CN111370624A - A kind of preparation method of commercial lithium ion battery modified separator - Google Patents
A kind of preparation method of commercial lithium ion battery modified separator Download PDFInfo
- Publication number
- CN111370624A CN111370624A CN202010200988.1A CN202010200988A CN111370624A CN 111370624 A CN111370624 A CN 111370624A CN 202010200988 A CN202010200988 A CN 202010200988A CN 111370624 A CN111370624 A CN 111370624A
- Authority
- CN
- China
- Prior art keywords
- commercial lithium
- diaphragm
- commercial
- solution
- separator
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 24
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 11
- 239000000243 solution Substances 0.000 claims abstract description 51
- 238000000034 method Methods 0.000 claims abstract description 26
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 17
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 17
- 238000004132 cross linking Methods 0.000 claims abstract description 16
- 229920000867 polyelectrolyte Polymers 0.000 claims abstract description 13
- 239000011259 mixed solution Substances 0.000 claims abstract description 12
- 239000000178 monomer Substances 0.000 claims abstract description 11
- 238000007590 electrostatic spraying Methods 0.000 claims abstract description 10
- 238000003756 stirring Methods 0.000 claims abstract description 9
- 238000005507 spraying Methods 0.000 claims abstract description 7
- 239000002904 solvent Substances 0.000 claims abstract description 6
- 238000001523 electrospinning Methods 0.000 claims description 18
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 claims description 15
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical compound [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 claims description 12
- 239000003792 electrolyte Substances 0.000 claims description 11
- 238000009987 spinning Methods 0.000 claims description 10
- -1 polyvinylamine Polymers 0.000 claims description 9
- 229920001661 Chitosan Polymers 0.000 claims description 8
- 238000001291 vacuum drying Methods 0.000 claims description 8
- 239000004952 Polyamide Substances 0.000 claims description 7
- 239000008367 deionised water Substances 0.000 claims description 7
- 229910021641 deionized water Inorganic materials 0.000 claims description 7
- 229920002647 polyamide Polymers 0.000 claims description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical group O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 7
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 claims description 6
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 claims description 6
- 235000019270 ammonium chloride Nutrition 0.000 claims description 6
- 239000001768 carboxy methyl cellulose Substances 0.000 claims description 6
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 6
- 229920000098 polyolefin Polymers 0.000 claims description 6
- 229920002717 polyvinylpyridine Polymers 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 claims description 6
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 claims description 6
- NNMHYFLPFNGQFZ-UHFFFAOYSA-M sodium polyacrylate Chemical group [Na+].[O-]C(=O)C=C NNMHYFLPFNGQFZ-UHFFFAOYSA-M 0.000 claims description 6
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 5
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 claims description 4
- 239000002253 acid Substances 0.000 claims description 4
- 229920000447 polyanionic polymer Polymers 0.000 claims description 4
- PSGCQDPCAWOCSH-UHFFFAOYSA-N (4,7,7-trimethyl-3-bicyclo[2.2.1]heptanyl) prop-2-enoate Chemical compound C1CC2(C)C(OC(=O)C=C)CC1C2(C)C PSGCQDPCAWOCSH-UHFFFAOYSA-N 0.000 claims description 3
- VDYWHVQKENANGY-UHFFFAOYSA-N 1,3-Butyleneglycol dimethacrylate Chemical compound CC(=C)C(=O)OC(C)CCOC(=O)C(C)=C VDYWHVQKENANGY-UHFFFAOYSA-N 0.000 claims description 3
- AOBIOSPNXBMOAT-UHFFFAOYSA-N 2-[2-(oxiran-2-ylmethoxy)ethoxymethyl]oxirane Chemical compound C1OC1COCCOCC1CO1 AOBIOSPNXBMOAT-UHFFFAOYSA-N 0.000 claims description 3
- 239000002202 Polyethylene glycol Substances 0.000 claims description 3
- 229920002873 Polyethylenimine Polymers 0.000 claims description 3
- OKKRPWIIYQTPQF-UHFFFAOYSA-N Trimethylolpropane trimethacrylate Chemical compound CC(=C)C(=O)OCC(CC)(COC(=O)C(C)=C)COC(=O)C(C)=C OKKRPWIIYQTPQF-UHFFFAOYSA-N 0.000 claims description 3
- UHESRSKEBRADOO-UHFFFAOYSA-N ethyl carbamate;prop-2-enoic acid Chemical compound OC(=O)C=C.CCOC(N)=O UHESRSKEBRADOO-UHFFFAOYSA-N 0.000 claims description 3
- 229920000058 polyacrylate Polymers 0.000 claims description 3
- 229920001223 polyethylene glycol Polymers 0.000 claims description 3
- IXPNQXFRVYWDDI-UHFFFAOYSA-N 1-methyl-2,4-dioxo-1,3-diazinane-5-carboximidamide Chemical compound CN1CC(C(N)=N)C(=O)NC1=O IXPNQXFRVYWDDI-UHFFFAOYSA-N 0.000 claims description 2
- DXPPIEDUBFUSEZ-UHFFFAOYSA-N 6-methylheptyl prop-2-enoate Chemical compound CC(C)CCCCCOC(=O)C=C DXPPIEDUBFUSEZ-UHFFFAOYSA-N 0.000 claims description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 claims description 2
- 229920002845 Poly(methacrylic acid) Polymers 0.000 claims description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 2
- 229920002125 Sokalan® Polymers 0.000 claims description 2
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 claims description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Substances CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 claims description 2
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 claims description 2
- 239000004584 polyacrylic acid Substances 0.000 claims description 2
- 229940005642 polystyrene sulfonic acid Drugs 0.000 claims description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 claims description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 claims description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 claims description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 claims description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- KCTAWXVAICEBSD-UHFFFAOYSA-N prop-2-enoyloxy prop-2-eneperoxoate Chemical compound C=CC(=O)OOOC(=O)C=C KCTAWXVAICEBSD-UHFFFAOYSA-N 0.000 claims description 2
- 239000000661 sodium alginate Substances 0.000 claims description 2
- 235000010413 sodium alginate Nutrition 0.000 claims description 2
- 229940005550 sodium alginate Drugs 0.000 claims description 2
- 229920002554 vinyl polymer Polymers 0.000 claims description 2
- VOBUAPTXJKMNCT-UHFFFAOYSA-N 1-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound CCCCCC(OC(=O)C=C)OC(=O)C=C VOBUAPTXJKMNCT-UHFFFAOYSA-N 0.000 claims 1
- DBCAQXHNJOFNGC-UHFFFAOYSA-N 4-bromo-1,1,1-trifluorobutane Chemical compound FC(F)(F)CCCBr DBCAQXHNJOFNGC-UHFFFAOYSA-N 0.000 claims 1
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims 1
- 239000002346 layers by function Substances 0.000 abstract description 8
- 230000002209 hydrophobic effect Effects 0.000 abstract description 5
- 238000012986 modification Methods 0.000 abstract description 4
- 230000004048 modification Effects 0.000 abstract description 4
- 238000010041 electrostatic spinning Methods 0.000 abstract description 2
- 229920001477 hydrophilic polymer Polymers 0.000 abstract description 2
- 238000011031 large-scale manufacturing process Methods 0.000 abstract description 2
- 238000001035 drying Methods 0.000 abstract 1
- 239000007921 spray Substances 0.000 description 22
- 229910006270 Li—Li Inorganic materials 0.000 description 12
- 239000000203 mixture Substances 0.000 description 12
- 238000011056 performance test Methods 0.000 description 8
- 229920000642 polymer Polymers 0.000 description 8
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 238000000520 microinjection Methods 0.000 description 6
- 238000000576 coating method Methods 0.000 description 5
- 210000001787 dendrite Anatomy 0.000 description 5
- 238000007599 discharging Methods 0.000 description 5
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000011248 coating agent Substances 0.000 description 4
- 238000011161 development Methods 0.000 description 4
- 238000001125 extrusion Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000012456 homogeneous solution Substances 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 description 2
- 230000032258 transport Effects 0.000 description 2
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000002001 electrolyte material Substances 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000037427 ion transport Effects 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000012982 microporous membrane Substances 0.000 description 1
- 230000003020 moisturizing effect Effects 0.000 description 1
- 239000002121 nanofiber Substances 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000007774 positive electrode material Substances 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/403—Manufacturing processes of separators, membranes or diaphragms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cell Separators (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种隔膜的改性方法,具体涉及一种商用锂离子电池改性隔膜的制备方法。The invention relates to a method for modifying a diaphragm, in particular to a method for preparing a modified diaphragm of a commercial lithium ion battery.
背景技术Background technique
随着新能源汽车以及高能量密度电池的发展,锂电池市场迎来了快速发展的机遇,同时对锂电池综合性能也提出了更高的要求。锂电池主要是由正极材料、负极材料、隔膜及有机电解液四部分组成。隔膜在锂离子电池中起着至关重要的作用,它可以防止正负极材料之间直接接触引起的短路问题,并能为锂离子在正极和负极材料之间的传输提供通道。因此,隔膜的性能至关重要,它直接影响着电池的容量、循环使用周期以及安全性能。With the development of new energy vehicles and high energy density batteries, the lithium battery market has ushered in opportunities for rapid development, and at the same time, higher requirements have been placed on the comprehensive performance of lithium batteries. Lithium batteries are mainly composed of four parts: positive electrode material, negative electrode material, separator and organic electrolyte. Separator plays a vital role in Li-ion batteries, it can prevent short circuit problems caused by direct contact between positive and negative materials, and can provide a channel for the transport of lithium ions between positive and negative materials. Therefore, the performance of the separator is very important, which directly affects the capacity, cycle life and safety performance of the battery.
除了具有电子绝缘和机械隔离作用外,隔膜还应具备以下特点:1)良好的化学和电化学稳定性,能够耐电解液和电极材料腐蚀;2)良好的电解液浸润性,以及具有足够的吸液保湿能力;3)良好的力学性能,以防止被毛刺、枝晶或异物刺穿造成短路;4)良好的热稳定性;5)具有一定的孔径和孔隙率,保证低的电阻和高的离子电导率,对锂离子有很好的透过性。In addition to electronic insulation and mechanical isolation, the diaphragm should also have the following characteristics: 1) good chemical and electrochemical stability, resistance to corrosion of electrolyte and electrode materials; 2) good electrolyte wettability, and sufficient Liquid absorption and moisturizing ability; 3) Good mechanical properties to prevent short circuit caused by burrs, dendrites or foreign objects punctured; 4) Good thermal stability; 5) Has a certain pore size and porosity to ensure low resistance and high high ionic conductivity and good permeability to lithium ions.
目前,常用的商用电池隔膜主要是聚烯烃类(例如聚丙烯、聚乙烯等)微孔膜,它们具有优异的机械性能和化学稳定性。但是,由于聚烯烃类微孔膜大多采用拉伸成膜工艺制成,这类隔膜存在孔隙率较低、润湿性差、离子导电率低、耐穿刺性以及抗氧化性较差等缺点,这使得采用该隔膜的电池存在着巨大的安全隐患,已经无法满足当今 3C 产品及动力电池的使用要求,严重制约了锂离子电池的发展。另外,聚烯烃类微孔膜中聚烯烃分子链不含功能基团,具有疏水性,对电解液的润湿性能较差,所以商用锂离子电池隔膜在电池中的循环稳定性差。因此,开发能够满足高端市场应用的高性能隔膜已成为锂电行业的迫切需求。据了解,对商用电池隔膜进行表面涂覆改性是一种有效的解决方法,但是由于商用电池隔膜的表面疏水,目前的涂覆层都是以泥浆形式被涂覆,聚合物的水溶液(尤其是稀溶液)很难被直接涂覆均匀。At present, the commonly used commercial battery separators are mainly polyolefin (such as polypropylene, polyethylene, etc.) microporous films, which have excellent mechanical properties and chemical stability. However, since polyolefin-based microporous membranes are mostly made by the stretching film-forming process, such membranes have the disadvantages of low porosity, poor wettability, low ionic conductivity, poor puncture resistance and oxidation resistance. As a result, the battery using this separator has a huge potential safety hazard, which can no longer meet the use requirements of today's 3C products and power batteries, which seriously restricts the development of lithium-ion batteries. In addition, the polyolefin molecular chain in the polyolefin-based microporous membrane does not contain functional groups, is hydrophobic, and has poor wettability to the electrolyte, so the cycle stability of the commercial lithium-ion battery separator in the battery is poor. Therefore, the development of high-performance separators that can meet high-end market applications has become an urgent need for the lithium battery industry. It is understood that surface coating and modification of commercial battery separators is an effective solution. However, due to the hydrophobic surface of commercial battery separators, the current coating layers are all applied in the form of mud, and aqueous solutions of polymers (especially is a dilute solution) is difficult to be directly coated evenly.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于:针对上述现有技术存在的不足,提出一种商用锂离子电池改性隔膜的制备方法,该方法制备的改性涂层能够强化并稳固SEI膜,以抑制充放电过程中锂枝晶的形成和生长。The purpose of the present invention is: in view of the above-mentioned deficiencies in the prior art, a preparation method of a commercial lithium ion battery modified diaphragm is proposed. The modified coating prepared by the method can strengthen and stabilize the SEI film, so as to inhibit the charging and discharging process. Formation and growth of lithium dendrites.
为了达到以上目的,本发明的技术方案如下:In order to achieve the above purpose, technical scheme of the present invention is as follows:
一种商用锂离子电池改性隔膜的制备方法,包括以下步骤:A preparation method of a commercial lithium-ion battery modified separator, comprising the following steps:
(1)将聚电解质溶于溶剂中,配制成质量分数为0.1~40 wt%的聚电解质溶液,随后加入适量的紫外光交联单体,搅拌均匀,得到混合溶液;(1) Dissolving the polyelectrolyte in a solvent to prepare a polyelectrolyte solution with a mass fraction of 0.1-40 wt%, then adding an appropriate amount of ultraviolet light cross-linking monomer, stirring uniformly, to obtain a mixed solution;
(2)将步骤(1)制备的混合溶液通过静电喷雾或静电纺丝的方式喷涂至商用锂电池隔膜上;(2) spraying the mixed solution prepared in step (1) onto a commercial lithium battery separator by electrostatic spraying or electrospinning;
(3)将步骤(2)获得的商用锂电池隔膜在紫外光照射下进行交联,照射时间为1~300min,然后在30~100℃条件下真空干燥6~72h,得到表面改性的隔膜。(3) Crosslinking the commercial lithium battery separator obtained in step (2) under ultraviolet light irradiation, the irradiation time is 1-300 min, and then vacuum drying at 30-100° C. for 6-72 h to obtain a surface-modified separator .
本发明采用静电纺丝(喷雾)与光聚合相结合的方式,在商用隔膜表面构筑超薄亲水亲锂功能阻隔层,主要步骤为:将亲锂聚电解质材料及紫外光交联剂溶解于溶剂中配制成均匀溶液,再进行静电纺丝(喷雾),在商用隔膜上喷涂纳米纤维(颗粒);随后将其置于紫外光下固化交联,在真空烘箱中干燥6-72h,即得改性的商用隔膜。在商用隔膜的表面构筑功能层,以提高对电解液的浸润性。本发明的功能层选取亲锂荷电聚合物,一方面可以有效地调控锂离子传输,另一方面参与形成稳定的SEI膜(固态电解质膜),从而有效抑制了锂离子电池充放电过程中的锂枝晶产生及生长,有利于延长电池的使用寿命;由于亲锂荷电聚合物多为水溶性聚合物,普通的方式很难将其均匀涂覆在疏水商用隔膜上,本发明首次使用静电纺丝(喷雾)技术将亲水材料直接喷涂于商用隔膜上对其改性,可以通过控制静电纺丝(喷雾)的时间来实现对改性层厚度的有效控制,克服了亲水材料难以涂覆改性商用隔膜的缺点,尤其是在隔膜表面涂敷聚合物水溶液时;本发明的功能层构筑采用水溶液优势,环保安全无公害,而传统采用有机试剂形成浓稠浆料的方式,污染环境的同时,涂层厚度难以控制;本发明采用静电纺丝或静电喷雾的方式,将稀释的荷电聚合物水溶液均匀喷涂在疏水的商用隔膜上,可以通过控制静电纺丝或静电喷雾的时间,实现对功能阻隔层厚度的精细调控。本发明的功能层采用物理交联的方式,一方面不消耗亲锂功能集团,另一方面使功能层的致密度适当,以防止过于致密的功能层对锂离子传输的阻碍;本发明的物理交联采用半互穿网络技术,即利用紫外光照射引发单体小分子产生的大分子,与亲锂荷电聚合物形成半互穿网络结构,一方面实现对亲锂荷电物质的物理交联,形成稳定功能层,另一方面形成的半互穿网络具有一定的强度和柔性,在充放电过程中可以防止锂枝晶刺穿隔膜,以应对充放电过程中体积膨胀的问题。The invention adopts the combination of electrospinning (spraying) and photopolymerization to construct an ultra-thin hydrophilic and lithiophilic functional barrier layer on the surface of a commercial separator. A homogeneous solution is prepared in a solvent, electrospinning (spraying) is performed, and nanofibers (particles) are sprayed on a commercial separator; then it is cured and cross-linked under ultraviolet light, and dried in a vacuum oven for 6-72 hours. Modified commercial separator. A functional layer is constructed on the surface of the commercial separator to improve the wettability to the electrolyte. The functional layer of the present invention selects a lithiophilic charged polymer, which can effectively regulate lithium ion transport on the one hand, and participate in the formation of a stable SEI film (solid electrolyte membrane) on the other hand, thereby effectively inhibiting the charging and discharging process of lithium ion batteries. The generation and growth of lithium dendrites are beneficial to prolong the service life of the battery; since most lithiophilic charged polymers are water-soluble polymers, it is difficult to uniformly coat them on the hydrophobic commercial separator by ordinary methods. The spinning (spraying) technology directly sprays the hydrophilic material on the commercial separator to modify it. The thickness of the modified layer can be effectively controlled by controlling the time of electrospinning (spraying), which overcomes the difficulty in coating the hydrophilic material. The shortcomings of the modified commercial diaphragm, especially when the surface of the diaphragm is coated with an aqueous polymer solution; the functional layer construction of the present invention adopts the advantages of an aqueous solution, which is environmentally friendly, safe and pollution-free, while the traditional method of using organic reagents to form a thick slurry pollutes the environment. At the same time, the coating thickness is difficult to control; the present invention adopts the method of electrospinning or electrostatic spraying to uniformly spray the diluted charged polymer aqueous solution on the hydrophobic commercial separator. Realize the fine control of the thickness of the functional barrier layer. The functional layer of the present invention adopts the method of physical cross-linking, on the one hand, it does not consume the lithiophilic functional group, and on the other hand, the density of the functional layer is appropriate, so as to prevent the too dense functional layer from hindering the transport of lithium ions; The cross-linking adopts the semi-interpenetrating network technology, that is, the macromolecules generated by the monomer small molecules are induced by ultraviolet light irradiation to form a semi-interpenetrating network structure with the lithiophilic charged polymer, on the one hand, the physical cross-linking of the lithiophilic charged substances is realized. On the other hand, the semi-interpenetrating network formed has certain strength and flexibility, which can prevent lithium dendrites from piercing the separator during charging and discharging, so as to cope with the problem of volume expansion during charging and discharging.
本发明进一步细化的技术方案如下:The further refined technical scheme of the present invention is as follows:
优选地,所述聚电解质为聚阳离子电解质或聚阴离子电解质。Preferably, the polyelectrolyte is a polycation electrolyte or a polyanion electrolyte.
优选地,所述聚阳离子电解质为壳聚糖、聚乙烯亚胺、聚酰胺、聚乙烯胺、聚乙烯吡咯烷酮、聚乙烯吡啶、聚二甲基二烯丙基氯化铵中的至少一种。Preferably, the polycationic electrolyte is at least one of chitosan, polyethyleneimine, polyamide, polyvinylamine, polyvinylpyrrolidone, polyvinylpyridine, and polydimethyldiallylammonium chloride.
优选地,所述聚阴离子电解质为聚丙烯酸钠、聚甲基丙烯酸、海藻酸钠、羧甲基纤维素钠、聚偏磷酸、聚乙烯磷酸、聚苯乙烯磺酸和聚乙烯磺酸中的至少一种。Preferably, the polyanion electrolyte is at least one of sodium polyacrylate, polymethacrylic acid, sodium alginate, sodium carboxymethylcellulose, polymetaphosphoric acid, polyvinylphosphoric acid, polystyrene sulfonic acid and polyvinyl sulfonic acid A sort of.
所述步骤(1)中,可以将聚电解质溶液与助纺剂按照1:(0.01~10)的质量比混合,随后向混合液中添加紫外光交联单体;所述助纺剂为聚氧化乙烯、聚乙烯醇、聚酰胺或者聚丙烯酸中的一种。In the step (1), the polyelectrolyte solution and the spinning assistant can be mixed in a mass ratio of 1:(0.01-10), and then the ultraviolet light cross-linking monomer is added to the mixed solution; the spinning assistant is a polymer. One of ethylene oxide, polyvinyl alcohol, polyamide or polyacrylic acid.
由上可知,在步骤(1)的聚电解质溶液中可以添加或不添加助纺剂,添加助纺剂的目的是为了使电纺或者电喷更稳定,以获得稳定射流。It can be seen from the above that a spinning aid can be added or not added to the polyelectrolyte solution in step (1), and the purpose of adding a spinning aid is to make the electrospinning or electrospray more stable to obtain a stable jet.
优选地,所述紫外光交联单体为聚丙烯酸酯、丙烯酸异辛酯、丙烯酸丁酯、二缩三乙二醇双甲基丙烯酸酯、二缩三丙二醇二丙烯酸酯、1,3-丁二醇二甲基丙烯酸酯、丙烯酸双环戊二烯酯、二乙二醇二甲基丙烯酯、季戊四醇四甲基丙烯酸酯、三羟甲基丙烷三甲基丙烯酸酯、 已二醇二丙烯酸酯、丙烯酸异冰片酯、 聚氨酯丙烯酸酯、环氧丙烯酸酯、聚乙二醇二缩水甘油醚中的至少一种。Preferably, the ultraviolet light crosslinking monomer is polyacrylate, isooctyl acrylate, butyl acrylate, triethylene glycol dimethacrylate, tripropylene glycol diacrylate, 1,3-butane Glycol Dimethacrylate, Dicyclopentadienyl Acrylate, Diethylene Glycol Dimethacrylate, Pentaerythritol Tetramethacrylate, Trimethylolpropane Trimethacrylate, Hexylene Glycol Diacrylate, At least one of isobornyl acrylate, urethane acrylate, epoxy acrylate, and polyethylene glycol diglycidyl ether.
优选地,所述溶剂为去离子水或醋酸水溶液,所述醋酸水溶液的质量分数为0.1~50wt%。Preferably, the solvent is deionized water or an aqueous acetic acid solution, and the mass fraction of the aqueous acetic acid solution is 0.1-50 wt %.
优选地,所述商用锂电池隔膜为商用聚烯烃隔膜或聚四氟乙烯膜。Preferably, the commercial lithium battery separator is a commercial polyolefin separator or a polytetrafluoroethylene film.
优选地,所述步骤(1)中,聚电解质溶液与紫外光交联单体的质量比为1:(0.01~5)。Preferably, in the step (1), the mass ratio of the polyelectrolyte solution to the ultraviolet light crosslinking monomer is 1:(0.01-5).
优选地,所述步骤(2)中,静电喷雾或静电纺丝的工艺参数为电压8~40 kV,喷口孔径0.2~3 mm,溶液流速5~50 μl/min,环境温度为10~60 ℃,空气相对湿度为30~60%。Preferably, in the step (2), the process parameters of electrostatic spraying or electrospinning are a voltage of 8 to 40 kV, a nozzle diameter of 0.2 to 3 mm, a solution flow rate of 5 to 50 μl/min, and an ambient temperature of 10 to 60 °C. , the relative air humidity is 30 to 60%.
将本发明制备的改性隔膜用于电化学性能测试。测试结果表明,改性后的隔膜所装Li/Li对称电池的运行时间远超于未改性隔膜所装电池的运行时间,所装Li/LiFePO4电池经过长时间循环后比容量远高于未改性隔膜所装电池。The modified separator prepared by the present invention is used for electrochemical performance test. The test results show that the running time of the Li/Li symmetrical battery with the modified separator is much longer than that of the battery with the unmodified separator, and the specific capacity of the Li/LiFePO 4 battery after a long cycle is much higher than that of the battery with the unmodified separator. Batteries with unmodified separators.
与现有技术相比,本发明具有以下优点:本发明选取亲锂荷电聚合物对商用锂电池隔膜表面进行功能化修饰,参与形成稳定的SEI膜,可以有效抑制锂离子电池充放电过程中枝晶的形成和生长,以获得高性能高稳定的锂电池,有利于延长电池的使用寿命。本发明采用静电喷雾或纺丝方法,克服了传统涂敷法难以涂敷均匀的缺点。Compared with the prior art, the present invention has the following advantages: the present invention selects a lithiophilic charged polymer to perform functional modification on the surface of the commercial lithium battery separator, participates in the formation of a stable SEI film, and can effectively inhibit the charging and discharging process of the lithium ion battery. The formation and growth of dendrites can obtain high-performance and high-stability lithium batteries, which is beneficial to prolong the service life of the batteries. The invention adopts electrostatic spraying or spinning method, which overcomes the disadvantage that the traditional coating method is difficult to coat uniformly.
总之,本发明的方法适用范围广泛、简单易行、环境友好,可以实现亲水聚合物对疏水商用隔膜的直接改性,并能够实现对隔膜表面功能层进行精细调控,适用于规模化的生产。In a word, the method of the present invention has a wide range of application, is simple and easy to operate, and is environmentally friendly, can realize the direct modification of a hydrophobic commercial diaphragm by a hydrophilic polymer, and can realize the fine control of the surface functional layer of the diaphragm, and is suitable for large-scale production. .
附图说明Description of drawings
下面结合附图对本发明作进一步的描述。The present invention will be further described below in conjunction with the accompanying drawings.
图1为本发明实施例1中壳聚糖溶液静电喷雾方式喷涂在Celgard商用隔膜表面前后的Li/Li电池在电流密度为2mA cm-2,额定容量为1.0 mAh cm-2条件下的电化学循环性能图。Fig. 1 shows the electrochemistry of the Li/Li battery before and after the electrostatic spraying of the chitosan solution on the surface of the Celgard commercial separator in Example 1 of the present invention under the conditions of a current density of 2 mA cm -2 and a rated capacity of 1.0 mAh cm -2 Cycle performance graph.
图2为本发明实施例中壳聚糖溶液静电喷雾喷涂在Celgard商用隔膜表面前后的Li/LiFePO4电池在10C(1750 mA g-1)电流密度下的长循环性能图。Figure 2 is a graph showing the long-term cycle performance of Li/LiFePO 4 batteries before and after electrostatic spraying of chitosan solution on the surface of Celgard commercial separators at a current density of 10C (1750 mA g -1 ) in the embodiment of the present invention.
具体实施方式Detailed ways
下面结合实施例及说明书附图对本发明进行详细说明,本发明中所涉及的“溶液”如无特殊说明均为各物质溶于去离子水形成的水溶液。本发明所涉及的材料和试剂均为市场上能购买到的普通材料及试剂。The present invention will be described in detail below with reference to the embodiments and accompanying drawings of the description. Unless otherwise specified, the “solution” involved in the present invention is an aqueous solution formed by dissolving various substances in deionized water. The materials and reagents involved in the present invention are all common materials and reagents that can be purchased in the market.
实施例1Example 1
一种采用壳聚糖改性Celgard商用隔膜的方法,具体包括以下步骤:A method of using chitosan to modify the Celgard commercial diaphragm, specifically comprising the following steps:
1. 将壳聚糖溶解于质量分数为1wt%的醋酸水溶液中,配制成质量分数为1.0 wt%的壳聚糖溶液,然后将壳聚糖溶液与助纺剂聚氧化乙烯(PEO)按照质量比1:0.11混匀,得到混合溶液;1. Dissolve chitosan in an aqueous solution of acetic acid with a mass fraction of 1 wt% to prepare a chitosan solution with a mass fraction of 1.0 wt%, and then mix the chitosan solution with the spinning aid polyethylene oxide (PEO) according to mass. Mix evenly at a ratio of 1:0.11 to obtain a mixed solution;
2.将步骤1的混合溶液与二缩三乙二醇二甲基丙烯酸酯按照质量比1:0.25混合,搅拌均匀, 得到静电喷雾溶液;2. Mix the mixed solution of step 1 with triethylene glycol dimethacrylate according to a mass ratio of 1:0.25, and stir evenly to obtain an electrostatic spray solution;
3.将静电喷雾溶液加入到注射器中,由微量注射泵控制挤出,注射器的喷口接高压正极,静电喷雾参数控制在电压26 kv,喷口孔径0.7mm,溶液流速10μl /min,环境温度30 ℃,空气相对湿度为30%,在Celgard商用隔膜上进行静电喷雾,静电喷雾时间控制为20 min;3. Add the electrostatic spray solution into the syringe, and control the extrusion by a micro-injection pump. The nozzle of the syringe is connected to a high-voltage positive electrode. The electrostatic spray parameters are controlled at a voltage of 26 kv, a nozzle diameter of 0.7 mm, a solution flow rate of 10 μl/min, and an ambient temperature of 30 °C. , the relative air humidity is 30%, electrostatic spray is carried out on the Celgard commercial diaphragm, and the electrostatic spray time is controlled to 20 min;
4.将步骤3获得的隔膜置于紫外光下照射1h,随后在真空干燥箱中于40℃温度条件下干燥24h,得到改性隔膜,即CTS-PEO-PTEGDMA@Celgard隔膜。4. The separator obtained in step 3 was irradiated with ultraviolet light for 1 h, and then dried in a vacuum drying oven at a temperature of 40 °C for 24 h to obtain a modified separator, namely the CTS-PEO-PTEGDMA@Celgard separator.
5.对改性隔膜进行Li-Li电化学性能测试,发现由此改性的隔膜所装电池的Li-Li长循环运行时间是未改性Celgard商用隔膜的3.4倍。对改性隔膜进行Li/LiFePO4电化学性能测试,发现由此改性的隔膜所装电池的Li/LiFePO4长循环运行1000h后容量是未改性Celgard商用隔膜的2倍多。5. The Li-Li electrochemical performance test was carried out on the modified separator, and it was found that the Li-Li long-cycle running time of the battery installed with the modified separator was 3.4 times that of the unmodified Celgard commercial separator. The electrochemical performance test of Li/LiFePO 4 was carried out on the modified separator, and it was found that the capacity of Li/LiFePO 4 of the battery loaded with the modified separator was more than 2 times that of the unmodified Celgard commercial separator after long-cycle operation of 1000 h.
实施例2Example 2
一种聚丙烯酸钠改性Celgard商用隔膜的方法,具体包括以下步骤:A method for modifying Celgard commercial diaphragm with sodium polyacrylate, specifically comprising the following steps:
1. 将聚丙烯酸钠溶解于去离子水中,配制成质量分数为2.5 wt%的聚丙烯酸钠溶液;1. Dissolve sodium polyacrylate in deionized water to prepare a sodium polyacrylate solution with a mass fraction of 2.5 wt%;
2.将步骤1的聚丙烯酸钠溶液与二乙二醇二甲基丙烯酯按照质量比1:0.12混合,搅拌均匀, 得到静电纺丝溶液;2. Mix the sodium polyacrylate solution in step 1 with diethylene glycol dimethacrylate according to a mass ratio of 1:0.12, and stir evenly to obtain an electrospinning solution;
3.将静电纺丝溶液加入到注射器中,由微量注射泵控制挤出,注射器的喷口接高压正极,静电喷雾参数控制在电压18 kv,喷口孔径0.7mm,溶液流速15μl /min,环境温度30 ℃,空气相对湿度为30%,在Celgard商用隔膜上进行静电纺丝,静电喷雾时间控制为15 min;3. Add the electrospinning solution to the syringe and extrude it under the control of a micro-injection pump. The nozzle of the syringe is connected to a high-voltage positive electrode. The electrostatic spray parameters are controlled at a voltage of 18 kv, a nozzle diameter of 0.7 mm, a solution flow rate of 15 μl/min, and an ambient temperature of 30 ℃, the relative air humidity is 30%, electrospinning is carried out on Celgard commercial diaphragm, and the electrostatic spray time is controlled to 15 min;
4.将步骤3获得的隔膜置于紫外光下照射120 min,随后在真空干燥箱中于40℃条件下干燥24h,得到改性隔膜;4. Irradiate the diaphragm obtained in step 3 under ultraviolet light for 120 min, and then dry it in a vacuum drying oven at 40°C for 24 hours to obtain a modified diaphragm;
5.对改性隔膜进行Li-Li电化学性能测试,发现由此改性的隔膜所装电池的Li-Li长循环运行时间是未改性Celgard商用隔膜的两倍。5. The Li-Li electrochemical performance test was carried out on the modified separator, and it was found that the Li-Li long-cycle running time of the battery loaded with the modified separator was twice that of the unmodified Celgard commercial separator.
实施例3Example 3
一种聚乙烯吡啶改性Celgard商用隔膜的方法,具体包括以下步骤:A method for modifying Celgard commercial diaphragm by polyvinylpyridine, specifically comprising the following steps:
1. 将聚乙烯吡啶溶解于去离子水中,配制成质量分数为15 wt%的聚乙烯吡啶溶液;1. Dissolve polyvinylpyridine in deionized water to prepare a polyvinylpyridine solution with a mass fraction of 15 wt%;
2.将步骤1的聚乙烯吡啶溶液与聚乙二醇二缩水甘油醚按照质量比1:0.5混合,搅拌均匀,得到静电纺丝溶液;2. Mix the polyvinylpyridine solution in step 1 with polyethylene glycol diglycidyl ether according to a mass ratio of 1:0.5, and stir evenly to obtain an electrospinning solution;
3.将静电纺丝溶液加入到注射器中,由微量注射泵控制挤出,注射器的喷口接高压正极,静电喷雾参数控制在电压12 kv,喷口孔径0.7mm,溶液流速12μl /min,环境温度30 ℃,空气相对湿度为30%,在Celgard商用隔膜上进行静电纺丝,静电喷雾时间控制为10 min;3. Add the electrospinning solution to the syringe and extrude it under the control of a micro-injection pump. The nozzle of the syringe is connected to a high-voltage positive electrode. The electrostatic spray parameters are controlled at a voltage of 12 kv, a nozzle diameter of 0.7 mm, a solution flow rate of 12 μl/min, and an ambient temperature of 30 ℃, the relative air humidity is 30%, electrospinning is carried out on Celgard commercial diaphragm, and the electrostatic spray time is controlled to 10 min;
4.将步骤3获得的隔膜置于紫外光下照射5 h,随后在真空干燥箱中于40℃条件下干燥24h,得到改性隔膜;4. Irradiate the diaphragm obtained in step 3 under ultraviolet light for 5 hours, and then dry it in a vacuum drying oven at 40°C for 24 hours to obtain a modified diaphragm;
5.对改性隔膜进行Li-Li电化学性能测试,发现由此改性的隔膜所装电池的Li-Li长循环运行时间是未改性Celgard商用隔膜的1.8倍多。5. The Li-Li electrochemical performance test was carried out on the modified separator, and it was found that the Li-Li long-cycle running time of the battery loaded with the modified separator was more than 1.8 times that of the unmodified Celgard commercial separator.
实施例4Example 4
一种聚二甲基二烯丙基氯化铵改性Celgard商用隔膜的方法,具体包括以下步骤:A method for modifying Celgard commercial diaphragm by polydimethyldiallyl ammonium chloride, specifically comprising the following steps:
1. 将聚二甲基二烯丙基氯化铵溶解于去离子水中,配制成质量分数为2wt%的聚二甲基二烯丙基氯化铵溶液,然后将聚二甲基二烯丙基氯化铵溶液与聚氧化乙烯助纺剂按照质量比1:0.5混合,配成均匀溶液;1. Dissolve polydimethyldiallyl ammonium chloride in deionized water, prepare a polydimethyldiallyl ammonium chloride solution with a mass fraction of 2 wt%, and then mix polydimethyldiallyl ammonium chloride. The base ammonium chloride solution and the polyethylene oxide spinning aid are mixed according to the mass ratio of 1:0.5 to form a uniform solution;
2.将步骤1的均匀溶液与季戊四醇四甲基丙烯酸酯按照质量比1:1混合,搅拌均匀,得到静电喷雾溶液;2. Mix the homogeneous solution in step 1 with pentaerythritol tetramethacrylate according to a mass ratio of 1:1, and stir to obtain an electrostatic spray solution;
3.将静电喷雾溶液加入到注射器中,由微量注射泵控制挤出,注射器的喷口接高压正极,静电喷雾参数控制在电压26 kv,喷口孔径1.2mm,溶液流速5μl /min,环境温度20 ℃,空气相对湿度40%,在Celgard商用隔膜上进行静电纺丝,静电喷雾时间控制为20 min;3. Add the electrostatic spray solution into the syringe, control the extrusion by a micro-injection pump, the nozzle of the syringe is connected to a high-voltage positive electrode, the electrostatic spray parameters are controlled at a voltage of 26 kv, the nozzle aperture is 1.2 mm, the solution flow rate is 5 μl/min, and the ambient temperature is 20 ℃ , the relative air humidity was 40%, electrospinning was carried out on a Celgard commercial diaphragm, and the electrostatic spray time was controlled to 20 min;
4.将步骤3获得的隔膜置于紫外光下照射240min,随后在真空干燥箱中于50℃条件下干燥12h,得到改性隔膜;4. Irradiate the diaphragm obtained in step 3 under ultraviolet light for 240 minutes, and then dry it in a vacuum drying oven at 50°C for 12 hours to obtain a modified diaphragm;
5.对改性隔膜进行Li-Li电化学性能测试,发现由此改性的隔膜所装电池的Li-Li长循环运行时间是未改性Celgard商用隔膜的1.5倍多。5. The Li-Li electrochemical performance test was carried out on the modified separator, and it was found that the Li-Li long-cycle running time of the battery with the modified separator was more than 1.5 times that of the unmodified Celgard commercial separator.
实施例5Example 5
一种羧甲基纤维素钠改性Celgard商用隔膜的方法,具体包括以下步骤:A method for modifying Celgard commercial diaphragm with sodium carboxymethyl cellulose, specifically comprising the following steps:
1. 将羧甲基纤维素钠溶解于去离子水中,配制成质量分数为5 wt%的羧甲基纤维素钠溶液,然后将羧甲基纤维素钠溶液与聚氧化乙烯助纺剂按照质量比1:1混合,配成均匀溶液;1. Dissolve sodium carboxymethyl cellulose in deionized water to prepare a sodium carboxymethyl cellulose solution with a mass fraction of 5 wt%, and then mix sodium carboxymethyl cellulose solution and polyethylene oxide spinning aid according to the mass. Mix at a ratio of 1:1 to form a homogeneous solution;
2.将步骤1的均匀溶液与丙烯酸异冰片酯按照质量比1:1.5混合,搅拌均匀,得到静电喷雾溶液;2. Mix the uniform solution in step 1 with isobornyl acrylate in a mass ratio of 1:1.5, and stir evenly to obtain an electrostatic spray solution;
3.将静电喷雾溶液加入到注射器中,由微量注射泵控制挤出,注射器的喷口接高压正极,静电喷雾参数控制在电压32kv,喷口孔径1.6mm,溶液流速30μl /min,环境温度10 ℃,空气相对湿度35%,在Celgard商用隔膜上进行静电纺丝,静电喷雾时间控制为10min;3. Add the electrostatic spray solution to the syringe, control the extrusion by a micro-injection pump, the nozzle of the syringe is connected to a high-voltage positive electrode, the electrostatic spray parameters are controlled at a voltage of 32kv, the nozzle hole diameter is 1.6mm, the solution flow rate is 30μl/min, and the ambient temperature is 10 ℃. The relative air humidity was 35%, electrospinning was carried out on Celgard commercial diaphragm, and the electrostatic spraying time was controlled to 10min;
4.将步骤3获得的隔膜置于紫外光下照射180min,随后在真空干燥箱中于30℃条件下干燥72h,得到改性隔膜;4. Irradiate the diaphragm obtained in step 3 under ultraviolet light for 180 minutes, and then dry it in a vacuum drying oven at 30°C for 72 hours to obtain a modified diaphragm;
5.对改性隔膜进行Li-Li电化学性能测试,发现由此改性的隔膜所装电池的Li-Li长循环运行时间是未改性Celgard商用隔膜的1.2倍。5. The Li-Li electrochemical performance test was carried out on the modified separator, and it was found that the Li-Li long-cycle running time of the battery loaded with the modified separator was 1.2 times that of the unmodified Celgard commercial separator.
实施例6Example 6
一种聚酰胺和聚乙烯胺改性Celgard商用隔膜的方法,具体包括以下步骤:A method for modifying Celgard commercial diaphragm by polyamide and polyvinylamine, specifically comprising the following steps:
1. 将聚酰胺和聚乙烯胺(二者质量比为1:1)溶解于质量分数为水溶液中,配制成质量分数为30wt%的聚乙烯亚胺和聚乙烯胺混合溶液;1. Dissolve polyamide and polyvinylamine (the mass ratio of the two is 1:1) in an aqueous solution with a mass fraction of 30wt% to prepare a mixed solution of polyethyleneimine and polyvinylamine with a mass fraction of 30%;
2.将步骤1的聚酰胺和聚乙烯胺混合溶液与二缩三丙二醇二丙烯酸酯、1,3-丁二醇二甲基丙烯酸酯的混合物按照质量比1:3混合,搅拌均匀,得到静电喷雾溶液;其中二缩三丙二醇二丙烯酸酯、1,3-丁二醇二甲基丙烯酸酯的质量比为1:1;2. Mix the polyamide and polyvinylamine mixed solution of step 1 with the mixture of tripropylene glycol diacrylate and 1,3-butanediol dimethacrylate according to the mass ratio of 1:3, and stir evenly to obtain static electricity. Spray solution; wherein the mass ratio of tripropylene glycol diacrylate and 1,3-butanediol dimethacrylate is 1:1;
3.将静电喷雾溶液加入到注射器中,由微量注射泵控制挤出,注射器的喷口接高压正极,静电喷雾参数控制在电压30kv,喷口孔径3mm,溶液流速25μl /min,环境温度50℃,空气相对湿度60%,在Celgard商用隔膜上进行静电纺丝,静电喷雾时间控制为10min;3. Add the electrostatic spray solution into the syringe, control the extrusion by a micro-injection pump, the nozzle of the syringe is connected to a high-voltage positive electrode, the electrostatic spray parameters are controlled at a voltage of 30kv, the nozzle aperture is 3mm, the solution flow rate is 25μl/min, the ambient temperature is 50°C, and the air The relative humidity was 60%, electrospinning was carried out on Celgard commercial diaphragm, and the electrostatic spray time was controlled to 10min;
4.将步骤3获得的隔膜置于紫外光下照射20min,随后在真空干燥箱中于70℃条件下干燥36h,得到改性隔膜;4. Irradiate the diaphragm obtained in step 3 under ultraviolet light for 20 minutes, and then dry it in a vacuum drying oven at 70°C for 36 hours to obtain a modified diaphragm;
5.对改性隔膜进行Li-Li电化学性能测试,发现由此改性的隔膜所装电池的Li-Li长循环运行时间是未改性Celgard商用隔膜的1.5倍多。5. The Li-Li electrochemical performance test was carried out on the modified separator, and it was found that the Li-Li long-cycle running time of the battery with the modified separator was more than 1.5 times that of the unmodified Celgard commercial separator.
除上述实施例外,本发明还可以有其他实施方式,例如紫外光交联单体还可以为聚丙烯酸酯、丙烯酸双环戊二烯酯、三羟甲基丙烷三甲基丙烯酸酯、 已二醇二丙烯酸酯或聚氨酯丙烯酸酯。凡采用等同替换或等效变换形成的技术方案,均落在本发明要求的保护范围。In addition to the above embodiments, the present invention can also have other embodiments, for example, the ultraviolet light cross-linking monomer can also be polyacrylate, dicyclopentadienyl acrylate, trimethylolpropane trimethacrylate, hexanediol Acrylic or urethane acrylate. All technical solutions formed by equivalent replacement or equivalent transformation fall within the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010200988.1A CN111370624B (en) | 2020-03-20 | 2020-03-20 | Preparation method of commercial lithium ion battery modified diaphragm |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010200988.1A CN111370624B (en) | 2020-03-20 | 2020-03-20 | Preparation method of commercial lithium ion battery modified diaphragm |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111370624A true CN111370624A (en) | 2020-07-03 |
CN111370624B CN111370624B (en) | 2022-05-03 |
Family
ID=71211938
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010200988.1A Active CN111370624B (en) | 2020-03-20 | 2020-03-20 | Preparation method of commercial lithium ion battery modified diaphragm |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111370624B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114243206A (en) * | 2021-11-19 | 2022-03-25 | 中国民用航空飞行学院 | Preparation method of lithium battery quick-charging diaphragm based on polymer semi-interpenetrating structure |
CN114552117A (en) * | 2021-12-30 | 2022-05-27 | 西安理工大学 | Inorganic substance modified polymer composite diaphragm for battery and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101913862A (en) * | 2010-07-27 | 2010-12-15 | 大连海事大学 | Composite diaphragm for lithium ion battery and lithium ion battery using the diaphragm |
CN103992505A (en) * | 2014-05-26 | 2014-08-20 | 常州大学 | Method for improving hydrophilicity and thermal stability of polypropylene lithium-ion battery separator |
CN104157810A (en) * | 2013-05-15 | 2014-11-19 | 比亚迪股份有限公司 | Diaphragm, preparation method of diaphragm and lithium ion battery |
CN105536577A (en) * | 2016-01-25 | 2016-05-04 | 东华大学 | Novel method for preparing chitosan nanofiber-base composite filter membrane |
CN107910476A (en) * | 2017-11-06 | 2018-04-13 | 上海恩捷新材料科技股份有限公司 | A kind of Ceramic Composite lithium ion battery separator and preparation method thereof |
CN109546062A (en) * | 2018-11-26 | 2019-03-29 | 石京 | The strong lithium battery diaphragm and preparation method thereof of electrolyte wellability |
-
2020
- 2020-03-20 CN CN202010200988.1A patent/CN111370624B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101913862A (en) * | 2010-07-27 | 2010-12-15 | 大连海事大学 | Composite diaphragm for lithium ion battery and lithium ion battery using the diaphragm |
CN104157810A (en) * | 2013-05-15 | 2014-11-19 | 比亚迪股份有限公司 | Diaphragm, preparation method of diaphragm and lithium ion battery |
CN103992505A (en) * | 2014-05-26 | 2014-08-20 | 常州大学 | Method for improving hydrophilicity and thermal stability of polypropylene lithium-ion battery separator |
CN105536577A (en) * | 2016-01-25 | 2016-05-04 | 东华大学 | Novel method for preparing chitosan nanofiber-base composite filter membrane |
CN107910476A (en) * | 2017-11-06 | 2018-04-13 | 上海恩捷新材料科技股份有限公司 | A kind of Ceramic Composite lithium ion battery separator and preparation method thereof |
CN109546062A (en) * | 2018-11-26 | 2019-03-29 | 石京 | The strong lithium battery diaphragm and preparation method thereof of electrolyte wellability |
Non-Patent Citations (1)
Title |
---|
化工百科全书编辑委员会: "《化工百科全书》", 30 September 1994, 化学工业出版社 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114243206A (en) * | 2021-11-19 | 2022-03-25 | 中国民用航空飞行学院 | Preparation method of lithium battery quick-charging diaphragm based on polymer semi-interpenetrating structure |
CN114552117A (en) * | 2021-12-30 | 2022-05-27 | 西安理工大学 | Inorganic substance modified polymer composite diaphragm for battery and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN111370624B (en) | 2022-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108232318B (en) | Manufacturing method of all-solid-state power lithium ion battery | |
CN105304847B (en) | A kind of application of heat resistant type porous septum in lithium ion battery | |
CN105970605B (en) | A kind of graphene oxide compound nonwoven cloth and the preparation method and application thereof | |
CN102969471B (en) | A kind of high-temperature resistant aromatic polysulfonamide base lithium ion battery diaphragm | |
WO2022041702A1 (en) | Gel electrolyte precursor and application thereof | |
CN103855349B (en) | A kind of diaphragm for lithium-sulfur battery | |
CN104124414B (en) | A kind of lithium-ion battery composite electrode sheet and its preparation method and lithium-ion battery | |
CN108258323A (en) | A kind of production method of high specific energy solid lithium battery | |
CN105789557B (en) | A kind of lithium sulphur pole piece and the preparation method and application thereof with function and protecting layer | |
CN103840163B (en) | Lithium ion cell positive binding agent, uses lithium ion cell positive and the preparation method of this binding agent | |
CN106711430A (en) | Production method of lithium/carbon fiber or porous carbon paper/copper foil composite negative electrode used for lithium-sulfur battery | |
CN109638205B (en) | Fiber-mesh-shaped modified diaphragm of lithium-sulfur battery and preparation method and application thereof | |
CN107959049A (en) | Preparation method, gel electrolyte and the lithium ion battery of gel electrolyte | |
CN111370625A (en) | Aramid fiber phase-transition coating lithium ion battery diaphragm and preparation method thereof | |
CN106486694B (en) | A kind of high-energy density ternary NCA battery and preparation method thereof | |
CN113725421B (en) | Preparation method and application of covalent organic framework material modified zinc cathode | |
CN108134032A (en) | A kind of lithium ion battery polyether-ether-ketone porous septum and its preparation and application | |
CN106207086A (en) | High power capacity solid lithium ion battery negative material and battery cathode and preparation method thereof | |
CN111463407A (en) | Positive electrode-gel polymer electrolyte integrated pole piece, preparation and lithium ion battery | |
CN111370624B (en) | Preparation method of commercial lithium ion battery modified diaphragm | |
CN102810655A (en) | Lithium-ion battery composite separator | |
CN105977433A (en) | Composite non-woven fabric and preparation method therefor, and application of composite non-woven fabric in lithium-sulfur battery | |
CN115020802A (en) | In-situ UV-curable nanofiber composite solid electrolyte and preparation method and application thereof | |
CN110165128A (en) | Application of porous ion conduction membrane with membrane surface with negative charges in alkaline zinc-based battery | |
CN112928385A (en) | Diaphragm coating for lithium metal negative electrode protection and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240115 Address after: 461000, 3rd Floor, Office Building, No. 66 Xuzhou Road, Urban Rural Integration Demonstration Zone, Xuchang City, Henan Province Patentee after: Henan Yifan Battery Co.,Ltd. Address before: 221116 No. 101, Shanghai Road, Copper Mt. New District, Jiangsu, Xuzhou Patentee before: Jiangsu Normal University |
|
TR01 | Transfer of patent right |