CN111340095A - 基于深度学习的环境监测数据质量控制方法 - Google Patents
基于深度学习的环境监测数据质量控制方法 Download PDFInfo
- Publication number
- CN111340095A CN111340095A CN202010110924.2A CN202010110924A CN111340095A CN 111340095 A CN111340095 A CN 111340095A CN 202010110924 A CN202010110924 A CN 202010110924A CN 111340095 A CN111340095 A CN 111340095A
- Authority
- CN
- China
- Prior art keywords
- data
- monitoring data
- quality control
- deep learning
- monitoring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000012544 monitoring process Methods 0.000 title claims abstract description 117
- 238000003908 quality control method Methods 0.000 title claims abstract description 33
- 238000013135 deep learning Methods 0.000 title claims abstract description 24
- 230000007613 environmental effect Effects 0.000 title claims description 22
- 238000012549 training Methods 0.000 claims abstract description 10
- 238000013441 quality evaluation Methods 0.000 claims abstract description 9
- 238000000034 method Methods 0.000 claims description 14
- 238000005265 energy consumption Methods 0.000 claims description 7
- 238000004519 manufacturing process Methods 0.000 claims description 7
- 239000002699 waste material Substances 0.000 claims description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000000605 extraction Methods 0.000 claims description 4
- 230000004927 fusion Effects 0.000 claims description 4
- 238000013507 mapping Methods 0.000 claims description 4
- 238000011156 evaluation Methods 0.000 claims description 3
- 238000012795 verification Methods 0.000 claims description 3
- 238000004458 analytical method Methods 0.000 abstract description 8
- 238000003912 environmental pollution Methods 0.000 abstract description 8
- 239000003344 environmental pollutant Substances 0.000 description 10
- 231100000719 pollutant Toxicity 0.000 description 10
- 238000012806 monitoring device Methods 0.000 description 4
- MWUXSHHQAYIFBG-UHFFFAOYSA-N Nitric oxide Chemical compound O=[N] MWUXSHHQAYIFBG-UHFFFAOYSA-N 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000000779 smoke Substances 0.000 description 3
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 239000003945 anionic surfactant Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910002091 carbon monoxide Inorganic materials 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000003891 environmental analysis Methods 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 238000003064 k means clustering Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/23—Clustering techniques
- G06F18/232—Non-hierarchical techniques
- G06F18/2321—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions
- G06F18/23213—Non-hierarchical techniques using statistics or function optimisation, e.g. modelling of probability density functions with fixed number of clusters, e.g. K-means clustering
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01H—MEASUREMENT OF MECHANICAL VIBRATIONS OR ULTRASONIC, SONIC OR INFRASONIC WAVES
- G01H17/00—Measuring mechanical vibrations or ultrasonic, sonic or infrasonic waves, not provided for in the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N15/00—Investigating characteristics of particles; Investigating permeability, pore-volume or surface-area of porous materials
- G01N15/06—Investigating concentration of particle suspensions
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/0004—Gaseous mixtures, e.g. polluted air
- G01N33/0009—General constructional details of gas analysers, e.g. portable test equipment
- G01N33/0027—General constructional details of gas analysers, e.g. portable test equipment concerning the detector
- G01N33/0031—General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array
- G01N33/0034—General constructional details of gas analysers, e.g. portable test equipment concerning the detector comprising two or more sensors, e.g. a sensor array comprising neural networks or related mathematical techniques
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/18—Water
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/24—Classification techniques
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Health & Medical Sciences (AREA)
- Theoretical Computer Science (AREA)
- Analytical Chemistry (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Computational Biology (AREA)
- Food Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- General Engineering & Computer Science (AREA)
- Probability & Statistics with Applications (AREA)
- Dispersion Chemistry (AREA)
- Mathematical Physics (AREA)
- Combustion & Propulsion (AREA)
- Testing And Monitoring For Control Systems (AREA)
Abstract
Description
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010110924.2A CN111340095A (zh) | 2020-02-21 | 2020-02-21 | 基于深度学习的环境监测数据质量控制方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010110924.2A CN111340095A (zh) | 2020-02-21 | 2020-02-21 | 基于深度学习的环境监测数据质量控制方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111340095A true CN111340095A (zh) | 2020-06-26 |
Family
ID=71181908
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010110924.2A Pending CN111340095A (zh) | 2020-02-21 | 2020-02-21 | 基于深度学习的环境监测数据质量控制方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111340095A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114610799A (zh) * | 2022-05-11 | 2022-06-10 | 未名环境分子诊断(常熟)有限公司 | 基于环境监测的数据处理方法、设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103020642A (zh) * | 2012-10-08 | 2013-04-03 | 江苏省环境监测中心 | 水环境监测质控数据分析方法 |
CN105046075A (zh) * | 2015-07-10 | 2015-11-11 | 中国农业大学 | 水坝质量监测数据的分析处理方法及装置 |
KR101595961B1 (ko) * | 2014-10-22 | 2016-02-22 | 충북대학교 산학협력단 | 대용량 데이터에서 목표 데이터 예측을 위한 연관 분류 기법 |
CN107480698A (zh) * | 2017-07-12 | 2017-12-15 | 广东旭诚科技有限公司 | 基于多个监测指标的质量控制方法 |
CN109060023A (zh) * | 2018-08-08 | 2018-12-21 | 宇星科技发展(深圳)有限公司 | 一种微型环境监测的数据质控方法及系统 |
CN110008301A (zh) * | 2019-04-12 | 2019-07-12 | 杭州鲁尔物联科技有限公司 | 基于机器学习的区域性地质灾害易发性预测方法及装置 |
-
2020
- 2020-02-21 CN CN202010110924.2A patent/CN111340095A/zh active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103020642A (zh) * | 2012-10-08 | 2013-04-03 | 江苏省环境监测中心 | 水环境监测质控数据分析方法 |
KR101595961B1 (ko) * | 2014-10-22 | 2016-02-22 | 충북대학교 산학협력단 | 대용량 데이터에서 목표 데이터 예측을 위한 연관 분류 기법 |
CN105046075A (zh) * | 2015-07-10 | 2015-11-11 | 中国农业大学 | 水坝质量监测数据的分析处理方法及装置 |
CN107480698A (zh) * | 2017-07-12 | 2017-12-15 | 广东旭诚科技有限公司 | 基于多个监测指标的质量控制方法 |
CN109060023A (zh) * | 2018-08-08 | 2018-12-21 | 宇星科技发展(深圳)有限公司 | 一种微型环境监测的数据质控方法及系统 |
CN110008301A (zh) * | 2019-04-12 | 2019-07-12 | 杭州鲁尔物联科技有限公司 | 基于机器学习的区域性地质灾害易发性预测方法及装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114610799A (zh) * | 2022-05-11 | 2022-06-10 | 未名环境分子诊断(常熟)有限公司 | 基于环境监测的数据处理方法、设备及存储介质 |
CN114610799B (zh) * | 2022-05-11 | 2022-07-22 | 未名环境分子诊断(常熟)有限公司 | 基于环境监测的数据处理方法、设备及存储介质 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN116975378B (zh) | 一种基于大数据的设备环境监测方法及系统 | |
CN112328875B (zh) | 一种基于大数据的设备智能维修方案推荐方法 | |
CN114201374B (zh) | 基于混合机器学习的运维时序数据异常检测方法及系统 | |
CN112181706B (zh) | 一种基于对数区间隔离的电力调度数据异常检测方法 | |
CN111275136B (zh) | 基于小样本下的故障预测系统及其预警方法 | |
KR102549313B1 (ko) | 오염물질 배출수준 산정 시스템 및 방법 | |
CN116934262B (zh) | 一种基于人工智能的施工安全监管系统及方法 | |
CN116468160A (zh) | 基于生产大数据的铝合金压铸件质量预测方法 | |
CN116151621A (zh) | 一种基于数据分析的大气污染治理风险检测系统 | |
CN114912787A (zh) | 一种企业危险废物瞒报漏报风险的智能评估方法 | |
CN109472075A (zh) | 一种基站性能分析方法及系统 | |
CN112365186A (zh) | 一种电力信息系统健康度评估方法及其评估系统 | |
CN115171362B (zh) | 一种面向重点区域防控的预警方法及系统 | |
CN116485020B (zh) | 一种基于大数据的供应链风险识别预警方法、系统及介质 | |
CN115994046B (zh) | 一种用于设备巡检的高精度识别方法及系统 | |
CN115688045A (zh) | 一种污染源数据融合分析方法 | |
CN118244709A (zh) | 关联故障设备及影响因素获取方法、装置及异常处理系统 | |
CN110426996B (zh) | 基于大数据及人工智能的环境污染监测方法 | |
CN111340095A (zh) | 基于深度学习的环境监测数据质量控制方法 | |
CN113267601B (zh) | 一种基于机器视觉和数据分析的工业生产环境远程实时监测云平台 | |
CN113295635A (zh) | 一种基于动态更新数据集的水质污染报警方法 | |
CN118485267A (zh) | 一种碳中和能耗节能管理平台 | |
CN118009253A (zh) | 一种基于机器学习的天然气管道泄露检测方法及系统 | |
CN116523174A (zh) | 基于自组织神经网络的污水处理厂工况评估方法及系统 | |
CN112561230A (zh) | 基于电气特征的环保设备状态监测方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20230601 Address after: No. 705, Unit 1, Building 3, No. 15, Wuke East 1st Road, Wuhou District, Chengdu City, Sichuan Province, 610000 Applicant after: Sichuan Wansi Sida Technology Co.,Ltd. Applicant after: Xie Guojin Address before: 5-1-10-1, Shidai Jincheng, No. 699, South Section 2, zangwei Road, Shuangliu District, Chengdu, Sichuan 610200 Applicant before: Xie Guoyu Applicant before: Liu Zhongyang |
|
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20200626 |