Nothing Special   »   [go: up one dir, main page]

CN111285939B - 一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用 - Google Patents

一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用 Download PDF

Info

Publication number
CN111285939B
CN111285939B CN202010197957.5A CN202010197957A CN111285939B CN 111285939 B CN111285939 B CN 111285939B CN 202010197957 A CN202010197957 A CN 202010197957A CN 111285939 B CN111285939 B CN 111285939B
Authority
CN
China
Prior art keywords
polysaccharide
sargassum pallidum
sargassum
pallidum
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010197957.5A
Other languages
English (en)
Other versions
CN111285939A (zh
Inventor
袁旦
李超
扶雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010197957.5A priority Critical patent/CN111285939B/zh
Publication of CN111285939A publication Critical patent/CN111285939A/zh
Application granted granted Critical
Publication of CN111285939B publication Critical patent/CN111285939B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/006Heteroglycans, i.e. polysaccharides having more than one sugar residue in the main chain in either alternating or less regular sequence; Gellans; Succinoglycans; Arabinogalactans; Tragacanth or gum tragacanth or traganth from Astragalus; Gum Karaya from Sterculia urens; Gum Ghatti from Anogeissus latifolia; Derivatives thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L33/00Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
    • A23L33/10Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
    • A23L33/125Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives containing carbohydrate syrups; containing sugars; containing sugar alcohols; containing starch hydrolysates
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P1/00Drugs for disorders of the alimentary tract or the digestive system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P39/00General protective or antinoxious agents
    • A61P39/06Free radical scavengers or antioxidants
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B37/00Preparation of polysaccharides not provided for in groups C08B1/00 - C08B35/00; Derivatives thereof
    • C08B37/0003General processes for their isolation or fractionation, e.g. purification or extraction from biomass
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23VINDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
    • A23V2002/00Food compositions, function of food ingredients or processes for food or foodstuffs

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biochemistry (AREA)
  • Polymers & Plastics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Materials Engineering (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Sustainable Development (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Toxicology (AREA)
  • Mycology (AREA)
  • Nutrition Science (AREA)
  • Food Science & Technology (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用。该制备方法包括热水提取、脱蛋白、脱色、醇沉、透析和降解;其中,降解过程是将浓度为5~8 mg/mL的海蒿子粗多糖溶液,加入H2O2溶液至体积浓度为1~5%,置于超声场中进行辐射处理,超声频率为20~25kHz,功率为450~550W,冷冻干燥即得海蒿子多糖。与海蒿子粗多糖相比,本发明的海蒿子多糖,平均分子量为130~510kDa,颗粒尺寸为400~500nm,粘度低,可显著提高人体肠道中有益菌属的丰度,同时降低有害菌属的丰度,其肠道微生物利用率提高约7%,可作为一种食品添加剂应用于调节肠道健康的功能食品中。

Description

一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备 方法与应用
技术领域
本发明涉及多糖领域,具体涉及一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用。
技术背景
海蒿子亦称“大叶海藻”,属于褐藻门马尾藻科,广泛分布于暖温带水域。海蒿子在我国的渤海、黄海、东海等区有广泛的分布,呈暗褐色,是典型的海洋褐藻,性味苦咸、寒,入脾、肾、肺。功能主治利水、泄热、疼痛核肿、慢性气管炎等,具有很高的药用价值。海蒿子中含有大量饱和及不饱和脂肪酸,其中不饱和脂肪酸含量远高于饱和脂肪酸含量。海蒿子富有多种营养成分并含有大量的褐藻多糖,褐藻多糖是一种水溶性活性多糖,褐藻门马尾藻科植物的多糖具有抗血栓、抗病毒、抗肿瘤、免疫调节等功能。《中国药用海洋生物》中称,海蒿子粗提物具有增强免疫力、抗肿瘤和抗病毒作用。
肠道微生物通过影响食物消化、营养吸收和能量供应,来维持宿主正常生理功能及调控疾病的发生发展,其在人体健康中发挥着重要作用。研究表明,很多慢性疾病,如肥胖、糖尿病、肠炎等受人体肠道微生物的变化的影响。肠道菌群降解多糖过后得到的低聚糖或单糖可以进而被肠道菌群酵解产生短链脂肪酸等有益物质,有助于预防多种肠道及其他慢性疾病。现代药理学研究已证明植物多糖具有多种生物活性,包括增强免疫、抗氧化、抗癌、抗炎、降血糖、降血脂等功能,已广泛应用于健康食品、药品等领域。而多糖的功能和生物活性受分子量、单糖组成、糖苷键和聚合度等因素的影响。分子修饰已被作为获取具有特定性质的多糖的有效途径之一。降解常常被用来修饰多糖,已有研究报道,降解多糖比天然多糖具有更好的水溶性、功能性和生物学特性。
专利CN201910268836.2公开了一种制备具有显著的降血糖能力多糖的方法。该专利通过硒化反应制备富硒海蒿子多糖,以α-葡萄糖苷酶抑制活性为研究对象,说明海蒿子多糖具有抗2型糖尿病的功效。然后有关海蒿子多糖及其降解多糖的抗氧化,促进肠道健康的研究未见报道。中国发明专利201910268825.4公开了一种低分子量具有抗氧化性和降血糖活性的多糖及其制备方法,该方法将黑莓多糖提取、分离、纯化后在250~300W功率下超声10~15h。该方法可制备兼有抗氧化性和降血糖活性的多糖,但该方法具有反应时间长、反应温度高、能耗高等缺点。
发明内容
为了克服现有技术的不足,本发明的目的在于提供一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用。本发明以超声处理将改变多糖的粒径和流变,而多糖的粒径和流变会影响其在酵解过程中菌群对多糖的接触面积和酵解时间,并进一步影响多糖在体内的生物利用率为前提。研发出一种具有较高抗氧化性,能快速且高效被人体肠道菌群利用的多糖产品,具有重要意义。
本发明目的通过以下技术方案之一实现。
一种具有显著抗氧化和调节肠道菌群功效的海蒿子多糖,所述海蒿子多糖的平均分子量为130~510kDa,颗粒尺寸为400~500nm,粘度为3-9mpa·s。
优选的,所述海蒿子多糖由岩藻糖、阿拉伯多糖、半乳糖、葡萄糖、木糖、甘露糖、葡萄糖糖酸和半乳糖醛酸组成。
进一步优选的,所述海蒿子多糖中岩藻糖、阿拉伯多糖、半乳糖、葡萄糖、木糖、甘露糖、葡萄糖醛酸和半乳糖醛酸的摩尔百分比含量分别为15~18%、3~5%、25~29%、3.5~5%、5~6%、0.5~2%、30~38%和9~11%。
以上所述的一种低分子量海蒿子多糖的制备方法,包括以下步骤:
将海蒿子预处理后进行热水提取、脱蛋白、脱色、醇沉、透析和降解,得到低分子量海蒿子多糖;
所述降解是采用超声辐射联合双氧水氧化协同降解。
优选的,所述降解包括以下步骤:
将透析所得海蒿子粗多糖配成5~8mg/mL多糖溶液,再加入H2O2溶液至H2O2体积浓度为1~5%,然后置于超声场中进行辐射处理,超声频率为20~25kHz,功率为450~550W,于室温条件下超声处理1~5h,再经过冷冻干燥,制备得到降解的低分子量海蒿子多糖。
进一步优选的,所述超声是置于超声细胞破碎仪中,将超声探头置于海蒿子多糖溶液液面下1~1.5cm处,并使探头与试管底部的距离大于4~10cm。
进一步优选的,所述海蒿子粗多糖的制备包括以下步骤:
1)原料预处理:将干制的海蒿子原料,干燥,粉碎,过筛;将海蒿子干粉和乙醇按照固液质量体积比1g:6mL~1g:8mL混合,于60~75℃加热回流3~5h,离心分离残留物,重复加热回流和过滤,残留物干燥;所述干燥的方式为鼓风干燥,干燥温度为50~60℃;所述粉碎后过40~60目筛;所述重复加热回流和过滤的次数为1~4次;所述残留物干燥的温度为50~60℃,时间为24~48h;
2)多糖提取:将步骤1)预处理所得干粉按料液质量体积比为1g:20mL~1g:30mL与水混合,于温度80~95℃下浸提,浸提时间为1.5~3.5h,浸提次数为1~3次;离心分离得到海蒿子多糖提取液,减压浓缩到原体积的1/4~1/6,得到海蒿子粗多糖浓缩液;
3)脱蛋白:采用Sevag试剂(氯仿:正丁醇=4:1)对海蒿子粗多糖浓缩液进行脱蛋白处理,海蒿子粗多糖浓缩液与Sevag试剂的体积比为4:1~6:1,振荡30~60min,离心得上层多糖溶液,重复振荡和离心8~15次;于45℃下减压旋转蒸发除去残留的Sevag试剂;使海蒿子多糖在Sevag法脱蛋白后,多糖浓度>65wt%;
4)脱色:将步骤3)中脱蛋白后的多糖浓缩液用大孔树脂进行脱色处理,多糖浓缩液与大孔树脂的体积比为(4~6):1,室温条件下摇晃脱色2~4h,抽滤分离滤液,并用去离子水洗大孔树脂1~3次,合并滤液,于45℃下减压浓缩至原体积;
5)醇沉和透析:往步骤4)所得多糖滤液中加入无水乙醇,边加边搅拌至乙醇体积浓度为65~90%,在0~5℃中静置24~48h,离心得到海蒿子多糖沉淀,用去离子水复溶,并使用截留分子量为1000~5000Da透析袋透析,冷冻干燥后得到海蒿子粗多糖;所述透析的时间为24~48h,透析的温度为0~5℃。
以上所述的一种低分子量海蒿子多糖应用于制备具有抗氧化和益生元功能的健康食品。
本发明还提供一种上述低分子量海蒿子多糖制备的片剂应用于具有抗氧化和益生元功能的健康食品。
本发明还提供一种上述低分子量海蒿子多糖制备的冻干粉末应用于具有抗氧化和益生元功能的健康食品。
本发明还提供一种上述低分子量海蒿子多糖制备的液体应用于具有抗氧化和益生元功能的健康食品。
以上所述的一种低分子量海蒿子多糖应用于制备具有抗氧化和益生元功能的健康食品的形态,包括但不限于液体、固态、粉末、片剂、冲剂,胶囊等。
与现有技术相比,本发明具有如下效果和优点:
(1)本发明采用超声辐射联合双氧水氧化协同降解技术,降解效率高、分子量可控、所用装置设备简单易操作、试剂绿色环保、反应条件温和,同时降解过程不破坏多糖的主要结构,可应用于工业化生产。
(2)本发明制备的低分子量海蒿子多糖,其平均分子量范围为130~510kDa,颗粒尺寸为400~500nm,由岩藻糖、阿拉伯多糖、半乳糖、葡萄糖、木糖、甘露糖、葡萄糖醛酸和半乳糖醛酸组成,摩尔百分比含量分别为15~18%、3~5%、25~29%、3.5~5%、5~6%、0.5~2%、30~38%和9~11%,同时具有较低的粘度,有利于在食品或医药领域应用。
(2)与海蒿子粗多糖相比,本发明制备的低分子量海蒿子多糖,其抗氧化能力较未降解海蒿子多糖提高约8-12%;可以提高人体肠道中有益菌属(普氏菌属、小杆菌属、考拉杆菌属和拟杆菌属)的丰度,同时降低人体肠道中有害菌属(布劳特氏菌属、粪球菌属、梭菌属和吉米菌属)的丰度;此外,其肠道微生物利用率较未降解海蒿子多糖提高约7%。
附图说明
图1为实施例1中海蒿子粗多糖和实施例1、2、3中降解的低分子量海蒿子多糖的表观粘度曲线图。
图2为实施例1中海蒿子粗多糖和实施例1、2、3中降解的低分子量海蒿子多糖的DPPH自由基清除活性图。
图3为实施例1中海蒿子粗多糖和实施例1、2、3中降解的低分子量海蒿子多糖的红外光谱图。
图4为实施例1中海蒿子粗多糖和实施例1、2、3中降解的低分子量海蒿子多糖对人体肠道菌群的影响。
具体实施方式
为更好地理解本发明,下面结合实施例对本发明做进一步的说明,但本发明的实施方式不限于此。
实施例1:
1)将海蒿子干燥后,粉碎,过60目筛,将海蒿子粉末与95%乙醇,按质量体积比为1g:3mL,加入95%乙醇,于温度70℃下,加热回流为3h,离心20min,分离得残留物,残留物重复上述操作2次,在45℃下干燥24h;
2)将步骤1)经预处理的干粉按料液质量体积比为1g:20mL与水混合,于温度为80℃下浸提,浸提时间为2h,浸提次数为2次;离心分离,合并提取液,50℃下减压浓缩到原体积的1/4,得到海蒿子多糖的浓缩液;
3)向海蒿子多糖的浓缩液中加入Sevag试剂,海蒿子多糖的浓缩液与Sevag试剂(氯仿:正丁醇=3:1)的体积比为4:1,振荡30min,离心除去变性的蛋白质,重复脱蛋白10次,收集上层糖溶液,蒸发去除残留Sevag试剂;
4)将步骤3)脱蛋白后的海蒿子多糖,加入大孔树脂,进行静态脱色处理;浓缩液与大孔树脂的体积比为4:1,室温条件下摇晃脱色2h;抽滤分离滤液,并用去离子水洗大孔树脂2次,合并滤液,于45℃下减压浓缩至原体积;
5)将步骤4)所得多糖滤液加入无水乙醇中,调节乙醇的最终体积浓度为70%,在4℃环境中静置24h,离心得到多糖沉淀,收集沉淀,用水复溶后将溶液置于3500Da透析袋中透析24h,透析温度为4℃,-50℃冷冻干燥后得到海蒿子多糖样品;
6)降解:将步骤5)中的海蒿子多糖配成8mg/mL溶液,加入H2O2溶液,边加边搅拌至H2O2体积浓度为5%,置于50mL离心试管中;将超声探头置于海蒿子多糖溶液液面以下1.0cm处,并使探头与试管底部的距离为6cm;在振幅25kHz,500W功率下超声1h,超声间隔为1s。超声后再经过冷冻干燥处理,得到降解的海蒿子多糖。
实施例2:
1)将海蒿子干燥后,粉碎,过60目筛,按海蒿子粉与95%乙醇的质量体积比为1g:3mL,加入95%乙醇,于温度70℃下,加热回流为4h,离心20min,分离得残留物,残留物重复上述操作2次,在45℃下干燥24h;
2)将步骤1)经预处理的干粉按料液质量体积比为1g:20mL与水混合,于温度为80℃下浸提,浸提时间为2h,浸提次数为3次;离心分离,合并提取液,50℃下减压浓缩到原体积的1/4,得到海蒿子多糖的浓缩液;
3)向海蒿子多糖的浓缩液中加入Sevag试剂,海蒿子多糖的浓缩液与Sevag试剂(氯仿:正丁醇=3:1)的体积比为4:1,振荡30min,离心除去变性的蛋白质,重复脱蛋白10次,收集上层糖溶液,蒸发去除残留Sevag试剂;
4)将步骤3)脱蛋白后的海蒿子多糖,加入大孔树脂,进行静态脱色处理;浓缩液与大孔树脂的体积比为4:1,室温条件下摇晃脱色2h;抽滤分离滤液,并用去离子水洗大孔树脂2次,合并滤液,于45℃下减压浓缩至原体积;
5)将步骤4)所得多糖滤液加入无水乙醇中,调节乙醇的最终体积浓度为70%,在4℃环境中静置24h,离心得到多糖沉淀,收集沉淀,用水复溶后将溶液置于3500Da透析袋中透析,-50℃冷冻干燥后得到海蒿子多糖样品;
6)降解:将步骤5)中的海蒿子多糖配成5mg/mL溶液,加入H2O2溶液,边加边搅拌至H2O2体积浓度为1.5%,置于50mL离心试管中;将超声探头置于海蒿子多糖溶液液面以下1.5cm处,并使探头与试管底部的距离为8cm;在振幅25kHz,450W功率下超声2h,超声间隔为1s。超声后再经过冷冻干燥处理,得到海蒿子降解多糖。
实施例3:
1)将海蒿子干燥后,粉碎,过60目筛,按海蒿子粉与95%乙醇的质量体积比为1g:3mL,加入95%乙醇,于温度70℃下,加热回流为3h,离心20min,分离得残留物,残留物重复上述操作2次,在50℃下干燥24h;
2)将步骤1)经预处理的干粉按料液质量体积比为1g:20mL与水混合,于温度为80℃下浸提,浸提时间为2h,浸提次数为4次;离心分离,合并提取液,50℃下减压浓缩到原体积的1/10,得到海蒿子多糖的浓缩液;
3)向海蒿子多糖的浓缩液中加入Sevag试剂,海蒿子多糖的浓缩液与Sevag试剂(氯仿:正丁醇=3:1)的体积比为4:1,振荡30min,离心除去变性的蛋白质,重复脱蛋白10次,收集上层糖溶液,蒸发去除残留Sevag试剂;
4)将步骤3)脱蛋白后的海蒿子多糖,加入大孔树脂,进行静态脱色处理;浓缩液与大孔树脂的体积比为4:1,室温条件下摇晃脱色2h;抽滤分离滤液,并用去离子水洗大孔树脂2次,合并滤液,于45℃下减压浓缩至原体积;
5)将步骤4)所得多糖滤液加入无水乙醇中,调节乙醇的最终体积浓度为70%,在4℃环境中静置48h,离心得到多糖沉淀,收集沉淀,用水复溶后将溶液置于3500Da透析袋中透析,-50℃冷冻干燥后得到海蒿子多糖样品;
6)降解:将步骤5)中的海蒿子多糖配成6mg/mL溶液,加入H2O2溶液,边加边搅拌至H2O2体积浓度为1%,置于100mL离心试管中;将超声探头置于海蒿子多糖溶液液面以下1.0cm处,并使探头与试管底部的距离为8cm;在振幅20kHz,550W功率下超声5h,超声间隔为1s。超声后再经过冷冻干燥处理,得到海蒿子降解多糖。
多糖的分子量和粒径测定:
色谱分离条件如下:色谱柱:G-5000PWXL(7.8×300mm)和G-3000PWXL(7.8×300mm)凝胶柱串联使用;检测器:Agilent 1260示差检测器;流动相:0.02M KH2PO4缓冲液(pH 6.0);柱温:35℃;流速:0.6mL/min;进样量:20μL。分别称取普鲁兰标准品,配制成1mg/mL的葡聚糖标准溶液,以普鲁兰的分子量的对数值(LogMw)为纵坐标,以出峰时间为横坐标,对曲线进行回归拟合得到普鲁兰分子量分布标准曲线。
多糖粒径可通过动态光散射技术来测定。准确称取未降解海蒿子多糖及实施例1、2、3制备的海蒿子多糖样品,配制成1mg/mL的溶液,使用马尔文光散射仪(Nanosizer,NS3000)来测定。条件如下:检测角度:175°和12.8°,进样量1mL,测试温度25℃。
表1为实施例1、2、3海蒿子多糖降解前后的分子量和粒径变化
Figure BDA0002418295460000061
Figure BDA0002418295460000071
表1中给出了海蒿子多糖分别在降解0、1、2、5h后的分子量和对应的在溶液中的粒径,由表1可知,实施例1、2、3中海蒿子多糖在降解0、1、2、5h后的分子量分别为953.01±13.15kDa、510.08±6.83kDa、256.68±3.63kDa、129.65±1.80kDa;实施例1、2、3中海蒿子多糖在降解0、1、2、5h后的粒径分别为896±21nm、497±18nm、469±15nm、450±21nm,表明实施例1、2、3制备的海蒿子多糖分子量逐渐减小,在溶液状态下的粒径逐渐减小。
红外光谱分析:
称取未降解海蒿子多糖及实施例1、2、3制备的海蒿子多糖5mg的粉末与KBr粉末混合后压片,采用傅里叶红外光谱仪在4000-400cm-1波长范围内进行扫描。
降解1、2、5h后海蒿子多糖的FT-IR光谱与未降解海蒿子多糖相似,它们都显示出在4000-500cm-1范围内的典型特征吸收峰。在3400和2924cm-1处的吸收峰分别来自于O-H和C-H的伸缩振动,在1625和1400cm-1处的吸收峰来自于羧基的C=O伸缩振动,表明糖醛酸的存在。在1200cm-1附近的吸收峰表示S=O对称的拉伸振动,表明硫酸基团可能存在。此外,1046cm-1处的小强吸收带归因于β-吡喃糖结构。这些结果表明,降解1、2、5h后海蒿子多糖与原海蒿子多糖具有一致的特征峰,进一步说明超声降解并没有改变海蒿子多糖的一级官能团。
单糖组成分析:
水解样品:将未降解海蒿子多糖及实施例1、2、3制备的海蒿子多糖5mg样品多糖粉末充分溶解于4mL三氟乙酸(2M)中,然后转入10mL水解管中,于105~110℃的干燥箱内反应6h。水解完成后在50℃条件下除去过量的TFA,加入4mL色谱纯甲醇,溶解后转入旋蒸瓶中,减压浓缩至完全干燥,重复6次。最后用超纯水溶解残留物,并最终定容至100mL。取1mL已经定容好的样品溶液并透过0.22μm水相微孔滤膜,并注入到液相小瓶中,最终上机进行IC检测分析。DionexICS-3000离子色谱条件如下:柱温:30℃;进样量10μL;流动相500mM醋酸钠;流速0.5mL/min,脉冲安培检测器检测30min。分别精确称取各标准品1.0g,用超纯水溶解并定容至1000mL,混匀备用。用超纯水稀释,分别配制成1.0、2.0、5.0、8.0、10.0μg/mL标准品溶液,并按照上述方法处理样品,按照上述离子色谱测定条件测定各浓度梯度的单糖和糖醛酸混合标样,最终根据峰面积和单糖含量计算出各样品单糖的摩尔百分比。
表2为实施例1、2、3海蒿子多糖降解前后的单糖组成变化。
Figure BDA0002418295460000081
表2为海蒿子多糖的单糖组成结果,由表2可知,未降解海蒿子多糖主要由岩藻糖、阿拉伯糖、半乳糖、葡萄糖、木糖、甘露糖、葡萄糖醛酸和半乳糖醛酸组成,表明海蒿子多糖是一种酸性杂多糖。未降解海蒿子多糖的摩尔百分比含量分别为14.93±0.85%、4.62±0.31%、26.63±1.03%、4.46±0.29%、5.76±0.20%、0.53±0.03%、32.19±1.86%和10.88±1.00%;降解1h后的海蒿子多糖单糖的摩尔百分比含量分别为18.20±0.73%、3.88±0.42%、25.51±1.18%、4.14±0.14%、5.67±0.17%、0.80±0.10%、29.94±1.47%和8.87±0.98%;降解2h后的海蒿子多糖单糖的摩尔百分比含量分别为18.19±0.69%、2.87±0.28%、26.69±0.95%、4.39±0.31%、5.21±0.15%、1.98±0.17%、38.83±2.11%和38.83±2.11%;降解5h后的海蒿子多糖单糖的摩尔百分比含量分别为17.18±1.04%、3.01±0.16%、29.99±0.88%、3.42±0.34%、5.64±0.09%、0.54±0.08%、29.94±2.07%和10.27±0.13%;可见,超声降解并未显著改变海蒿子多糖的单糖组成及其摩尔比。
多糖的表观粘度测定:
配制质量浓度为3%的未降解海蒿子多糖及实施例1、2、3制备的海蒿子多糖水溶液。选用的流变测试系统为平板-平板系统,其中探头(PP2-5)的直径为25mm,设置测量间隙为1000μm,测量温度为25℃。测定海蒿子多糖的剪切应力随剪切速率在上升(0.1至1000s-1)以及下降(1000至0.1s-1)过程中的变化。
图1是剪切速率对未降解海蒿子多糖及实施例1、2、3制备的海蒿子多糖水溶液的表观粘度的影响。可以看出,随着剪切速率的增加,溶液的表观粘度降低,未降解海蒿子多糖及实施例1、2、3制备的海蒿子多糖在溶液状态下均表现出典型的剪切稀化行为。在相同浓度下,随着降解强度的增加,降解1h、降解2h以及降解5h的海蒿子多糖的粘度较未降解海蒿子多糖均显著降低,其中降解5h的海蒿子多糖的粘度最小。结果表明,超声波降解显著降低了原海蒿子多糖的表观粘度。
多糖对DPPH自由基清除率的测定:
将未降解海蒿子多糖及实施例1、2、3制备的海蒿子多糖溶解在去离子水中以获得各种浓度的溶液(0.0625-2mg/mL)。然后将3mL DPPH溶液(75μM,50%甲醇溶液)加入1mL海蒿子多糖溶液中。摇动混合物并在室温下避光保持30分钟,测量波长为517nm的吸光度。测量抗坏血酸的DPPH自由基清除能力作为阳性对照。所有测量一式三份进行测试。DPPH自由基清除率计算如下:
清除率(%)=[1-(AS-Ab)/AC]×100
AS是样品反应溶液的吸光度,Ab是溶液的吸光度,包括3mL 50%甲醇溶液和1mL样品,AC是溶液的吸光度,包括3mL DPPH和1mL50%甲醇溶液。
如图2所示,在0.125-2mg/mL浓度范围内,未降解海蒿子多糖、降解1h、降解2h以及降解5h的海蒿子多糖对DPPH的清除率具有剂量依赖性的特点,在相同浓度下,降解1h的海蒿子多糖对DPPH清除力强于原海蒿子多糖、降解1h以及降解2h的海蒿子多糖。具体的,降解1h的海蒿子多糖的DPPH清除力较原海蒿子多糖提高约8-12%。然而,降解2h以及降解5h的海蒿子多糖的清除力无显著差异。在相同质量浓度下,低分子量多糖具有较多的自由羟基和较高的还原糖含量,从而具有较强的供氢能力。同时多糖的清除自由基活性与其羟基的供氢能力呈正相关。
人体肠道菌群对多糖利用率的测定:
将50mg未降解海蒿子多糖及实施例1、2、3制备的海蒿子多糖置于含有5mL酵解培养基、2mL粪便菌群中,并将酵解混合液转移到厌氧培养瓶中,然后在厌氧条件下(10%H2、10%CO2和80%N2)于37℃、200rpm的恒温摇床中培养。在培养的不同时间点(0、6、12、24h)收集酵解培养液测量指标。总糖含量测定采用苯酚-硫酸法,还原糖含量采用DNS法。
表3实施例1、2、3制备的海蒿子多糖被人体肠道菌群的利用率表
Figure BDA0002418295460000091
Figure BDA0002418295460000101
人体肠道菌群对多糖的利用率可由总糖和还原糖的含量变化来计算得出。发酵程度可由表3和表4中的数据得出。除阴性对照组外,其余各组发酵6h后总糖含量均显著下降。发酵12h后总糖含量稳定。发酵6h后,低聚果糖(FOS)组、原海蒿子多糖组、降解1h、降解2h以及降解5h的组的多糖被肠道菌群的消耗率分别为80.40%、71.63%、78.16%、75.40%和74.545%。发酵结束后,降解1h、降解2h以及降解5h海蒿子多糖的消耗率较原海蒿子多糖分别提高7.07%、6.10%、5.65%。显然,在实验组中,降解1h海蒿子多糖组是碳水化合物消耗率最高的组。发酵开始后,多糖的糖苷键会被破坏,从而导致还原端数量的增加。发酵6h后,降解1h海蒿子多糖组的还原糖含量最大,表明相较于其他实验组,降解1h海蒿子多糖组最大限度地被肠道菌群所利用发酵。
多糖对人体肠道菌群的影响测定:
在不同发酵时间点取出适量未降解海蒿子多糖及实施例1、2、3制备的海蒿子多糖的发酵液,提取粪便中细菌的总DNA,选择16S rRNA的V3~V4高变区进行PCR扩增,使用带Barcode的特异性引物:338F 5′-barcode-ACTCCTACGGGAGGCAGCAG-3′和806R5′-GGACTACHVGGGTWTCTAAT-3′。对提取的PCR产物中的DNA浓度进行定量并进行OTU(operational taxonomic units)聚类和物种分类分析。根据OTU聚类结果,一方面,利用RDP分类器对每个OTU的代表序列做物种注释,得到对应的物种信息和基于物种的丰度分布情况。最后,采用QIIME对alpha多样性和不同物种的群落组成进行了分析。
如图4所示,人体肠道菌群中两个优势菌门分别为厚壁菌门和拟杆菌门,占肠道细菌组成相对丰度的90%以上。总的来说,在发酵24h后,未降解海蒿子多糖组、降解1h海蒿子多糖组、降解2h海蒿子多糖组以及降解5h海蒿子多糖组的总相对丰度分别是空白组的1.19、1.43、1.33和1.32倍。这表明降解1h、2h以及5h海蒿子多糖组能显著促进肠道菌群的生长,可作为一种益生元。结果表明,发酵6h后,降解1h、2h以及5h海蒿子多糖组的厚壁菌门与拟杆菌门(厚壁菌门:拟杆菌门)的比例明显降低(未降解海蒿子多糖组为1:2,降解1h海蒿子多糖组为0.45:1,降解2h海蒿子多糖组组为0.38:1,降解5h海蒿子多糖组组为0.38:1),厚壁菌门:拟杆菌门的减小有利于减少宿主对能量的摄取,降低肥胖风险。此外,有些厚壁菌属有抗炎和抗肿瘤的作用。
表4为实施例1、2、3制备的海蒿子多糖在属水平上对人体肠道菌群的影响
Figure BDA0002418295460000111
表4为未降解海蒿子多糖、降解1h、降解2h以及降解5h海蒿子多糖在属水平上对人体肠道菌群的影响。其中普氏菌属、小杆菌属、考拉菌属和拟杆菌属为有益菌属;布劳特氏菌属、粪球菌属、梭菌属和吉米菌属为条件致病菌属。原海蒿子多糖组的普氏菌属、小杆菌属、考拉菌属和拟杆菌属的相对丰度分别是空白组的2.01、15.02、1.10和1.05倍;而降解1h海蒿子多糖组的普氏菌属、小杆菌属、考拉菌属和拟杆菌属的相对丰度为最高,分别是未降解海蒿子多糖组的1.14、1.44、1.19和1.67倍;同时,降解1h海蒿子多糖组的布劳特氏菌属、粪球菌属、梭菌属和吉米菌属为最低,分别是原海蒿子多糖组的0.63、0.69、0.52和0.67倍;
就有益菌属而言,普氏菌属、拟杆菌属,有利于SCFA的产生。拟杆菌属利用寡糖和多糖生产具有潜在抗炎作用。小杆菌属可产生丙酸,能提高人体肠道中丙酸的浓度,降低炎症性肠病的发病风险。就有害菌属而言,劳特氏菌属、粪球菌属一些条件致病菌属,在早期肝癌患者中发现了明显的吉米菌属的富集,其减少有助于保护个体免受肝癌的侵袭。因此,降解1h、降解2h以及降解5h海蒿子多糖通过调节有益肠道菌群的组成可作为一种益生元。

Claims (7)

1.一种制备具有抗氧化和调节肠道菌群功效的海蒿子多糖的方法,其特征在于,包括以下步骤:
将海蒿子进行预处理、热水提取、脱蛋白、脱色、醇沉、透析和降解,得到低分子量海蒿子多糖;
所述降解是采用超声辐射联合双氧水氧化协同降解;
所述降解包括以下步骤:
将透析所得海蒿子粗多糖配成5~8 mg/mL多糖溶液,再加入H2O2溶液至H2O2体积浓度为1~5%,然后置于超声场中进行辐射处理,超声频率为20~25kHz,功率为450~550W,于室温条件下超声处理,再经过冷冻干燥,制备得到降解的低分子量海蒿子多糖;
所述海蒿子粗多糖的制备包括以下步骤:
1)原料预处理:将干制的海蒿子原料,干燥,粉碎,过筛;将海蒿子干粉和乙醇按照固液质量体积比1g:6mL~1g:8mL混合,于60~75°C加热回流3~5h,离心分离残留物,重复加热回流和过滤,残留物干燥;
2)多糖提取:将步骤1)预处理所得干粉按料液质量体积比为1g:20mL~1g:30mL与水混合,于温度80~95°C下浸提,浸提时间为1.5~3.5h,浸提次数为1~3次;离心分离得到海蒿子多糖提取液,减压浓缩到原体积的1/4~1/6,得到海蒿子粗多糖浓缩液;
3)脱蛋白:采用Sevag试剂对海蒿子粗多糖浓缩液进行脱蛋白处理,海蒿子粗多糖浓缩液与Sevag试剂的体积比为4:1~6:1,振荡30~60min,离心得上层多糖溶液,重复振荡和离心8~15次;减压旋转蒸发除去残留的Sevag试剂;使海蒿子多糖在Sevag法脱蛋白后,多糖浓度>65wt%;
4)脱色:将步骤3)中脱蛋白后的多糖浓缩液用大孔树脂进行脱色处理,多糖浓缩液与大孔树脂的体积比为(4~6):1,室温条件下摇晃脱色2~4h,抽滤分离滤液,并用去离子水洗大孔树脂1~3次,合并滤液,于45℃下减压浓缩至原体积;
5)醇沉和透析:往步骤4)所得多糖滤液中加入无水乙醇,边加边搅拌至乙醇体积浓度为65~90%,在0~5°C中静置24~48h,离心得到海蒿子多糖沉淀,用去离子水复溶,并使用截留分子量为1000~5000Da透析袋透析,冷冻干燥后得到海蒿子粗多糖;所述透析的时间为24~48h,透析的温度为0~5°C。
2.根据权利要求1所述的方法,其特征在于,所述超声处理的时间为1~5h。
3.根据权利要求1所述的方法,其特征在于,所述超声的频率为25kHz。
4.一种由权利要求1-3任一项所述的方法制得的具有抗氧化和调节肠道菌群功效的海蒿子多糖,其特征在于,所述海蒿子多糖的平均分子量为130~510 kDa,颗粒尺寸为400~500 nm,粘度为3-9 mpa·s;
所述海蒿子多糖由岩藻糖、阿拉伯多糖、半乳糖、葡萄糖、木糖、甘露糖、葡萄糖糖酸和半乳糖醛酸组成;所述海蒿子多糖中岩藻糖、阿拉伯多糖、半乳糖、葡萄糖、木糖、甘露糖、葡萄糖醛酸和半乳糖醛酸的摩尔百分比含量分别为15~18%、3~5%、25~29%、3.5~5%、5~6%、0.5~2%、30~38%和9~11%。
5.权利要求4所述的一种低分子量海蒿子多糖应用于制备具有抗氧化和调节肠道菌群功效的健康食品。
6.根据权利要求5所述的应用,其特征在于,所述健康食品的形态为液体、固态。
7.根据权利要求6所述的应用,其特征在于,所述固态为粉末、片剂或胶囊。
CN202010197957.5A 2020-03-19 2020-03-19 一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用 Active CN111285939B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010197957.5A CN111285939B (zh) 2020-03-19 2020-03-19 一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010197957.5A CN111285939B (zh) 2020-03-19 2020-03-19 一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111285939A CN111285939A (zh) 2020-06-16
CN111285939B true CN111285939B (zh) 2022-04-22

Family

ID=71020743

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010197957.5A Active CN111285939B (zh) 2020-03-19 2020-03-19 一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111285939B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112375154A (zh) * 2020-11-02 2021-02-19 江苏泰德医药有限公司 一种褐藻多糖硫酸酯的提取方法
CN112409649B (zh) * 2020-11-25 2022-02-15 华南理工大学 一种海蒿子粗多糖/壳聚糖可食用复合膜及其制备方法与应用
CN112979836B (zh) * 2021-03-04 2022-05-27 湖北省农业科学院农产品加工与核农技术研究所 一种活性增强型食用菌多糖的制备方法及其在减肥、增加肠道有益菌群中的应用
CN113480670A (zh) * 2021-06-28 2021-10-08 华南理工大学 一种显著提高羊栖菜多糖益生活性的方法
CN113621088A (zh) * 2021-08-31 2021-11-09 青岛农业大学 一种海蒿子粗多糖及其制备方法和分离纯化方法与应用
CN113754788B (zh) * 2021-09-28 2023-03-17 上海海洋大学 一种海蒿子岩藻聚糖及其制备方法和应用
CN114869919A (zh) * 2022-06-29 2022-08-09 江西中医药大学 海藻及其提取物在制备抗神经炎症药物上的应用及抗神经炎症药物
CN115536761B (zh) * 2022-10-26 2023-11-28 山西农业大学 一种具有抗炎和抗氧化活性的食用菌降解多糖的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752110A (zh) * 2004-09-21 2006-03-29 珠江医院 海篙子多糖及制备方法和用途
CN102417549A (zh) * 2011-11-07 2012-04-18 沈阳科思高科技有限公司 一种基于微波化学的褐藻活性多糖的高效提取方法
CN110078840A (zh) * 2019-04-04 2019-08-02 珠海中美普莱健康科技有限公司 一种海蒿子多糖硒及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102417548B (zh) * 2011-11-03 2013-07-24 沈阳科思高科技有限公司 一种从褐藻中提取活性多糖的方法
CN103724675A (zh) * 2013-11-30 2014-04-16 青岛海之林生物科技开发有限公司 一种藻类中提取多糖的提取方法
CN107474148A (zh) * 2017-07-27 2017-12-15 浦江县美泽生物科技有限公司 一种从马尾藻提取多糖复合物的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1752110A (zh) * 2004-09-21 2006-03-29 珠江医院 海篙子多糖及制备方法和用途
CN102417549A (zh) * 2011-11-07 2012-04-18 沈阳科思高科技有限公司 一种基于微波化学的褐藻活性多糖的高效提取方法
WO2013067896A1 (zh) * 2011-11-07 2013-05-16 沈阳科思高科技有限公司 一种微波化学法提取褐藻多糖的方法
CN110078840A (zh) * 2019-04-04 2019-08-02 珠海中美普莱健康科技有限公司 一种海蒿子多糖硒及其制备方法与应用

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Changes of digestive and fermentation properties of Sargassum pallidum polysaccharide after ultrasonic degradation and its impacts on gut microbiota;Dan Yuan 等;《International Journal of Biological Macromolecules》;20200728;第164卷;第1443-1450页 *
Physicochemical characterization, potential antioxidant and hypoglycemic activity of polysaccharide from Sargassum pallidum;changliang cao 等;《International Journal of Biological Macromolecules》;20190808;第139卷;第1009-1017页 *
Structure and in vitro hypoglycemic activity of a homogenous polysaccharide purified from Sargassum pallidum;changliang cao 等;《Food Funct.》;20190415;第10卷;第2828-2838页 *
Ultrasonic degradation effects on the physicochemical,rheological and antioxidant properties of polysaccharide from Sargassum pallidum;Dan Yuan 等;《Carbohydrate Polymers》;20200406;第239卷;第116230页 *

Also Published As

Publication number Publication date
CN111285939A (zh) 2020-06-16

Similar Documents

Publication Publication Date Title
CN111285939B (zh) 一种具有抗氧化和调节肠道菌群功效的海蒿子多糖及其制备方法与应用
Huang et al. Physicochemical properties and prebiotic activities of polysaccharides from longan pulp based on different extraction techniques
Xu et al. Microbial catabolism of Porphyra haitanensis polysaccharides by human gut microbiota
Zhu et al. Extraction, structural characterization and antioxidant activity of turmeric polysaccharides
Xu et al. Ultrasonic/microwave-assisted extraction, simulated digestion, and fermentation in vitro by human intestinal flora of polysaccharides from Porphyra haitanensis
CN109400734B (zh) 一种刺梨多糖及其制备方法与应用
Huang et al. Extraction, purification, structural characterization, and gut microbiota relationship of polysaccharides: A review
Gao et al. Preparation, characterization and improvement in intestinal function of polysaccharide fractions from okra
Zou et al. Physicochemical properties and prebiotic activities of polysaccharides from Zizyphus jujube based on different extraction techniques
Guo et al. In vitro digestion and fermentation by human fecal microbiota of polysaccharides from Clitocybe squamulose
Hu et al. Effects of in vitro simulated digestion and fecal fermentation of polysaccharides from straw mushroom (Volvariella volvacea) on its physicochemical properties and human gut microbiota
Guan et al. Simulated digestion and in vitro fermentation of a polysaccharide from lotus (Nelumbo nucifera Gaertn.) root residue by the human gut microbiota
Wu et al. In vitro digestive characteristics and microbial degradation of polysaccharides from lotus leaves and related effects on the modulation of intestinal microbiota
Gu et al. Characterization of soluble dietary fiber from citrus peels (Citrus unshiu), and its antioxidant capacity and beneficial regulating effect on gut microbiota
CN114591448A (zh) 一种桑树桑黄子实体甘露半乳聚糖及其制备和用途
CN114907494B (zh) 一种具有显著降脂和降胆固醇功效的刺梨多糖及其制备方法与应用
Geng et al. Effects of different extraction methods on the physico-chemical characteristics and biological activities of polysaccharides from Clitocybe squamulosa
Yang et al. Effects of UV/H2O2 degradation on Moringa oleifera Lam. leaves polysaccharides: Composition, in vitro fermentation and prebiotic properties on gut microorganisms
Ge et al. In vitro fermentation characteristics of polysaccharides from coix seed and its effects on the gut microbiota
Wan et al. Physicochemical characterization, digestion profile and gut microbiota regulation activity of intracellular polysaccharides from Chlorella zofingiensis
Wang et al. Extraction and characterization of polysaccharides from Schisandra sphenanthera fruit by Lactobacillus plantarum CICC 23121-assisted fermentation
Chen et al. Characterization and prebiotic potential of polysaccharides from Rosa roxburghii Tratt pomace by ultrasound-assisted extraction
Zhang et al. In vitro digestive properties of Dictyophora indusiata polysaccharide by steam explosion pretreatment methods
CN106749733B (zh) 一种泡叶藻硫酸酯化多糖及其制备方法、应用
Tian et al. Characterization and in vitro digestion of alkali-extracted polysaccharides from Grifola frondosa and its impacts on human gut microbiota

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant