CN111490714A - Temperature detection method of permanent magnet synchronous motor - Google Patents
Temperature detection method of permanent magnet synchronous motor Download PDFInfo
- Publication number
- CN111490714A CN111490714A CN202010304371.4A CN202010304371A CN111490714A CN 111490714 A CN111490714 A CN 111490714A CN 202010304371 A CN202010304371 A CN 202010304371A CN 111490714 A CN111490714 A CN 111490714A
- Authority
- CN
- China
- Prior art keywords
- phase
- pwm signal
- temperature
- current
- voltage
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 19
- 238000001514 detection method Methods 0.000 title claims abstract description 18
- 238000004804 winding Methods 0.000 claims abstract description 38
- 238000000034 method Methods 0.000 claims description 17
- 238000004364 calculation method Methods 0.000 claims description 12
- 239000000463 material Substances 0.000 claims description 5
- 230000001934 delay Effects 0.000 claims description 4
- 238000012544 monitoring process Methods 0.000 abstract description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 238000010606 normalization Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical group [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P29/00—Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
- H02P29/60—Controlling or determining the temperature of the motor or of the drive
- H02P29/64—Controlling or determining the temperature of the winding
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Motors That Do Not Use Commutators (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本发明提出的一种永磁同步电机的温度检测方法,包括以下步骤:向d轴的参考电流中注入交流信号使a相电流ia和线电压Uab中产生直流成分,然后获得a相电流ia的平均值Ia dc;结合死区、管压降以及开关延时的情况,计算三相线电压的平均值Uab dc;结合平均值Ia dc和Uab dc计算定子绕组电阻值Rs,并根据定子绕组电阻值Rs与温度的关系计算电机当前温度Ts。本发明提出的一种永磁同步电机的温度检测方法,只需要向d轴的参考电流中注入交流信号,避免了对电机转矩产生扰动,使得对永磁电机的温度监测更加准确。
A temperature detection method for a permanent magnet synchronous motor proposed by the present invention includes the following steps: injecting an AC signal into the reference current of the d-axis to generate a DC component in the a-phase current i a and the line voltage U ab , and then obtaining the a-phase current The average value I a dc of ia ; the average value U ab dc of the three-phase line voltage is calculated in combination with the dead zone, the tube voltage drop and the switching delay; the stator winding resistance value is calculated by combining the average values I a dc and U ab dc R s , and calculate the current temperature T s of the motor according to the relationship between the stator winding resistance R s and the temperature. The temperature detection method of the permanent magnet synchronous motor proposed by the invention only needs to inject an AC signal into the reference current of the d-axis, which avoids disturbance to the motor torque and makes the temperature monitoring of the permanent magnet motor more accurate.
Description
技术领域technical field
本发明涉及永磁同步电机技术领域,尤其涉及一种永磁同步电机的温度检测方法。The invention relates to the technical field of permanent magnet synchronous motors, in particular to a temperature detection method for permanent magnet synchronous motors.
背景技术Background technique
永磁同步电机(Permanent magnet synchronous machine,PMSM)运行时温度的升高,会导致永磁体的退磁,破坏绕组的绝缘性,直接影响电机的可靠运行以及寿命。准确地检测电机温升,不仅能保证电机的安全运行,而且能提高电机的使用寿命。因此,开展永磁同步电机的温度检测具有重要的现实意义。The increase in temperature of a permanent magnet synchronous machine (PMSM) during operation will lead to demagnetization of the permanent magnet, destroy the insulation of the windings, and directly affect the reliable operation and life of the motor. Accurately detecting the temperature rise of the motor can not only ensure the safe operation of the motor, but also improve the service life of the motor. Therefore, it is of great practical significance to carry out the temperature detection of permanent magnet synchronous motor.
截止目前,已经有几种方法被提出用于估算电机的温度,1)简化公式法:此方法只能估算整体铁心温度或绕组的平均温升,所以其计算结果比较粗糙,将之应用于温度检测可行性差;2)等效热路法:也只能计算出部分绕组和铁心的平均温升;3)数值计算法:该方法的计算精度高,但它依赖于电机的结构参数以及所用材料的物理性能参数,更适合于电机的制造;4)参数辨识法:该方法具有简洁实用的特点,但是它只能给出电机正常稳态运行绕组的温度;5)热模型法:该方法的计算精度高,但是电机热参数的变化会引起热模型估算温度的失败;6)电阻法:通过估算电机电阻来间接估算电机的温度,这种方法简单且不受电机参数变化的影响,也越来越受到人们的青睐,其中基于直流注入法的定子电阻估算方法最流行。但是,现在有的注入方法会导致电机转速(或转矩)的脉动,影响计算的准确性。Up to now, several methods have been proposed for estimating the temperature of the motor, 1) Simplified formula method: This method can only estimate the overall core temperature or the average temperature rise of the winding, so the calculation results are relatively rough, and it is applied to the temperature The detection feasibility is poor; 2) Equivalent thermal circuit method: only the average temperature rise of some windings and iron cores can be calculated; 3) Numerical calculation method: The calculation accuracy of this method is high, but it depends on the structural parameters of the motor and the materials used 4) Parameter identification method: This method has the characteristics of simplicity and practicality, but it can only give the temperature of the windings in normal steady state operation of the motor; 5) Thermal model method: the method of The calculation accuracy is high, but the change of the thermal parameters of the motor will cause the failure of the thermal model to estimate the temperature; 6) Resistance method: The temperature of the motor is indirectly estimated by estimating the motor resistance. This method is simple and not affected by the change of the motor parameters, and the more It is more and more popular, and the stator resistance estimation method based on DC injection method is the most popular. However, some current injection methods will cause the pulsation of the motor speed (or torque), which affects the accuracy of the calculation.
发明内容SUMMARY OF THE INVENTION
基于背景技术存在的技术问题,本发明提出了一种永磁同步电机的温度检测方法。Based on the technical problems existing in the background art, the present invention proposes a temperature detection method for a permanent magnet synchronous motor.
本发明提出的一种永磁同步电机的温度检测方法,包括以下步骤:A temperature detection method for a permanent magnet synchronous motor proposed by the present invention includes the following steps:
S1、向d轴的参考电流中注入交流信号使a相电流ia和线电压Uab中产生直流成分,然后获得a相电流ia的平均值Ia dc;S1, injecting an AC signal into the reference current of the d-axis to generate a DC component in the a-phase current i a and the line voltage U ab , and then obtain the average value I a dc of the a-phase current i a ;
S2、结合死区、管压降以及开关延时的情况,计算三相线电压的平均值Uab dc;S2. Calculate the average value U ab dc of the three-phase line voltage in combination with the dead zone, the tube voltage drop and the switching delay;
S3、结合平均值Ia dc和Uab dc计算定子绕组电阻值Rs,并根据定子绕组电阻值Rs与温度的关系计算电机当前温度Ts。S3. Calculate the stator winding resistance value R s in combination with the average values I a dc and U ab dc , and calculate the current temperature T s of the motor according to the relationship between the stator winding resistance value R s and the temperature.
优选的,步骤S1中电流a相ia和线电压Uab中产生直流成分后,还记录PWM信号的占空比和直流母线电压Udc;步骤S2具体为:结合死区、管压降以及开关延时的情况,利用PWM信号的占空比和直流母线电压计算三相电压的平均值Uab dc。Preferably, after the DC component is generated in the current a phase ia and the line voltage U ab in the step S1, the duty cycle of the PWM signal and the DC bus voltage U dc are also recorded; the step S2 is specifically: combining the dead zone, the tube voltage drop and the In the case of switching delay, use the duty cycle of the PWM signal and the DC bus voltage to calculate the average value U ab dc of the three-phase voltages.
优选的,步骤S2中,利用PWM信号的占空比和直流母线电压计算三相电压的平均值Uab dc的方法为:首先结合直流母线电压Udc、PWM信号的占空比、基于PWM信号周期规格化后的死区时间、基于PWM信号周期规格化后的IGBT开通和关断延时的时间差、IGBT的管压降、二极管的管压降以及各相电流计算各相电压在1个PWM信号周期内的平均值;再通过上述平均值计算线电压获得平均值Uab dc。Preferably, in step S2, the method for calculating the average value U ab dc of the three-phase voltage by using the duty cycle of the PWM signal and the DC bus voltage is as follows: first, combining the DC bus voltage U dc , the duty cycle of the PWM signal, and the The dead time after period normalization, the time difference between the turn-on and turn-off delays of the IGBT after normalization based on the period of the PWM signal, the tube voltage drop of the IGBT, the tube voltage drop of the diode, and the current of each phase calculate the voltage of each phase in 1 PWM The average value in the signal period; then calculate the line voltage through the above average value to obtain the average value U ab dc .
优选的,各相电压在1个PWM信号周期内的平均值的计算模型如下:Preferably, the calculation model of the average value of each phase voltage within one PWM signal period is as follows:
式中:ia是a相定子绕组的电流,ib是b相定子绕组的电流,ic是c相定子绕组的电流;UaN是a相电压在1个PWM信号周期内的平均值,UbN是b相电压在1个PWM信号周期内的平均值,UcN是c相电压在1个PWM信号周期内的平均值;Da是a相PWM信号的占空比,Db是b相PWM信号的占空比,Dc是c相PWM信号的占空比;In the formula: i a is the current of the a-phase stator winding, i b is the current of the b-phase stator winding, ic is the current of the c -phase stator winding; U aN is the average value of the a-phase voltage in one PWM signal cycle, U bN is the average value of b-phase voltage in 1 PWM signal period, U cN is the average value of c-phase voltage in 1 PWM signal period; D a is the duty cycle of a-phase PWM signal, D b is b The duty cycle of the phase PWM signal, D c is the duty cycle of the c-phase PWM signal;
Udc是直流母线电压,Ddt是基于PWM信号周期规格化后的死区时间,UIGBT和Udiode分别是IGBT和二极管的管压降,Ddly是基于PWM信号周期规格化后的IGBT开通和关断延时的时间差。U dc is the DC bus voltage, D dt is the normalized dead time based on the PWM signal period, U IGBT and U diode are the tube voltage drops of the IGBT and diode respectively, D dly is the IGBT turn-on normalized based on the PWM signal period and turn-off delay time difference.
优选的,步骤S3中,结合平均值Ia dc和Uab dc计算定子绕组电阻值Rs的计算模型为: Preferably, in step S3, the calculation model for calculating the stator winding resistance R s in combination with the average values I a dc and U ab dc is:
优选的,步骤S3中,将代定子绕组电阻值Rs代入预设的电阻温度模型计算电机当前温度Ts;Preferably, in step S3, substitute the stator winding resistance value R s into a preset resistance temperature model to calculate the current temperature T s of the motor;
电阻温度模型为: The resistance temperature model is:
其中,R0是温度T0时绕组的电阻值,Rs是测试温度在Ts时绕组的电阻值,k1是一个常数,由绕组材料决定的。Among them, R 0 is the resistance value of the winding at the temperature T 0 , R s is the resistance value of the winding at the test temperature T s , and k 1 is a constant determined by the winding material.
优选的,k1为电阻温度系数。Preferably, k 1 is the temperature coefficient of resistance.
本发明提出的一种永磁同步电机的温度检测方法,只需要向d轴的参考电流中注入交流信号,避免了对电机转矩产生扰动,使得对永磁电机的温度监测更加准确。The temperature detection method of the permanent magnet synchronous motor proposed by the invention only needs to inject an AC signal into the reference current of the d-axis, which avoids disturbance to the motor torque and makes the temperature monitoring of the permanent magnet motor more accurate.
同时,通过本发明计算电机温度时,不需要额外的传感器和设备,成本低,可靠性高,计算简单,准确度高。At the same time, when calculating the motor temperature through the present invention, no additional sensors and equipment are needed, the cost is low, the reliability is high, the calculation is simple, and the accuracy is high.
附图说明Description of drawings
图1为本发明提出的一种永磁同步电机的温度检测方法流程图。FIG. 1 is a flow chart of a temperature detection method of a permanent magnet synchronous motor proposed by the present invention.
具体实施方式Detailed ways
参照图1,本发明提出的一种永磁同步电机的温度检测方法,包括以下步骤。Referring to FIG. 1 , a temperature detection method for a permanent magnet synchronous motor proposed by the present invention includes the following steps.
S1、向d轴的参考电流中注入交流信号使a相电流ia和线电压Uab中产生直流成分,然后获得a相电流ia的平均值Ia dc。具体实施时,还记录PWM信号的占空比和直流母线电压Udc。S1. Inject an AC signal into the reference current of the d-axis to generate a DC component in the phase a current i a and the line voltage U ab , and then obtain the average value I a dc of the phase a current i a . During specific implementation, the duty cycle of the PWM signal and the DC bus voltage U dc are also recorded.
S2、结合死区、管压降以及开关延时的情况,计算三相线电压的平均值Uab dc。S2. Calculate the average value U ab dc of the three-phase line voltage in combination with the dead zone, the tube voltage drop and the switching delay.
具体的,本步骤中,结合死区、管压降以及开关延时的情况,利用PWM信号的占空比和直流母线电压计算三相电压的平均值Uab dc。Specifically, in this step, the average value U ab dc of the three-phase voltage is calculated by using the duty cycle of the PWM signal and the DC bus voltage in combination with the dead zone, the tube voltage drop and the switching delay.
S3、结合平均值Ia dc和Uab dc计算定子绕组电阻值Rs,并根据定子绕组电阻值Rs与温度的关系计算电机当前温度Ts。具体的,本步骤中,通过将定子绕组电阻值Rs代入预设的计算模型计算电机当前温度Ts。S3. Calculate the stator winding resistance value R s in combination with the average values I a dc and U ab dc , and calculate the current temperature T s of the motor according to the relationship between the stator winding resistance value R s and the temperature. Specifically, in this step, the current temperature T s of the motor is calculated by substituting the stator winding resistance value R s into a preset calculation model.
以下结合一个具体的实施例,对本发明做进一步解释。The present invention will be further explained below with reference to a specific embodiment.
本实施例中,具体包括如下步骤。In this embodiment, the following steps are specifically included.
第一步:首先对电机电流进行abc/dq变换,然后在d轴的参考电流中注入交流信号使a相电流ia和线电压Uab中产生直流成分;再记录a相电流ia的平均值Ia dc,PWM信号的占空比和直流母线电压Udc。Step 1: First perform abc/dq transformation on the motor current, and then inject an AC signal into the reference current of the d-axis to generate a DC component in the a-phase current i a and the line voltage U ab ; then record the average of the a-phase current i a The value I a dc , the duty cycle of the PWM signal and the DC bus voltage U dc .
第二步:再结合死区、管压降以及开关延时的情况,利用PWM信号的占空比和直流母线电压计算三相电压的平均值Uab dc。The second step is to calculate the average value U ab dc of the three-phase voltage by using the duty cycle of the PWM signal and the DC bus voltage in combination with the dead zone, the tube voltage drop and the switching delay.
具体的,本步骤中,首先结合直流母线电压Udc、PWM信号的占空比、基于PWM信号周期规格化后的死区时间、基于PWM信号周期规格化后的IGBT开通和关断延时的时间差、IGBT的管压降、二极管的管压降以及各相电流计算各相电压在1个PWM信号周期内的平均值。Specifically, in this step, first combine the DC bus voltage U dc , the duty cycle of the PWM signal, the normalized dead time based on the PWM signal period, and the IGBT turn-on and turn-off delays based on the normalized PWM signal period. The time difference, the tube voltage drop of the IGBT, the tube voltage drop of the diode, and the current of each phase are used to calculate the average value of the voltage of each phase within one PWM signal period.
本实施例中,各相电压在1个PWM信号周期内的平均值的计算模型如下:In this embodiment, the calculation model of the average value of each phase voltage in one PWM signal period is as follows:
式中:ia是a相定子绕组的电流,ib是b相定子绕组的电流,ic是c相定子绕组的电流;UaN是a相电压在1个PWM信号周期内的平均值,UbN是b相电压在1个PWM信号周期内的平均值,UcN是c相电压在1个PWM信号周期内的平均值;Da是a相PWM信号的占空比,Db是b相PWM信号的占空比,Dc是c相PWM信号的占空比;Udc是直流母线电压,Ddt是基于PWM信号周期规格化后的死区时间,UIGBT和Udiode分别是IGBT和二极管的管压降,Ddly是基于PWM信号周期规格化后的IGBT开通和关断延时的时间差。In the formula: i a is the current of the a-phase stator winding, i b is the current of the b-phase stator winding, ic is the current of the c -phase stator winding; U aN is the average value of the a-phase voltage in one PWM signal cycle, U bN is the average value of b-phase voltage in 1 PWM signal period, U cN is the average value of c-phase voltage in 1 PWM signal period; D a is the duty cycle of a-phase PWM signal, D b is b The duty cycle of the phase PWM signal, D c is the duty cycle of the c-phase PWM signal; U dc is the DC bus voltage, D dt is the normalized dead time based on the period of the PWM signal, U IGBT and U diode are the IGBT and the diode voltage drop, D dly is the time difference between the turn-on and turn-off delays of the IGBTs normalized based on the period of the PWM signal.
然后再结合平均UaN、UbN和UcN计算线电压获得平均值Uab dc。Then combine the average U aN , U bN and U cN to calculate the line voltage to obtain the average U ab dc .
第三步:结合平均值Ia dc和Uab dc计算定子绕组电阻值Rs,再将代定子绕组电阻值Rs代入预设的电阻温度模型计算电机当前温度Ts。Step 3: Calculate the stator winding resistance R s by combining the average values I a dc and U ab dc , and then substitute the stator winding resistance R s into the preset resistance temperature model to calculate the current temperature T s of the motor.
具体的, specific,
其中,R0是温度T0时绕组的电阻值,Rs是测试温度在Ts时绕组的电阻值,k1是一个常数,由绕组材料决定的。具体的,k1为电阻温度系数,当绕组材料为铜时,k1=0.00393。Among them, R 0 is the resistance value of the winding at the temperature T 0 , R s is the resistance value of the winding at the test temperature T s , and k 1 is a constant determined by the winding material. Specifically, k 1 is the temperature coefficient of resistance, and when the winding material is copper, k 1 =0.00393.
以上所述,仅为本发明涉及的较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above descriptions are only the preferred specific embodiments involved in the present invention, but the protection scope of the present invention is not limited thereto. Equivalent replacement or modification of the technical solution and its inventive concept shall be included within the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010304371.4A CN111490714A (en) | 2020-04-17 | 2020-04-17 | Temperature detection method of permanent magnet synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010304371.4A CN111490714A (en) | 2020-04-17 | 2020-04-17 | Temperature detection method of permanent magnet synchronous motor |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111490714A true CN111490714A (en) | 2020-08-04 |
Family
ID=71795725
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010304371.4A Pending CN111490714A (en) | 2020-04-17 | 2020-04-17 | Temperature detection method of permanent magnet synchronous motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111490714A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114080751A (en) * | 2020-11-24 | 2022-02-22 | 华为数字能源技术有限公司 | Motor controller, heat exchange system and current injection method |
CN114094913A (en) * | 2021-11-01 | 2022-02-25 | 珠海格力节能环保制冷技术研究中心有限公司 | A liquid accumulation prevention control method, device, compressor and air conditioning equipment |
WO2022056980A1 (en) * | 2020-09-21 | 2022-03-24 | 瑞声声学科技(深圳)有限公司 | Method for obtaining static impedance of motor, motor monitoring system and device, and medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102809440A (en) * | 2011-06-02 | 2012-12-05 | 通用汽车环球科技运作有限责任公司 | Method and apparatus for thermally monitoring a permanent magnet electric motor |
US20160329714A1 (en) * | 2015-05-08 | 2016-11-10 | The Board Of Trustees Of The University Of Alabama | Systems and methods for providing vector control of a grid connected converter with a resonant circuit grid filter |
CN106471732A (en) * | 2014-06-16 | 2017-03-01 | 三菱电机株式会社 | Control device for AC rotating electric machine, and electric power steering system provided with control device for AC rotating electric machine |
CN107966659A (en) * | 2017-12-07 | 2018-04-27 | 重庆车辆检测研究院有限公司 | Stator winding temperature rise online test method and detecting system in permanent magnet synchronous motor |
CN108847799A (en) * | 2018-06-11 | 2018-11-20 | 湖南机电职业技术学院 | The method of PMSM stator winding temperature on-line checking based on signal injection |
CN109687701A (en) * | 2017-10-19 | 2019-04-26 | 华晨汽车集团控股有限公司 | A kind of identification of electric machine controller dead zone and compensation method |
-
2020
- 2020-04-17 CN CN202010304371.4A patent/CN111490714A/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102809440A (en) * | 2011-06-02 | 2012-12-05 | 通用汽车环球科技运作有限责任公司 | Method and apparatus for thermally monitoring a permanent magnet electric motor |
CN106471732A (en) * | 2014-06-16 | 2017-03-01 | 三菱电机株式会社 | Control device for AC rotating electric machine, and electric power steering system provided with control device for AC rotating electric machine |
US20160329714A1 (en) * | 2015-05-08 | 2016-11-10 | The Board Of Trustees Of The University Of Alabama | Systems and methods for providing vector control of a grid connected converter with a resonant circuit grid filter |
CN109687701A (en) * | 2017-10-19 | 2019-04-26 | 华晨汽车集团控股有限公司 | A kind of identification of electric machine controller dead zone and compensation method |
CN107966659A (en) * | 2017-12-07 | 2018-04-27 | 重庆车辆检测研究院有限公司 | Stator winding temperature rise online test method and detecting system in permanent magnet synchronous motor |
CN108847799A (en) * | 2018-06-11 | 2018-11-20 | 湖南机电职业技术学院 | The method of PMSM stator winding temperature on-line checking based on signal injection |
Non-Patent Citations (1)
Title |
---|
张晔: "基于信号注入的永磁同步电机定子绕组温度检测研究" * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022056980A1 (en) * | 2020-09-21 | 2022-03-24 | 瑞声声学科技(深圳)有限公司 | Method for obtaining static impedance of motor, motor monitoring system and device, and medium |
CN114080751A (en) * | 2020-11-24 | 2022-02-22 | 华为数字能源技术有限公司 | Motor controller, heat exchange system and current injection method |
WO2022109808A1 (en) * | 2020-11-24 | 2022-06-02 | 华为数字能源技术有限公司 | Motor controller, heat exchange system, and current injection method |
JP2023539110A (en) * | 2020-11-24 | 2023-09-13 | ファーウェイ デジタル パワー テクノロジーズ カンパニー リミテッド | Motor controllers, heat exchange systems, and current injection methods |
CN114080751B (en) * | 2020-11-24 | 2025-01-10 | 华为数字能源技术有限公司 | Motor controller, heat exchange system and current injection method |
JP7616754B2 (en) | 2020-11-24 | 2025-01-17 | ファーウェイ デジタル パワー テクノロジーズ カンパニー リミテッド | MOTOR CONTROLLER, HEAT EXCHANGE SYSTEM, AND CURRENT INJECTION METHOD |
CN114094913A (en) * | 2021-11-01 | 2022-02-25 | 珠海格力节能环保制冷技术研究中心有限公司 | A liquid accumulation prevention control method, device, compressor and air conditioning equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Induction-motor stator and rotor winding temperature estimation using signal injection method | |
Lee et al. | An evaluation of model-based stator resistance estimation for induction motor stator winding temperature monitoring | |
CN111490714A (en) | Temperature detection method of permanent magnet synchronous motor | |
Bateman et al. | Sensorless operation of an ultra-high-speed switched reluctance machine | |
CN102694493B (en) | A kind of permanent magnet motor torque estimation method in fault model | |
Duan et al. | A review of condition monitoring and fault diagnosis for permanent magnet machines | |
WO2021068471A1 (en) | Method for determining stalled state of permanent magnet synchronous motor under position sensor-free vector control | |
CN103376409A (en) | Method and circuit for detecting phase loss of three-phase motor | |
TW201029313A (en) | Apparatus and method for detecting rotor position of PMSM | |
CN103078586A (en) | Non-location technology for three-phase electro-magnetic double-salient pole machine starting and accelerating based on induction method | |
CN108196154B (en) | Fault detection and fault positioning method for rotary rectifier of aviation three-stage synchronous motor | |
CN117097214A (en) | Motor controller and method for monitoring demagnetization | |
Choi et al. | Experimental verification of rotor demagnetization in a fractional-slot concentrated-winding PM synchronous machine under drive fault conditions | |
CN105811832B (en) | The method of estimation of permanent-magnetic synchronous motor stator temperature, apparatus and system | |
Lee et al. | A stator and rotor resistance estimation technique for conductor temperature monitoring | |
CN107425781A (en) | A SRM Position Prediction Method Based on Linear Flux Model and Linear Regression Analysis | |
Armando et al. | Flux linkage maps identification of synchronous AC motors under controlled thermal conditions | |
Xie et al. | Permanent magnet flux online estimation based on zero-voltage vector injection method | |
CN112953343A (en) | Novel position-sensor-free initial positioning method of switched reluctance motor | |
JP6651188B1 (en) | Motor demagnetization detection method | |
CN105207549A (en) | Brushless direct-current motor driving control system | |
CN107979311B (en) | Measurement method of rotor position of transverse flux switched reluctance motor without position sensor | |
JP6152740B2 (en) | Motor control device | |
Hu et al. | Deadbeat robust current predictive control for PMSM with Sliding Mode Observer | |
Meng et al. | A non-invasive dual-EKF-based rotor temperature estimation technique for permanent magnet machines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200804 |