CN111339867B - Pedestrian trajectory prediction method based on generation of countermeasure network - Google Patents
Pedestrian trajectory prediction method based on generation of countermeasure network Download PDFInfo
- Publication number
- CN111339867B CN111339867B CN202010098815.3A CN202010098815A CN111339867B CN 111339867 B CN111339867 B CN 111339867B CN 202010098815 A CN202010098815 A CN 202010098815A CN 111339867 B CN111339867 B CN 111339867B
- Authority
- CN
- China
- Prior art keywords
- pedestrian
- model
- data
- discriminator
- vector
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000011176 pooling Methods 0.000 claims abstract description 13
- 239000011159 matrix material Substances 0.000 claims abstract description 4
- 238000007781 pre-processing Methods 0.000 claims abstract description 3
- 230000006870 function Effects 0.000 claims description 23
- 238000012549 training Methods 0.000 claims description 16
- 238000012360 testing method Methods 0.000 claims description 14
- 230000000694 effects Effects 0.000 claims description 9
- 230000003993 interaction Effects 0.000 claims description 9
- 230000004913 activation Effects 0.000 claims description 8
- 238000005516 engineering process Methods 0.000 claims description 6
- 238000012795 verification Methods 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 3
- 238000012800 visualization Methods 0.000 claims description 3
- 238000012952 Resampling Methods 0.000 claims description 2
- 238000012545 processing Methods 0.000 claims description 2
- 230000009467 reduction Effects 0.000 claims description 2
- 230000000007 visual effect Effects 0.000 claims description 2
- 238000004806 packaging method and process Methods 0.000 claims 1
- 238000013528 artificial neural network Methods 0.000 description 7
- 230000006399 behavior Effects 0.000 description 4
- 230000000306 recurrent effect Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 238000013473 artificial intelligence Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000010801 machine learning Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/50—Context or environment of the image
- G06V20/52—Surveillance or monitoring of activities, e.g. for recognising suspicious objects
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/214—Generating training patterns; Bootstrap methods, e.g. bagging or boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/044—Recurrent networks, e.g. Hopfield networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computing arrangements based on biological models
- G06N3/02—Neural networks
- G06N3/04—Architecture, e.g. interconnection topology
- G06N3/0463—Neocognitrons
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
- G06V20/42—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items of sport video content
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Data Mining & Analysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Computational Linguistics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Multimedia (AREA)
- Evolutionary Biology (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010098815.3A CN111339867B (en) | 2020-02-18 | 2020-02-18 | Pedestrian trajectory prediction method based on generation of countermeasure network |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010098815.3A CN111339867B (en) | 2020-02-18 | 2020-02-18 | Pedestrian trajectory prediction method based on generation of countermeasure network |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111339867A CN111339867A (en) | 2020-06-26 |
CN111339867B true CN111339867B (en) | 2022-05-24 |
Family
ID=71185181
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010098815.3A Expired - Fee Related CN111339867B (en) | 2020-02-18 | 2020-02-18 | Pedestrian trajectory prediction method based on generation of countermeasure network |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111339867B (en) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11481607B2 (en) * | 2020-07-01 | 2022-10-25 | International Business Machines Corporation | Forecasting multivariate time series data |
CN111860269B (en) * | 2020-07-13 | 2024-04-16 | 南京航空航天大学 | Multi-feature fusion series RNN structure and pedestrian prediction method |
CN112069889B (en) * | 2020-07-31 | 2021-08-03 | 北京信息科技大学 | Civil aircraft trajectory prediction method, electronic device and storage medium |
CN112101865B (en) * | 2020-09-14 | 2024-06-28 | 拉扎斯网络科技(上海)有限公司 | Latency acquisition method, apparatus, computer device, and readable storage medium |
CN112215193B (en) * | 2020-10-23 | 2023-07-18 | 深圳大学 | Pedestrian track prediction method and system |
CN112541449A (en) * | 2020-12-18 | 2021-03-23 | 天津大学 | Pedestrian trajectory prediction method based on unmanned aerial vehicle aerial photography view angle |
CN112766561B (en) * | 2021-01-15 | 2023-11-17 | 东南大学 | Attention mechanism-based generation type countermeasure track prediction method |
CN112907088B (en) * | 2021-03-03 | 2024-03-08 | 杭州诚智天扬科技有限公司 | Parameter adjustment method and system for score-clearing model |
CN114065870A (en) * | 2021-11-24 | 2022-02-18 | 中国科学技术大学 | Vehicle track generation method and device |
CN113985897B (en) * | 2021-12-15 | 2024-05-31 | 北京工业大学 | Mobile robot path planning method based on pedestrian track prediction and social constraint |
CN114445777A (en) * | 2022-01-30 | 2022-05-06 | 重庆长安汽车股份有限公司 | LSTM neural network pedestrian trajectory prediction method based on group behavior optimization |
CN115309164B (en) * | 2022-08-26 | 2023-06-27 | 苏州大学 | Man-machine co-fusion mobile robot path planning method based on generation of countermeasure network |
CN116203971A (en) * | 2023-05-04 | 2023-06-02 | 安徽中科星驰自动驾驶技术有限公司 | Unmanned obstacle avoidance method for generating countering network collaborative prediction |
CN117475090B (en) * | 2023-12-27 | 2024-06-11 | 粤港澳大湾区数字经济研究院(福田) | Track generation model, track generation method, track generation device, terminal and medium |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108564129A (en) * | 2018-04-24 | 2018-09-21 | 电子科技大学 | A kind of track data sorting technique based on generation confrontation network |
CN109635745A (en) * | 2018-12-13 | 2019-04-16 | 广东工业大学 | A method of Multi-angle human face image is generated based on confrontation network model is generated |
CN109872346A (en) * | 2019-03-11 | 2019-06-11 | 南京邮电大学 | A kind of method for tracking target for supporting Recognition with Recurrent Neural Network confrontation study |
CN110781838A (en) * | 2019-10-28 | 2020-02-11 | 大连海事大学 | Multi-modal trajectory prediction method for pedestrian in complex scene |
CN110796080A (en) * | 2019-10-29 | 2020-02-14 | 重庆大学 | Multi-pose pedestrian image synthesis algorithm based on generation of countermeasure network |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110163439A (en) * | 2019-05-24 | 2019-08-23 | 长安大学 | A kind of city size taxi trajectory predictions method based on attention mechanism |
-
2020
- 2020-02-18 CN CN202010098815.3A patent/CN111339867B/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108564129A (en) * | 2018-04-24 | 2018-09-21 | 电子科技大学 | A kind of track data sorting technique based on generation confrontation network |
CN109635745A (en) * | 2018-12-13 | 2019-04-16 | 广东工业大学 | A method of Multi-angle human face image is generated based on confrontation network model is generated |
CN109872346A (en) * | 2019-03-11 | 2019-06-11 | 南京邮电大学 | A kind of method for tracking target for supporting Recognition with Recurrent Neural Network confrontation study |
CN110781838A (en) * | 2019-10-28 | 2020-02-11 | 大连海事大学 | Multi-modal trajectory prediction method for pedestrian in complex scene |
CN110796080A (en) * | 2019-10-29 | 2020-02-14 | 重庆大学 | Multi-pose pedestrian image synthesis algorithm based on generation of countermeasure network |
Non-Patent Citations (2)
Title |
---|
Intent-Aware Conditional Generative Adversarial Network for Pedestrian Path Prediction;Yasheng Sun等;《2019 IEEE International Conference on Artificial Intelligence and Computer Applications (ICAICA)》;20191017;第155-160页 * |
基于注意力机制的行人轨迹预测生成模型;孙亚圣等;《计算机应用》;20190331;第39卷(第3期);第668-674页 * |
Also Published As
Publication number | Publication date |
---|---|
CN111339867A (en) | 2020-06-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111339867B (en) | Pedestrian trajectory prediction method based on generation of countermeasure network | |
Sadeghian et al. | Sophie: An attentive gan for predicting paths compliant to social and physical constraints | |
Cai et al. | Environment-attention network for vehicle trajectory prediction | |
Fernando et al. | Deep inverse reinforcement learning for behavior prediction in autonomous driving: Accurate forecasts of vehicle motion | |
Zhao et al. | A spatial-temporal attention model for human trajectory prediction. | |
CN112734808B (en) | Trajectory prediction method for vulnerable road users in vehicle driving environment | |
CN110781838A (en) | Multi-modal trajectory prediction method for pedestrian in complex scene | |
Peng et al. | MASS: Multi-attentional semantic segmentation of LiDAR data for dense top-view understanding | |
Mersch et al. | Maneuver-based trajectory prediction for self-driving cars using spatio-temporal convolutional networks | |
CN115147790B (en) | Future track prediction method of vehicle based on graph neural network | |
Fu et al. | Trajectory prediction-based local spatio-temporal navigation map for autonomous driving in dynamic highway environments | |
CN112347923A (en) | Roadside end pedestrian track prediction algorithm based on confrontation generation network | |
CN112651374B (en) | Future trajectory prediction method based on social information and automatic driving system | |
CN115829171B (en) | Pedestrian track prediction method combining space-time information and social interaction characteristics | |
CN112949597A (en) | Vehicle track prediction and driving manipulation identification method based on time mode attention mechanism | |
Zou et al. | Multi-modal pedestrian trajectory prediction for edge agents based on spatial-temporal graph | |
CN114399743A (en) | Method for generating future track of obstacle | |
Kuo et al. | Trajectory prediction with linguistic representations | |
Mukherjee et al. | Interacting vehicle trajectory prediction with convolutional recurrent neural networks | |
CN116595871A (en) | Vehicle track prediction modeling method and device based on dynamic space-time interaction diagram | |
Chen et al. | STIGCN: spatial–temporal interaction-aware graph convolution network for pedestrian trajectory prediction | |
Zernetsch et al. | Cyclist Trajectory Forecasts by Incorporation of Multi-View Video Information | |
CN114723782A (en) | Traffic scene moving object perception method based on different-pattern image learning | |
Xiao et al. | Pedestrian trajectory prediction in heterogeneous traffic using facial keypoints-based convolutional encoder-decoder network | |
Xu et al. | Vehicle trajectory prediction considering multi-feature independent encoding |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zeng Weiliang Inventor after: Chen Yihao Inventor after: Yao Ruoyu Inventor after: Zhu Mingzhou Inventor after: Li Xiqi Inventor after: Zheng Yufan Inventor before: Chen Yihao Inventor before: Zeng Weiliang Inventor before: Yao Ruoyu Inventor before: Zhu Mingzhou Inventor before: Li Xiqi Inventor before: Zheng Yufan |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220524 |