Nothing Special   »   [go: up one dir, main page]

CN111507831A - 信贷风险自动评估方法和装置 - Google Patents

信贷风险自动评估方法和装置 Download PDF

Info

Publication number
CN111507831A
CN111507831A CN202010474118.3A CN202010474118A CN111507831A CN 111507831 A CN111507831 A CN 111507831A CN 202010474118 A CN202010474118 A CN 202010474118A CN 111507831 A CN111507831 A CN 111507831A
Authority
CN
China
Prior art keywords
features
credit
algorithm
information
original
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010474118.3A
Other languages
English (en)
Inventor
李少帅
张博
张胜庆
曹家楷
张帆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changan Automobile Finance Co ltd
Original Assignee
Changan Automobile Finance Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changan Automobile Finance Co ltd filed Critical Changan Automobile Finance Co ltd
Priority to CN202310335712.8A priority Critical patent/CN116342259A/zh
Priority to CN202010474118.3A priority patent/CN111507831A/zh
Publication of CN111507831A publication Critical patent/CN111507831A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q40/00Finance; Insurance; Tax strategies; Processing of corporate or income taxes
    • G06Q40/03Credit; Loans; Processing thereof

Landscapes

  • Business, Economics & Management (AREA)
  • Accounting & Taxation (AREA)
  • Finance (AREA)
  • Engineering & Computer Science (AREA)
  • Development Economics (AREA)
  • Economics (AREA)
  • Marketing (AREA)
  • Strategic Management (AREA)
  • Technology Law (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Financial Or Insurance-Related Operations Such As Payment And Settlement (AREA)

Abstract

本发明实施例提供一种信贷风险自动评估方法和装置,该方法包括基于用户提交的基本身份信息与授权信息,获取用户的信贷信息,其中,信贷信息包括基础信贷申请信息、行为表现信息和金融产品相关信息;提取信贷信息中的N个原始特征,对N个原始特征采用K‑S值最大的分箱算法进行处理,得到分箱结果特征;对分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征;将衍生出的交叉特征、分箱结果特征和N个原始特征进行结合,剔除无效特征,得到重要特征;将重要特征输入预设的信用评分等级模型,得到所述用户的信用等级。本发明实施例提供的方法和装置,实现了提高智能风控系统的算法的召回率和准确率。

Description

信贷风险自动评估方法和装置
技术领域
本发明涉及大数据风控技术领域,尤其涉及一种信贷风险自动评估方法和装置。
背景技术
传统信贷审批严重依赖于人工审核,一方面银行等出借方要耗费大量的人力物力进行资料审查、电调走访等,成本极高,另一方面个人用户/法人用户等借贷方从提交信贷申请到获得审批结果往往要耗费数周,体验极差。伴随着人工智能技术的发展,智能风控系统开始在信贷领域崭露头角,且有逐步替换人工审核的趋势,智能风控系统通过聚合用户基础属性数据、历史信贷行为数据、社交行为数据、消费行为数据、出行数据、运营商数据等等,从多个维度全面衡量用户的信贷风险,用户只需提交身份证号、手机号等基本属性信息,即可在几分钟甚至几秒钟内获得信贷审批结果,高效快捷,智能风控系统可显著提高出借方的业务效率,降低出借方的运营成本,同时提升信贷用户的信贷体验。
目前智能风控系统的痛点与难点是如何使用好的算法有效提升区分用户能力,即如何有效提升高信用风险用户的识别率,同时避免误伤低风险用户,也就是如何同时提升算法的召回率和准确率,从而保证出借方利益的最大化。
因此,如何避免现有的智能风控系统的算法的召回率和准确率较低的情况,仍然是本领域技术人员亟待解决的问题。
发明内容
本发明实施例提供一种信贷风险自动评估方法和装置,用以解决现有的智能风控系统的算法的召回率和准确率较低的问题。
第一方面,本发明实施例提供一种信贷风险自动评估方法,包括:
基于用户提交的基本身份信息与授权信息,获取用户的信贷信息,其中,所述信贷信息包括基础信贷申请信息、行为表现信息和金融产品相关信息;
提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数;
对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征;
将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征;
将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级。
优选地,该方法中,所述提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数,具体包括:
提取所述信贷信息中的所有N种属性信息,形成N个原始特征;
基于如下公式对所述N个原始特征进行K-S值最大的分箱算法处理:
Figure BDA0002515276150000021
其中,{f1,f2,f3,…,fi,…,fN}为所述N个原始特征的集合,fi为所述N个原始特征中的第i个原始特征,
Figure BDA0002515276150000022
为分箱结果特征的集合,fi cut为对应于原始特征fi的分箱结果,Fcut_bin为K-S值最大的分箱算法。
优选地,该方法中,所述对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征,具体包括:
基于如下公式对所述分箱结果特征进行交叉特征衍生算法处理:
Figure BDA0002515276150000024
其中,
Figure BDA0002515276150000025
为分箱结果特征的集合,
Figure BDA0002515276150000026
为衍生出的交叉特征的集合,T为正整数,Pgen为交叉特征衍生算法。
优选地,该方法中,所述将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征,具体包括:
将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,得到结合后特征;
再采用卡方验证算法、信息增益算法、IV值算法、梯度提升树算法、特征PSI指数算法、特征方差值算法、皮尔逊相关系数算法和最大信息系数算法中的任一种算法或者任意种算法的组合进行所述结合后特征的重要性评估;
基于所述评估结果,剔除无效特征,保留重要特征。
优选地,该方法中,所述将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级,具体包括:
将所述重要特征输入基于LightGBM算法的分析模型,输出所述用户为易贷后逾期违约的概率为p,所述用户为不易贷后逾期违约的概率为1-p;
其中,所述基于LightGBM算法的分析模型是基于10折交叉验证方法进行训练的,训练完成后得到10个基本分析模型组成所述基于LightGBM算法的分析模型,p是所述10个基本分析模型输出的10个基本用户为易贷后逾期违约的概率的平均值;
基于公式Odds=p/(1-p)确定贷后逾期违约比例指数odds;
基于公式Score=A-Blog(Odds)确定所述用户的信用评分Score,其中,A和B为基于预设特定贷后逾期违约比例指数θ0、对应于θ0的信用评分数值P0以及θ0翻番对应的信用评分降低数值Pd确定的常数;
基于所述用户的信用评分以及信用等级对应评分的划分区间,确定所述用户的信用等级。
优选地,该方法中,所述A和B为基于预设特定贷后逾期违约比例指数θ0、对应于θ0的信用评分数值P0以及θ0翻番对应的信用评分降低数值Pd确定的常数,具体包括:
设定θ0=20,P0=600,Pd=50,基于如下公式确定A和B:
Figure BDA0002515276150000031
A=P0+Blog(θ0)
对应地,信用等级对应评分的划分区间为:
第一风险等级对应的信用评分的区间为[0,430);
第二风险等级对应的信用评分的区间为[430,630);
第三风险等级对应的信用评分的区间为[630,690);
第四风险等级对应的信用评分的区间为[690,710);
第五风险等级对应的信用评分的区间为[710,)。
第二方面,本发明实施例提供一种信贷风险自动评估装置,包括:
获取单元,用于基于用户提交的基本身份信息与授权信息,获取用户的信贷信息,其中,所述信贷信息包括基础信贷申请信息、行为表现信息和金融产品相关信息;
特征单元,用于提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数;
衍生单元,用于对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征;
结合单元,用于将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征;
评级单元,用于将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级。
优选地,该装置中,所述特征单元,具体用于,
提取所述信贷信息中的所有N种属性信息,形成N个原始特征;
基于如下公式对所述N个原始特征进行K-S值最大的分箱算法处理:
Figure BDA0002515276150000041
其中,{f1,f2,f3,...,fi,...,fN}为所述N个原始特征的集合,fi为所述N个原始特征中的第i个原始特征,
Figure BDA0002515276150000042
为分箱结果特征的集合,fi cut为对应于原始特征fi的分箱结果,Fcut_bin为K-S值最大的分箱算法。
第三方面,本发明实施例提供一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,所述处理器执行所述程序时实现如第一方面所提供的信贷风险自动评估方法的步骤。
第四方面,本发明实施例提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如第一方面所提供的信贷风险自动评估方法的步骤。
本发明实施例提供的方法和装置,通过将从用户的信贷信息中提取原始特征,然后将原始特征进行K-S值最大的分箱算法处理得到分箱结果特征,再将分箱结果特征进行交叉特征衍生算法处理得到衍生出的交叉特征,最后将原始特征、分箱结果特征和衍生出的交叉特征进行结合并剔除无效特征后得到重要特征输入预设的信用评分等级模型,得到用户的信用等级。本发明实施例创造性地将原始特征、分箱结果特征和衍生出的交叉特征进行结合,且分箱算法采用的是K-S值最大的分箱算法,提高了风险评估算法区分好坏用户的能力。因此,本发明提供的方法和装置,实现了提高智能风控系统的算法的召回率和准确率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例提供的信贷风险自动评估方法的流程示意图;
图2为本发明实施例提供的信贷风险自动评估装置的结构示意图;
图3为本发明实施例提供的信贷风险自动评估系统的工作流程图;
图4为本发明实施例提供的系统的ROC曲线图;
图5为本发明实施例提供的系统稳定性测试结果图;
图6为本发明实施例提供的电子设备的实体结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有付出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
现有的智能风控系统普遍存在算法的召回率和准确率低下,不能较好的区分用户是否有潜在违约风险的问题。对此,本发明实施例提供了一种信贷风险自动评估方法。图1为本发明实施例提供的信贷风险自动评估方法的流程示意图,如图1所示,该方法包括:
步骤110,基于用户提交的基本身份信息与授权信息,获取用户的信贷信息,其中,所述信贷信息包括基础信贷申请信息、行为表现信息和金融产品相关信息。
具体地,用户在进行风险评估时首先会提交自身的基本身份信息,所述基本身份信息通常包括用户的姓名、身份证号和手机号,然后在用户授权通过的情况下,通过用户的身份证号解析出用户的性别和年龄,再基于用户的身份证号和手机号调取用户征信行为表现数据以及用户在第三方平台行为表现数据,上述数据的总和即为用户的信贷信息。所述信贷信息分为三类,包括基础信贷申请信息、行为表现信息和金融产品相关信息。其中,所述基础信贷申请信息包括用户的年龄、性别、婚否,收入水平,教育水平等等;所述行为表现信息包括多头借贷意向数据、历史逾期表现数据、银行卡数据、信用卡数据、担保人数据、资产处置数据等等;所述金融产品相关信息包括金融产品利率、贷款金额、贷款期数等等。
步骤120,提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数。
具体地,从所述信贷信息中提取原始特征,其中信贷信息中的每一个属性数据都对应于一个原始特征。具体地,上述属性分别从三类信息中提取,即基础信贷申请信息、行为表现信息和金融产品相关信息这三类。基础信贷申请信息中的属性包括:用户的姓名,身份证号,手机号,婚姻状况,通讯地址,户籍地址,用户申请贷款时所在的省、市、区域,性别,年龄,学历,最高学位,是否本地户口,单位所属行业,工作年限(现单位),本人月收入,家庭月支出;行为表现信息中的属性包括:信用卡产品的最近6个月的平均额度使用率,最近6个月内信贷产品的最大逾期期数,最近12个月内信贷产品的最大逾期期数,最近24个月内信贷产品的最大逾期期数,所有信贷产品最大账龄,最近6个月内信贷产品累计逾期次数,最近12个月内信贷产品累计逾期次数,最近24个月内信贷产品累计逾期次数,最近3个月信贷审批查询次数,最近6个月信贷审批查询次数,最近12个月信贷审批查询次数,用户(征信报告)是否有征信,用户贷款当前逾期期数,用户(征信报告)贷款状态,用户信用卡当期逾期期数,用户(征信报告)信用卡状态,用户近24个月贷款最高逾期期数,用户近24个月贷款累计逾期期数,用户近24个月信用卡最高逾期期数,用户近24个月信用卡累计逾期期数,额度使用率超过80%的信用卡的张数,用户呆账信息汇总笔数,用户资产处置信息汇总笔数,用户是否存在强制执行记录,用户是否存在行政处罚记录,贷款历史逾期比例,单张信用卡历史逾期比例,多张信用卡历史逾期比例,用户贷款月负债,信用卡产品最大账龄(信用卡产品包括贷记卡、准贷记卡),住房贷款笔数,信用卡产品的最近6个月的平均额度使用率(授信概要)(信用卡产品包括贷记卡、准贷记卡),最近24个月内贷款产品的最大逾期期数(不考虑呆账),最近24个月内单个贷款产品的累计逾期期数(不考虑呆账),担保贷款五级分类,最近90天贷款查询次数,,最近180天贷款查询次数,最近90天贷款查询平台数,最近180天贷款查询平台数,信用卡总账户数,信用卡负债总额,信用卡最近一次逾期4期及以上距今月数,最近9个月信贷审批查询次数,最近3个月信贷审批查询机构数,最近6个月信贷审批查询机构数,最近9个月信贷审批查询机构数,最近12个月信贷审批查询机构数,最近3-12个月信贷审批查询次数,最近12个月新开账户数,最近12个月综合信贷审批查询次数,所有消费贷款笔数,所有消费贷款总金额,未结清消费贷款笔数,未结清消费贷款总金额,信用卡账户状态止付,信用卡账户状态冻结,贷款五级分类,保证人代偿,担保五级分类,最近12个月内的最大逾期期数,未结清汽车贷款笔数,手机在网时间,手机在网状态,手机卡类型,手机三要素检测,手机号所属省、市,用户是否为法院失信人,用户是否为法院被执行人,最近7天用户贷款申请平台数,3个月内用户手机号作为联系人手机号出现的次数,3个月内身份证关联多少个申请信息,7天内身份证关联多少个申请信息,7天内用户手机号作为联系人手机号出现的次数;金融产品相关信息中的属性包括:贷款产品收益率,贷款产品贴息金额,贷款产品执行利率,贷款金额,贷款期数,首付比例,首付金额。将上述每一个属性作为用户的一个原始特征,所有属性组成用户的原始特征集合。此处需要说明的是,上述原始特征中存在文本离散型原始特征,如性别、婚否、学历、学位、客户所属省、市、区域、是否本地户口、单位所属行业、用户(征信报告)是否有征信、用户是否存在行政处罚记录、用户是否存在强制执行记录、用户是否为法院失信人、用户是否为法院被执行人等,该类原始特征要进行标签编码及独热编码,然后转换为数字型离散特征。然后,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为原始特征的总数且为正整数。分箱算法有多种处理方式,而此处采用K-S值最大的分箱算法进行原始特征的处理,是为了用户风险评估结果能更准确的区分易逾期违约用户和不易逾期违约用户。
步骤130,对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征。
具体地,然后将分箱结果特征输入到交叉特征衍生模型进行交叉特征衍生算法处理,输出为衍生出的交叉特征。
步骤140,将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征。
具体地,将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,然后剔除无效特征。此处剔除无效特征的常用做法是采用卡方验证算法、信息增益算法、IV值算法、梯度提升树算法、特征PSI指数算法、特征方差值算法、皮尔逊相关系数算法和最大信息系数算法等等进行特征重要性评估,可以是采用其中一种算法进行评估,也可以是任意几种算法结合评估,即计算特征的预测能力的强弱,然后根据预设的重要性阈值,计算出的预测能力值超过重要性阈值的特征作为重要特征予以保留,而计算出的预测能力值没超过重要性阈值的特征作为无效特征予以剔除,此处不具体限定选用哪些重要性评估算法。
步骤150,将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级。
具体地,将重要特征输入预先构建好的信用评分等级模型,得到所述用户的信用等级。而预先构建好的信用评分等级模型也是在大量实验的基础上,设置的该模型的各个参数。此处,输出的用户的信用等级分为五类,第一风险等级、第二风险等级、第三风险等级、第四风险等级和第五风险等级,第一风险等级触发自动拒绝响应,即认为该用户其极大概率上会发生贷后逾期违约,所以直接拒绝其信贷申请;第二风险等级触发建议人工审慎审核响应,即认为该用户大概率会发生贷后违约,故提醒人工审慎审核,并同步传递用户的风险点作为人工参考;第三风险等级触发建议人工常规审核响应,即认为该用户一定概率上会发生贷后违约,故提醒人工常规核实,并同步传递用户的风险点作为人工参考;第四风险等级触发建议人工快速通过响应,即认为该用户为小概率会发生贷后违约,故提醒人工快速通过其审核,并同步传递用户的风险点作为人工参考;第五风险等级触发自动通过响应,即认为该用户信用资质极好,极小概率上会发生贷后逾期违约,所以直接通过其信贷申请。
本发明实施例提供的方法,通过将从用户的信贷信息中提取原始特征,然后将原始特征进行K-S值最大的分箱算法处理得到分箱结果特征,再将分箱结果特征进行交叉特征衍生算法处理得到衍生出的交叉特征,最后将原始特征、分箱结果特征和衍生出的交叉特征进行结合并剔除无效特征后得到重要特征输入预设的信用评分等级模型,得到用户的信用等级。本发明实施例创造性地将原始特征、分箱结果特征和衍生出的交叉特征进行结合,且分箱算法采用的是K-S值最大的分箱算法,提高了风险评估算法区分好坏用户的能力。因此,本发明提供的方法,实现了提高智能风控系统的算法的召回率和准确率。
基于上述实施例,该方法中,所述提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数,具体包括:
提取所述信贷信息中的所有N种属性信息,形成N个原始特征;
基于如下公式对所述N个原始特征进行K-S值最大的分箱算法处理:
Figure BDA0002515276150000101
其中,{f1,f2,f3,...,fi,...,fN}为所述N个原始特征的集合,fi为所述N个原始特征中的第i个原始特征,
Figure BDA0002515276150000102
为分箱结果特征的集合,fi cut为对应于原始特征fi的分箱结果,Fcut_bin为K-S值最大的分箱算法。
具体地,将信贷信息中的所有属性信息提取出来,有N种属性信息,形成N个原始特征:f1,f2,f3,...,fN。然后,将N个原始特征输入K-S值最大的分箱模型,采用K-S值最大的分箱算法进行处理,输出N个分箱结果特征:
Figure BDA0002515276150000103
上述公式中的Fcut_bin为K-S值最大的分箱算法,输出的分箱结果特征fi cut是对应于原始特征fi经过K-S值最大的分箱算法处理的输出。
基于上述任一实施例,该方法中,所述对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征,具体包括:
基于如下公式对所述分箱结果特征进行交叉特征衍生算法处理:
Figure BDA0002515276150000104
其中,
Figure BDA0002515276150000105
为分箱结果特征的集合,
Figure BDA0002515276150000106
为衍生出的交叉特征的集合,T为正整数,Pgen为交叉特征衍生算法。
具体地,将分箱结果特征集合输入交叉特征衍生模型进行交叉特征衍生算法处理,输出衍生出的交叉特征。此处优选贪婪式算法进行交叉特征衍生,即采取贪婪式算法对特征分箱结果进行笛卡尔积计算。
基于上述任一实施例,该方法中,所述将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征,具体包括:
将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,得到结合后特征;
再采用卡方验证算法、信息增益算法、IV值算法、梯度提升树算法、特征PSI指数算法、特征方差值算法、皮尔逊相关系数算法和最大信息系数算法中的任一种算法或者任意种算法的组合进行所述结合后特征的重要性评估;
基于所述评估结果,剔除无效特征,保留重要特征。
具体地,将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,得到结合后特征
Figure BDA0002515276150000111
其中,f1,f2,f3,...,fN为N个原始特征,
Figure BDA0002515276150000112
为T个衍生出的交叉特征,
Figure BDA0002515276150000113
为N个分箱结果特征,其中,N为原始特征的总个数,T为衍生出的交叉特征的总个数,N和T均为正整数。然后剔除所述结合后特征中的无效特征。此处剔除无效特征的做法是卡方验证算法、信息增益算法、IV值算法、梯度提升树算法、特征PSI指数算法、特征方差值算法、皮尔逊相关系数算法和最大信息系数算法中的任一种算法或者任意种算法的组合进行所述结合后特征的重要性评估,事实上还有其他没有列举出的判定结合后特征的重要性的算法,加上没有列举的其他算法,可以形成很多种算法或者算法的组合来评估特征重要性,即计算特征的预测能力的强弱,然后根据预设的重要性阈值,将计算出的预测能力值超过重要性阈值的特征作为重要特征予以保留,将计算出的预测能力值没超过重要性阈值的特征作为无效特征予以剔除。
基于上述任一实施例,该方法中,所述将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级,具体包括:
将所述重要特征输入基于LightGBM算法的分析模型,输出所述用户为易贷后逾期违约的概率为p,所述用户为不易贷后逾期违约的概率为1-p;
其中,所述基于LightGBM算法的分析模型是基于10折交叉验证方法进行训练的,训练完成后得到10个基本分析模型组成所述基于LightGBM算法的分析模型,p是所述10个基本分析模型输出的10个基本用户为易贷后逾期违约的概率的平均值;
基于公式Odds=p/(1-p)确定贷后逾期违约比例指数odds;
基于公式Score=A-Blog(Odds)确定所述用户的信用评分Score,其中,A和B为基于预设特定贷后逾期违约比例指数θ0、对应于θ0的信用评分数值P0以及θ0翻番对应的信用评分降低数值Pd确定的常数;
基于所述用户的信用评分以及信用等级对应评分的划分区间,确定所述用户的信用等级。
具体地,本发明实施例提供的信用评分等级模型的构建基于LightGBM集成学习算法,LightGBM是在GBDT算法框架下的一种改进实现,是一种基于决策树算法的快速、分布式、高性能的GBDT框架,面对高维度大数据时,可显著提高GBDT框架算法的效率和可扩展性,将用户的特征(即剔除无效特征后的重要特征)输入到基于LightGBM算法的分析模型后,基于LightGBM算法的分析模型会输出用户为正类(即认为用户极大概率上会发生贷后逾期违约)的概率p(取值范围为0-1),则用户为负类(用户为正常用户,极小概率会发生贷后逾期违约)的概率为1-p。其中,所述基于LightGBM算法的分析模型是基于10折交叉验证方法进行训练的,训练完成后得到10个基本分析模型组成所述基于LightGBM算法的分析模型,p是所述10个基本分析模型输出的10个基本用户为易贷后逾期违约的概率的平均值。由于该基于LightGBM算法的分析模型由采用10折交叉验证方法进行训练得到的10个基本分析模型组成,故该基于LightGBM算法的分析模型在保证极高准确率和召回率的前提下,相比于单分析模型而言,具有更高的模型稳定性和鲁棒性,然后,基于如下公式进一步得到贷后逾期违约比例指数odds:Odds=p/(1-p),那么用户的信用评分Score可以通过如下公式确定:Score=A-Blog(Odds),其中,A为补偿常数,B为刻度常数,A和B通过预设特定贷后逾期违约比例指数θ0、对应于θ0的信用评分数值P0以及θ0翻番对应的信用评分降低数值Pd确定。计算完用户的信用评分后,根据信用等级对应评分的划分区间,就可以确定用户的信用等级。
基于上述任一实施例,该方法中,所述所述A和B为基于预设特定贷后逾期违约比例指数θ0、对应于θ0的信用评分数值P0以及θ0翻番对应的信用评分降低数值Pd确定的常数,具体包括:
设定θ0=20,P0=600,Pd=50,基于如下公式确定A和B:
Figure BDA0002515276150000131
A=P0+Blog(θ0)
对应地,信用等级对应评分的划分区间为:
第一风险等级对应的信用评分的区间为[0,430);
第二风险等级对应的信用评分的区间为[430,630);
第三风险等级对应的信用评分的区间为[630,690);
第四风险等级对应的信用评分的区间为[690,710);
第五风险等级对应的信用评分的区间为[710,)。
具体地,通过大量的实验样本发现,贷后逾期违约比例在20左右,所以本发明实施例设定预设特定贷后逾期违约比例指数θ0为20,然后设定预设特定贷后逾期违约比例指数θ0对应的信用评分数值P0为600分,再设定θ0翻番对应的信用评分降低数值Pd为50分。由于设定特定贷后逾期违约比例指数θ0为20,θ0对应的信用评分数值P0为600,θ0翻番对应的信用评分降低数值Pd为50,将上述三个值带入以下两个公式Odds=p/(1-p)和Score=A-Blog(Odds)得到以下两个等式:
P0=A-Blog(θ0)
P0-Pd=A-Blog(2θ0)
解上述两个方程,可以得到:
Figure BDA0002515276150000132
A=P0+Blog(θ0)
对应地,表1为信用等级对应评分的划分区间表,如表1所示,可知本发明实施例提供的信用等级对应评分的划分区间:
表1信用等级对应评分的划分区间
信用等级 分数区间
L<sub>reject</sub> [0,430)
L<sub>careful</sub> [430,630)
<sub>common</sub> [630,690)
L<sub>low</sub> [690,710)
L<sub>bypass</sub> [710,)
表1中,第一风险等级为Lreject,表示认为该用户其极大概率上会发生贷后逾期违约,所以直接拒绝其信贷申请;第二风险等级为Lcareful,表示认为该用户大概率会发生贷后违约,故提醒人工审慎审核,并同步传递用户的风险点作为人工参考;第三风险等级为Lcommon,表示认为该用户一定概率上会发生贷后违约,故提醒人工常规核实,并同步传递用户的风险点作为人工参考;第四风险等级为Llow,表示认为该用户为小概率会发生贷后违约,故提醒人工快速通过其审核,并同步传递用户的风险点作为人工参考;第五风险等级为Lbypass,表示认为该用户信用资质极好,极小概率上会发生贷后逾期违约,所以直接通过其信贷申请。
基于上述任一实施例,本发明实施例提供一种信贷风险自动评估装置,图2为本发明实施例提供的信贷风险自动评估装置的结构示意图。如图2所示,该装置包括获取单元210、特征单元220、衍生单元230、结合单元240和评级单元250,其中,
所述获取单元210,用于基于用户提交的基本身份信息与授权信息,获取用户的信贷信息,其中,所述信贷信息包括基础信贷申请信息、行为表现信息和金融产品相关信息;
所述特征单元220,用于提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数;
所述衍生单元230,用于对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征;
所述结合单元240,用于将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征;
所述评级单元250,用于将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级。
本发明实施例提供的装置,通过将从用户的信贷信息中提取原始特征,然后将原始特征进行K-S值最大的分箱算法处理得到分箱结果特征,再将分箱结果特征进行交叉特征衍生算法处理得到衍生出的交叉特征,最后将原始特征、分箱结果特征和衍生出的交叉特征进行结合并剔除无效特征后得到重要特征输入预设的信用评分等级模型,得到用户的信用等级。本发明实施例创造性地将原始特征、分箱结果特征和衍生出的交叉特征进行结合,且分箱算法采用的是K-S值最大的分箱算法,提高了风险评估算法区分好坏用户的能力。因此,本发明提供的装置,实现了提高智能风控系统的算法的召回率和准确率。
基于上述任一实施例,该装置中,所述特征单元,具体用于,
提取所述信贷信息中的所有N种属性信息,形成N个原始特征;
基于如下公式对所述N个原始特征进行K-S值最大的分箱算法处理:
Figure BDA0002515276150000151
其中,{f1,f2,f3,…,fi,…,fN}为所述N个原始特征的集合,fi为所述N个原始特征中的第i个原始特征,
Figure BDA0002515276150000152
为分箱结果特征的集合,fi cut为对应于原始特征fi的分箱结果,Fcut_bin为K-S值最大的分箱算法。
基于上述任一实施例,该装置中,所述衍生单元,具体用于,
基于如下公式对所述分箱结果特征进行交叉特征衍生算法处理:
Figure BDA0002515276150000153
其中,
Figure BDA0002515276150000154
为分箱结果特征的集合,
Figure BDA0002515276150000155
为衍生出的交叉特征的集合,T为正整数,Pgen为交叉特征衍生算法。
基于上述任一实施例,该装置中,所述结合单元,具体用于,
将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,得到结合后特征;
再采用卡方验证算法、信息增益算法、IV值算法、梯度提升树算法、特征PSI指数算法、特征方差值算法、皮尔逊相关系数算法和最大信息系数算法中的任一种算法或者任意种算法的组合进行所述结合后特征的重要性评估;
基于所述评估结果,剔除无效特征,保留重要特征。
基于上述任一实施例,该装置中,所述评级单元,具体用于,
将所述重要特征输入基于LightGBM算法的分析模型,输出所述用户为易贷后逾期违约的概率为p,所述用户为不易贷后逾期违约的概率为1-p;
其中,所述基于LightGBM算法的分析模型是基于10折交叉验证方法进行训练的,训练完成后得到10个基本分析模型组成所述基于LightGBM算法的分析模型,p是所述10个基本分析模型输出的10个基本用户为易贷后逾期违约的概率的平均值;
基于公式Odds=p/(1-p)确定贷后逾期违约比例指数odds;
基于公式Score=A-Blog(Odds)确定所述用户的信用评分Score,其中,A和B为基于预设特定贷后逾期违约比例指数θ0、对应于θ0的信用评分数值P0以及θ0翻番对应的信用评分降低数值Pd确定的常数;
基于所述用户的信用评分以及信用等级对应评分的划分区间,确定所述用户的信用等级。
基于上述任一实施例,该装置中,所述A和B为基于预设特定贷后逾期违约比例指数θ0、对应于θ0的信用评分数值P0以及θ0翻番对应的信用评分降低数值Pd确定的常数,具体包括:
设定θ0=20,P0=600,Pd=50,基于如下公式确定A和B:
Figure BDA0002515276150000161
A=P0+Blog(θ0)
对应地,信用等级对应评分的划分区间为:
第一风险等级对应的信用评分的区间为[0,430);
第二风险等级对应的信用评分的区间为[430,630);
第三风险等级对应的信用评分的区间为[630,690);
第四风险等级对应的信用评分的区间为[690,710);
第五风险等级对应的信用评分的区间为[710,)。
众所周知,信用评分等级模型区分好坏用户的能力极大程度上依赖于入模特征的有效性,本发明实施例通过多种尝试,最终发现将原始特征采用基于K-S值最大的分箱算法分箱后,然后再将分箱结果进行交叉特征衍生,将原始特征、分箱结果特征和衍生特征结合后的特征筛选出的重要特征入模后可显著提升信用评分模型的K-S值(K-S值达65以上),即能提升好坏用户区分能力。这里需要说明,K-S值主要验证风控模型对违约对象的区分能力,通常是在风控模型预测完全体样本后,将全体样本按是否违约分为两部分,然后用K-S值检验两组样本的风控评分是否有显著差异,其计算方法为:
KSvalue=Max[TPR-FPR]
其中,TPR(true positive rate)为正样本预测正确率,即模型判断出的真实正样本占所有正样本的比例,其计算公式为TPR=TP/(TP+FN),FPR(false positive rate)为正样本预测错误率,即模型误判断其为正类的负样本(即样本实际为负样本,但是模型将其判断为正样本)占所有负样本的比例,其计算公式为FPR=FP/(FP+TN),其中TP代表真实为1且预测为1的数目,FN代表真实为1且预测为0的数目,FP代表真实为0且预测为1的数目,TN代表真实为0且预测为0的数目,这里的1代表正类,0代表负类。KS曲线是两条线,其横轴是风控模型输出的评分,纵轴是TPR与FPR的值,其取值范围为[0,1]。将风控模型输出的评分升序排列并按照取值范围进行N等分,然后将每个等分点作为阈值(即大于该阈值为负类,小于等于该阈值为正类),分别计算TPR、FPR(也可以将每一个分数都作为阈值),然后对TPR、FPR描点画图即可绘出KS曲线,两条曲线之间相距最远的地方对应的TPR与FPR差值即为KS值。表2为K-S值评价标准表,如表2所示:K-S值评价标准如下:
表2K-S值评价标准
K-S值 [0,0.2) [0.2,0.4) [0.4,0.6) [0.6,0.75) [0.75,1)
评价结果 异常
基于上述任一实施例,本发明实施例还提供一种信贷风险自动评估系统,图3为本发明实施例提供的信贷风险自动评估系统的工作流程图。如图3所示,该系统首先接收用户提交的信贷申请,然后系统判断用户提交的信贷申请是否满足准入条件,判断依据用户提交的个人信息是否正确以及用户是否授权系统进行风险评估。然后信用特征衍生模块,从用户的信贷信息中提取原始特征,将原始特征采用基于K-S值最大的分箱算法分箱后,然后再将分箱结果进行交叉特征衍生,将原始特征、分箱结果特征和衍生特征结合后的特征筛选得到重要特征。再将所述重要特征输入信用风险评级模块,输出用户的等级属于本发明实施例中所述的五个等级中的其中一级,然后,进行系统后续处理:系统自动拒绝或系统自动通过或系统建议人工审慎审核或系统建议人工常规审核或者系统建议人工快速通过。其中,系统转人工处理的最后需要人工决策最终结果是否通过。最终结果为系统同意用户的信贷申请或者拒绝用户的信贷申请。
现有的风控系统,信贷审批严重依赖于人工审核,一方面资金出借方要耗费大量的人力物力进行资料审查、电调走访等,成本极高,另一方面资金借贷方从提交信贷申请到获得审批结果往往要耗费数周,体验极差。为验证本专利的信贷风险自动评估系统的有效性,针对某汽车金融公司290000个汽车金融个人信贷申请件进行了测试,结果显示,该系统的K-S值达65以上,说明系统具备优异的好/坏用户区分能力,图4为本发明实施例提供的系统的ROC曲线图,如图4所示,其中的实线曲线即为系统的ROC曲线。
图5为本发明实施例提供的系统稳定性测试结果图,如图5所示,系统的PSI(稳定性指数)始终位于0.2警戒线以下,说明模型稳定性良好。且测试结果显示该系统的自动化审批率达到80%以上(即80%以上的信贷申请件由系统自动通过或者系统自动拒绝,完全不需要人工参与),且系统自动通过的申请件中坏用户率(即贷后发生贷款逾期行为,且逾期天数达90天以上)仅为0.25%以下,此外,该系统自动审批的时间仅为秒级,即80%以上的用户提交信贷申请后,几秒内即可获得信贷审批决策结果,极大提高了资金借贷方的用户体验以及资金出借方的商业效率,同时显著降低了资金出借方的运营成本。
图6为本发明实施例提供的电子设备的实体结构示意图,如图6所示,该电子设备可以包括:处理器(processor)601、通信接口(Communications Interface)602、存储器(memory)603和通信总线604,其中,处理器601,通信接口602,存储器603通过通信总线604完成相互间的通信。处理器601可以调用存储在存储器603上并可在处理器601上运行的计算机程序,以执行上述各实施例提供的信贷风险自动评估方法,例如包括:基于用户提交的基本身份信息与授权信息,获取用户的信贷信息,其中,所述信贷信息包括基础信贷申请信息、行为表现信息和金融产品相关信息;提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数;对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征;将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征;将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级。
此外,上述的存储器603中的逻辑指令可以通过软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
本发明实施例还提供一种非暂态计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现以执行上述各实施例提供的信贷风险自动评估方法,例如包括:基于用户提交的基本身份信息与授权信息,获取用户的信贷信息,其中,所述信贷信息包括基础信贷申请信息、行为表现信息和金融产品相关信息;提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数;对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征;将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征;将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级。
以上所描述的系统实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。本领域普通技术人员在不付出创造性的劳动的情况下,即可以理解并实施。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到各实施方式可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件。基于这样的理解,上述技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在计算机可读存储介质中,如ROM/RAM、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行各个实施例或者实施例的某些部分所述的方法。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

1.一种信贷风险自动评估方法,其特征在于,包括:
基于用户提交的基本身份信息与授权信息,获取用户的信贷信息,其中,所述信贷信息包括基础信贷申请信息、行为表现信息和金融产品相关信息;
提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数;
对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征;
将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征;
将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级。
2.根据权利要求1所述的信贷风险自动评估方法,其特征在于,所述提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数,具体包括:
提取所述信贷信息中的所有N种属性信息,形成N个原始特征;
基于如下公式对所述N个原始特征进行K-S值最大的分箱算法处理:
Figure FDA0002515276140000011
其中,{f1,f2,f3,…,fi,…,fN}为所述N个原始特征的集合,fi为所述N个原始特征中的第i个原始特征,0<i≤N,
Figure FDA0002515276140000012
为分箱结果特征的集合,fi cut为对应于原始特征fi的分箱结果,Fcut_bin为K-S值最大的分箱算法。
3.根据权利要求1或2所述的信贷风险自动评估方法,其特征在于,所述对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征,具体包括:
基于如下公式对所述分箱结果特征进行交叉特征衍生算法处理:
Figure FDA0002515276140000013
其中,
Figure FDA0002515276140000014
为分箱结果特征的集合,
Figure FDA0002515276140000015
为衍生出的交叉特征的集合,T为正整数,Pgen为交叉特征衍生算法。
4.根据权利要求1或2所述的信贷风险自动评估方法,其特征在于,所述将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征,具体包括:
将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,得到结合后特征;
再采用卡方验证算法、信息增益算法、IV值算法、梯度提升树算法、特征PSI指数算法、特征方差值算法、皮尔逊相关系数算法和最大信息系数算法中的任一种算法或者任意种算法的组合进行所述结合后特征的重要性评估;
基于所述评估结果,剔除无效特征,保留重要特征。
5.根据权利要求1或2所述的信贷风险自动评估方法,其特征在于,所述将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级,具体包括:
将所述重要特征输入基于LightGBM算法的分析模型,输出所述用户为易贷后逾期违约的概率为p,所述用户为不易贷后逾期违约的概率为1-p;
其中,所述基于LightGBM算法的分析模型是基于10折交叉验证方法进行训练的,训练完成后得到10个基本分析模型组成所述基于LightGBM算法的分析模型,p是所述10个基本分析模型输出的10个基本用户为易贷后逾期违约的概率的平均值;
基于公式Odds=p/(1-p)确定贷后逾期违约比例指数odds;
基于公式Score=A-Blog(Odds)确定所述用户的信用评分Score,其中,A和B为基于预设特定贷后逾期违约比例指数θ0、对应于θ0的信用评分数值P0以及θ0翻番对应的信用评分降低数值Pd确定的常数;
基于所述用户的信用评分以及信用等级对应评分的划分区间,确定所述用户的信用等级。
6.根据权利要求5所述的信贷风险自动评估方法,其特征在于,所述A和B为基于预设特定贷后逾期违约比例指数θ0、对应于θ0的信用评分数值P0以及θ0翻番对应的信用评分降低数值Pd确定的常数,具体包括:
设定θ0=20,P0=600,Pd=50,基于如下公式确定A和B:
Figure FDA0002515276140000031
A=P0+Blog(θ0)
对应地,信用等级对应评分的划分区间为:
第一风险等级对应的信用评分的区间为[0,430);
第二风险等级对应的信用评分的区间为[430,630);
第三风险等级对应的信用评分的区间为[630,690);
第四风险等级对应的信用评分的区间为[690,710);
第五风险等级对应的信用评分的区间为[710,)。
7.一种信贷风险自动评估装置,其特征在于,包括:
获取单元,用于基于用户提交的基本身份信息与授权信息,获取用户的信贷信息,其中,所述信贷信息包括基础信贷申请信息、行为表现信息和金融产品相关信息;
特征单元,用于提取所述信贷信息中的N个原始特征,对所述N个原始特征采用K-S值最大的分箱算法进行处理,得到分箱结果特征,其中,N为正整数;
衍生单元,用于对所述分箱结果特征采用交叉特征衍生算法处理,得到衍生出的交叉特征;
结合单元,用于将所述衍生出的交叉特征、所述分箱结果特征和所述N个原始特征进行结合,剔除无效特征,得到重要特征;
评级单元,用于将所述重要特征输入预设的信用评分等级模型,得到所述用户的信用等级。
8.根据权利要求7所述的信贷风险自动评估装置,其特征在于,所述特征单元,具体用于,
提取所述信贷信息中的所有N种属性信息,形成N个原始特征;
基于如下公式对所述N个原始特征进行K-S值最大的分箱算法处理:
Figure FDA0002515276140000032
其中,{f1,f2,f3,…,fi,…,fN}为所述N个原始特征的集合,fi为所述N个原始特征中的第i个原始特征,0<i≤N,
Figure FDA0002515276140000041
为分箱结果特征的集合,fi cut为对应于原始特征fi的分箱结果,Fcut_bin为K-S值最大的分箱算法。
9.一种电子设备,包括存储器、处理器及存储在存储器上并可在处理器上运行的计算机程序,其特征在于,所述处理器执行所述程序时实现如权利要求1-6中任一项所述的信贷风险自动评估方法的步骤。
10.一种非暂态计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如1-6中任一项所述的信贷风险自动评估方法的步骤。
CN202010474118.3A 2020-05-29 2020-05-29 信贷风险自动评估方法和装置 Pending CN111507831A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202310335712.8A CN116342259A (zh) 2020-05-29 2020-05-29 一种用户信用自动评级方法、装置、电子设备及介质
CN202010474118.3A CN111507831A (zh) 2020-05-29 2020-05-29 信贷风险自动评估方法和装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010474118.3A CN111507831A (zh) 2020-05-29 2020-05-29 信贷风险自动评估方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN202310335712.8A Division CN116342259A (zh) 2020-05-29 2020-05-29 一种用户信用自动评级方法、装置、电子设备及介质

Publications (1)

Publication Number Publication Date
CN111507831A true CN111507831A (zh) 2020-08-07

Family

ID=71877045

Family Applications (2)

Application Number Title Priority Date Filing Date
CN202010474118.3A Pending CN111507831A (zh) 2020-05-29 2020-05-29 信贷风险自动评估方法和装置
CN202310335712.8A Pending CN116342259A (zh) 2020-05-29 2020-05-29 一种用户信用自动评级方法、装置、电子设备及介质

Family Applications After (1)

Application Number Title Priority Date Filing Date
CN202310335712.8A Pending CN116342259A (zh) 2020-05-29 2020-05-29 一种用户信用自动评级方法、装置、电子设备及介质

Country Status (1)

Country Link
CN (2) CN111507831A (zh)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112102073A (zh) * 2020-09-27 2020-12-18 长安汽车金融有限公司 信贷风险控制方法及系统、电子设备及可读存储介质
CN112232950A (zh) * 2020-12-10 2021-01-15 银联商务股份有限公司 针对借贷风险的评估方法及装置、设备、计算机可读存储介质
CN112308703A (zh) * 2020-11-02 2021-02-02 创新奇智(重庆)科技有限公司 用户分群方法、装置、设备及存储介质
CN112348685A (zh) * 2020-10-09 2021-02-09 中南大学 信用评分方法、装置、设备及存储介质
CN112634033A (zh) * 2021-01-04 2021-04-09 深圳前海微众银行股份有限公司 基于域分解机的模型构建方法、装置、系统及存储介质
CN112767121A (zh) * 2020-12-31 2021-05-07 山东数字能源交易中心有限公司 一种风险等级数据的处理方法和装置
CN113011751A (zh) * 2021-03-19 2021-06-22 天道金科股份有限公司 一种基于大数据的中小微企业信用评价方法
CN113344626A (zh) * 2021-06-03 2021-09-03 上海冰鉴信息科技有限公司 一种基于广告推送的数据特征优化方法及装置
CN113362039A (zh) * 2021-06-30 2021-09-07 深圳壹账通智能科技有限公司 业务审批方法、装置、电子设备及存储介质
CN113421154A (zh) * 2021-05-27 2021-09-21 上海交通大学 基于控制图的信贷风险评估方法及系统
CN113744047A (zh) * 2021-09-09 2021-12-03 廊坊银行股份有限公司 信贷客户贷中风险评估方法、装置、设备和介质
CN113781210A (zh) * 2021-09-29 2021-12-10 中国银行股份有限公司 基于客户金融交易数据结构的自动化特征工程方法及装置
CN113971606A (zh) * 2021-10-28 2022-01-25 中国银行股份有限公司 信贷风险评估方法及装置
CN114756594A (zh) * 2022-05-20 2022-07-15 北京云成金融信息服务有限公司 供应链金融平台用的数据推荐方法及系统
CN114943607A (zh) * 2022-06-02 2022-08-26 支付宝(杭州)信息技术有限公司 特征发现方法、属性预测方法和装置
US20220301048A1 (en) * 2021-03-16 2022-09-22 S&P Global System for Estimating Distance-To-Default Credit Risk
CN117934161A (zh) * 2024-03-22 2024-04-26 杭银消费金融股份有限公司 一种贷中清退止付评估方法与系统

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112102073A (zh) * 2020-09-27 2020-12-18 长安汽车金融有限公司 信贷风险控制方法及系统、电子设备及可读存储介质
CN112348685A (zh) * 2020-10-09 2021-02-09 中南大学 信用评分方法、装置、设备及存储介质
CN112308703A (zh) * 2020-11-02 2021-02-02 创新奇智(重庆)科技有限公司 用户分群方法、装置、设备及存储介质
CN112232950A (zh) * 2020-12-10 2021-01-15 银联商务股份有限公司 针对借贷风险的评估方法及装置、设备、计算机可读存储介质
CN112767121A (zh) * 2020-12-31 2021-05-07 山东数字能源交易中心有限公司 一种风险等级数据的处理方法和装置
CN112634033A (zh) * 2021-01-04 2021-04-09 深圳前海微众银行股份有限公司 基于域分解机的模型构建方法、装置、系统及存储介质
US20220301048A1 (en) * 2021-03-16 2022-09-22 S&P Global System for Estimating Distance-To-Default Credit Risk
US11669898B2 (en) * 2021-03-16 2023-06-06 S&P Global Inc. System for estimating distance-to-default credit risk
CN113011751A (zh) * 2021-03-19 2021-06-22 天道金科股份有限公司 一种基于大数据的中小微企业信用评价方法
CN113421154A (zh) * 2021-05-27 2021-09-21 上海交通大学 基于控制图的信贷风险评估方法及系统
CN113421154B (zh) * 2021-05-27 2022-10-04 上海交通大学 基于控制图的信贷风险评估方法及系统
CN113344626A (zh) * 2021-06-03 2021-09-03 上海冰鉴信息科技有限公司 一种基于广告推送的数据特征优化方法及装置
CN113362039A (zh) * 2021-06-30 2021-09-07 深圳壹账通智能科技有限公司 业务审批方法、装置、电子设备及存储介质
CN113744047A (zh) * 2021-09-09 2021-12-03 廊坊银行股份有限公司 信贷客户贷中风险评估方法、装置、设备和介质
CN113781210A (zh) * 2021-09-29 2021-12-10 中国银行股份有限公司 基于客户金融交易数据结构的自动化特征工程方法及装置
CN113971606A (zh) * 2021-10-28 2022-01-25 中国银行股份有限公司 信贷风险评估方法及装置
CN114756594A (zh) * 2022-05-20 2022-07-15 北京云成金融信息服务有限公司 供应链金融平台用的数据推荐方法及系统
CN114943607A (zh) * 2022-06-02 2022-08-26 支付宝(杭州)信息技术有限公司 特征发现方法、属性预测方法和装置
CN117934161A (zh) * 2024-03-22 2024-04-26 杭银消费金融股份有限公司 一种贷中清退止付评估方法与系统

Also Published As

Publication number Publication date
CN116342259A (zh) 2023-06-27

Similar Documents

Publication Publication Date Title
CN111507831A (zh) 信贷风险自动评估方法和装置
CN112102073A (zh) 信贷风险控制方法及系统、电子设备及可读存储介质
CN107025596B (zh) 一种风险评估方法和系统
US20160225076A1 (en) System and method for building and validating a credit scoring function
CN109583966A (zh) 一种高价值客户识别方法、系统、设备及存储介质
CN112561685B (zh) 客户的分类方法和装置
CN113177839A (zh) 一种信用风险评估方法、装置、存储介质和设备
Dang et al. Credit ratings of Chinese households using factor scores and K-means clustering method
CN112232950A (zh) 针对借贷风险的评估方法及装置、设备、计算机可读存储介质
CN111275338A (zh) 一种企业欺诈行为的判定方法、装置、设备及存储介质
CN111090833A (zh) 一种数据处理方法、系统及相关设备
CN113393328A (zh) 融资贷前审批评估方法、装置及计算机存储介质
CN114387077A (zh) 一种信贷资质审查方法及系统
CN115205026A (zh) 信用评估方法、装置、设备及计算机存储介质
CN112990989B (zh) 价值预测模型输入数据生成方法、装置、设备和介质
CN112434862B (zh) 上市企业财务困境预测方法及装置
CN117934154A (zh) 交易风险预测方法、模型训练方法、装置、设备、介质和程序产品
CN117575773A (zh) 业务数据的确定方法、装置、计算机设备、存储介质
CN117132383A (zh) 一种信贷数据处理方法、装置、设备及可读存储介质
Yuan Research on credit risk assessment of P2P network platform: based on the logistic regression model of evidence weight
Kelley et al. Anti-discrimination Laws, AI, and Gender Bias in Non-mortgage Fintech Lending
CN116071142A (zh) 基于人工智能的贷款资质评估方法、装置、及存储介质
CN115293783A (zh) 风险用户识别方法、装置、计算机设备和存储介质
CN114626940A (zh) 数据分析方法、装置及电子设备
CN114581209A (zh) 财务分析模型的训练方法、装置、设备及存储介质

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200807