CN111375632A - Method for preparing gradient structure material by using cryogenic roller - Google Patents
Method for preparing gradient structure material by using cryogenic roller Download PDFInfo
- Publication number
- CN111375632A CN111375632A CN202010093949.6A CN202010093949A CN111375632A CN 111375632 A CN111375632 A CN 111375632A CN 202010093949 A CN202010093949 A CN 202010093949A CN 111375632 A CN111375632 A CN 111375632A
- Authority
- CN
- China
- Prior art keywords
- alloy plate
- gradient structure
- cryogenic
- alloy
- roller
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 title claims abstract description 56
- 238000000034 method Methods 0.000 title claims abstract description 17
- 239000000956 alloy Substances 0.000 claims abstract description 32
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 31
- 238000005096 rolling process Methods 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 16
- 229910000881 Cu alloy Inorganic materials 0.000 claims abstract description 6
- 229910000838 Al alloy Inorganic materials 0.000 claims abstract description 5
- 238000002844 melting Methods 0.000 claims abstract description 4
- 230000008018 melting Effects 0.000 claims abstract description 4
- 238000005097 cold rolling Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 abstract description 9
- 239000002344 surface layer Substances 0.000 abstract description 4
- 229910001094 6061 aluminium alloy Inorganic materials 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 241000446313 Lamella Species 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000012761 high-performance material Substances 0.000 description 1
- 238000009776 industrial production Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B21—MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
- B21B—ROLLING OF METAL
- B21B1/00—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
- B21B1/22—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
- B21B1/24—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process
- B21B1/26—Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length in a continuous or semi-continuous process by hot-rolling, e.g. Steckel hot mill
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Metal Rolling (AREA)
Abstract
Description
技术领域technical field
本发明属于金属材料轧制技术领域,特别涉及一种采用深冷轧辊制备梯度结构材料的方法。The invention belongs to the technical field of metal material rolling, and particularly relates to a method for preparing a gradient structure material by using a cryogenic roll.
背景技术Background technique
随着航空工业、汽车工业和电子通讯工业等各领域的高速发展,对材料轻量化和微型化的需求逐渐增加,高性能材料的制备是当今国内外研究的热点之一。大塑性变形具有强烈的晶粒细化能力,能够直接将材料的内部组织细化到亚微米乃至纳米级,是制备块体纳米/超细晶材料的有效制备方式。由Hall-Petch公式可知,晶粒细化能使材料强度不断增强,然而,对于纳米/超细晶材料,其强度和韧性往往呈“倒置”关系,材料韧性的降低极大的限制了材料的实际应用。With the rapid development of various fields such as aviation industry, automobile industry and electronic communication industry, the demand for lightweight and miniaturization of materials is gradually increasing. The preparation of high-performance materials is one of the hotspots of research at home and abroad. Large plastic deformation has strong grain refining ability, and can directly refine the internal structure of materials to sub-micron or even nano-scale, which is an effective preparation method for the preparation of bulk nano/ultrafine-grained materials. It can be seen from the Hall-Petch formula that grain refinement can continuously enhance the strength of the material. However, for nano/ultrafine grained materials, the strength and toughness are often in an "inverted" relationship, and the reduction of material toughness greatly limits the material's performance. practical application.
梯度结构是指材料的结构单元尺寸(如晶粒尺寸或层片厚度)在空间上呈梯度变化,从纳米尺度连续增加到宏观尺度。由材料结构单元的梯度分布,材料的性能也呈现梯度分布的特点,由此梯度结构材料能够使材料同时呈现纳米/超细晶的高强度和粗晶较好的韧性,克服了传统纳米/超细晶材料中强度和韧性的“倒置”关系,为材料强度韧性匹配的研究提供了新的思路。在推动梯度结构材料的工业化应用上,需要实现梯度结构材料的大规模连续制备,现有的制备方式中,受加工方式影响,待加工材料的形状和尺寸受限。如何实现梯度结构材料的工业化生产,是决定其应用前景的关键性问题。Gradient structure means that the structural unit size (such as grain size or lamella thickness) of a material varies spatially with a gradient, increasing continuously from the nanoscale to the macroscale. Due to the gradient distribution of the material structural units, the properties of the material also exhibit the characteristics of gradient distribution. Therefore, the gradient structure material can make the material exhibit high strength of nano/ultrafine grains and good toughness of coarse grains at the same time, which overcomes the traditional nano/ultrafine grains. The "inverted" relationship between strength and toughness in fine-grained materials provides a new idea for the study of strength-toughness matching of materials. In promoting the industrial application of gradient structure materials, it is necessary to realize large-scale continuous preparation of gradient structure materials. In the existing preparation methods, the shape and size of the materials to be processed are limited due to the influence of processing methods. How to realize the industrial production of gradient structure materials is the key issue that determines its application prospects.
发明内容SUMMARY OF THE INVENTION
为了克服上述现有技术的缺点,本发明的目的在于提供一种采用深冷轧辊制备梯度结构材料的方法,采用该方法制备的梯度结构材料有效地结合了粗晶材料和超细晶材料的优点,具有良好的综合机械性能,可以用于汽车等工业产品制备。In order to overcome the above-mentioned shortcomings of the prior art, the purpose of the present invention is to provide a method for preparing a gradient structure material by using a cryogenic roll, and the gradient structure material prepared by this method effectively combines the advantages of coarse-grained materials and ultra-fine-grained materials. , has good comprehensive mechanical properties and can be used in the preparation of industrial products such as automobiles.
为了实现上述目的,本发明采用的技术方案是:In order to achieve the above object, the technical scheme adopted in the present invention is:
一种采用深冷轧辊制备梯度结构材料的方法,包括:A method for preparing a gradient structure material by using a cryogenic roll, comprising:
第一步:将合金板材放入加热炉,加热温度为(0.7~0.9)Tm,Tm为合金板材材料的熔点;The first step: put the alloy plate into the heating furnace, the heating temperature is (0.7 ~ 0.9) Tm, and Tm is the melting point of the alloy plate material;
第二步:开启深冷处理装置,将连轧机组的工作辊温度降低到-150~-100℃;The second step: turn on the cryogenic treatment device, and reduce the temperature of the work rolls of the continuous rolling mill to -150~-100℃;
第三步:从加热炉取出合金板材,送入连轧机组进行连轧,轧件经过轧辊后每一道次的压下率为1-5%,轧件总压下率为30-50%,得到梯度结构板材。The third step: take out the alloy plate from the heating furnace and send it to the continuous rolling unit for continuous rolling. A gradient structure plate is obtained.
所述合金板材可以为铝合金、铜合金或中/高熵合金板材。The alloy plate can be aluminum alloy, copper alloy or medium/high entropy alloy plate.
所述合金板材厚度一般为1-10mm。The thickness of the alloy plate is generally 1-10mm.
所述第一步中加热之后,根据合金板材厚度可保温0.5~4小时。After heating in the first step, the temperature can be kept for 0.5 to 4 hours according to the thickness of the alloy plate.
所述第三步中,将合金板材尽可能快地经过深冷轧机机组,轧制速度为0.5~5m/s。In the third step, the alloy sheet is passed through the cryogenic rolling mill as fast as possible, and the rolling speed is 0.5-5 m/s.
与现有技术相比,本发明可实现梯度结构材料尤其是大尺寸梯度结构带材的制备,所得材料表层为超细晶粒而心部为粗晶,兼具了超细晶材料和粗晶材料的机械性能,本发明适用于铝合金、铜合金、中/高熵合金等材料,在梯度结构材料制备以及汽车工业等领域具有工业应用前景。Compared with the prior art, the present invention can realize the preparation of gradient structure materials, especially large-size gradient structure strips, the surface layer of the obtained material is ultra-fine grains and the core is coarse grains, and both ultra-fine grain materials and coarse grains are combined. The mechanical properties of the material, the invention is suitable for aluminum alloy, copper alloy, medium/high entropy alloy and other materials, and has industrial application prospects in the fields of gradient structure material preparation and automobile industry.
附图说明Description of drawings
图1是本发明工艺流程示意图,图中左边虚线框为加热环节,右边虚线框为梯度材料深冷轧制环节。Figure 1 is a schematic diagram of the process flow of the present invention, the dotted frame on the left in the figure is the heating link, and the dotted frame on the right is the gradient material cryogenic rolling link.
图2是本发明制备的梯度结构材料示意图,表层为超细晶/纳米晶结构,心部区域为粗晶结构。Fig. 2 is a schematic diagram of a gradient structure material prepared by the present invention, the surface layer is of ultra-fine grain/nano-crystal structure, and the core region is of coarse-grain structure.
具体实施方式Detailed ways
下面结合附图和实施例详细说明本发明的实施方式。The embodiments of the present invention will be described in detail below with reference to the accompanying drawings and examples.
本发明一种采用深冷轧辊制备梯度结构材料的方法,主要原理是通过加热合金材料至其熔点的70%以上温度,但并不将其熔化,使材料成为粗晶,然后,将加热的材料通过经过深冷处理的轧辊,实现轧件表层区域承受大的塑性变形,与此同时,使材料表层温度急速冷却至深冷温度,最终轧件心部为粗晶而表层成为超细晶甚至纳米晶,制备出梯度结构材料。通过本工序,提高了金属带材的综合力学性能。The present invention is a method for preparing gradient structure materials by using cryogenic rolls. Through the cryogenically treated rolls, the surface area of the rolled piece can be subjected to large plastic deformation, and at the same time, the surface temperature of the material is rapidly cooled to the cryogenic temperature, and finally the core of the rolled piece is coarse-grained and the surface layer becomes ultra-fine grained or even nanocrystalline , the gradient structure materials were prepared. Through this process, the comprehensive mechanical properties of the metal strip are improved.
本发明的具体流程如图1所示,包括:The specific process of the present invention is shown in Figure 1, including:
第一步:以合金带材2为为原料,原料可为铝合金带材、铜合金带材、中/高熵合金带材等,厚度为1-10mm。The first step: take the
第二步:将合金带材2放入加热炉1,加热温度为0.7~0.9Tm(Tm为合金的熔点),根据材料厚度保温时间为0.5~4小时。The second step: put the
第三步:开启深冷处理装置4,将连轧机组5的工作辊温度降低到-150~-100℃。The third step: turn on the
第四步:开启连轧机组5,将已加热的合金带材3取出并尽可能快地经过深冷的连轧机组5,轧制速度为0.5~5m/s。轧件经过轧辊后每一道次的压下率为1-5%,实现轧件总压下率为30-50%,制备出高性能的梯度结构材料。The fourth step: turn on the continuous
用该方法制备的梯度结构材料如图2所示。该材料的延伸率与热轧带材相近,但是,材料的强度超过热轧带材的50%以上。The gradient structure material prepared by this method is shown in Figure 2. The elongation of this material is similar to that of hot-rolled strip, but the strength of the material exceeds that of hot-rolled strip by more than 50%.
在本发明的一个具体实施例1中,合金带材2取厚度为8mm的T2铜合金带材,加热温度为800℃,保温时间为2小时,工作辊温度降低到-150℃,轧件经过轧辊后每一道次的压下率为2%,总压下率为35%,最终得到高性能的梯度结构T2铜带材。梯度结构的铜带材延伸率超过40%,强度超过400MPa。In a
在本发明的一个具体实施例2中,合金带材2取厚度为6mm的6061铝合金带材,加热温度为450℃,保温时间为1小时,工作辊温度降低到-120℃,轧件经过轧辊后每一道次的压下率为5%,总压下率为40%,最终得到高性能的梯度结构6061铝合金材。梯度结构的6061铝合金带材的延伸率超过30%,强度超过300MPa。In a
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010093949.6A CN111375632B (en) | 2020-02-14 | 2020-02-14 | Method for preparing gradient structure material by using cryogenic roller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010093949.6A CN111375632B (en) | 2020-02-14 | 2020-02-14 | Method for preparing gradient structure material by using cryogenic roller |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111375632A true CN111375632A (en) | 2020-07-07 |
CN111375632B CN111375632B (en) | 2021-11-09 |
Family
ID=71221469
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010093949.6A Active CN111375632B (en) | 2020-02-14 | 2020-02-14 | Method for preparing gradient structure material by using cryogenic roller |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111375632B (en) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988007587A1 (en) * | 1987-03-27 | 1988-10-06 | Mre Corporation | Apparatus and methods for forming variable strength materials through rapid deformation. |
CN101323900A (en) * | 2007-06-15 | 2008-12-17 | 中国科学院金属研究所 | High speed processing method for realizing superfine crystal grain structure on metallic material surface |
CN103572023A (en) * | 2013-10-24 | 2014-02-12 | 南京钢铁股份有限公司 | Method for producing ultra-fine grains on surface layer of thick/ultra-thick low-alloy steel plate |
CN103911500A (en) * | 2014-03-26 | 2014-07-09 | 苏州市职业大学 | Method for fabricating gradient ultra-fine metal grains |
CN105821180A (en) * | 2016-04-07 | 2016-08-03 | 浙江工贸职业技术学院 | Method for constructing coarse grain-fine grain gradient structure on surface of metal material and gradient structure |
CN106676439A (en) * | 2016-12-20 | 2017-05-17 | 中南大学 | Deep-cooling surface-layer continuous-rolling preparation method for gradient strip |
CN109746267A (en) * | 2019-01-16 | 2019-05-14 | 中南大学 | A cryogenic rolling mill with constant temperature box and cryogenic rolling method thereof |
CN110369505A (en) * | 2019-07-08 | 2019-10-25 | 中南大学 | A kind of composite preparation process improving 6XXX aluminum alloy coiled materials mechanical performance |
-
2020
- 2020-02-14 CN CN202010093949.6A patent/CN111375632B/en active Active
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1988007587A1 (en) * | 1987-03-27 | 1988-10-06 | Mre Corporation | Apparatus and methods for forming variable strength materials through rapid deformation. |
CN101323900A (en) * | 2007-06-15 | 2008-12-17 | 中国科学院金属研究所 | High speed processing method for realizing superfine crystal grain structure on metallic material surface |
CN103572023A (en) * | 2013-10-24 | 2014-02-12 | 南京钢铁股份有限公司 | Method for producing ultra-fine grains on surface layer of thick/ultra-thick low-alloy steel plate |
CN103911500A (en) * | 2014-03-26 | 2014-07-09 | 苏州市职业大学 | Method for fabricating gradient ultra-fine metal grains |
CN105821180A (en) * | 2016-04-07 | 2016-08-03 | 浙江工贸职业技术学院 | Method for constructing coarse grain-fine grain gradient structure on surface of metal material and gradient structure |
CN106676439A (en) * | 2016-12-20 | 2017-05-17 | 中南大学 | Deep-cooling surface-layer continuous-rolling preparation method for gradient strip |
CN109746267A (en) * | 2019-01-16 | 2019-05-14 | 中南大学 | A cryogenic rolling mill with constant temperature box and cryogenic rolling method thereof |
CN110369505A (en) * | 2019-07-08 | 2019-10-25 | 中南大学 | A kind of composite preparation process improving 6XXX aluminum alloy coiled materials mechanical performance |
Also Published As
Publication number | Publication date |
---|---|
CN111375632B (en) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN106676439B (en) | A kind of deep cooling top layer continuous rolling preparation method of gradient band | |
CN107185963B (en) | A method of preparing high performance Ti 6Al4V sheet alloy | |
CN102703756B (en) | Preparation method of double-scale crystalline grain Ti-6Al-4V material | |
CN112719179B (en) | Forging method of TC1 titanium alloy bar | |
CN104451490A (en) | Method for preparing ultrafine grain titanium alloy by using alpha'' orthorhombic martensite microstructure | |
CN110369505A (en) | A kind of composite preparation process improving 6XXX aluminum alloy coiled materials mechanical performance | |
CN103898424A (en) | Method for refining magnesium alloy crystal grains | |
CN109811271A (en) | A kind of preparation method of heterogeneous layered structure 316L stainless steel | |
CN110684937B (en) | Preparation method of layered double-scale magnesium alloy | |
CN103882356A (en) | Method for preparing fine-grained magnesium alloy with superplastic deformability | |
CN110923591B (en) | Preparation method and application of graphene | |
CN103255361A (en) | Method for preparing large-size ultrafine-grained material | |
CN107841696A (en) | A kind of preparation method of ultra-fine grained magnesium alloy | |
CN107699830A (en) | Method that is a kind of while improving industrially pure titanium intensity and plasticity | |
CN101288876A (en) | A kind of preparation method of high-strength ultra-fine grain copper strip | |
CN109772890B (en) | A kind of ultrafine grain rolling method of large size superalloy bar | |
CN113913660B (en) | Method for preparing magnesium alloy plate by hot-cold alternative rolling | |
CN109201739B (en) | Preparation method of high-performance ultra-fine grain copper/aluminum/copper composite strip | |
CN102965604A (en) | Method for preparing AZ31B magnesium alloy sheets | |
CN103194676B (en) | A kind of 1000MPa super ferrite steel and preparation method thereof | |
CN102002656A (en) | Method for refining separated or dispersion-strengthening type block copper alloy crystal particles | |
CN106984667B (en) | Prepare the shear extrusion-Rolling compund manufacturing process and device of high-performance plank | |
CN111375632A (en) | Method for preparing gradient structure material by using cryogenic roller | |
CN112281093A (en) | A kind of preparation technology of high-performance magnesium-lithium alloy thin strip | |
CN112481534A (en) | Magnesium alloy sheet and preparation method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |