CN111413789A - Infrared optical lens and infrared optical equipment - Google Patents
Infrared optical lens and infrared optical equipment Download PDFInfo
- Publication number
- CN111413789A CN111413789A CN202010311305.XA CN202010311305A CN111413789A CN 111413789 A CN111413789 A CN 111413789A CN 202010311305 A CN202010311305 A CN 202010311305A CN 111413789 A CN111413789 A CN 111413789A
- Authority
- CN
- China
- Prior art keywords
- lens
- infrared optical
- object side
- effective
- focal length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000003287 optical effect Effects 0.000 title claims abstract description 167
- 238000003384 imaging method Methods 0.000 claims description 28
- 210000001747 pupil Anatomy 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 3
- 125000006850 spacer group Chemical group 0.000 claims description 3
- 239000000463 material Substances 0.000 description 13
- 102220616555 S-phase kinase-associated protein 2_E48R_mutation Human genes 0.000 description 9
- 238000010586 diagram Methods 0.000 description 6
- 230000009286 beneficial effect Effects 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 230000004075 alteration Effects 0.000 description 3
- 230000008033 biological extinction Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 238000005286 illumination Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 1
- 239000008358 core component Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/0015—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design
- G02B13/002—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface
- G02B13/004—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras characterised by the lens design having at least one aspherical surface having four lenses
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B13/00—Optical objectives specially designed for the purposes specified below
- G02B13/001—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras
- G02B13/008—Miniaturised objectives for electronic devices, e.g. portable telephones, webcams, PDAs, small digital cameras designed for infrared light
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Lenses (AREA)
Abstract
本发明揭示了一种红外光学镜头及红外光学设备,所述红外光学镜头从物侧至像侧包括第一透镜、第二透镜、第三透镜及第四透镜,所述第一透镜、第二透镜、第三透镜及第四透镜的物侧面和像侧面均为非球面,所述第一透镜的有效焦距f1与红外光学镜头的总有效焦距f满足1.2<f1/f<1.5,且3.69mm≤f≤3.70mm,光源波长范围为812nm~832nm。本发明中的红外光学镜头及红外光学设备通过优化透镜的厚度、焦距、有效口径等参数,能够提高镜头的分辨率,减小光学畸变,并能够保证相对照度,能够广泛适用于红外波段的光学设备中。
The invention discloses an infrared optical lens and an infrared optical device. The infrared optical lens includes a first lens, a second lens, a third lens and a fourth lens from the object side to the image side. The first lens, the second lens The object side and the image side of the lens, the third lens and the fourth lens are all aspherical surfaces, and the effective focal length f1 of the first lens and the total effective focal length f of the infrared optical lens satisfy 1.2<f1/f<1.5, and 3.69mm ≤f≤3.70mm, the wavelength range of the light source is 812nm~832nm. The infrared optical lens and infrared optical device of the present invention can improve the resolution of the lens, reduce optical distortion, and ensure the relative illuminance by optimizing parameters such as the thickness, focal length, effective diameter of the lens, etc., and can be widely used in optics in the infrared band. in the device.
Description
技术领域technical field
本发明属于光学镜头技术领域,具体涉及一种红外光学镜头及红外光学设备。The invention belongs to the technical field of optical lenses, and in particular relates to an infrared optical lens and an infrared optical device.
背景技术Background technique
近年来,随着深度识别技术的飞速发展,三维深度相机在AR增强技术中应用愈加广泛。结构光方案作为深度识别技术的主流方向之一,其进行深度识别的原理是:由投影镜头模块将特殊图像(编码图案或点阵图像)投射到对象物体上;利用一个成像接收模块接收从所述对象物体反射回来的图像信息;通过后端算法对接收图像信息的处理,获得对象物体的深度信息。成像接收镜头作为结构光深度识别技术的核心元件之一,其光学性能的优劣将很大程度地影响深度识别的准确度。In recent years, with the rapid development of depth recognition technology, 3D depth cameras have become more and more widely used in AR enhancement technology. The structured light scheme is one of the mainstream directions of depth recognition technology. The principle of depth recognition is: the projection lens module projects a special image (coding pattern or dot matrix image) onto the object; uses an imaging receiving module to receive The image information reflected back by the object is described; the depth information of the object is obtained by processing the received image information through the back-end algorithm. The imaging receiving lens is one of the core components of the structured light depth recognition technology, and its optical performance will greatly affect the accuracy of depth recognition.
光学畸变(Distortion)和分别率(Resolution)是评价光学性能两个重要指标,现有技术的光学镜头中仍然无法有效地在红外波段保证光学畸变和分别率。Optical distortion (Distortion) and resolution (Resolution) are two important indicators for evaluating optical performance, and the optical lens of the prior art still cannot effectively guarantee optical distortion and resolution in the infrared band.
因此,针对上述技术问题,有必要提供一种红外光学镜头及红外光学设备。Therefore, in view of the above technical problems, it is necessary to provide an infrared optical lens and an infrared optical device.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供一种红外光学镜头及红外光学设备。The purpose of the present invention is to provide an infrared optical lens and an infrared optical device.
为了实现上述目的,本发明一实施例提供的技术方案如下:In order to achieve the above purpose, the technical solution provided by an embodiment of the present invention is as follows:
一种红外光学镜头,所述红外光学镜头从物侧至像侧包括第一透镜、第二透镜、第三透镜及第四透镜,所述第一透镜、第二透镜、第三透镜及第四透镜的物侧面和像侧面均为非球面,其中:An infrared optical lens comprising a first lens, a second lens, a third lens and a fourth lens from the object side to the image side, the first lens, the second lens, the third lens and the fourth lens The object and image sides of the lens are both aspherical, where:
所述第一透镜具有正光焦度,其物侧面光轴处为凸面;The first lens has a positive refractive power, and the optical axis of the object side surface is a convex surface;
所述第二透镜具有正光焦度或负光焦度,其物侧面光轴处为凹面,像侧面光轴处为凸面;The second lens has positive refractive power or negative refractive power, the optical axis of the object side is concave, and the optical axis of the image side is convex;
所述第三透镜具有正光焦度,其物侧面光轴处为凹面,像侧面光轴处为凸面;The third lens has a positive refractive power, the optical axis of the object side is concave, and the optical axis of the image side is convex;
所述第四透镜具有负光焦度,其物侧面光轴处为凸面,物侧面离轴处至少有一处凹面,像侧面光轴处为凹面,像侧面离轴处至少有一处凸面;The fourth lens has a negative refractive power, the object side surface is convex at the optical axis, the object side is off-axis at least one concave surface, the image side optical axis is concave, and the image side is off-axis at least one convex surface;
所述第一透镜的有效焦距f1与红外光学镜头的总有效焦距f满足1.2<f1/f<1.5,且3.69mm≤f≤3.70mm,光源波长范围为812nm~832nm。The effective focal length f1 of the first lens and the total effective focal length f of the infrared optical lens satisfy 1.2<f1/f<1.5, and 3.69mm≤f≤3.70mm, and the wavelength range of the light source is 812nm-832nm.
一实施例中,所述第一透镜的有效焦距f1、第二透镜的有效焦距f2、第三透镜的有效焦距f3与红外光学镜头的总有效焦距f满足1.5<|f/f1|+|f/f2|+|f/f3|<2.1。In one embodiment, the effective focal length f1 of the first lens, the effective focal length f2 of the second lens, the effective focal length f3 of the third lens and the total effective focal length f of the infrared optical lens satisfy 1.5<|f/f1|+|f /f2|+|f/f3|<2.1.
一实施例中,所述第一透镜的物侧面曲率半径R1与红外光学镜头的总有效焦距f满足0.1<R1/f<0.6。In one embodiment, the curvature radius R1 of the object side surface of the first lens and the total effective focal length f of the infrared optical lens satisfy 0.1<R1/f<0.6.
一实施例中,所述第一透镜、第二透镜、第三透镜和第四透镜于光轴上的中心厚度之和∑CT与所述第一透镜的物侧面至红外光学镜头的成像面在光轴上的间隔距离TTL满足0.45<∑CT/TTL<0.51。In one embodiment, the sum ΣCT of the center thicknesses of the first lens, the second lens, the third lens and the fourth lens on the optical axis is at the same level as the image plane from the object side of the first lens to the imaging plane of the infrared optical lens. The separation distance TTL on the optical axis satisfies 0.45<∑CT/TTL<0.51.
一实施例中,所述第一透镜的物侧面和光轴的交点至所述第一透镜物侧面的有效半口径顶点的轴上距离SAG11与所述第一透镜于光轴上的中心厚度CT1满足0.35<SAG11/CT1<0.45。In one embodiment, the on-axis distance SAG11 from the intersection of the object side of the first lens and the optical axis to the effective semi-aperture vertex of the object side of the first lens and the center thickness CT1 of the first lens on the optical axis satisfy 0.35<SAG11/CT1<0.45.
一实施例中,所述第四透镜的像侧面的最大有效半口径DT42与所述红外光学镜头的成像面上感光元件的有效像素区域对角线长的一半ImgH满足0.68<DT42/ImgH<0.72。In one embodiment, the maximum effective half-aperture DT42 of the image side of the fourth lens and the half of the diagonal length of the effective pixel area of the photosensitive element on the imaging surface of the infrared optical lens ImgH satisfy 0.68<DT42/ImgH<0.72 .
一实施例中,所述红外光学镜头的总有效焦距f与红外光学镜头的入瞳直径EPD满足1.8<f/EPD<1.9。In one embodiment, the total effective focal length f of the infrared optical lens and the entrance pupil diameter EPD of the infrared optical lens satisfy 1.8<f/EPD<1.9.
一实施例中,所述第一透镜的物侧面的中心至所述红外光学镜头的成像面在所述光轴上的距离TTL与所述红外光学镜头的成像面上有效像素区域对角线长的一半ImgH满足1.7<TTL/ImgH<1.85。In one embodiment, the distance TTL from the center of the object side surface of the first lens to the imaging surface of the infrared optical lens on the optical axis is longer than the diagonal of the effective pixel area on the imaging surface of the infrared optical lens Half of ImgH satisfy 1.7<TTL/ImgH<1.85.
一实施例中,所述红外光学镜头中:In one embodiment, in the infrared optical lens:
第一透镜物侧面的有效口径为0.97mm~0.98mm,像侧面的有效口径为0.99mm~1.05mm;The effective aperture of the object side of the first lens is 0.97mm~0.98mm, and the effective aperture of the image side is 0.99mm~1.05mm;
第二透镜物侧面的有效口径为0.95mm~1.04mm,像侧面的有效口径为1.11mm~1.16mm;The effective aperture of the object side of the second lens is 0.95mm~1.04mm, and the effective aperture of the image side is 1.11mm~1.16mm;
第三透镜物侧面的有效口径为1.14mm~1.19mm,像侧面的有效口径为1.45mm~1.57mm;The effective aperture of the object side of the third lens is 1.14mm~1.19mm, and the effective aperture of the image side is 1.45mm~1.57mm;
第四透镜物侧面的有效口径为2.05mm~2.14mm,像侧面的有效口径为2.52mm~2.61mm。The effective aperture of the object side of the fourth lens is 2.05mm-2.14mm, and the effective aperture of the image side is 2.52mm-2.61mm.
一实施例中,所述红外光学镜头还包括:In one embodiment, the infrared optical lens further includes:
滤光片,位于第四透镜的像侧;filter, located on the image side of the fourth lens;
镜筒,用于封装第一透镜、第二透镜、第三透镜及第四透镜;a lens barrel for encapsulating the first lens, the second lens, the third lens and the fourth lens;
若干间隔环,封装于第一透镜与第二透镜、和/或第二透镜与第三透镜、和/或第三透镜与第四透镜之间。A plurality of spacer rings are encapsulated between the first lens and the second lens, and/or the second lens and the third lens, and/or the third lens and the fourth lens.
本发明一实施例提供的技术方案如下:The technical solution provided by an embodiment of the present invention is as follows:
一种红外光学设备,所述红外光学设备中设有至少一个上述的红外光学镜头。An infrared optical device is provided with at least one of the above-mentioned infrared optical lenses.
与现有技术相比,本发明具有以下优点:Compared with the prior art, the present invention has the following advantages:
本发明中的红外光学镜头及红外光学设备通过优化透镜的厚度、焦距、有效口径等参数,能够提高镜头的分辨率,减小光学畸变,并能够保证相对照度,能够广泛适用于红外波段的光学设备中。The infrared optical lens and infrared optical device of the present invention can improve the resolution of the lens, reduce optical distortion, and ensure relative illuminance by optimizing parameters such as the thickness, focal length, effective diameter of the lens, etc. in the device.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明中记载的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments described in the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without any creative effort.
图1为本发明中红外光学镜头的结构示意图;1 is a schematic structural diagram of a mid-infrared optical lens of the present invention;
图2为本发明中红外光学镜头的光线传输示意图;Fig. 2 is the light transmission schematic diagram of the mid-infrared optical lens of the present invention;
图3为本发明实施例一中光学镜头的分辨率曲线图;Fig. 3 is the resolution curve diagram of the optical lens in
图4为本发明实施例一中光学镜头的畸变曲线图;4 is a distortion curve diagram of an optical lens in
图5为本发明实施例一中光学镜头的相对照度曲线图。FIG. 5 is a relative illuminance curve diagram of the optical lens in the first embodiment of the present invention.
具体实施方式Detailed ways
以下将结合附图所示的各实施方式对本发明进行详细描述。但该等实施方式并不限制本发明,本领域的普通技术人员根据该等实施方式所做出的结构、方法、或功能上的变换均包含在本发明的保护范围内。The present invention will be described in detail below with reference to the various embodiments shown in the accompanying drawings. However, these embodiments do not limit the present invention, and the structural, method, or functional transformations made by those of ordinary skill in the art based on these embodiments are all included in the protection scope of the present invention.
参图1、图2所示,本发明公开了一种红外光学镜头,该红外光学镜头从物侧至像侧包括第一透镜10、第二透镜20、第三透镜30及第四透镜40,第一透镜10、第二透镜20、第三透镜30及第四透镜40的物侧面和像侧面均为非球面,其中:1 and 2, the present invention discloses an infrared optical lens, which includes a
第一透镜10具有正光焦度,其物侧面光轴处为凸面;The
第二透镜20具有正光焦度或负光焦度,其物侧面光轴处为凹面,像侧面光轴处为凸面;The
第三透镜30具有正光焦度,其物侧面光轴处为凹面,像侧面光轴处为凸面;The
第四透镜40具有负光焦度,其物侧面光轴处为凸面,物侧面离轴处至少有一处凹面,像侧面光轴处为凹面,像侧面离轴处至少有一处凸面。The
进一步地,红外光学镜头还包括:Further, the infrared optical lens also includes:
滤光片50,位于第四透镜40的像侧;The
镜筒60,用于封装第一透镜10、第二透镜20、第三透镜30及第四透镜40;The
若干间隔环70,封装于第一透镜与第二透镜、第二透镜与第三透镜、第三透镜与第四透镜之间。A plurality of
本发明中的第一透镜10的有效焦距f1与红外光学镜头的总有效焦距f满足1.2<f1/f<1.5,且3.69mm≤f≤3.70mm,光源波长范围为812nm~832nm。合理配置第一透镜的有效焦距,可以有效地矫正镜头的球差,保证高成像质量。In the present invention, the effective focal length f1 of the
优选地,第一透镜的有效焦距f1、第二透镜的有效焦距f2、第三透镜的有效焦距f3与红外光学镜头的总有效焦距f满足1.5<|f/f1|+|f/f2|+|f/f3|<2.1。Preferably, the effective focal length f1 of the first lens, the effective focal length f2 of the second lens, the effective focal length f3 of the third lens and the total effective focal length f of the infrared optical lens satisfy 1.5<|f/f1|+|f/f2|+ |f/f3|<2.1.
优选地,第一透镜的物侧面曲率半径R1与红外光学镜头的总有效焦距f满足0.1<R1/f<0.6,可以较好地校正系统轴外视场区域的像差,保证中心视场区域的高解像力;同时,有利于获得较大的镜头光圈。Preferably, the curvature radius R1 of the object side of the first lens and the total effective focal length f of the infrared optical lens satisfy 0.1<R1/f<0.6, which can better correct the aberration in the off-axis field of view of the system and ensure the central field of view. high resolution; at the same time, it is beneficial to obtain a larger lens aperture.
优选地,第一透镜、第二透镜、第三透镜和第四透镜于光轴上的中心厚度之和∑CT与第一透镜的物侧面至红外光学镜头的成像面在光轴上的间隔距离TTL满足0.45<∑CT/TTL<0.51,可较好地校正成像系统轴外视场区域的像差,同时有利于使得各镜片具有较好的可加工性。Preferably, the sum of the center thicknesses of the first lens, the second lens, the third lens and the fourth lens on the optical axis ΣCT and the separation distance on the optical axis from the object side of the first lens to the imaging surface of the infrared optical lens TTL satisfies 0.45<∑CT/TTL<0.51, which can better correct the aberration in the off-axis field of view of the imaging system, and at the same time is beneficial to make each lens have better machinability.
优选地,第一透镜的物侧面和光轴的交点至第一透镜物侧面的有效半口径顶点的轴上距离SAG11与第一透镜于光轴上的中心厚度CT1满足0.35<SAG11/CT1<0.45。Preferably, the on-axis distance SAG11 from the intersection of the object side of the first lens and the optical axis to the effective semi-aperture vertex of the object side of the first lens and the central thickness CT1 of the first lens on the optical axis satisfy 0.35<SAG11/CT1<0.45.
优选地,第四透镜的像侧面的最大有效半口径DT42与红外光学镜头的成像面上感光元件的有效像素区域对角线长的一半ImgH满足0.68<DT42/ImgH<0.72,有利于满足小型化要求,并同时保证较高的相对亮度。Preferably, the maximum effective half-aperture DT42 on the image side of the fourth lens and ImgH, which is half the diagonal length of the effective pixel area of the photosensitive element on the imaging surface of the infrared optical lens, satisfy 0.68<DT42/ImgH<0.72, which is beneficial to meet the requirements of miniaturization requirements, and at the same time guarantee a high relative brightness.
优选地,红外光学镜头的总有效焦距f与红外光学镜头的入瞳直径EPD满足1.8<f/EPD<1.9。Preferably, the total effective focal length f of the infrared optical lens and the entrance pupil diameter EPD of the infrared optical lens satisfy 1.8<f/EPD<1.9.
优选地,第一透镜的物侧面的中心至红外光学镜头的成像面在光轴上的距离TTL与红外光学镜头的成像面上有效像素区域对角线长的一半ImgH满足1.7<TTL/ImgH<1.85。Preferably, the distance TTL from the center of the object side surface of the first lens to the imaging surface of the infrared optical lens on the optical axis and half of the diagonal length of the effective pixel area on the imaging surface of the infrared optical lens ImgH satisfy 1.7<TTL/ImgH< 1.85.
本发明中,第一透镜物侧面的有效口径为0.97mm~0.98mm,像侧面的有效口径为0.99mm~1.05mm;第二透镜物侧面的有效口径为0.95mm~1.04mm,像侧面的有效口径为1.11mm~1.16mm;第三透镜物侧面的有效口径为1.14mm~1.19mm,像侧面的有效口径为1.45mm~1.57mm;第四透镜物侧面的有效口径为2.05mm~2.14mm,像侧面的有效口径为2.52mm~2.61mm。In the present invention, the effective aperture of the object side of the first lens is 0.97mm~0.98mm, the effective aperture of the image side is 0.99mm~1.05mm; the effective aperture of the object side of the second lens is 0.95mm~1.04mm, and the effective aperture of the image side is 0.95mm~1.04mm. The aperture is 1.11mm~1.16mm; the effective aperture of the object side of the third lens is 1.14mm~1.19mm, the effective aperture of the image side is 1.45mm~1.57mm; the effective aperture of the fourth lens object side is 2.05mm~2.14mm, The effective diameter of the image side is 2.52mm to 2.61mm.
优选地,第一透镜物侧面的有效口径为0.978mm~0.980mm,像侧面的有效口径为1.001mm~1.032mm;第二透镜物侧面的有效口径为0.999mm~1.030mm,像侧面的有效口径为1.119mm~1.152mm;第三透镜物侧面的有效口径为1.140mm~1.181mm,像侧面的有效口径为1.465mm~1.568mm;第四透镜物侧面的有效口径为2.067mm~2.137mm,像侧面的有效口径为2.520mm~2.601mm。Preferably, the effective aperture of the object side of the first lens is 0.978mm~0.980mm, and the effective aperture of the image side is 1.001mm~1.032mm; the effective aperture of the object side of the second lens is 0.999mm~1.030mm, and the effective aperture of the image side is 0.999mm~1.030mm. The effective aperture of the object side of the third lens is 1.140mm to 1.181mm, and the effective aperture of the image side is 1.465mm to 1.568mm; the effective aperture of the object side of the fourth lens is 2.067mm to 2.137mm. The effective diameter of the side is 2.520mm to 2.601mm.
本发明通过控制各透镜的中心厚与总厚度度比例与合理分配各透镜焦距比来提高分辨力减小畸变的作用。The invention improves the resolution and reduces the distortion by controlling the ratio of the central thickness to the total thickness of each lens and rationally distributing the focal length ratio of each lens.
以下结合具体实施例对本发明作进一步说明。The present invention will be further described below in conjunction with specific embodiments.
实施例一:Example 1:
本实施例中红外光学镜头总有效焦距f=3.697mm,其包括第一透镜10、第二透镜20、第三透镜30及第四透镜40均为树脂镜片,中心为透镜,边缘进行腐蚀消光处理,其材质、折射率及有效焦距分别如下:In this embodiment, the total effective focal length of the infrared optical lens is f=3.697mm, which includes the
第一透镜10材质为E48R,折射率为1.531,有效焦距f1=5.190mm,物侧面的有效口径为0.979mm,像侧面的有效口径为1.008mm;The material of the
第二透镜20材质为EP5000,折射率为1.635,有效焦距f2=23.898mm,物侧面的有效口径为1.000mm,像侧面的有效口径为1.124mm;The material of the
第三透镜30材质为E48R,折射率为1.531,有效焦距f3=3.112mm,物侧面的有效口径为1.145mm,像侧面的有效口径为1.567mm;The material of the
第四透镜40材质为E48R,折射率为1.531,有效焦距f4=-4.231mm,物侧面的有效口径为2.078mm,像侧面的有效口径为2.541mm。The material of the
第一透镜10的有效焦距f1与红外光学镜头的总有效焦距f之比为f1/f=1.404;The ratio of the effective focal length f1 of the
第一透镜的有效焦距f1、第二透镜的有效焦距f2、第三透镜的有效焦距f3与红外光学镜头的总有效焦距f满足|f/f1|+|f/f2|+|f/f3|=2.055。The effective focal length f1 of the first lens, the effective focal length f2 of the second lens, the effective focal length f3 of the third lens and the total effective focal length f of the infrared optical lens satisfy |f/f1|+|f/f2|+|f/f3| = 2.055.
第一透镜的物侧面曲率半径R1=0.713mm,其与红外光学镜头的总有效焦距f之比R1/f=0.193。The curvature radius of the object side surface of the first lens is R1=0.713mm, and its ratio to the total effective focal length f of the infrared optical lens is R1/f=0.193.
第一透镜、第二透镜、第三透镜和第四透镜于光轴上的中心厚度之和∑CT=2.754mm,第一透镜的物侧面至红外光学镜头的成像面在光轴上的间隔距离TTL=5.495mm,∑CT/TTL=0.501。The sum of the central thicknesses of the first lens, the second lens, the third lens and the fourth lens on the optical axis ∑CT=2.754mm, the distance from the object side of the first lens to the imaging surface of the infrared optical lens on the optical axis TTL=5.495mm, ∑CT/TTL=0.501.
第一透镜的物侧面和光轴的交点至第一透镜物侧面的有效半口径顶点的轴上距离SAG11=0.273mm,第一透镜于光轴上的中心厚度CT1=0.713mm,SAG11/CT1=0.383。The on-axis distance SAG11=0.273mm from the intersection of the object side and the optical axis of the first lens to the vertex of the effective semi-aperture on the object side of the first lens, the central thickness of the first lens on the optical axis CT1=0.713mm, SAG11/CT1=0.383 .
第四透镜的像侧面的最大有效半口径DT42=2.078mm,红外光学镜头的成像面上感光元件的有效像素区域对角线长的一半ImgH=3.000mm,DT42/ImgH=0.693。The maximum effective half-aperture of the image side of the fourth lens is DT42=2.078mm, the half of the diagonal length of the effective pixel area of the photosensitive element on the imaging surface of the infrared optical lens is ImgH=3.000mm, and DT42/ImgH=0.693.
红外光学镜头的总有效焦距f=3.697mm,红外光学镜头的入瞳直径EPD=1.957mm,f/EPD=1.890。The total effective focal length of the infrared optical lens is f=3.697mm, the entrance pupil diameter of the infrared optical lens is EPD=1.957mm, and f/EPD=1.890.
第一透镜的物侧面的中心至红外光学镜头的成像面在光轴上的距离TTL=5.495mm,其与红外光学镜头的成像面上有效像素区域对角线长的一半ImgH之比TTL/ImgH=1.832。The distance from the center of the object side of the first lens to the imaging surface of the infrared optical lens on the optical axis TTL=5.495mm, the ratio between it and the half ImgH of the diagonal length of the effective pixel area on the imaging surface of the infrared optical lens TTL/ImgH =1.832.
各透镜的表面均为非球面,且满足非球面公式:The surface of each lens is aspheric and satisfies the aspheric formula:
其中,Z为非球面曲线,C=1/r(r为近轴球面半径),Y为曲率半径,K为圆锥常数(二次曲面常数),a、b、c、d、e…分别为高阶系数(4阶、6阶、8阶、10阶、12阶…)。Among them, Z is the aspherical curve, C=1/r (r is the paraxial spherical radius), Y is the radius of curvature, K is the conic constant (quadratic surface constant), a, b, c, d, e...respectively Higher order coefficients (4th, 6th, 8th, 10th, 12th...).
第一透镜10的物侧面和像侧面分别为S1和S2,第二透镜20的物侧面和像侧面分别为S3和S4,第三透镜30的物侧面和像侧面分别为S5和S6,第四透镜40的物侧面和像侧面分别为S7和S8,S1-SAG~S8-SAG分别为各面的矢高(0.2mm、0.4mm、0.6mm、0.8mm处)。其曲面参数具体参表1和表2。The object side and the image side of the
表1:透镜曲面参数表1Table 1: Lens Surface Parameters Table 1
表2:透镜曲面参数表2Table 2: Lens Surface Parameters Table 2
参图3所示为本实施例中成像高度(Real Image Height)-分辨率(MTF)的曲线图,从上到下分别为空间频率为0%时子午方向(S)和弧失方向(T)、空间频率为33%时子午方向(S)和弧失方向(T)、空间频率为66%时子午方向(S)和弧失方向(T)、空间频率为132%时子午方向(S)和弧失方向(T)的分辨率曲线,可见,本实施例中的红外光学镜头在高频有很好的解像力,中心区域到周边区域较平滑。Referring to FIG. 3, there is shown a graph of the imaging height (Real Image Height)-resolution (MTF) in this embodiment, from top to bottom, the meridional direction (S) and the arc loss direction (T) are respectively when the spatial frequency is 0%. ), the meridional direction (S) and the missing arc direction (T) when the spatial frequency is 33%, the meridional direction (S) and the missing arc direction (T) when the spatial frequency is 66%, and the meridional direction (S) when the spatial frequency is 132% ) and the resolution curve of the loss of direction (T), it can be seen that the infrared optical lens in this embodiment has a good resolution at high frequencies, and the central area to the peripheral area is relatively smooth.
参图4所示为本实施例中的畸变曲线图,可见,本实施例中的红外光学镜头畸变较小,小于1.7%。参图5所示为本实施例中相对场高(Relative Field Height)-相对照度(Relative Illumination)的曲线图,可见,本实施例中的红外光学镜头相对照度大于32%。Referring to FIG. 4 as a distortion curve diagram in this embodiment, it can be seen that the distortion of the infrared optical lens in this embodiment is relatively small, less than 1.7%. Referring to FIG. 5, which is a graph showing the relative field height (Relative Field Height)-relative Illumination (Relative Illumination) in this embodiment, it can be seen that the relative illuminance of the infrared optical lens in this embodiment is greater than 32%.
实施例二:Embodiment 2:
本实施例中红外光学镜头总有效焦距f=3.693mm,其包括第一透镜、第二透镜、第三透镜及第四透镜均为树脂镜片,中心为透镜,边缘进行腐蚀消光处理,其材质、折射率及有效焦距分别如下:In this embodiment, the total effective focal length of the infrared optical lens is f=3.693mm, and the first lens, the second lens, the third lens and the fourth lens are all resin lenses, the center is the lens, and the edge is subjected to corrosion extinction treatment. The refractive index and effective focal length are as follows:
第一透镜材质为E48R,折射率为1.531,有效焦距f1=4.565mm,物侧面的有效口径为0.979mm,像侧面的有效口径为1.027mm;The material of the first lens is E48R, the refractive index is 1.531, the effective focal length f1=4.565mm, the effective aperture of the object side is 0.979mm, and the effective aperture of the image side is 1.027mm;
第二透镜材质为EP5000,折射率为1.635,有效焦距f2=-115.52mm,物侧面的有效口径为1.026mm,像侧面的有效口径为1.144mm;The material of the second lens is EP5000, the refractive index is 1.635, the effective focal length f2=-115.52mm, the effective aperture of the object side is 1.026mm, and the effective aperture of the image side is 1.144mm;
第三透镜材质为E48R,折射率为1.531,有效焦距f3=4.133mm,物侧面的有效口径为1.169mm,像侧面的有效口径为1.472mm;The material of the third lens is E48R, the refractive index is 1.531, the effective focal length is f3=4.133mm, the effective aperture of the object side is 1.169mm, and the effective aperture of the image side is 1.472mm;
第四透镜材质为E48R,折射率为1.531,有效焦距f4=-5.416mm,物侧面的有效口径为2.101mm,像侧面的有效口径为2.554mm。The material of the fourth lens is E48R, the refractive index is 1.531, the effective focal length f4=-5.416mm, the effective aperture of the object side is 2.101mm, and the effective aperture of the image side is 2.554mm.
第一透镜的有效焦距f1与红外光学镜头的总有效焦距f之比为f1/f=1.236;The ratio of the effective focal length f1 of the first lens to the total effective focal length f of the infrared optical lens is f1/f=1.236;
第一透镜的有效焦距f1、第二透镜的有效焦距f2、第三透镜的有效焦距f3与红外光学镜头的总有效焦距f满足|f/f1|+|f/f2|+|f/f3|=1.670。The effective focal length f1 of the first lens, the effective focal length f2 of the second lens, the effective focal length f3 of the third lens and the total effective focal length f of the infrared optical lens satisfy |f/f1|+|f/f2|+|f/f3| =1.670.
第一透镜的物侧面曲率半径R1=1.751mm,其与红外光学镜头的总有效焦距f之比R1/f=0.474。The curvature radius of the object side surface of the first lens is R1=1.751mm, and its ratio to the total effective focal length f of the infrared optical lens is R1/f=0.474.
第一透镜、第二透镜、第三透镜和第四透镜于光轴上的中心厚度之和∑CT=2.537mm,第一透镜的物侧面至红外光学镜头的成像面在光轴上的间隔距离TTL=5.099mm,∑CT/TTL=0.498。The sum of the central thicknesses of the first lens, the second lens, the third lens and the fourth lens on the optical axis ∑CT=2.537mm, the distance from the object side of the first lens to the imaging surface of the infrared optical lens on the optical axis TTL=5.099mm, ∑CT/TTL=0.498.
第一透镜的物侧面和光轴的交点至第一透镜物侧面的有效半口径顶点的轴上距离SAG11=0.299mm,第一透镜于光轴上的中心厚度CT1=0.738mm,SAG11/CT1=0.405。The on-axis distance from the intersection of the object side and the optical axis of the first lens to the vertex of the effective semi-aperture on the object side of the first lens is SAG11=0.299mm, the center thickness of the first lens on the optical axis CT1=0.738mm, SAG11/CT1=0.405 .
第四透镜的像侧面的最大有效半口径DT42=2.101mm,红外光学镜头的成像面上感光元件的有效像素区域对角线长的一半ImgH=3.000mm,DT42/ImgH=0.700。The maximum effective half aperture of the image side of the fourth lens is DT42=2.101mm, the half of the diagonal length of the effective pixel area of the photosensitive element on the imaging surface of the infrared optical lens is ImgH=3.000mm, and DT42/ImgH=0.700.
红外光学镜头的总有效焦距f=3.693mm,红外光学镜头的入瞳直径EPD=1.957mm,f/EPD=1.887。The total effective focal length of the infrared optical lens is f=3.693mm, the entrance pupil diameter of the infrared optical lens is EPD=1.957mm, and f/EPD=1.887.
第一透镜的物侧面的中心至红外光学镜头的成像面在光轴上的距离TTL=5.099mm,其与红外光学镜头的成像面上有效像素区域对角线长的一半ImgH之比TTL/ImgH=1.700。The distance from the center of the object side of the first lens to the imaging surface of the infrared optical lens on the optical axis TTL=5.099mm, the ratio between it and the half ImgH of the diagonal length of the effective pixel area on the imaging surface of the infrared optical lens TTL/ImgH =1.700.
实施例三:Embodiment three:
本实施例中红外光学镜头总有效焦距f=3.693mm,其包括第一透镜、第二透镜、第三透镜及第四透镜均为树脂镜片,中心为透镜,边缘进行腐蚀消光处理,其材质、折射率及有效焦距分别如下:In this embodiment, the total effective focal length of the infrared optical lens is f=3.693mm, and the first lens, the second lens, the third lens and the fourth lens are all resin lenses, the center is the lens, and the edge is subjected to corrosion extinction treatment. The refractive index and effective focal length are as follows:
第一透镜材质为E48R,折射率为1.531,有效焦距f1=4.589mm,物侧面的有效口径为0.979mm,像侧面的有效口径为1.026mm;The material of the first lens is E48R, the refractive index is 1.531, the effective focal length f1=4.589mm, the effective aperture of the object side is 0.979mm, and the effective aperture of the image side is 1.026mm;
第二透镜材质为EP5000,折射率为1.635,有效焦距f2=69.587mm,物侧面的有效口径为1.024mm,像侧面的有效口径为1.133mm;The material of the second lens is EP5000, the refractive index is 1.635, the effective focal length f2=69.587mm, the effective aperture of the object side is 1.024mm, and the effective aperture of the image side is 1.133mm;
第三透镜材质为E48R,折射率为1.531,有效焦距f3=5.097mm,物侧面的有效口径为1.151mm,像侧面的有效口径为1.519mm;The third lens material is E48R, the refractive index is 1.531, the effective focal length is f3=5.097mm, the effective aperture of the object side is 1.151mm, and the effective aperture of the image side is 1.519mm;
第四透镜材质为E48R,折射率为1.531,有效焦距f4=-7.044mm,物侧面的有效口径为2.136mm,像侧面的有效口径为2.600mm。The fourth lens material is E48R, the refractive index is 1.531, the effective focal length f4=-7.044mm, the effective aperture of the object side is 2.136mm, and the effective aperture of the image side is 2.600mm.
第一透镜的有效焦距f1与红外光学镜头的总有效焦距f之比为f1/f=1.243;The ratio of the effective focal length f1 of the first lens to the total effective focal length f of the infrared optical lens is f1/f=1.243;
第一透镜的有效焦距f1、第二透镜的有效焦距f2、第三透镜的有效焦距f3与红外光学镜头的总有效焦距f满足|f/f1|+|f/f2|+|f/f3|=1.582。The effective focal length f1 of the first lens, the effective focal length f2 of the second lens, the effective focal length f3 of the third lens and the total effective focal length f of the infrared optical lens satisfy |f/f1|+|f/f2|+|f/f3| =1.582.
第一透镜的物侧面曲率半径R1=1.764mm,其与红外光学镜头的总有效焦距f之比R1/f=0.478。The curvature radius of the object side surface of the first lens is R1=1.764mm, and its ratio to the total effective focal length f of the infrared optical lens is R1/f=0.478.
第一透镜、第二透镜、第三透镜和第四透镜于光轴上的中心厚度之和∑CT=2.593mm,第一透镜的物侧面至红外光学镜头的成像面在光轴上的间隔距离TTL=5.183mm,∑CT/TTL=0.500。The sum of the central thicknesses of the first lens, the second lens, the third lens and the fourth lens on the optical axis ∑CT=2.593mm, the distance from the object side of the first lens to the imaging surface of the infrared optical lens on the optical axis TTL=5.183mm, ∑CT/TTL=0.500.
第一透镜的物侧面和光轴的交点至第一透镜物侧面的有效半口径顶点的轴上距离SAG11=0.296mm,第一透镜于光轴上的中心厚度CT1=0.697mm,SAG11/CT1=0.425。The on-axis distance SAG11=0.296mm from the intersection of the object side and the optical axis of the first lens to the vertex of the effective semi-aperture on the object side of the first lens, the central thickness of the first lens on the optical axis CT1=0.697mm, SAG11/CT1=0.425 .
第四透镜的像侧面的最大有效半口径DT42=2.136mm,红外光学镜头的成像面上感光元件的有效像素区域对角线长的一半ImgH=3.000mm,DT42/ImgH=0.712。The maximum effective half aperture of the image side of the fourth lens is DT42=2.136mm, the half of the diagonal length of the effective pixel area of the photosensitive element on the imaging surface of the infrared optical lens is ImgH=3.000mm, and DT42/ImgH=0.712.
红外光学镜头的总有效焦距f=3.693mm,红外光学镜头的入瞳直径EPD=1.957mm,f/EPD=1.887。The total effective focal length of the infrared optical lens is f=3.693mm, the entrance pupil diameter of the infrared optical lens is EPD=1.957mm, and f/EPD=1.887.
第一透镜的物侧面的中心至红外光学镜头的成像面在光轴上的距离TTL=5.183mm,其与红外光学镜头的成像面上有效像素区域对角线长的一半ImgH之比TTL/ImgH=1.728。The distance from the center of the object side of the first lens to the imaging surface of the infrared optical lens on the optical axis TTL=5.183mm, and the ratio between it and the half ImgH of the diagonal length of the effective pixel area on the imaging surface of the infrared optical lens TTL/ImgH =1.728.
由以上技术方案可以看出,本发明具有以下有益效果:As can be seen from the above technical solutions, the present invention has the following beneficial effects:
本发明中的红外光学镜头及红外光学设备通过优化透镜的厚度、焦距、有效口径等参数,能够提高镜头的分辨率,减小光学畸变,并能够保证相对照度,能够广泛适用于红外波段的光学设备中。The infrared optical lens and infrared optical device of the present invention can improve the resolution of the lens, reduce optical distortion, and ensure relative illuminance by optimizing parameters such as the thickness, focal length, effective diameter of the lens, etc. in the device.
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。It will be apparent to those skilled in the art that the present invention is not limited to the details of the above-described exemplary embodiments, but that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics of the invention. Therefore, the embodiments are to be regarded in all respects as illustrative and not restrictive, and the scope of the invention is to be defined by the appended claims rather than the foregoing description, which are therefore intended to fall within the scope of the claims. All changes within the meaning and scope of the equivalents of , are included in the present invention. Any reference signs in the claims shall not be construed as limiting the involved claim.
此外,应当理解,虽然本说明书按照实施例加以描述,但并非每个实施例仅包含一个独立的技术方案,说明书的这种叙述方式仅仅是为清楚起见,本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经适当组合,形成本领域技术人员可以理解的其他实施方式。In addition, it should be understood that although this specification is described according to embodiments, not every embodiment only includes an independent technical solution, and this description in the specification is only for the sake of clarity, and those skilled in the art should take the specification as a whole , the technical solutions in each embodiment can also be appropriately combined to form other implementations that can be understood by those skilled in the art.
Claims (11)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010311305.XA CN111413789B (en) | 2020-04-20 | 2020-04-20 | Infrared optical lens and infrared optical equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010311305.XA CN111413789B (en) | 2020-04-20 | 2020-04-20 | Infrared optical lens and infrared optical equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111413789A true CN111413789A (en) | 2020-07-14 |
CN111413789B CN111413789B (en) | 2025-01-24 |
Family
ID=71492360
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010311305.XA Active CN111413789B (en) | 2020-04-20 | 2020-04-20 | Infrared optical lens and infrared optical equipment |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111413789B (en) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07151977A (en) * | 1993-09-17 | 1995-06-16 | Gold Star Co Ltd | Read-focus type zoom lens forming unitary body together with optical view finder |
US20080080063A1 (en) * | 2006-09-28 | 2008-04-03 | Masahiro Katakura | Zoom lens system including reflective surface which reflects optical path and image pickup apparatus including the system |
CN101276047A (en) * | 2007-03-27 | 2008-10-01 | 亚洲光学股份有限公司 | Zoom lens |
KR20090075357A (en) * | 2008-01-04 | 2009-07-08 | 엘지이노텍 주식회사 | Imaging lens |
US20110310495A1 (en) * | 2010-06-17 | 2011-12-22 | Samsung Electro-Mechanics Co., Ltd. | Optical system |
JP2013068857A (en) * | 2011-09-26 | 2013-04-18 | Sony Corp | Optical element, imaging lens unit, image pickup apparatus |
JP2013250330A (en) * | 2012-05-30 | 2013-12-12 | Kantatsu Co Ltd | Imaging lens |
CN105892008A (en) * | 2015-02-16 | 2016-08-24 | 先进光电科技股份有限公司 | Optical imaging system |
JP2017211474A (en) * | 2016-05-25 | 2017-11-30 | キヤノン株式会社 | Observation optical system and observation device including the same |
CN108008525A (en) * | 2018-01-05 | 2018-05-08 | 浙江舜宇光学有限公司 | Optical imaging system |
US20190049696A1 (en) * | 2017-08-08 | 2019-02-14 | Genius Electronic Optical Co., Ltd. | Optical imaging lens |
CN211878292U (en) * | 2020-04-20 | 2020-11-06 | 威海世高光电子有限公司 | Infrared optical lens and infrared optical device |
-
2020
- 2020-04-20 CN CN202010311305.XA patent/CN111413789B/en active Active
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH07151977A (en) * | 1993-09-17 | 1995-06-16 | Gold Star Co Ltd | Read-focus type zoom lens forming unitary body together with optical view finder |
US20080080063A1 (en) * | 2006-09-28 | 2008-04-03 | Masahiro Katakura | Zoom lens system including reflective surface which reflects optical path and image pickup apparatus including the system |
CN101276047A (en) * | 2007-03-27 | 2008-10-01 | 亚洲光学股份有限公司 | Zoom lens |
KR20090075357A (en) * | 2008-01-04 | 2009-07-08 | 엘지이노텍 주식회사 | Imaging lens |
US20110310495A1 (en) * | 2010-06-17 | 2011-12-22 | Samsung Electro-Mechanics Co., Ltd. | Optical system |
JP2013068857A (en) * | 2011-09-26 | 2013-04-18 | Sony Corp | Optical element, imaging lens unit, image pickup apparatus |
JP2013250330A (en) * | 2012-05-30 | 2013-12-12 | Kantatsu Co Ltd | Imaging lens |
CN105892008A (en) * | 2015-02-16 | 2016-08-24 | 先进光电科技股份有限公司 | Optical imaging system |
JP2017211474A (en) * | 2016-05-25 | 2017-11-30 | キヤノン株式会社 | Observation optical system and observation device including the same |
US20190049696A1 (en) * | 2017-08-08 | 2019-02-14 | Genius Electronic Optical Co., Ltd. | Optical imaging lens |
CN108008525A (en) * | 2018-01-05 | 2018-05-08 | 浙江舜宇光学有限公司 | Optical imaging system |
CN211878292U (en) * | 2020-04-20 | 2020-11-06 | 威海世高光电子有限公司 | Infrared optical lens and infrared optical device |
Also Published As
Publication number | Publication date |
---|---|
CN111413789B (en) | 2025-01-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110908073A (en) | Optical imaging lens | |
TWI667492B (en) | Wide angle imaging lens | |
CN110824671B (en) | Optical imaging lens | |
CN111239965A (en) | Optical imaging lens | |
US20230221526A1 (en) | Optical imaging lens | |
CN111722378B (en) | Large-image-surface high-resolution fish-eye lens | |
CN111198437A (en) | Projection lens | |
CN114236767A (en) | Optical imaging lens | |
CN110873946A (en) | Optical imaging lens | |
CN108508580B (en) | an optical imaging system | |
CN211878292U (en) | Infrared optical lens and infrared optical device | |
CN114779449B (en) | Wide-angle lens for close-range shooting | |
CN114236757B (en) | Optical imaging lens | |
CN109387920B (en) | Optical lens and shooting device | |
CN111413789A (en) | Infrared optical lens and infrared optical equipment | |
CN110058381A (en) | optical lens and electronic device | |
CN106483624A (en) | Three-piece lens module | |
CN111123475B (en) | Camera optics | |
CN114137704A (en) | Optical imaging lens | |
CN113866945A (en) | Optical imaging lens | |
CN115508980A (en) | Optical imaging lens | |
CN113126261A (en) | Optical imaging lens and biological characteristic recognition device | |
CN116430549B (en) | Telephoto lens and electronic equipment | |
CN111796401A (en) | an ultra-wide-angle lens | |
CN105093503B (en) | Interactive camera lens |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |