处的HD序列导致与胞嘧啶(C)的结合,NG结合T,NI结合A、C、G或T,NN结合A或G,并且NG结合T。这些DNA结合重复序列已被组装成具有新的重复序列和数量的蛋白质,以制备能够与新序列相互作用的人工转录因子。另外,美国专利No.8,586,526和美国公开文本No.20130196373(通过引用整体并入本文)描述了具有N-帽多肽、C-帽多肽(例如,+63、+231或+278)和/或新(非典型)的RVD的TALE。在美国专利No.8,586,526和9,458,205(通过引用整体并入)中描述了此类TALE。
在某些实施方案中,DNA结合域包括二聚化和/或多聚化域,例如卷曲螺旋(CC)和二聚化锌指(DZ)。见美国专利公开文本No.20130253040。
在其它实施方案中,DNA结合域包含CRISPR/Cas系统的单引导RNA,例如如美国专利公开文本No.20150056705中公开的sgRNA。
最近出现了引人注目的证据,表明古细菌和许多细菌中存在RNA介导的基因组防御途径,其假设与真核RNAi途径平行(关于综述,见Godde and Bickerton,2006.J.Mol.Evol.62:718-729;Lillestol et al.,2006.Archaea 2:59-72;Makarova etal.,2006.Biol.Direct 1:7.;Sorek et al.,2008.Nat.Rev.Microbiol.6:181-186)。称为CRISPR-Cas系统或原核RNAi(pRNAi),提出该途径源自两个在进化上且通常是在物理上连锁的基因基因座:CRISPR(聚簇的规则间隔的短回文重复序列)基因座,其编码系统的RNA成分,以及编码蛋白质的cas(CRISPR相关的)基因座(Jansen et al.,2002.Mol.Microbiol.43:1565-1575;Makarova et al.,2002.Nucleic Acids Res.30:482-496;Makarova et al.,2006.Biol.Direct 1:7;Haft et al.,2005.PLoSComput.Biol.1:e60)。微生物宿主中的CRISPR基因座包含CRISPR相关(Cas)基因以及能够编程CRISPR介导的核酸切割特异性的非编码RNA元件的组合。个别Cas蛋白不与真核RNAi机器的蛋白成分共享相当大的序列相似性,但是具有相似的预测功能(例如,RNA结合、核酸酶、解旋酶等)(Makarova et al.,2006.Biol.Direct 1:7)。CRISPR相关(cas)基因通常与CRISPR重复间隔物阵列相关。已经描述了超过40种不同的Cas蛋白家族。在这些蛋白质家族中,Cas1似乎在不同的CRISPR/Cas系统中是遍在的。cas基因和重复结构的特定组合已被用于定义8种CRISPR亚型(Ecoli,Ypest,Nmeni,Dvulg,Tneap,Hmari,Apern和Mtube),其中一些与编码重复相关神秘蛋白质(repeat-associated mysterious protein,RAMP)的其它基因模块有关。单一基因组中可以存在超过一种CRISPR亚型。CRISPR/Cas亚型的零星分布提示系统在微生物进化过程中经受水平基因转移。
最初在酿脓链球菌(S.pyogenes)中描述的II型CRISPR是最充分表征的系统之一,并在四个连续步骤中进行靶向DNA双链断裂。第一,从CRISPR基因座转录两个非编码RNA,即pre-crRNA阵列和tracrRNA。第二,tracrRNA与pre-crRNA的重复区域杂交,并且介导将pre-crRNA加工成成熟crRNA,其含有个别间隔物序列,其中在Cas9蛋白存在下由双链特异性RNA酶III发生加工。第三,成熟的crRNA:tracrRNA复合物通过crRNA上的间隔区和靶DNA上与原间隔物相邻基序(PAM)(靶物识别的另外的要求)相邻的原间隔物之间的Watson-Crick碱基配对将Cas9引导至靶DNA。另外,tracrRNA也必须存在,因为它与crRNA在其3’端碱基对,并且此缔合触发Cas9活性。最后,Cas9介导靶DNA的切割,从而在原间隔物内创建双链断裂。CRISPR/Cas系统的活性包括三个步骤:(i)在称为“适应”的过程中,将外源DNA序列插入CRISPR阵列以防止将来的攻击,(ii)相关蛋白的表达以及阵列的表达和处理,然后(iii)RNA介导的用外来核酸的干扰。因此,在细菌细胞中,所谓的“Cas”蛋白中的几种与CRISPR/Cas系统的天然功能有关。
已经在许多不同的细菌中发现了II型CRISPR系统。Fonfara et al((2013)NucAcid Res 42(4):2377-2590)对公开可用基因组的BLAST搜索在347种细菌物种中发现了Cas9直向同源物。另外,该小组使用酿脓链球菌、变异链球菌(S.mutans)、嗜热链球菌(S.therophilus)、空肠弯曲杆菌(C.jejuni)、脑膜炎奈瑟球菌(N.meningitides),多杀巴斯德菌(P.multocida)和新凶手弗朗西斯菌(F.novicida)的Cas9直向同源物证明了DNA靶标的体外CRISPR/Cas切割。因此,术语“Cas9”是指包含DNA结合域和两个核酸酶域的RNA引导的DNA核酸酶,其中编码Cas9的基因可以源自任何合适的细菌。
Cas9蛋白具有至少两个核酸酶域:一个核酸酶域类似于HNH内切核酸酶,而另一个类似于Ruv内切核酸酶域。HNH型域似乎负责切割与crRNA互补的DNA链,而Ruv域切割非互补链。可以对Cas 9核酸酶进行工程化改造,以使仅核酸酶域之一是功能性的,从而形成Cas切口酶(见Jinek等人,同上)。可以通过酶的催化域中氨基酸的特定突变或通过截短部分或整个域,使得其不再为功能性来产生切口酶。由于Cas 9包含两个核酸酶域,因此可以在任一域上采用此方法。可以通过使用两个此类Cas 9切口酶在靶DNA中实现双链断裂。切口酶各自会切割DNA的一条链,并且两者的使用将创建双链断裂。
可以通过使用工程化“单引导RNA”(sgRNA)避免crRNA-tracrRNA复合物的需要,所述工程化“单引导RNA”包含通常由crRNA和tracrRNA退火形成的发夹(见Jinek et al(2012)Science 337:816 and Cong et al(2013)Sciencexpress/10.1126/science.1231143)。在酿脓链球菌中,工程化的tracrRNA:crRNA融合物或sgRNA在Cas关联的RNA与靶DNA之间形成双链RNA:DNA异二聚体时引导Cas9切割靶DNA。包含Cas9蛋白和含有PAM序列的工程化sgRNA的此系统已用于RNA引导的基因组编辑(见Ramalingam,同上),并且可用于以类似于ZFN和TALEN的编辑效率在体内进行斑马鱼胚胎基因组编辑(见Hwang etal(2013)Nature Biotechnology 31(3):227)。
CRISPR基因座的主要产物似乎是含有入侵者靶向序列的短RNA,并且基于其在途径中的假定作用而被称为引导RNA或原核沉默RNA(psiRNA)(Makarova et al.,2006.Biol.Direct 1:7;Hale et al.,2008.RNA,14:2572-2579)。RNA分析指示CRISPR基因座转录物在重复序列内被切割以释放约60-70nt的RNA中间体,其含有个别入侵者靶向序列和侧翼重复片段(Tang et al.2002.Proc.Natl.Acad.Sci.99:7536-7541;Tang et al.,2005.Mol.Microbiol.55:469-481;Lillestol et al.2006.Archaea 2:59-72;Brouns etal.2008.Science 321:960-964;Hale et al,2008.RNA,14:2572-2579)。在古细菌极端嗜热菌(Pyrococcus furiosus)中,这些中间体RNA被进一步加工成大量稳定的约35-45nt的成熟psiRNA(Hale et al.2008.RNA,14:2572-2579)。
可以通过使用工程化“单引导RNA”(sgRNA)避免crRNA-tracrRNA复合物的需要,所述工程化“单引导RNA”包含通常由crRNA和tracrRNA退火形成的发夹(见Jinek et al(2012)Science 337:816 and Cong et al(2013)Sciencexpress/10.1126/science.1231143)。在酿脓链球菌中,工程化的tracrRNA:crRNA融合物或sgRNA在Cas关联的RNA与靶DNA之间形成双链RNA:DNA异二聚体时引导Cas9切割靶DNA。包含Cas9蛋白和含有PAM序列的工程化sgRNA的此系统已用于RNA引导的基因组编辑(见Ramalingam,同上),并且可用于以类似于ZFN和TALEN的编辑效率在体内进行斑马鱼胚胎基因组编辑(见Hwang etal(2013)Nature Biotechnology 31(3):227)。
嵌合或sgRNA可以被工程化改造以包含与任何期望靶标互补的序列。在一些实施方案中,引导序列的长度为约或超过约5、10、11、12、13、14、15、16、17、18、19、20、21、22、23、24、25、26、27、28、29、30、35、40、45、50、75或更多个核苷酸。在一些实施方案中,指导序列的长度小于约75、50、45、40、35、30、25、20、15、12或更少的核苷酸。在某些实施方案中,sgRNA包含结合疾病相关基因(例如,DUX4、C9orf72、SMN1、SMN2、UBE34、或Ube34-ATS)内的靶位点的12、13、14、15、16、17、18、19、20或更多个连续核苷酸的序列。在一些实施方案中,RNA包含与靶标互补并具有G[n19]形式,随后是用于与酿脓链球菌CRISPR/Cas系统一起使用的NGG或NAG形式的原间隔物相邻基序(PAM)的22个碱基。因此,在一种方法中,可以如下通过在目标基因中利用已知的ZFN靶标来设计sgRNA:(i)将ZFN异二聚体的识别序列与相关基因组(人、小鼠或特定植物物种)的参考序列进行比对;(ii)鉴定ZFN半位点之间的间隔物区;(iii)鉴定最接近间隔物区的基序G[N20]GG的位置(当超过一个此类基序与间隔物重叠时,选择相对于间隔物居中的基序);(iv)使用该基序作为sgRNA的核心。有利地,此方法依赖于已证明的核酸酶靶标。或者,可以简单地通过鉴定符合G[n20]GG式的合适靶序列来将sgRNA设计为靶向任何目标区域。与互补区一起,sgRNA可以包含其它核苷酸,以延伸到sgRNA的tracrRNA部分的尾部区域(见Hsu et al(2013)Nature Biotech doi:10.1038/nbt.2647)。尾部可以是+67至+85个核苷酸,或两者之间的任何数目,优选长度为+85个核苷酸。也可以使用截短的sgRNA,“tru-gRNA”(见Fu et al,(2014)Nature Biotech 32(3):279)。在tru-gRNA中,互补性区域的长度减少到17或18个核苷酸。
此外,还可以利用替代的PAM序列,其中PAM序列可以是使用酿脓链球菌Cas9的作为NAG备选的NA G(Hsu 2014,同上)。另外的PAM序列也可以包括缺少初始G的序列(Sanderand Joung(2014)Nature Biotech 32(4):347)。除了酿脓链球菌编码的Cas9 PAM序列之外,还可以使用对来自其它细菌来源的Cas9蛋白特异性的其它PAM序列。例如,以下显示的PAM序列(改编自Sander and Joung,同上和Esvelt et al,(2013)Nat Meth 10(11):1116)对这些Cas9蛋白是特异性的:
因此,可以根据以下准则选择适合酿脓链球菌CRISPR/Cas系统使用的靶序列:[n17,n18,n19,或n20](G/A)G。或者,PAM序列可以遵循准则G[n17,n18,n19,n20](G/A)G。对于源自非酿脓链球菌细菌的Cas9蛋白,在用替代PAM替换酿脓链球菌PAM序列的情况下,可使用相同的准则。
最优选的是选择具有最高特异性可能性的靶序列,其避免潜在的脱靶序列。这些不期望的脱靶序列可以通过考虑以下属性来鉴定:i)靶序列中的相似性,所述靶序列后面有已知与所利用的Cas9蛋白一起起作用的PAM序列;ii)与期望的靶序列具有少于三个错配的相似靶序列;iii)与ii)中类似的靶序列,其中所有错配都位于PAM远端区域而非PAM近端区域(有证据表明,直接与PAM相邻或在PAM近端的核苷酸1-5,有时称为“种子”区域(Wu etal(2014)Nature Biotech doi:10.1038/nbt2889)是识别的最关键的区域,因此,位于种子区域中错配的推定脱靶位点可以是最不可能被sg RNA识别);和iv)相似的靶序列,其中错配不连续间隔或间隔大于四个核苷酸(Hsu 2014,同上)。因此,通过使用以上这些标准,采用无论何种CRIPSR/Cas系统,进行基因组中潜在的脱靶位点的数目分析,可以鉴定出sgRNA的合适靶序列。
在一些实施方案中,使用CRISPR-Cpf1系统。在弗朗西斯菌物种中鉴定的CRISPR-Cpf1系统是2类CRISPR-Cas系统,其在人细胞中介导稳健的DNA干扰。尽管Cpf1和Cas9在功能上是保守的,但它们在许多方面不同,包括其引导RNA和底物特异性上(见Fagerlund etal.(2015)Genom Bio 16:251)。Cas9和Cpf1蛋白之间的主要区别是Cpf1不利用tracrRNA,因此仅需要crRNA。FnCpf1 crRNA长42-44个核苷酸(19个核苷酸的重复序列和23-25个核苷酸的间隔物),并含有单个茎-环,其耐受保留二级结构的序列变化。另外,Cpf1crRNA显著短于Cas9所需要的约100个核苷酸的工程化sgRNA,FnCpfl的PAM要求是置换链上的5’-TTN-3’和5’-CTA-3’。尽管Cas9和Cpf1两者在靶DNA中产生双链断裂,但Cas9使用其RuvC和HNH样域在引导RNA的种子序列内产生平末端切割,而Cpf1使用RuvC样域在种子外产生交错切割。由于Cpf1远离关键种子区产生交错切割,因此NHEJ不会破坏靶位点,因此确保Cpf1可以继续切割同一位点,直到发生期望的HDR重组事件。因此,在本文所述的方法和组合物中,应理解,术语“Cas”包括Cas9和Cfp1蛋白。因此,如本文所用,“CRISPR/Cas系统”是指CRISPR/Cas和/或CRISPR/Cfp1系统两者,包括核酸酶、切口酶和/或转录因子系统。
在一些实施方案中,可以使用其它Cas蛋白。一些示例性的Cas蛋白包括Cas9、Cpf1(也称为Cas12a)、C2c1、C2c2(也称为Cas13a)、C2c3、Cas1、Cas2、Cas4、CasX和CasY;并且包括其工程化和天然变体(Burstein et al.(2017)Nature 542:237-241),例如HF1/spCas9(Kleinstiver et al.(2016)Nature 529:490-495;Cebrian-Serrano and Davies(2017)Mamm Genome 28(7):247-261);两分型Cas9系统(Zetsche et al.(2015)Nat Biotechnol33(2):139-142),基于内含肽-外显肽系统的反式剪接Cas9(Troung et al.(2015)NuclAcid Res 43(13):6450-8);微型SaCas9(Ma et al.(2018)ACS Synth Biol 7(4):978-985)。因此,在本文所述的方法和组合物中,应理解,术语“Cas”包括所有Cas变体蛋白(天然的和工程化的两者)。因此,如本文所用,“CRISPR/Cas系统”是指任何CRISPR/Cas系统,包括核酸酶、切口酶和/或转录因子系统。
在某些实施方案中,Cas蛋白可以是天然存在的Cas蛋白的“功能衍生物”。天然序列多肽的“功能衍生物”是具有与天然序列多肽共同的定性生物学特性的化合物。“功能衍生物”包括但不限于天然序列的片段和天然序列多肽及其片段的衍生物,只要它们具有与相应的天然序列多肽共同的生物学活性。本文考虑的生物学活性是功能衍生物将DNA底物水解成片段的能力。术语“衍生物”涵盖多肽的氨基酸序列变体、共价修饰及其融合物。在一些方面,功能性衍生物可包含天然存在的Cas蛋白的单一生物学特性。在其它方面,功能衍生物可以包含天然存在的Cas蛋白的生物学特性的子集。Cas多肽或其片段的合适衍生物包括但不限于Cas蛋白或其片段的突变体、融合物、共价修饰。包括Cas蛋白或其片段以及Cas蛋白或其片段的衍生物的Cas蛋白可以从细胞获得或以化学方式或通过这两种规程的组合获得。细胞可以是天然产生Cas蛋白的细胞,或者是天然产生Cas蛋白并经遗传工程化改造以产生较高表达水平的内源Cas蛋白或从外源导入的核酸产生Cas蛋白的细胞,所述核酸编码与内源Cas相同或不同的Cas。在某些情况下,细胞不自然产生Cas蛋白,并且经遗传工程化改造以产生Cas蛋白。
在美国公开文本No.20150056705中公开了靶向特定基因(包括安全港基因)的示例性CRISPR/Cas核酸酶系统。
因此,本文所述的遗传调控剂(人工转录因子,核酸酶等)包含与任何基因中的靶位点特异性结合的DNA结合分子,并且可以使用任何DNA结合分子。
遗传调控剂
DNA结合域可以与用于本文所述方法的任何其它分子(例如多肽)融合或以其它方式缔合。在某些实施方案中,方法采用融合分子,所述融合分子包含至少一个DNA结合分子(例如,ZFP、TALE或单引导RNA)和异源调节(功能)域(或其功能片段),例如人工转录因子(激活剂或阻抑物),其包含结合罕见病相关基因中的靶位点的DNA结合域和转录调节域。
在某些实施方案中,遗传调控剂的功能域包含转录调节域。常见域包括例如转录因子域(激活物、阻抑物、共激活物、共阻抑物)、沉默子、癌基因(例如myc、jun、fos、myb、max、mad、rel、ets、bcl、myb、mos家族成员等);DNA修复酶及其相关因子和修饰剂;DNA重排酶及其相关因子和修饰剂;染色质相关蛋白及其修饰剂(例如激酶、乙酰酶和脱乙酰酶);和DNA修饰酶(例如甲基转移酶、拓扑异构酶、解旋酶、连接酶、激酶、磷酸酶、聚合酶、内切核酸酶)及其相关因子和修饰剂。见例如美国公开文本No.20130253040,其通过引用整体并入本文。
用于实现激活的合适的域包括HSV VP16激活域(见例如Hagmann et al.,J.Virol.71,5952-5962(1997))核激素受体(见例如Torchia et al.,Curr.Opin.Cell.Biol.10:373-383(1998));核因子κB的p65亚基(Bitko&Barik,J.Virol.72:5610-5618(1998)和Doyle&Hunt,Neuroreport 8:2937-2942(1997));Liu etal.,Cancer Gene Ther.5:3-28(1998))或人工嵌合功能域,例如VP64(Beerli et al.,(1998)Proc.Natl.Acad.Sci.USA 95:14623-33)和degron(Molinari et al.,(1999)EMBOJ.18,6439-6447)。另外的示例性激活域包括Oct 1、Oct-2A、Sp1、AP-2和CTF1(Seipel etal.,EMBO J.11,4961-4968(1992)以及p300、CBP、PCAF、SRC1 PvALF、AtHD2A和ERF-2。见例如Robyr et al.(2000)Mol.Endocrinol.14:329-347;Collingwood et al.(1999)J.Mol.Endocrinol.23:255-275;Leo et al.(2000)Gene 245:1-11;Manteuffel-Cymborowska(1999)Acta Biochim.Pol.46:77-89;McKenna et al.(1999)J.SteroidBiochem.Mol.Biol.69:3-12;Malik et al.(2000)Trends Biochem.Sci.25:277-283;和Lemon et al.(1999)Curr.Opin.Genet.Dev.9:499-504。其它示例性的激活域包括但不限于OsGAI、HALF-1、C1、AP1、ARF-5、-6、-7和-8、CPRF1、CPRF4、MYC-RP/GP和TRAB1。例如,见Ogawa et al.(2000)Gene 245:21-29;Okanami et al.(1996)Genes Cells 1:87-99;Goffet al.(1991)Genes Dev.5:298-309;Cho et al.(1999)Plant Mol.Biol.40:419-429;Ulmason et al.(1999)Proc.Natl.Acad.Sci.USA 96:5844-5849;Sprenger-Hausselset al.(2000)Plant J.22:1-8;Gong et al.(1999)Plant Mol.Biol.41:33-44;和Hobo etal.(1999)Proc.Natl.Acad.Sci.USA 96:15,348-15,353。
可用于制备基因阻抑物的示例性阻抑域包括但不限于KRAB A/B、KOX、TGF-beta-诱导型早期基因(TIEG)、v-erbA、SID、MBD2、MBD3、DNMT家族成员(例如DNMT1、DNMT3A、DNMT3B)、Rb和MeCP2。见例如Bird et al.(1999)Cell 99:451-454;Tyler et al.(1999)Cell 99:443-446;Knoepfler et al.(1999)Cell 99:447-450;和Robertson et al.(2000)Nature Genet.25:338-342。另外的示例性阻抑域包括但不限于ROM2和AtHD2A。见例如Chem et al.(1996)Plant Cell 8:305-321;and Wu et al.(2000)Plant J.22:19-27。
在某些情况下,域参与染色体的表观遗传调节。在一些实施方案中,域是组蛋白乙酰转移酶(HAT),例如A型,核定位,例如MYST家族成员MOZ、Ybf2/Sas3、MOF和Tip60、GNAT家族成员Gcn5或pCAF、p300家族成员CBP、p300或Rtt109(Berndsen and Denu(2008)CurrOpin Struct Biol 18(6):682-689)。在其它情况下,域是组蛋白脱乙酰基酶(HDAC),例如I类(HDAC-1、2、3和8)、II类(HDAC IIA(HDAC-4、5、7和9)、HDAC IIB(HDAC6和10))、IV类(HDAC-11)、III类(也称为sirtuins(SIRT);SIRT1-7)(见Mottamal et al(2015)Molecules20(3):3898-3941)。在一些实施方案中使用的另一个域是组蛋白磷酸化酶或激酶,其中实例包括MSK1、MSK2、ATR、ATM、DNA-PK、Bub1、VprBP、IKK-α、PKCβ1、Dik/Zip、JAK2、PKC5、WSTF和CK2。在一些实施方案中,使用甲基化域,并且可以选自诸如以下的组:Ezh2、PRMT1/6、PRMT5/7、PRMT 2/6、CARM1、set7/9、MLL、ALL-1、Suv 39h、G9a、SETDB1、Ezh2、Set2、Dot1、PRMT 1/6、PRMT 5/7、PR-Set7和Suv4-20h。在一些实施方案中,也可使用涉及SUMO化和生物素化的域(Lys9、13、4、18和12)(综述见Kousarides(2007)Cell 128:693-705)。
因此,与本文所述的DNA结合域(例如ZFP、TALE、sgRNA等)相关的异源调节(功能)域(或其功能片段)包括但不限于例如转录因子域(激活物、阻抑物、共激活物、共阻抑物)、沉默子,致癌基因(例如,myc、jun、fos、myb、max、mad、rel、ets、bcl、myb、mos家族成员等);DNA修复酶及其相关因子和修饰剂;DNA重排酶及其相关因子和修饰剂;染色质相关蛋白及其修饰剂(例如激酶、乙酰酶和脱乙酰酶);和DNA修饰酶(例如甲基转移酶、拓扑异构酶、解旋酶、连接酶、去泛素酶、激酶、磷酸酶、聚合酶、内切核酸酶)及其相关因子和修饰剂。此类融合分子包括包含本文所述的DNA结合域和转录调节域的转录因子以及包含DNA结合域和一个或多个核酸酶域的核酸酶。
通过本领域技术人员公知的克隆和生化缀合方法构建融合分子。融合分子包含DNA结合域和功能域(例如,转录激活或阻抑域)。融合分子还任选地包含核定位信号(诸如例如来自SV40培养基T抗原的信号)和表位标签(诸如例如FLAG和血凝素)。设计融合蛋白(及其编码核酸),使得翻译阅读框在融合物的组分之间得到保留。
通过本领域技术人员已知的生化缀合方法来构建一方面的功能域(或其功能片段)的多肽组分与另一方面的非蛋白质DNA结合域(例如抗生素、插入剂、小沟结合剂、核酸)之间的融合物。见例如Pierce Chemical Company(Rockford,IL)产品目录。已经描述了制备小沟结合剂和多肽之间的融合物的方法和组合物。Mapp et al.(2000)Proc.Natl.Acad.Sci.USA 97:3930-3935。同样地,包含与多肽组分功能域结合的sgRNA核酸组分的CRISPR/Cas TF和核酸酶也是本领域技术人员已知的并且在本文中进行了详细描述。
如本领域技术人员已知的,融合分子可以与药学上可接受的载体一起配制。见例如Remington's Pharmaceutical Sciences,第17版,1985;和共同拥有的WO 00/42219。
融合分子的功能组分/域可以选自多种不同组分中的任一种,一旦融合分子经由其DNA结合域与靶序列结合,所述组分就能够影响基因转录。因此,功能组分可以包括但不限于各种转录因子域,例如激活物、阻抑物、共激活物、共阻抑物和沉默子。
在某些实施方案中,融合分子包含DNA结合域和核酸酶域以创建功能实体,该功能实体能够通过其工程化的(ZFP或TALE)DNA结合域识别其意图的核酸靶标并创建核酸酶(例如锌指核酸酶或TALE核酸酶),经由核酸酶活性在DNA结合位点附近切割DNA。此种切割导致靶定基因的失活(阻抑)。因此,基因阻抑物也包括靶向性核酸酶。
本领域技术人员将清楚的是,在DNA结合域和功能域之间形成融合蛋白(或其编码核酸)中,激活域或与激活域相互作用的分子适合作为功能域。基本上,能够将激活复合物和/或激活活性(诸如例如组蛋白乙酰化)募集到靶基因的任何分子可用作融合蛋白的激活域。例如在美国专利No.7,053,264中描述了适合用作融合分子中功能性域的绝缘子域、定位域和染色质重塑蛋白,例如含ISWI的域和/或甲基结合域蛋白。
因此,本文描述的方法和组合物是广泛适用的,并且可以涉及任何感兴趣的人工核酸酶或转录因子。核酸酶的非限制性实例包括大范围核酸酶、TALEN和锌指核酸酶。核酸酶可包含异源DNA结合和切割域(例如锌指核酸酶;TALEN;具有异源切割域的大范围核酸酶DNA结合域),或者备选地,天然存在的核酸酶的DNA结合域可被改变以结合选定的靶位点(例如,已经经过工程化改造以结合不同于关联结合位点的位点的大范围核酸酶)。人工转录因子的非限制性实例包括ZFP-TF、TALE-TF和/或CRISPR/Cas-TF。
核酸酶域可以源自任何核酸酶,例如任何内切核酸酶或外切核酸酶。可以与如本文所述的靶DNA结合域融合的合适的核酸酶(切割)域的非限制性实例包括来自任何限制酶的域,例如IIS型限制酶(例如,FokI)。在某些实施方案中,切割域是需要二聚化以用于切割活性的切割半域。见例如美国专利No.8,586,526;8,409,861和7,888,121,通过引用整体并入本文。通常,若融合蛋白包含切割半域,则需要两个融合蛋白实现切割。或者,可以使用包含两个切割半域的单一蛋白质。两个切割半域可以源自相同的内切核酸酶(或其功能片段),或者每个切割半域可以源自不同内切核酸酶(或其功能片段)。另外,两个融合蛋白的靶位点优选相对于彼此布置,使得两个融合蛋白与它们各自的靶位点的结合使切割半域彼此在空间方向上排列,从而允许切割半域形成功能性切割域,例如通过二聚化。
核酸酶域也可以源自具有切割活性的任何大范围核酸酶(归巢内切核酸酶)域,也可以与本文所述的核酸酶一起使用,包括但不限于I-SceI、I-CeuI、PI-PspI、PI-Sce、I-SceIV、I-CsmI、I-PanI、I-SceII、I-PpoI、I-SceIII、I-CreI、I-TevI、I-TevII和I-TevIII。在某些实施方案中,核酸酶包含致密TALEN(cTALEN)。这些是将TALE DNA结合域与TevI核酸酶域连接的单链融合蛋白。取决于TALE DNA结合域相对于大范围核酸酶(例如,TevI)核酸酶域的位置,融合蛋白可以起由TALE区定位的切口酶作用,或者可以创建双链断裂(见Beurdeley et al(2013)Nat Comm:1-8DOI:10.1038/ncomms2782)。任何TALEN可以与另外的TALEN(例如,一种或多种TALEN(cTALEN或FokI-TALEN),具有一种或多种mega-TAL)组合使用或与其它DNA切割酶组合使用。在某些实施方案中,核酸酶包含表现出切割活性的大范围核酸酶(归巢内切核酸酶)或其部分。天然存在的大范围核酸酶识别15-40个碱基对的切割位点,并且通常分组为四个家族:LAGLIDADG家族、GIY-YIG家族、His-Cyst盒家族和HNH家族。示例性的归巢内切核酸酶包括I-SceI、I-CeuI、PI-PspI、PI-Sce、I-SceIV、I-CsmI、I-PanI、I-SceII、I-PpoI、I-SceIII、I-CreI、I-TevI、I-TevII和I-TevIII。它们的识别序列是已知的。还见美国专利No.5,420,032;U.S.Patent No.6,833,252;Belfort et al.(1997)Nucleic Acids Res.25:3379–3388;Dujon et al.(1989)Gene 82:115–118;Perler etal.(1994)Nucleic Acids Res.22,1125–1127;Jasin(1996)Trends Genet.12:224–228;Gimble et al.(1996)J.Mol.Biol.263:163–180;Argast et al.(1998)J.Mol.Biol.280:345–353和New England Biolabs产品目录。
在其它实施方案中,TALE核酸酶是mega TAL。这些mega TAL核酸酶是包含TALEDNA结合域和大范围核酸酶切割域的融合蛋白。大范围核酸酶切割域作为单体具有活性,并且不需要二聚化来实现活性。(见Boissel et al.,(2013)Nucl Acid Res:1-13,doi:10.1093/nar/gkt1224)。
另外,大范围核酸酶的核酸酶域也可表现出DNA结合功能性。任何TALEN可以与其它TALEN(例如,具有一种或多种mega-TAL的一种或多种TALEN(cTALEN或FokI-TALEN))和/或ZFN组合使用。
另外,与野生型相比,切割域可以包含一个或多个改变,例如用于形成减少或消除脱靶切割效应的专性异二聚体。见例如美国专利No.7,914,796;8,034,598;和8,623,618,通过引用整体并入本文。
示例性的IIS型限制酶(其切割域可与结合域分离)是FokI。该特定的酶作为二聚体具有活性。Bitinaite et al.(1998)Proc.Natl.Acad.Sci.USA 95:10,570-10,575。因此,出于本公开内容弄的目的,在所公开的融合蛋白中使用的Fok I酶的部分认为是切割半域。因此,对于使用锌指-Fok I融合物的细胞序列的靶向双链切割和/或靶向置换,可以使用各自包含FokI切割半域的两个融合蛋白来重建催化活性切割域。或者,也可以使用包含锌指结合域和两个Fok I切割半域的单个多肽分子。使用锌指-Fok I融合物进行靶向切割和靶向序列改变的参数在本公开内容的其它地方提供。
切割域或切割半域可以是蛋白质的任何部分,其保留切割活性或保留多聚化(例如,二聚化)以形成功能性切割域的能力。
在国际公开文本WO 07/014275(其通过引用完整并入本文)中描述了示例性的IIS型限制酶。另外的限制酶也含有可分离的结合和切割域,并且本公开内容涵盖这些。见例如Roberts et al.(2003)Nucleic Acids Res.31:418-420。
在某些实施方案中,切割域包含最小化或防止同二聚化的一个或多个工程化切割半域(也称为二聚化域突变体),如记载于例如美国专利号No.7,914,796;8,034,598和8,623,618;和美国专利公开文本No.20110201055,其全部的公开内容通过引用整体并入本文。Fok I的446、447、479、483、484、486、487、490、491、496、498、499、500、531、534、537和538位的氨基酸残基都是影响Fok I切割半域二聚化的靶标。
形成专性异二聚体的Fok I的示例性工程化切割半域包括对,其中第一切割半域包括在Fok I的490和538位氨基酸残基处的突变,而第二切割半域包括第486和499位氨基酸残基处的突变。
因此,在一个实施方案中,在490处的突变用Lys(K)替换Glu(E);538处的突变用Lys(K)替换Iso(I);486处的突变用Glu(E)替换Gln(Q);并且499位的突变用Lys(K)替换Iso(I)。具体地,如下制备本文所述的工程化切割半域:突变一个切割半域中的490位(E→K)和538位(I→K)以产生命名为“E490K:I538K”的工程化切割半域以及在另一个切割半域中突变486位(Q→E)和499位(I→L)以产生命名为“Q486E:I499L”的工程化切割半域。本文所述的工程化切割半域是专性异二聚体突变体,其中异常切割被最小化或被消除。见例如美国专利No.7,914,796和8,034,598,其公开内容出于所有目的通过引用整体并入本文。在某些实施方案中,工程化切割半域包含在486、499和496位处的突变(相对于野生型FokI编号),例如用Glu(E)残基替换486位处的野生型Gln(Q)残基,用Leu(L)残基替换499位处的野生型Iso(I)残基,用Asp(D)或Glu(E)残基替换496位的野生型Asn(N)残基的突变(也分别称为“ELD”和“ELE”域)。在其它实施方案中,工程化切割半域包含在490、538和537位的突变(相对于野生型FokI编号),例如用Lys(K)残基替换490位的野生型Glu(E)残基,用Lys(K)残基替换538位的野生型Iso(I)残基,用Lys(K)残基或Arg(R)残基替换537位的野生型His(H)残基的突变(也分别称为“KKK”和“KKR”域)。在其它实施方案中,工程化切割半域包含490和537位的突变(相对于野生型FokI编号),例如用Lys(K)残基替换490位的野生型Glu(E)残基和用Lys(K)残基或Arg(R)残基替换537位的野生型His(H)残基的突变(分别也称为“KIK”和“KIR”域)。见例如美国专利No.7,914,796;8,034,598和8,623,618;其公开内容通过引用完整并入本文用于所有目的。在其它实施方案中,工程化切割半域包含“Sharkey”和/或“Sharkey”突变(见Guo et al,(2010)J.Mol.Biol.400(1):96-107)。
或者,可以使用所谓的“分裂酶(split-enzyme)”技术在核酸靶位点处体内组装核酸酶(见例如美国专利公开文本No.20090068164)。此类分裂酶的成分可以在分开的表达构建体上表达,或者可以在一个可读框中连接,在该可读框中个别成分是分开的,例如通过自切割2A肽或IRES序列分开。组分可以是个别的锌指结合域或大范围核酸酶核酸结合域的域。
可以在使用前,例如在如美国专利No.8,563,314中所述的基于酵母的染色体系统中筛选核酸酶的活性。
在某些实施方案中,核酸酶包含CRISPR/Cas系统。CRISPR(聚簇的规则间隔的短回文重复序列)基因座(其编码系统的RNA成分);和Cas(CRISPR相关)基因座(其编码蛋白质)(Jansen et al.,2002.Mol.Microbiol.43:1565-1575;Makarova et al.,2002.NucleicAcids Res.30:482-496;Makarova et al.,2006.Biol.Direct 1:7;Haft et al.,2005.PLoS Comput.Biol.1:e60)构成CRISPR/Cas核酸酶系统的基因序列。微生物宿主中的CRISPR基因座含有CRISPR相关(Cas)基因以及能够编程CRISPR介导的核酸切割特异性的非编码RNA元件的组合。
II型CRISPR是最充分表征的系统之一,并在四个连续步骤中进行靶向性DNA双链断裂。第一,从CRISPR基因座转录两个非编码RNA,即pre-crRNA阵列和tracrRNA。第二,tracrRNA与pre-crRNA的重复区域杂交,并且介导将pre-crRNA加工成成熟crRNA,其含有个别间隔物序列。第三,成熟的crRNA:tracrRNA复合物通过crRNA上的间隔区和靶DNA上与原间隔物相邻基序(PAM)(靶物识别的另外的要求)相邻的原间隔物之间的Watson-Crick碱基配对将Cas9引导至靶DNA。最后,Cas9介导靶DNA的切割,从而在原间隔物内创建双链断裂。CRISPR/Cas系统的活性包括三个步骤:(i)在称为“适应”的过程中,将外源DNA序列插入CRISPR阵列以防止将来的攻击,(ii)相关蛋白的表达以及阵列的表达和处理,然后(iii)RNA介导的用外来核酸的干扰。因此,在细菌细胞中,所谓的“Cas”蛋白中的几种与CRISPR/Cas系统的天然功能有关,并在诸如插入外来DNA等功能中发挥作用。
在某些实施方案中,Cas蛋白可以是天然存在的Cas蛋白的“功能衍生物”。天然序列多肽的“功能衍生物”是具有与天然序列多肽共同的定性生物学特性的化合物。“功能衍生物”包括但不限于天然序列的片段和天然序列多肽及其片段的衍生物,只要它们具有与相应的天然序列多肽共同的生物学活性。本文考虑的生物学活性是功能衍生物将DNA底物水解成片段的能力。术语“衍生物”涵盖多肽的氨基酸序列变体、共价修饰及其融合物。Cas多肽或其片段的合适衍生物包括但不限于Cas蛋白或其片段的突变体、融合物、共价修饰。包括Cas蛋白或其片段以及Cas蛋白或其片段的衍生物的Cas蛋白可以从细胞获得或可以以化学方式或通过这两种程序的组合获得。细胞可以是天然产生Cas蛋白的细胞,或者是天然产生Cas蛋白并经过遗传工程化改造以产生较高表达水平的内源Cas蛋白或从外源导入的核酸产生Cas蛋白的细胞,所述核酸编码与内源Cas相同或不同的Cas。在某些情况下,细胞不自然产生Cas蛋白,并且经过遗传工程化改造以产生Cas蛋白。
示例性的CRISPR/Cas核酸酶系统公开于例如美国公开文本No.20150056705。
核酸酶可以在靶位点中产生一个或多个双链和/或单链切割。在某些实施方案中,核酸酶包含无催化活性的切割域(例如,FokI和/或Cas蛋白)。见例如美国专利No.9,200,266;8,703,489和Guillinger et al.(2014)Nature Biotech.32(6):577-582。无催化活性的切割域可以与催化活性的域组合起切口酶作用以产生单链切割。因此,可以组合使用两个切口酶以在特定区域中产生双链切割。另外的切口酶也是本领域中已知的,例如McCaffrey et al.(2016)Nucleic Acids Res.44(2):e11.doi:10.1093/nar/gkv878.Epub2015 Oct 19。
如本文所述的核酸酶可在双链靶标(例如基因)中产生双链或单链断裂。单链断裂(“切口”)的产生记载于例如美国专利Nos.8,703,489和9,200,266,其通过引用并入本文,其描述了核酸酶域之一的催化域的突变如何导致切口酶。
因此,核酸酶(切割)域或切割半域可以是保留切割活性或保留多聚化(例如二聚化)以形成功能性切割域的能力的蛋白质的任何部分。
或者,可以使用所谓的“分裂酶(split-enzyme)”技术在核酸靶位点处体内组装核酸酶(见例如美国专利公开文本No.20090068164)。此类分裂酶的成分可以在分开的表达构建体上表达,或者可以在一个可读框中连接,在该可读框中个别成分是分开的,例如通过自切割2A肽或IRES序列分开。组分可以是个别的锌指结合域或大范围核酸酶核酸结合域的域。
可以在使用前,例如在如美国公开文本No.20090111119中所述的基于酵母的染色体系统中筛选核酸酶的活性。可以使用本领域已知的方法容易地设计核酸酶表达构建体。
融合蛋白(或其组分)的表达可以在组成型启动子或诱导型启动子的控制下,例如在棉子糖和/或半乳糖的存在下被激活(脱阻抑)并且在葡萄糖存在下被阻抑的半乳糖激酶启动子。优选启动子的非限制性实例包括神经特异性启动子NSE、突触蛋白、CAMKiia和MECP。遍在启动子的非限制性实例包括CAS和Ubc。进一步的实施方案包括使用自调节的启动子(通过包含靶DNA结合域的高亲和力结合位点),如美国公开文本No.20150267205中所述。
递送
可以通过任何合适的手段将转录因子、核酸酶和/或多核苷酸(例如,遗传调控剂)和包含本文所述的蛋白质和/或多核苷酸的组合物递送至靶细胞,所述手段包括例如通过注射蛋白质,通过mRNA和/或使用表达构建体(例如,质粒、慢病毒载体、AAV载体、Ad载体等)。在优选的实施方案中,使用AAV载体递送遗传调控剂(例如阻抑物),所述AAV载体包括但不限于AAV9载体(或其假型化载体)(见美国专利7,198,951)或如美国专利No.9,585,971中描述的AAV载体。
递送如本文所述的包含锌指蛋白的蛋白质的方法记载于例如美国专利No.6,453,242;6,503,717;6,534,261;6,599,692;6,607,882;6,689,558;6,824,978;6,933,113;6,979,539;7,013,219;和7,163,824,其全部的公开内容通过引用整体并入本文。
可以使用任何载体系统,包括但不限于质粒载体、逆转录病毒载体、慢病毒载体、腺病毒载体、痘病毒载体;疱疹病毒载体和腺伴随病毒载体等。还见美国专利No.8,586,526;6,534,261;6,607,882;6,824,978;6,933,113;6,979,539;7,013,219;和7,163,824,通过引用整体并入本文。此外,将明显的是,这些载体中的任一种可包含一种或多种DNA结合蛋白编码序列。因此,当将一种或多种调控剂(例如阻抑物)引入细胞中时,可以在同一载体上或不同载体上携带编码蛋白质组分和/或多核苷酸组分的序列。当使用多个载体时,每个载体可包含编码一种或多种遗传调控剂(例如阻抑物)或其组分的序列。
可以使用常规的基于病毒和非病毒的基因转移方法在细胞(例如哺乳动物细胞)和靶组织中引入编码工程化遗传调控剂的核酸。此类方法还可用于在体外对细胞施用编码此类阻抑物(或其组分)的核酸。在某些实施方案中,施用编码阻抑物的核酸用于体内或离体基因治疗用途。非病毒载体递送系统包括DNA质粒、裸核酸以及与诸如脂质体或泊洛沙姆的递送媒介物复合的核酸。病毒载体递送系统包括DNA和RNA病毒,它们在递送至细胞后具有附加体基因组或整合的基因组。关于基因治疗程序的综述,见Anderson,Science 256:808-813(1992);Nabel&Felgner,TIBTECH 11:211-217(1993);Mitani&Caskey,TIBTECH11:162-166(1993);Dillon,TIBTECH 11:167-175(1993);Miller,Nature 357:455-460(1992);Van Brunt,Biotechnology 6(10):1149-1154 (1988);Vigne,RestorativeNeurology and Neuroscience 8:35-36(1995);Kremer&Perricaudet,British MedicalBulletin 51(1):31-44(1995);Haddada et al.,于Current Topics in Microbiologyand Immunology Doerfler and(编)(1995);和Yu et al.,Gene Therapy 1:13-26(1994)。
核酸的非病毒递送的方法包括电穿孔、脂转染、显微注射、生物射弹、病毒体、脂质体、免疫脂质体、聚阳离子或脂质:核酸缀合物、裸DNA、裸RNA、人工病毒体和试剂增强的DNA摄取。使用例如Sonitron 2000系统(Rich-Mar)的超声处理也可以用于核酸的递送。在一个优选的实施方案中,一种或多种核酸作为mRNA递送。还优选使用带帽的mRNA来增加翻译效率和/或mRNA稳定性。特别优选的是ARCA(防反向帽类似物(anti-reverse cap analog))帽或其变体。见美国专利US7074596和US8153773,通过引用并入本文。
另外的示例性核酸递送系统包括由Amaxa Biosystems(Cologne,Germany),Maxcyte,Inc.(Rockville,Maryland),BTX Molecular Delivery Systems(Holliston,MA)和Copernicus Therapeutics Inc(见例如US6008336)提供的那些系统。脂质转染记载于例如美国专利No.5,049,386;4,946,787;和4,897,355)和脂转染试剂在商业上出售(例如TransfectamTM和LipofectinTM和LipofectamineTM RNAiMAX)。适用于多核苷酸的有效受体识别脂转染的阳离子和中性脂质包括Felgner、WO 91/17424、WO 91/16024的那些脂质。可以递送至细胞(离体施用)或靶组织(体内施用)。
脂质:核酸复合物的制备,包括靶向脂质体,例如免疫脂质复合物,是本领域技术人员公知的(见例如Crystal,Science 270:404-410(1995);Blaese et al.,Cancer GeneTher.2:291-297(1995);Behr et al.,Bioconjugate Chem.5:382-389(1994);Remy etal.,Bioconjugate Chem.5:647-654(1994);Gao et al.,Gene Therapy 2:710-722(1995);Ahmad et al.,Cancer Res.52:4817-4820(1992);美国专利No.4,186,183,4,217,344,4,235,871,4,261,975,4,485,054,4,501,728,4,774,085,4,837,028,和4,946,787)。
其它递送方法包括使用将要递送的核酸包装到EnGeneIC递送媒介物(EDV)中。使用双特异性抗体将这些EDV特异性递送至靶组织,其中抗体的一个臂对靶组织具有特异性,而另一臂对EDV具有特异性。抗体将EDV带到靶细胞表面,然后通过胞吞将EDV带入细胞中。一旦在细胞中,内容物被释放(见MacDiarmid et al(2009)Nature Biotechnology 27(7):643)。
使用基于RNA或DNA病毒的系统来递送编码工程化ZFP、TALE或CRISPR/Cas系统的核酸利用了用于将病毒靶向身体中的特定细胞并将病毒有效载荷运输至核的高度进化的过程。病毒载体可以直接施用于患者(体内),或者它们也可以用于体外处理细胞,并且将经修饰的细胞施用于患者(离体)。用于递送ZFP、TALE或CRISPR/Cas系统的常规的基于病毒的系统包括但不限于用于基因转移的逆转录病毒、慢病毒、腺病毒、腺伴随病毒、痘苗和单纯疱疹病毒载体。用逆转录病毒、慢病毒和腺伴随病毒基因转移方法可以在宿主基因组中整合,通常导致插入的转基因的长期表达。另外,已经在许多不同的细胞类型和靶组织中观察到高转导效率。
逆转录病毒的向性可以通过掺入外来包膜蛋白,扩大靶细胞的潜在靶标群体来改变。慢病毒载体是能够转导或感染非分裂细胞并通常产生高病毒滴度的逆转录病毒载体。逆转录病毒基因转移系统的选择取决于靶组织。逆转录病毒载体由顺式作用的长末端重复序列组成,具有多达6-10kb的外源序列的包装能力。最小的顺式作用LTR足以复制和包装载体,然后使用所述载体将治疗性基因整合到靶细胞中以提供永久性转基因表达。广泛使用的逆转录病毒载体包括基于小鼠白血病病毒(MuLV)、长臂猿白血病病毒(GaLV)、猿免疫缺陷病毒(SIV)、人免疫缺陷病毒(HIV)及其组合的载体(见例如Buchscher et al.,J.Virol.66:2731-2739(1992);Johann et al.,J.Virol.66:1635-1640(1992);Sommerfelt et al.,Virol.176:58-59(1990);Wilson et al.,J.Virol.63:2374-2378(1989);Miller et al.,J.Virol.65:2220-2224(1991);PCT/US94/05700)。
在优选瞬时表达的应用中,可以使用基于腺病毒的系统。基于腺病毒的载体在许多细胞类型中都能够有很高的转导效率,并且不需要细胞分裂。使用此类载体,已经获得了高滴度和高水平的表达。此载体可以在相对简单的系统中大量产生。也可以使用腺伴随病毒(“AAV”)载体来用靶核酸转导细胞,例如在靶核酸和肽的体外生产中,以及在体内和离体基因治疗程序中(见例如West et al.,Virology 160:38-47(1987);美国专利No.4,797,368;WO 93/24641;Kotin,Human Gene Therapy 5:793-801(1994);Muzyczka,J.Clin.Invest.94:1351(1994))。重组AAV载体的构建记载于许多出版物中,包括美国专利No.5,173,414;Tratschin et al.,Mol.Cell.Biol.5:3251-3260(1985);Tratschin,etal.,Mol.Cell.Biol.4:2072-2081(1984);Hermonat&Muzyczka,PNAS 81:6466-6470(1984);和Samulski et al.,J.Virol.63:03822-3828(1989)。
至少六种病毒载体方法目前可用于临床试验中的基因转移,其利用涉及通过插入辅助细胞系中的基因对缺陷载体进行互补以产生转导剂的方法。
pLASN和MFG-S是已经在临床试验中使用的逆转录病毒载体的例子(Dunbar etal.,Blood 85:3048-305(1995);Kohn et al.,Nat.Med.1:1017-102(1995);Malech etal.,PNAS 94:22 12133-12138(1997))。PA317/pLASN是基因治疗试验中使用的第一种治疗载体。(Blaese et al.,Science 270:475-480(1995))。已经对MFG-S包装的载体观察到50%或更大的转导效率。(Ellem et al.,Immunol Immunother.44(1):10-20(1997);Dranoff et al.,Hum.Gene Ther.1:111-2(1997)。
重组腺伴随病毒载体(rAAV)是基于有缺陷的且非致病性细小病毒腺伴随2型病毒的有前途的备选基因递送系统。所有载体均源自仅保留转基因表达盒侧翼的AAV 145bp反向末端重复序列的质粒。由于整合到转导细胞的基因组中所致的有效的基因转移和稳定的转基因传递是该载体系统的关键特征。(Wagner et al.,Lancet 351:9117 1702-3(1998),Kearns et al.,Gene Ther.9:748-55(1996))。根据本发明,也可以使用其它AAV血清型,包括AAV1、AAV3、AAV4、AAV5、AAV6、AAV8AAV 8.2、AAV9和AAV rh10和假型化的AAV诸如AAV2/8、AAV2/5和AAV2/6。根据本发明,也可以使用能够穿过血脑屏障的AAV血清型(见例如美国专利No.9,585,971)。在优选的实施方案中,使用AAV9载体(包括AAV9的变体和假型)。
复制缺陷型重组腺病毒载体(Ad)可以以高滴度产生并且容易感染许多不同的细胞类型。大多数腺病毒载体经过工程化改造,以使转基因替换Ad E1a、E1b和/或E3基因;随后,复制缺陷型载体在人293细胞中繁殖,所述细胞以反式供应删除的基因功能。Ad载体可以在体内转导多种类型的组织,包括非分裂的分化的细胞,例如在肝、肾和肌肉中发现的细胞。常规的Ad载体具有大的携带能力。在临床试验中使用Ad载体的例子牵涉多核苷酸疗法,用于用肌内注射进行抗肿瘤免疫(Sterman et al.,Hum.Gene Ther.7:1083-9(1998))。在临床试验中使用腺病毒载体进行基因转移的其它实例包括Rosenecker et al.,Infection24:1 5-10(1996);Sterman et al.,Hum.Gene Ther.9:7 1083-1089(1998);Welsh etal.,Hum.Gene Ther.2:205-18(1995);Alvarez et al.,Hum.Gene Ther.5:597-613(1997);Topf et al.,Gene Ther.5:507-513(1998);Sterman et al.,Hum.Gene Ther.7:1083-1089(1998)。
使用包装细胞形成能够感染宿主细胞的病毒颗粒。此类细胞包括包装腺病毒的293细胞和包装逆转录病毒的ψ2细胞或PA317细胞。基因治疗中使用的病毒载体通常由生产者细胞系产生,该生产者细胞系将核酸载体包装到病毒颗粒中。载体通常含有包装和随后整合入宿主(若适用的话)所需要的最小病毒序列,由编码要表达的蛋白质的表达盒替换的其它病毒序列。缺少的病毒功能由包装细胞系反式提供。例如,用于基因治疗的AAV载体通常仅拥有来自AAV基因组的反向末端重复(ITR)序列,其是包装和整合到宿主基因组中所需要的。病毒DNA包装在细胞系中,该细胞系包含编码其它AAV基因(即rep和cap)但缺少ITR序列的辅助质粒。细胞系还用作为辅助者的腺病毒感染。辅助病毒促进AAV载体的复制和从辅助质粒表达AAV基因。由于缺少ITR序列,因此未大量包装辅助质粒。腺病毒的污染可以通过例如腺病毒比AAV更敏感的热处理来减少。
从293或杆状病毒系统中纯化AAV颗粒通常涉及产生病毒的细胞的生长,然后从细胞上清液中收集病毒颗粒或裂解细胞,并从粗裂解物中收集病毒。然后,通过本领域已知的方法纯化AAV,所述方法包括离子交换层析(例如,见美国专利7,419,817和6,989,264)、离子交换层析和CsCl密度离心(例如,PCT公开文本WO2011094198A10)、免疫亲和层析(例如,WO2016128408)或使用AVB Sepharose(例如GE Healthcare Life Sciences)的纯化。
在许多基因治疗应用中,期望基因治疗载体以高度特异性递送到特定组织类型。因此,可以通过将配体表达为与病毒外表面上的病毒壳体蛋白的融合蛋白来修饰病毒载体以对给定的细胞类型具有特异性。选择配体以对已知存在于目标细胞类型上的受体具有亲和力。例如,Han et al.,Proc.Natl.Acad.Sci.USA 92:9747-9751(1995)报告了可以对Moloney鼠白血病病毒进行修饰以表达与gp70融合的人神经生长因子(heregulin),并且该重组病毒感染某些表达人表皮生长因子受体的人乳腺癌细胞。此原理可以扩展到其它病毒-靶细胞对,其中靶细胞表达受体,并且病毒表达包含细胞表面受体配体的融合蛋白。例如,丝状噬菌体可以被工程化改造以展示对实际上任何选择的细胞受体具有特异性结合亲和力的抗体片段(例如,FAB或Fv)。尽管以上描述主要适用于病毒载体,但是相同的原理可以适用于非病毒载体。可将此类载体工程化改造以含有有利于特定靶细胞摄取的特定摄取序列。
如下文描述的,基因治疗载体可以通过对个体患者施用体内递送,通常通过系统性施用(例如,静脉内、腹膜内、肌内、皮下或颅内输注,包括直接注射入脑中)或局部施用进行。或者,可以将载体离体递送至细胞,例如从个别患者外植的细胞(例如,淋巴细胞、骨髓穿刺、组织活组织检查)或通用供体造血干细胞,然后通常将细胞再移植到患者中,通常在选择已经掺入载体的细胞后。
在某些实施方案中,直接在体内递送如本文所述的组合物(例如,多核苷酸和/或蛋白质)。可以将组合物(细胞,多核苷酸和/或蛋白质)直接施用到中枢神经系统(CNS)中,包括但不限于直接注射到脑或脊髓中。脑的一个或多个区域可以是靶定的,包括但不限于海马、黑质、Meynert基底核(NBM)、纹状体和/或皮质。作为CNS递送的备选或在CNS递送外,可以系统性施用组合物(例如,静脉内、腹膜内、心内、肌内、鞘内、皮下和/或颅内输注)。用于将如本文所述的组合物直接递送至受试者(包括直接递送入CNS)的方法和组合物包括但不限于经由针组件的直接注射(例如立体定向注射)。此类方法记载于例如美国专利号No.7,837,668;8,092,429(涉及将组合物(包括表达载体)递送至脑)和美国专利公开文本20060239966,其通过引用并入本文。
要施用的有效量会在患者与患者间并且随着施用模式和施用位点而变化。因此,施用组合物的内科医生最佳确定有效量,并且合适的剂量可以由本领域普通技术人员容易地确定。在允许足够的时间以整合和表达(例如,通常为4至15天)后,对治疗性多肽的血清或其它组织水平进行分析并与施用前的初始水平进行比较将确定施用量是否过低,在正确范围内或过高。初次和随后施用的合适方案也是可变的,但是典型的是初次施用,若必要的话随后进行后续施用。随后的施用可以以可变的间隔进行,范围为从每天到每年到每几年。
为了使用腺伴随病毒(AAV)载体直接对人脑递送本文所述的组合物,可以应用每个纹状体1x1010-5x1015个(或其间的任何值)载体基因组的剂量范围。如所述,对于其它脑结构且对于不同的递送方案,可以改变剂量。将AAV载体直接递送至脑的方法是本领域已知的。见例如美国专利No.9,089,667;9,050,299;8,337,458;8,309,355;7,182,944;6,953,575;和6,309,634。
用于诊断、研究或用于基因治疗的离体细胞转染(例如,通过将转染的细胞再输注到宿主生物体中)是本领域技术人员公知的。在一个优选的实施方案中,从受试者生物体中分离细胞,用至少一种遗传调控剂(例如阻抑物)或其组分转染,然后再输注回到受试者生物体(例如患者)中。在一个优选的实施方案中,使用AAV9递送遗传调控剂(例如阻抑物)的一种或多种核酸。在其它实施方案中,遗传调控剂(例如阻抑物)的一种或多种核酸作为mRNA递送。还优选使用带帽的mRNA来增加翻译效率和/或mRNA稳定性。特别优选的是ARCA(防反向帽类似物)帽或其变体。见美国专利7,074,596和8,153,773,通过引用完整并入本文。适用于离体转染的各种细胞类型是本领域技术人员公知的(见例如Freshney et al.,Culture of Animal Cells,A Manual of Basic Technique(第3版1994))及其中引用的参考文献,以讨论如何从患者分离和培养细胞)。
在一个实施方案中,干细胞在离体程序中用于细胞转染和基因治疗。使用干细胞的优势在于,它们可以在体外分化为其它细胞类型,或者可以引入哺乳动物(例如细胞的供体)中,在哺乳动物中它们会植入骨髓中。使用细胞因子,如GM-CSF、IFN-γ和TNF-α在体外将CD34+细胞分化为临床上重要的免疫细胞类型的方法是已知的(见Inaba et al.,J.Exp.Med.176:1693-1702(1992))。
使用已知方法分离干细胞用于转导和分化。例如,通过用结合不需要的细胞(例如CD4+和CD8+(T细胞)、CD45+(panB细胞)、GR-1(粒细胞)和Iad(分化的抗原呈递细胞)的抗体淘选骨髓细胞分离干细胞。
在一些实施方案中,也可以使用已经修饰的干细胞。例如,已经变得对凋亡具有抗性的神经元干细胞可以用作治疗组合物,其中干细胞还含有本发明的ZFP TF。对凋亡的抗性可以例如通过在干细胞中使用BAX-或BAK-特异性TALEN或ZFN(参见美国专利No.8,597,912)敲除BAX和/或BAK,或者例如再次使用胱天蛋白酶-6特异性ZFN在胱天蛋白酶中破坏的那些产生。可以用已知调节靶基因的ZFP TF或TALE TF转染这些细胞。
含有治疗性ZFP核酸的载体(例如,逆转录病毒、腺病毒、脂质体等)也可以直接施用于生物体以在体内转导细胞。或者,可以施用裸DNA。施用通过通常用于使分子与血液或组织细胞最终接触的任何途径进行,包括但不限于注射、输注、局部应用和电穿孔。施用此类核酸的合适方法是可获得的,并且是本领域技术人员公知的,并且尽管可以使用超过一种途径来施用特定的组合物,但是特定的途径通常可以比另一种途径提供更直接且更有效的反应。
例如,在美国专利No.5,928,638中公开了将DNA引入造血干细胞的方法。可用于将转基因导入造血干细胞(例如CD34+细胞)的载体包括35型腺病毒。
适用于将转基因引入免疫细胞(例如T细胞)的载体包括非整合型慢病毒载体。见例如Ory et al.(1996)Proc.Natl.Acad.Sci.USA 93:11382-11388;Dull et al.(1998)J.Virol.72:8463-8471;Zuffery et al.(1998)J.Virol.72:9873-9880;Follenzi et al.(2000)Nature Genetics 25:217-222。
药学上可接受的载体部分由所施用的特定组合物以及用于施用组合物的特定方法决定。因此,存在如下所述的极其多种合适的药物组合物制剂(见例如Remington’sPharmaceutical Sciences,第17版,1989)。
如上所述,所公开的方法和组合物可以用于任何类型的细胞,包括但不限于原核细胞、真菌细胞、古细菌细胞、植物细胞、昆虫细胞、动物细胞、脊椎动物细胞、哺乳动物细胞和人细胞。用于蛋白质表达的合适细胞系是本领域技术人员已知的,包括但不限于COS、CHO(例如,CHO-S、CHO-K1、CHO-DG44、CHO-DUXB11)、VERO、MDCK、WI38、V79、B14AF28-G3、BHK、HaK、NS0、SP2/0-Ag14、HeLa、HEK293(例如,HEK293-F、HEK293-H、HEK293-T)、perC6、昆虫细胞如草地贪夜蛾(Spodoptera fugiperda,Sf),以及真菌细胞如酿酒酵母、毕赤酵母和裂殖酵母。也可以使用这些细胞系的后代、变体和衍生物。在一个优选的实施方案中,将方法和组合物直接递送至脑细胞,例如纹状体中。
CNS病症模型
CNS病症的研究可以在动物模型系统中进行,诸如非人灵长类(例如,帕金森氏病(Johnston and Fox(2015)Curr Top Behav Neurosci 22:221-35);肌萎缩侧索硬化(Jackson et al,(2015)J.Med Primatol:44(2):66-75),亨廷顿氏病(Yang et al(2008)Nature 453(7197):921-4);阿尔茨海默氏病(Park et al(2015)Int J Mol Sci 16(2):2386-402);癫痫发作(Hsiao et al(2016)EBioMed 9:257-77)),犬(例如MPS VII(Gurdaet al(2016)Mol Ther 24(2):206-216);阿尔茨海默氏病(Schutt et al(J AlzheimersDis 52(2):433-49);癫痫发作(Varatharajah et al(2017)Int J Neural Syst 27(1):1650046))和小鼠(例如癫痫发作(Kadiyala et al(2015)Epilepsy Res 109:183-96);阿尔茨海默氏病(Li et al(2015)J Alzheimers Dis Parkin 5(3)doi 10:4172/2161-0460),(综述:Webster et al(2014)Front Genet 5art 88,doi:10.3389f/gene.2014.00088)。甚至在没有完全重演CNS疾病的动物模型时,可以使用这些模型,因为它们可以可用于研究疾病的特定症状集。模型可有助于确定本文所述的治疗方法和组合物(遗传阻抑物)的功效和安全性概况。
应用
如本文所述的遗传调控剂及其编码核酸可以用于多种应用,所述遗传调控剂包含如本文所述的DUX4、C9orf72、UBE34、Ube3a-ATS、SMN1或SMN2结合分子(例如,ZFP、TALE、CRISPR/Cas系统、Ttago等)。这些应用包括治疗方法,其中使用病毒(例如AAV)或非病毒载体将DUX4、C9orf72、UBE34、Ube3a-ATS、SMN1或SMN2结合分子(包括编码DNA结合蛋白的核酸)施用于受试者,并用于调控受试者内靶基因的表达。调控可以为阻抑的形式,例如,阻抑促成ALS或FTD疾病状态的C9orf72(例如突变体)表达或阻抑促成AS疾病状态的Ube3a-ATS表达。或者,当内源细胞基因的表达的激活或增加的表达可以改善患病状态时,调控可以为激活的形式。在进一步的实施方案中,调控可以是通过切割(例如,通过一种或多种核酸酶)阻抑,例如用于使DUX4、C9orf72、UBE34、Ube3a-ATS、SMN1或SMN2基因失活。如上所述,对于此类应用,将靶结合分子或更通常地,编码它们的核酸与药学上可接受的载体一起配制为药物组合物。
DUX4、C9orf72、UBE34、Ube3a-ATS、SMN1或SMN2结合分子,或编码它们的载体(单独或与其它合适的组分(例如脂质体、纳米颗粒或本领域已知的其它组分)组合)可以制成气雾剂制剂(即它们可以“雾化”)以通过吸入施用。可以将气雾剂制剂放入加压的可接受的推进剂中,例如二氯二氟甲烷、丙烷、氮气等。适用于肠胃外施用的制剂,诸如例如通过静脉内、肌内、皮内和皮下途径施用的制剂,包括水性和非水性等张无菌注射溶液,其可以含有抗氧化剂、缓冲剂、抑菌剂和使制剂与意图的接受者的血液等张的溶剂,以及水性和非水性无菌混悬液,其包括悬浮剂、增溶剂、增稠剂、稳定剂和防腐剂。组合物可以例如通过静脉内输注、口服、局部、腹膜内、膀胱内、颅内或鞘内施用。化合物的制剂可以在单位剂量或多剂量密封的容器中,例如安瓿和小瓶中呈现。注射溶液和悬浮液可以从先前描述的种类的无菌粉剂、颗粒剂和片剂制备。
施用于患者的剂量应足以随时间在患者中实现有益的治疗响应。剂量由所采用的特定基因靶向分子的功效和Kd、靶细胞和患者的状况以及待治疗的患者的体重或表面积决定。剂量的大小还由在特定患者中施用特定化合物或载体所伴随的任何不良副作用的存在、性质和程度决定。
以下实施例涉及本公开内容的示例性实施方案。应当理解,这仅出于示例的目的,并且可以使用其它基因调控剂(例如阻抑物),包括但不限于TALE-TF、CRISPR/Cas系统、其它ZFP、ZFN、TALEN、其它CRISPR/Cas系统、具有工程化DNA结合域的归巢内切核酸酶(大范围核酸酶)。明显的是,使用本领域技术人员已知的结合靶位点的方法可以容易地获得这些调控剂,如下文所例示的。
实施例
实施例1:人工转录因子
靶向DUX4、C9orf72、UBE34、Ube3a-ATS、SMN1、或SMN2的锌指蛋白、TALE和sgRNA基本上如按照美国专利No.6,534,261;8,586,526和美国专利公开文本No.20150056705;20110082093;20130253040;和20150335708中所述进行工程化改造。还制备了一组阻抑物,以在小鼠和人两者中靶向DUX4、C9orf72、UBE34、Ube3a-ATS、SMN1、或SMN2序列。阻抑物通过标准SELEX分析进行评估,并显示与其靶位点结合。使用接头将ZFP DNA结合域连接至转录阻抑物,其中接头具有以下氨基酸序列:LRQKDAARGS(SEQ ID NO:33)。靶向C9orf72的示例性ZFP显示在下表1中,并且所有ZFP都显示结合至它们的靶位点。
表1:C9orf72 ZFP设计
将所有阻抑转录因子(TF)可操作地连接至阻抑域(例如KRAB),以形成阻抑DUX4、C9orf72或Ube3a-ATS的TF。将TF转染到小鼠Neuro2a细胞中。24小时后,提取总RNA,并使用实时RT-qPCR监测DUX4、C9orf72或Ube3a-ATS和两种参考基因(ATP5b,RPL38)的表达。
发现TF以多种剂量响应和靶基因阻抑活性有效地阻抑DUX4、C9orf72或Ube3a-ATS表达。具体地,将C9orf72 ZFP-TF阻抑物(包括表1的ZFP)和转录阻抑域(KRAB)引入从哥伦比亚大学ALS研究获得的C9021细胞中。该系含有其正常等位基因上的5个G4C2重复序列和其扩充的等位基因上的超过145个重复序列。野生型细胞系是从NINDS获得的NDS00035,并且它在每个等位基因上含有两个G4C2重复序列。使用来自Lonza的96孔ShuttleNucleofector系统进行mRNA转染。使用Amaxa P2原代细胞Nucleofector试剂盒使用CA-137程序转染每40,000个细胞1、3、10、30、100和300ng ZFP mRNA。过夜温育后,使用Cells-to-Ct试剂盒(Thermo Fisher Scientific)从转染的细胞生成cDNA,然后使用qRT-PCR进行基因表达分析。
示例性结果显示在图2中,其中观察到野生型和突变体等位基因的阻抑。在研究总的C9orf72阻抑外,还使用“同等型特异性”RT-PCR测定法,其检测较长的mRNA信息(包含内含子1A)与野生型(较短)的mRNA信息。“同等型特异性测定法”检测较长的mRNA种类的阻抑(见图2A)。较长的mRNA同等型主要由扩充的(患病的)等位基因产生,尽管它也由野生型等位基因以小得多的程度产生。该测定法使用两个引物/探针组,其中第一组用于同等型特异性测定法中,并靶向存在于患病或扩充的同等型中的内含子区域1a(见图2A)。通过在C9系中使用此测定法,我们显示ZFP(例如75114和75115)将患病同等型阻抑超过70%(图2B至2D)。因此,较长的mRNA同等型的表达降低是来自扩充的(患病的)等位基因的mRNA表达的阻抑的指示。
为了评估野生型同等型的阻抑,使用称为“总C9”(图2A)的引物/探针组,其检测编码外显子区域8和9的mRNA。这些区域在疾病和野生型同等型两者中存在,因此在总C9测定法中在C9系中观察到的C9orf72表达的阻抑(图2B至2D)代表响应ZFP处理的疾病和野生型同等型两者的表达阻抑。因此,分析主要包含野生型同等型的野生型系中的总C9orf72mRNA水平,其中响应于ZFP-TF处理,观察到超过50%的野生型同等型的保留。
类似地,将所有激活性TF可操作地连接至激活域(例如,HSV VP16)以形成激活父本UBE34、SMCHD1、SMN1或SMN2的TF。将ZFP TF转染到小鼠Neuro2a或成纤维细胞中。24小时后,提取总RNA,并使用实时RT-qPCR监测UBE34、SMCHD1、SMN1或SMN2和两种参考基因的表达。
发现TF以多种剂量响应和靶基因阻抑活性有效地阻抑UBE34、SMCHD1、SMN1或SMN2表达。
实施例2:C9orf72阻抑的特异性
通过在C9021细胞中的微阵列分析评估表1中所示的ZFP-TF的整体特异性。简而言之,将100ng编码ZFP-TF的mRNA以生物学一式四份转染到150,000个C9021细胞中。24小时后,通过制造商的方案(Affymetrix Genechip MTA1.0)提取并处理总RNA。使用稳健的多阵列平均值(Robust Multi-array Average,RMA)标准化来自每个探针组的原始信号。使用带有“基因水平差异表达分析”选项的Transcriptome Analysis Console 3.0(Affymetrix)进行分析。将经ZFP转染的样品与已用无关ZFP-TF(不结合C9orf72靶位点)处理的样品进行比较。报告了转录物(探针集)的变化调用(call),相对于对照,平均信号差异大于2倍,且P值<0.05(单因素ANOVA分析,每个探针集的未配对T检验)。
如图3所示,在C9orf72外,SBS#75027阻抑4种基因(以圆圈显示),而SBS#75115仅阻抑C9orf72。这些结果证明了ZFP-TF对C9orf72具有高度特异性。
实施例3:小鼠神经元中的基因调控
使用CMV启动子驱动表达,将靶向小鼠DUX4、C9orf72或Ube3a-ATS的所有阻抑物克隆到rAAV2/9载体中。在HEK293T细胞中产生病毒,使用CsCl密度梯度纯化,并根据本领域已知的方法通过实时qPCR进行滴定。以3E5、1E5、3E4和1E4 VG/细胞使用纯化的病毒感染培养的原代小鼠皮质神经元。7天后,提取总RNA,并使用实时RT-qPCR监测DUX4、C9orf72或Ube3a-ATS和两种参考基因(ATP5b,EIF4a2)的表达。
发现所有编码TF的AAV载体均在宽的感染剂量范围内有效阻抑其小鼠靶标,其中一些ZFP在多剂时将靶标降低大于95%。相反,对以等同剂量测试的rAAV2/9CMV-GFP病毒或模拟物处理的神经元观察到无基因阻抑。
因此,当作为质粒、在mRNA形式、在Ad载体和/或AAV载体中配制时,如本文所述的遗传调控剂(例如阻抑物或激活物)是功能性阻抑物或激活物。
实施例4:由AAV递送的TF驱动的体内基因阻抑
将TF递送至小鼠海马以体内评估对DUX4、C9orf72或Ube3a-ATS的阻抑。简而言之,通过经由双重双侧2μL注射进行立体定向注射施用每半球的总剂量8E9 VG rAAV2/9-CMV-ZFP-TF。注射后五周将动物处死,并且将每个半球切成三段进行分析。通过实时RT-qPCR分析DUX4、C9orf72或Ube3a-ATS和ZFP-TF的表达,并相对于三种管家基因(ATP5b、EIF4a2和GAPDH)的几何平均值。
数据显示了相对于PBS治疗分组,TF能够有效阻抑其靶标。
另外,基本上如美国公开文本No.20180153921中所述,将遗传调控剂克隆到例如具有SYN1启动子或CMV启动子的AAV载体(AAV2/9,或其变体)中。包括使用的AAV载体:具有SYN1启动子的载体,该启动子驱动阻抑物的表达,所述阻抑物包含一个或多个ZFP-TF,包括表1的ZFP。通过合适的IRES或2A肽序列(例如T2A或P2A)连接两个或更多个ZFP-TF,并且以剂量1E10至1E13(例如6E11)vg/半球(对每个半球)施用于具有或没有ALS或FTD的人和非人灵长类受试者,优选对海马施用。一些受试者在任何时间再接受一剂或多剂。
结果显示,由AAV递送至脑的如本文所述的遗传阻抑物导致靶基因(例如,C9orf72)的表达降低以及ALS或FTD受试者的症状改善。
本文提及的所有专利、专利申请和出版物在此通过引用整体并入用于所有目的。
尽管为了清楚理解的目的通过示例和实例的方式详细提供了一些公开内容,但是对于本领域技术人员而言明显的是,在不脱离本公开内容的精神或范围的情况下可以进行各种改变和修改。因此,前述描述和实施例不应解释为限制性的。
Claims (21)
2.权利要求1的遗传调控剂,其中所述转录调节域包含阻抑域或激活域。
3.权利要求1所述的遗传调控剂,其中,与所述基因的野生型等位基因相比,所述基因的突变体等位基因优先被调控。
4.权利要求2所述的遗传调控剂,其中,与所述基因的野生型等位基因相比,所述基因的突变体等位基因优先被调控。
5.权利要求1-4任一项所述的遗传调控剂,其中,所述遗传调控剂包括ZFP DNA结合域和转录阻抑域。
6.权利要求1-4任一项所述的遗传调控剂,其中,所述遗传调控剂抑制所述基因的突变体等位基因至少50%。
7.权利要求5所述的遗传调控剂,其中,ZFP DNA结合域和阻抑域通过包含SEQ ID NO:33的接头连接。
8.权利要求6所述的遗传调控剂,其中,ZFP DNA结合域和阻抑域通过包含SEQ ID NO:33的接头连接。
9.多核苷酸,其编码根据权利要求1至8中任一项的遗传调控剂。
10.基因递送媒介物,其包含根据权利要求9的多核苷酸。
11.权利要求10的基因递送媒介物,其中所述基因递送媒介物包含AAV载体。
12.药物组合物,其包含一种或多种根据权利要求9的多核苷酸或一种或多种权利要求10或11的基因递送媒介物。
13.权利要求12的药物组合物,其中所述遗传调控剂包含核酸酶域,并且所述遗传调控剂切割所述C9orf72基因。
14.权利要求13的药物组合物,其还包含整合到经切割的C9orf72基因中的供体分子。
15.分离的细胞,其包含一种或多种根据权利要求1至8中任一项的遗传调控剂、一种或多种根据权利要求9的多核苷酸或一种或多种根据权利要求10或11的基因递送媒介物。
16.一种或多种权利要求1至8中任一项的遗传调控剂、一种或多种根据权利要求9的多核苷酸、或一种或多种根据权利要求10或11的基因递送媒介物在制备药物中的用途,所述药物用于调控细胞中C9orf72基因表达。
17.权利要求16的用途,其中阻抑所述C9orf72基因表达。
18.权利要求17的用途,其中阻抑C9orf72有义和反义基因表达两者。
19.权利要求16-18任一项所述的用途,其中所述药物通过脑室内、鞘内、颅内,眶后、静脉内、鼻内或脑池内途径施用。
20.一种或多种根据权利要求1至8中任一项的遗传调控剂、一种或多种根据权利要求9的多核苷酸、或一种或多种根据权利要求10或11的基因递送媒介物在制备药物中的用途,所述药物用于治疗和/或预防受试者中的肌萎缩侧索硬化(amyotrophic lateralsclerosis)或额颞痴呆(frontotemporal dementia)。
21.试剂盒,其包含一种或多种根据权利要求1至8中任一项的遗传调控剂、一种或多种根据权利要求9的多核苷酸、一种或多种根据权利要求10或11的基因递送媒介物,和/或一种或多种根据权利要求12-14任一项的药物组合物,以及任选地使用说明。
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762576584P | 2017-10-24 | 2017-10-24 | |
US62/576,584 | 2017-10-24 | ||
PCT/US2018/057312 WO2019084140A1 (en) | 2017-10-24 | 2018-10-24 | METHODS AND COMPOSITIONS FOR THE TREATMENT OF RARE DISEASES |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111526720A CN111526720A (zh) | 2020-08-11 |
CN111526720B true CN111526720B (zh) | 2023-01-31 |
Family
ID=66246683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880069365.6A Active CN111526720B (zh) | 2017-10-24 | 2018-10-24 | 用于治疗罕见病的方法和组合物 |
Country Status (9)
Country | Link |
---|---|
US (1) | US20190167815A1 (zh) |
EP (1) | EP3716767A4 (zh) |
JP (1) | JP7381476B2 (zh) |
KR (2) | KR102705509B1 (zh) |
CN (1) | CN111526720B (zh) |
AU (1) | AU2018355343A1 (zh) |
CA (1) | CA3079727A1 (zh) |
IL (1) | IL273959A (zh) |
WO (1) | WO2019084140A1 (zh) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2016270587B2 (en) | 2015-05-29 | 2020-12-24 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a disruption in a C9ORF72 locus |
WO2018064600A1 (en) | 2016-09-30 | 2018-04-05 | Regeneron Pharmaceuticals, Inc. | Non-human animals having a hexanucleotide repeat expansion in a c9orf72 locus |
MY201938A (en) | 2017-08-04 | 2024-03-25 | Skyhawk Therapeutics Inc | Methods and compositions for modulating splicing |
JP2021513866A (ja) * | 2018-02-27 | 2021-06-03 | ザ・ユニヴァーシティ・オヴ・ノース・キャロライナ・アト・チャペル・ヒル | アンジェルマン症候群を処置する方法および組成物 |
MX2021007400A (es) | 2018-12-20 | 2021-07-15 | Regeneron Pharma | Expansion de repeticiones mediada por nucleasas. |
EP3920915A4 (en) | 2019-02-05 | 2022-10-05 | Skyhawk Therapeutics, Inc. | METHODS AND COMPOSITIONS FOR MODULATING SPLICE |
EP3920928A4 (en) | 2019-02-06 | 2022-09-28 | Skyhawk Therapeutics, Inc. | METHODS AND COMPOSITIONS FOR MODULATION OF SPLICING |
SG11202111443SA (en) * | 2019-04-23 | 2021-11-29 | Sangamo Therapeutics Inc | Modulators of chromosome 9 open reading frame 72 gene expression and uses thereof |
WO2021159008A2 (en) | 2020-02-07 | 2021-08-12 | Maze Therapeutics, Inc. | Compositions and methods for treating neurodegenerative diseases |
GB202010075D0 (en) | 2020-07-01 | 2020-08-12 | Imp College Innovations Ltd | Therapeutic nucleic acids, peptides and uses |
WO2022104381A1 (en) * | 2020-11-13 | 2022-05-19 | The Board Of Trustees Of The Leland Stanford Junior University | A MINIMAL CRISPRi/a SYSTEM FOR TARGETED GENOME REGULATION |
MX2023011794A (es) | 2021-04-06 | 2024-01-08 | Maze Therapeutics Inc | Composiciones y métodos para el tratamiento de la proteinopatía de proteina de union a acido desoxirribonucleico tar 43 (tdp-43). |
GB202105455D0 (en) | 2021-04-16 | 2021-06-02 | Ucl Business Ltd | Composition |
WO2024077109A1 (en) | 2022-10-05 | 2024-04-11 | Maze Therapeutics, Inc. | Unc13a antisense oligonucleotides and uses thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2627665B1 (en) * | 2010-10-12 | 2015-12-16 | The Children's Hospital Of Philadelphia | Methods and compositions for treating hemophilia B |
EP3498833B1 (en) * | 2011-09-21 | 2023-08-16 | Sangamo Therapeutics, Inc. | Methods and compositions for regulation of transgene expression |
WO2014062686A1 (en) * | 2012-10-15 | 2014-04-24 | Isis Pharmaceuticals, Inc. | Methods for modulating c9orf72 expression |
NZ719477A (en) * | 2013-11-11 | 2022-05-27 | Sangamo Therapeutics Inc | Methods and compositions for treating huntington’s disease |
KR20160097338A (ko) * | 2013-12-12 | 2016-08-17 | 더 브로드 인스티튜트, 인코퍼레이티드 | 뉴클레오티드 반복 장애에서의 crispr-cas 시스템의 조성물 및 방법 및 용도 |
WO2015153760A2 (en) * | 2014-04-01 | 2015-10-08 | Sangamo Biosciences, Inc. | Methods and compositions for prevention or treatment of a nervous system disorder |
EP3151846A4 (en) * | 2014-06-05 | 2017-12-27 | Sangamo BioSciences, Inc. | Methods and compositions for nuclease design |
US11390908B2 (en) * | 2015-09-02 | 2022-07-19 | University Of Massachusetts | Detection of gene loci with CRISPR arrayed repeats and/or polychromatic single guide ribonucleic acids |
WO2017053753A1 (en) * | 2015-09-23 | 2017-03-30 | Sangamo Biosciences, Inc. | Htt repressors and uses thereof |
SG11201804372PA (en) * | 2015-11-23 | 2018-06-28 | Univ California | Tracking and manipulating cellular rna via nuclear delivery of crispr/cas9 |
EP3394260B1 (en) * | 2015-12-23 | 2021-02-17 | CRISPR Therapeutics AG | Materials and methods for treatment of amyotrophic lateral sclerosis and/or frontal temporal lobular degeneration |
AU2017248637A1 (en) * | 2016-04-13 | 2018-09-27 | Ionis Pharmaceuticals, Inc. | Methods for reducing C9ORF72 expression |
AU2017312132A1 (en) * | 2016-08-19 | 2019-03-21 | Bluebird Bio, Inc. | Genome editing enhancers |
-
2018
- 2018-10-24 CN CN201880069365.6A patent/CN111526720B/zh active Active
- 2018-10-24 KR KR1020207013378A patent/KR102705509B1/ko active IP Right Grant
- 2018-10-24 AU AU2018355343A patent/AU2018355343A1/en active Pending
- 2018-10-24 US US16/169,420 patent/US20190167815A1/en not_active Abandoned
- 2018-10-24 KR KR1020247029947A patent/KR20240141209A/ko active Search and Examination
- 2018-10-24 EP EP18871039.6A patent/EP3716767A4/en active Pending
- 2018-10-24 CA CA3079727A patent/CA3079727A1/en active Pending
- 2018-10-24 WO PCT/US2018/057312 patent/WO2019084140A1/en unknown
- 2018-10-24 JP JP2020543237A patent/JP7381476B2/ja active Active
-
2020
- 2020-04-13 IL IL273959A patent/IL273959A/en unknown
Also Published As
Publication number | Publication date |
---|---|
US20190167815A1 (en) | 2019-06-06 |
EP3716767A4 (en) | 2021-11-24 |
JP2021500079A (ja) | 2021-01-07 |
KR20200077529A (ko) | 2020-06-30 |
WO2019084140A1 (en) | 2019-05-02 |
CN111526720A (zh) | 2020-08-11 |
EP3716767A1 (en) | 2020-10-07 |
KR20240141209A (ko) | 2024-09-25 |
CA3079727A1 (en) | 2019-05-02 |
KR102705509B1 (ko) | 2024-09-12 |
AU2018355343A1 (en) | 2020-05-07 |
JP7381476B2 (ja) | 2023-11-15 |
IL273959A (en) | 2020-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111526720B (zh) | 用于治疗罕见病的方法和组合物 | |
US11110154B2 (en) | Methods and compositions for treating Huntington's Disease | |
US20200109406A1 (en) | Engineered genetic modulators | |
US20230270774A1 (en) | Tau modulators and methods and compositions for delivery thereof | |
US20200101133A1 (en) | Methods and compositions for modulation of tau proteins | |
US20220064237A1 (en) | Htt repressors and uses thereof | |
RU2789459C2 (ru) | Модуляторы тау и способы и композиции для их доставки |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |