Nothing Special   »   [go: up one dir, main page]

CN111440992B - 一种水力发电用低各向异性无取向硅钢及其生产方法 - Google Patents

一种水力发电用低各向异性无取向硅钢及其生产方法 Download PDF

Info

Publication number
CN111440992B
CN111440992B CN202010393939.4A CN202010393939A CN111440992B CN 111440992 B CN111440992 B CN 111440992B CN 202010393939 A CN202010393939 A CN 202010393939A CN 111440992 B CN111440992 B CN 111440992B
Authority
CN
China
Prior art keywords
oriented silicon
silicon steel
power generation
anisotropy
hydroelectric power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010393939.4A
Other languages
English (en)
Other versions
CN111440992A (zh
Inventor
杜军
裴英豪
施立发
夏雪兰
胡柯
李轶伦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maanshan Iron and Steel Co Ltd
Original Assignee
Maanshan Iron and Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Maanshan Iron and Steel Co Ltd filed Critical Maanshan Iron and Steel Co Ltd
Priority to CN202010393939.4A priority Critical patent/CN111440992B/zh
Publication of CN111440992A publication Critical patent/CN111440992A/zh
Application granted granted Critical
Publication of CN111440992B publication Critical patent/CN111440992B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1222Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1216Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the working step(s) being of interest
    • C21D8/1233Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1244Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties the heat treatment(s) being of interest
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • C21D9/564Tension control
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C33/00Making ferrous alloys
    • C22C33/04Making ferrous alloys by melting
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C22/00Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C22/73Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process
    • C23C22/74Chemical surface treatment of metallic material by reaction of the surface with a reactive liquid, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals characterised by the process for obtaining burned-in conversion coatings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Electromagnetism (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

一种水力发电用低各向异性无取向硅钢及其生产方法,包括以下重量百分比的化学成分:Si:2.8~3.2%,Mn:0.1~0.3%,Als:0.5~0.8%,B:0.0010%~0.0025%,Cu:0.01%~0.02%,[S+C+N+Ti]≤80ppm,其余为Fe及不可避免的杂质,经铁水预处理、转炉冶炼、RH精炼、连铸、热轧、常化酸洗、冷轧、连续退火、涂层、精整步骤制备得到,制备得到0.50mm厚的无取向硅钢产品,其在测试密度7.6g/dm3条件下,磁感B50≥1.65T、铁损P1.5/50≤2.40W/kg、铁损各向异性<10%,能够高水平满足水力发电装备的设计需求。

Description

一种水力发电用低各向异性无取向硅钢及其生产方法
技术领域
本发明属于无取向硅钢制造领域,具体涉及一种水力发电用低各向异性无取向硅钢及其生产方法。
背景技术
近年来,随着国家电力行业的不断发展和对环保要求的不断提升,水力发电装备的总装机容量不断增加。发电机转子在运转状态下工作,随着电机容量的增加,大型同步发电机的局部过热和振动问题受到广泛关注。作为发电机铁芯材料的无取向硅钢,不可避免的存在磁各向异性,特别是对于水力发电装备,主要使用了硅钢板的横向性能,所以对磁各向异性尤为关注,一般要求铁损纵横向磁各向异性小于10%。
国标《GB/T 2521.1-2016全工艺冷轧电工钢第1部分:晶粒无取向钢带(片)》中规定了磁各向异性的表征方法为
Figure BDA0002486660550000011
并要求高牌号无取向硅钢各向异性≤17%。目前市场上广泛使用的高牌号无取向硅钢各向异性为12~13%。
对于无取向硅钢而言,厚度越厚,其磁性能及各向异性就会越差、铁损也会越高。而水力发电设备常用的无取向硅钢的厚度为0.5mm,而对于此厚度的无取向硅钢的制备,现有技术中还没有有效的方法在保持优异的磁性能和较低的铁损的情况下,更好地控制其铁损各向异性。
发明内容
为解决上述技术问题,本发明提供了一种水力发电用低各向异性无取向硅钢及其生产方法,制备得到0.50mm厚的无取向硅钢产品,其在测试密度7.6g/dm3条件下,磁感B50≥1.65T、铁损P1.5/50≤2.40W/kg、铁损各向异性<10%,能够高水平满足水力发电装备的设计需求。
本发明采取的技术方案为:
一种水力发电用低各向异性无取向硅钢,包括以下重量百分比的化学成分:Si:2.8~3.2%,Mn:0.1~0.3%,Als:0.5~0.8%,B:0.0010%~0.0025%,Cu:0.01%~0.02%,[S+C+N+Ti]≤80ppm,其余为Fe及不可避免的杂质。
上述成分中,B的加入可以在晶界处偏聚,在热轧时析出BN并使得AlN粗化,减少对成品退火时晶粒长大的阻碍,且能改善织构、防止成品退火时形成内氧化层和内氮化层,进而改善磁各向异性;Cu的加入可以使晶粒更加等轴化且在钢带表层的有利织构组分增加,且可减少成品退火时的内氧化,进而改善磁性。
本发明还提供了所述的水力发电用低各向异性无取向硅钢的生产方法,包括以下步骤:铁水预处理、转炉冶炼、RH精炼、连铸、热轧、常化酸洗、冷轧、连续退火、涂层、精整;
进一步地,常化酸洗步骤中,常化炉均热段温度为840~900℃,以防止常化后出现带状组织;
连续退火步骤中,控制带钢的升温速度>10℃/s,优选为10~15℃/s;通过调整烧嘴输出功率使得钢带的升温速度>10℃/s,以提高不同织构组分晶核孕育时间,获得织构均匀的电工钢冷轧钢带成品。
所述连铸步骤中,投用电磁搅拌使得铸坯等轴晶组织占比>60%。
所述热轧步骤中,板坯加热温度1060~1100℃,均热时间≥60min,经过7道次精轧轧至热轧厚度为2.0~2.2mm,终轧温度820~900℃。
所述冷轧步骤中,采用可逆轧机将常化后的钢带一次轧制目标厚度0.50mm,其中第一道次的压下率>25%。
所述连续退火步骤中,在均热温度为940~1000℃保温40~80s。
所述连续退火步骤中,控制退火炉内单位张力0.85~1.0N/mm2使得钢带伸长率为0.05~0.15%;为防止钢带氧化并得到表面质量良好的钢带,控制退火气氛为N2和H2混合气,其中H2浓度控制在20~25%,炉内露点控制在-40℃以下。
所述涂层步骤中,带钢表面涂覆镁系铬酸盐涂层,烘烤使带钢表面达到300~340℃,使涂层中的Cr6+快速被还原成Cr3+,保证达到环保要求。
采用上述制备方法制备得到的水力发电用低各向异性无取向硅钢,0.50mm厚测试密度7.6g/dm3条件下,其磁感B50≥1.65T、铁损P1.5/50≤2.40W/kg且铁损各向异性<10%,能够满足水力发电装备的设计需求。
本发明通过对无取向硅钢的成分及各生产工艺及工艺参数的匹配控制,实现了对于0.50mm厚度的水力发电用低各向异性无取向硅钢产品的铁损、磁感和各向异性综合性能的控制;生产工艺简单,适合工业化大生产控制。
附图说明
图1为实施例1中无取向硅钢常化后的横向金相组织;
图2为实施例1中无取向硅钢常化后的纵向金相组织;
图3为实施例1中无取向硅钢成品的横向金相组织;
图4为实施例1中无取向硅钢成品的纵向金相组织;
图5为对比例2中无取向硅钢常化后的横向金相组织;
图6为对比例2中无取向硅钢常化后的纵向金相组织;
图7为对比例2中无取向硅钢成品的横向金相组织;
图8为对比例2中无取向硅钢成品的纵向金相组织。
具体实施方式
下面结合实施例对本发明进行详细说明。
实施例1
一种0.50mm厚水力发电用低各向异性无取向硅钢的生产方法,包括以下步骤:
按照铁水预处理、转炉冶炼、RH精炼的生产流程进行钢水的冶炼,RH精炼处理后钢水终点化学成分质量百分比为Si:3.2%,Mn:0.30%,Als:1.0%,B=0.0025%,Cu=0.02%,[S+C+N+Ti]=72ppm,其余为Fe及不可避免的杂质。
连铸采用电磁搅拌,得到230mm×10m规格铸坯,其中铸坯断面组织检测等轴晶比例70%;
铸坯经1110℃加热,均热时间为70min,精轧7道次轧制2.0mm,终轧温度设定为900℃;
钢带在常化温度为900℃进行,然后在可逆轧机上将常化后的钢带一次轧制目标厚度0.50mm,其中第一道次的压下率为27.5%;
调整连续退火炉的烧嘴功率使得钢带以15℃/s的升温速度快速升温至工艺温度1000℃并保持在该温度下运行60s,炉内单位张力设定为0.85N/mm2,控制炉内为H2+N2混合的还原性气氛,H2浓度26%,炉内露点-45℃;
完成退火后的带钢经过涂层机组涂覆一层镁系铬酸盐涂层并烘干固化,烘烤时的带钢表面温度为300℃。
采用上述成分和工艺制备的无取向硅钢产品,按照GB/T 2521.1-2016和GB/T13789中的方式测试所得磁性能,铁损P1.5/50=2.28W/Kg,磁感B50=1.66T,铁损各向异性为7.3%的无取向硅钢产品,满足水力发电装备的设计需求。
此实施例中的无取向硅钢常化后及成品的横纵向金相组织如图1-4所示,从图中的横纵向金相组织对比可以看出本实施例中的无取向硅钢的晶粒大小均匀。
实施例2
其他同实施例1,不同点在于:
终轧温度设定为840℃、常化温度设定为840℃。
采用上述成分和工艺制备的无取向硅钢产品,按照GB/T 2521.1-2016和GB/T13789中的方式测试所得磁性能,铁损P1.5/50=2.35W/Kg,磁感B50=1.67T,铁损各向异性为8.7%的无取向硅钢产品,满足水力发电装备的设计需求。
实施例3
其他同实施例1,不同点在于:
(1)化学成分质量百分比为Si:3.0%,Mn:0.11%,Als:0.75%,B:0.0013%,Cu=0.015%,[S+C+N+Ti]=64ppm,其余为Fe及不可避免的杂质;
(2)铸坯等轴晶比例为63%;
(3)退火炉升温速度为13℃/s,退火工艺温度段保持时间为80s、炉内张力为0.9N/mm2
采用上述成分和工艺制备的无取向硅钢产品,按照GB/T 2521.1-2016和GB/T13789中的方式测试所得磁性能,铁损P1.5/50=2.31W/Kg,磁感B50=1.66T,铁损各向异性为8.1%的无取向硅钢产品,满足水力发电装备的设计需求。
实施例4
其他同实施例1,不同点在于:
(1)化学成分质量百分比为Si:3.0%,Mn:0.11%,Als:0.75%,B:0.0013%,Cu=0.015%,[S+C+N+Ti]=64ppm,其余为Fe及不可避免的杂质;
(2)铸坯等轴晶比例为63%;
(3)终轧温度设定为860℃、常化温度设定为860℃、冷轧一道次压下率为25%;
(4)退火炉升温速度为13℃/s,退火工艺温度为970℃,炉内张力为0.9N/mm2
采用上述成分和工艺制备的无取向硅钢产品,按照GB/T 2521.1-2016和GB/T13789中的方式测试所得磁性能,铁损P1.5/50=2.36W/Kg,磁感B50=1.67T,铁损各向异性为8.4%的无取向硅钢产品,满足水力发电装备的设计需求。
实施例5
其他同实施例1,不同点在于:
(1)化学成分质量百分比为Si:2.8%,Mn:0.28%,Als:0.53%,B:0.0010%,Cu:0.010%,[S+C+N+Ti]=80ppm,其余为Fe及不可避免的杂质;
(2)铸坯等轴晶比例为60%;
(3)终轧温度设定为860℃、常化温度设定为860℃、冷轧一道次压下率为25%;
(4)退火炉升温速度为10℃/s,退火工艺温度为940℃,退火工艺温度段保持时间为80s。
采用上述成分和工艺制备的无取向硅钢产品,按照GB/T 2521.1-2016和GB/T13789中的方式测试所得磁性能,铁损P1.5/50=2.38W/Kg,磁感B50=1.65T,铁损各向异性为9.8%的无取向硅钢产品,满足水力发电装备的设计需求。
实施例6
其他同实施例1,不同点在于:
(1)化学成分质量百分比为Si:2.8%,Mn:0.28%,Als:0.53%,B:0.0010%,Cu=0.010%,[S+C+N+Ti]=80ppm,其余为Fe及不可避免的杂质;
(2)铸坯等轴晶比例为60%;
(3)终轧温度设定为840℃、常化温度设定为840℃、冷轧一道次压下率为25%;
(4)退火炉升温速度为10℃/s,退火工艺温度为940℃,退火工艺温度段保持时间为40s,炉内张力为1.0N/mm2
采用上述成分和工艺制备的无取向硅钢产品,按照GB/T 2521.1-2016和GB/T13789中的方式测试所得磁性能,铁损P1.5/50=2.40W/Kg,磁感B50=1.65T,铁损各向异性为10.0%的无取向硅钢产品,满足水力发电装备的设计需求。
对比例1
采用不加B和Cu元素的成分体系,其他同实施例1,不同之处在于:
(1)铸坯等轴晶比例为65%;
(2)热轧终轧温度设定为840℃、常化温度设定为840℃;
(3)冷轧一道次压下率为23.5%;
(4)连续退火炉的升温速度为7℃/s、退火炉内张力为1.0N/mm2
采用上述成分和工艺制备的无取向硅钢产品,按照GB/T 2521.1-2016和GB/T13789中的方式测试所得磁性能,铁损P1.5/50=2.45W/Kg,磁感B50=1.67T,铁损各向异性为11.5%的无取向硅钢产品,不满足水力发电装备的设计需求。
对比例2
采用不加B和Cu元素的成分体系,生产流程同实施例1,不同之处在于:
(1)化学成分质量百分比为Si:2.8%,Mn:0.28%,Als:0.53%,[S+C+N+Ti]=80ppm,其余为Fe及不可避免的杂质;
(2)铸坯等轴晶比例为55%;
(3)冷轧一道次压下率为23%;
(4)退火炉升温速度为7℃/s,退火工艺温度为940℃,炉内张力为1.3N/mm2
采用上述成分和工艺制备的无取向硅钢产品,按照GB/T 2521.1-2016和GB/T13789中的方式测试所得磁性能,铁损P1.5/50=2.51W/Kg,磁感B50=1.65T,铁损各向异性为12.3%的无取向硅钢产品,满足水力发电装备的设计需求。
此对比例中的无取向硅钢常化后及成品的横纵向金相组织如图5-8所示,从图中的横纵向金相组织对比可以看出本对比例中的无取向硅钢的晶粒大小均匀要劣于实施例。
综上,实施例和对比例主要参数对比如下表:
表1实施例和对比例主要参数及磁性能变化对照表
Figure BDA0002486660550000081
Figure BDA0002486660550000091
上述参照实施例对一种水力发电用低各向异性无取向硅钢及其生产方法进行的详细描述,是说明性的而不是限定性的,可按照所限定范围列举出若干个实施例,因此在不脱离本发明总体构思下的变化和修改,应属本发明的保护范围之内。

Claims (4)

1.一种0.50mm厚水力发电用低各向异性无取向硅钢,其特征在于,包括以下重量百分比的化学成分:Si:2.8~3.2%,Mn:0.1~0.3%,Als:0.5~0.8%,B:0.0010%~0.0025%,Cu:0.01%~0.02%,[S+C+N+Ti]≤80ppm,其余为Fe及不可避免的杂质;
所述的水力发电用低各向异性无取向硅钢的生产方法,包括以下步骤:铁水预处理、转炉冶炼、RH精炼、连铸、热轧、常化酸洗、冷轧、连续退火、涂层、精整;
所述连铸步骤中,投用电磁搅拌使得铸坯等轴晶组织占比>60%;
所述冷轧步骤中,采用可逆轧机将常化后的钢带一次轧制目标厚度0.50mm,其中第一道次的压下率>25%;
常化酸洗步骤中,常化炉均热段温度为840~900℃;
所述连续退火步骤中,控制带钢的升温速度>10℃/s,在均热温度为940~1000℃保温40~80s;
所述连续退火步骤中,控制退火炉内单位张力0.85~1.0N/mm2使得钢带伸长率为0.05~0.15%;
所述水力发电用低各向异性无取向硅钢,0.50mm厚测试密度7.6g/dm3条件下,其磁感B50≥1.65T、铁损P1.5/50≤2.40W/kg且铁损各向异性<10%。
2.根据权利要求1所述的0.50mm厚水力发电用低各向异性无取向硅钢,其特征在于,所述热轧步骤中,板坯加热温度1060~1100℃,均热时间≥60min,经过7道次精轧轧至热轧厚度为2.0~2.2mm,终轧温度820~900℃。
3.根据权利要求1所述的0.50mm厚水力发电用低各向异性无取向硅钢,其特征在于,所述连续退火步骤中,退火气氛为N2和H2混合气,其中H2浓度控制在20~25%,炉内露点控制在-40℃以下。
4.根据权利要求1所述的0.50mm厚水力发电用低各向异性无取向硅钢,其特征在于,所述涂层步骤中,带钢表面涂覆镁系铬酸盐涂层,烘烤使带钢表面达到300~340℃。
CN202010393939.4A 2020-05-11 2020-05-11 一种水力发电用低各向异性无取向硅钢及其生产方法 Active CN111440992B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010393939.4A CN111440992B (zh) 2020-05-11 2020-05-11 一种水力发电用低各向异性无取向硅钢及其生产方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010393939.4A CN111440992B (zh) 2020-05-11 2020-05-11 一种水力发电用低各向异性无取向硅钢及其生产方法

Publications (2)

Publication Number Publication Date
CN111440992A CN111440992A (zh) 2020-07-24
CN111440992B true CN111440992B (zh) 2022-03-25

Family

ID=71652119

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010393939.4A Active CN111440992B (zh) 2020-05-11 2020-05-11 一种水力发电用低各向异性无取向硅钢及其生产方法

Country Status (1)

Country Link
CN (1) CN111440992B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114318127B (zh) * 2020-09-30 2022-12-16 宝山钢铁股份有限公司 一种用于特大型发电机超低各向异性的无取向硅钢生产方法
CN116426810B (zh) * 2023-02-17 2024-07-09 湖南宏旺新材料科技有限公司 一种新能源汽车驱动电机用高频低铁损无取向硅钢的制备方法
CN117000562A (zh) * 2023-06-30 2023-11-07 马鞍山钢铁股份有限公司 一种提高大型发电机铁芯绝缘性的无取向硅钢的生产方法及其制得的产品

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64226A (en) * 1987-03-11 1989-01-05 Nippon Steel Corp Production of high tensile non-oriented electrical steel sheet
JPS6439348A (en) * 1987-08-04 1989-02-09 Nippon Steel Corp Non-oriented magnetic steel sheet having low iron loss and excellent magnetic flux density and its production
CN101392351A (zh) * 2007-09-22 2009-03-25 鞍钢股份有限公司 高效高强电机钢及其生产方法
CN103173678A (zh) * 2011-12-23 2013-06-26 宝山钢铁股份有限公司 一种转子用无取向硅钢及其制造方法
CN107385335A (zh) * 2017-08-08 2017-11-24 马钢(集团)控股有限公司 一种新能源汽车驱动电机用无取向硅钢薄带及制造方法
CN108570595A (zh) * 2018-05-17 2018-09-25 马鞍山钢铁股份有限公司 一种新能源汽车驱动电机用低铁损高磁感冷轧无取向电工钢及其生产方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS64226A (en) * 1987-03-11 1989-01-05 Nippon Steel Corp Production of high tensile non-oriented electrical steel sheet
JPS6439348A (en) * 1987-08-04 1989-02-09 Nippon Steel Corp Non-oriented magnetic steel sheet having low iron loss and excellent magnetic flux density and its production
CN101392351A (zh) * 2007-09-22 2009-03-25 鞍钢股份有限公司 高效高强电机钢及其生产方法
CN103173678A (zh) * 2011-12-23 2013-06-26 宝山钢铁股份有限公司 一种转子用无取向硅钢及其制造方法
CN107385335A (zh) * 2017-08-08 2017-11-24 马钢(集团)控股有限公司 一种新能源汽车驱动电机用无取向硅钢薄带及制造方法
CN108570595A (zh) * 2018-05-17 2018-09-25 马鞍山钢铁股份有限公司 一种新能源汽车驱动电机用低铁损高磁感冷轧无取向电工钢及其生产方法

Also Published As

Publication number Publication date
CN111440992A (zh) 2020-07-24

Similar Documents

Publication Publication Date Title
JP5675950B2 (ja) 優れた磁気特性を有する高効率無方向性珪素鋼の製造方法
CN105950960B (zh) 电动汽车驱动电机用无取向硅钢及其制备方法
CN103834858B (zh) 一种低铁损无取向硅钢的制造方法
CN106435358B (zh) 一种新能源汽车驱动电机用高强度无取向硅钢的制造方法
CN106086638B (zh) 一种镀锌双相钢及其生产方法
CN102925793B (zh) 一种磁感≥1.8t的无取向电工钢及其生产方法
JP2023551845A (ja) 高規格無方向性ケイ素鋼及びその生産方法
CN111440992B (zh) 一种水力发电用低各向异性无取向硅钢及其生产方法
CN111254341B (zh) 一种小型发电装备用高磁感无取向电工钢及其生产方法
CN111321344B (zh) 一种电动汽车驱动电机用高强度冷轧无取向电工钢及其生产方法
CN111471941B (zh) 一种屈服强度600MPa级新能源汽车驱动电机转子用高强无取向硅钢及其制造方法
CN110735088A (zh) 一种薄板坯生产的无取向硅钢及其制造方法
CN103173678A (zh) 一种转子用无取向硅钢及其制造方法
WO2021037061A1 (zh) 一种600MPa级无取向电工钢板及其制造方法
CN107723591A (zh) 一种新能源汽车驱动电机用冷轧无取向电工钢及其生产方法
WO2021128409A1 (zh) 一种无取向电工钢及其制备方法、应用
CN114990308B (zh) 一种无需常化的高牌号无取向硅钢的生产方法
CN105239005B (zh) 一种高磁导率无取向硅钢及生产方法
CN113528969A (zh) 一种超高磁感无取向硅钢及其制造方法和在汽车发电机生产中的应用
WO2021037064A1 (zh) 一种含Cu无取向电工钢板及其制造方法
CN109868349B (zh) 一种采用超快冷工艺生产全工艺冷轧无取向电工钢35wd1900的方法
CN109182907B (zh) 一种无头轧制生产半工艺无取向电工钢的方法
CN113512635B (zh) 一种适应高频率工况下低铁损无取向电工钢及其生产方法
CN113621774B (zh) 高硅无取向电工钢及其生产方法
CN111690870A (zh) 一种冷连轧生产高磁感薄规格无取向硅钢方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant