CN111181501B - Capacitor-inductor-capacitor adjustable matching network and frequency adjustable amplifier - Google Patents
Capacitor-inductor-capacitor adjustable matching network and frequency adjustable amplifier Download PDFInfo
- Publication number
- CN111181501B CN111181501B CN202010111751.6A CN202010111751A CN111181501B CN 111181501 B CN111181501 B CN 111181501B CN 202010111751 A CN202010111751 A CN 202010111751A CN 111181501 B CN111181501 B CN 111181501B
- Authority
- CN
- China
- Prior art keywords
- capacitance
- matching network
- amplifying circuit
- capacitor
- transistor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 93
- 238000000034 method Methods 0.000 claims description 10
- 230000003321 amplification Effects 0.000 claims description 8
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 8
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 2
- 230000010354 integration Effects 0.000 abstract description 6
- 238000010586 diagram Methods 0.000 description 7
- 238000004088 simulation Methods 0.000 description 4
- 238000002955 isolation Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/56—Modifications of input or output impedances, not otherwise provided for
- H03F1/565—Modifications of input or output impedances, not otherwise provided for using inductive elements
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/42—Amplifiers with two or more amplifying elements having their DC paths in series with the load, the control electrode of each element being excited by at least part of the input signal, e.g. so-called totem-pole amplifiers
- H03F3/423—Amplifiers with two or more amplifying elements having their DC paths in series with the load, the control electrode of each element being excited by at least part of the input signal, e.g. so-called totem-pole amplifiers with MOSFET's
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
Description
技术领域technical field
本发明属于射频集成电路领域,特别涉及一种电容-电感-电容可调匹配网络及频率可调放大器。The invention belongs to the field of radio frequency integrated circuits, in particular to a capacitance-inductance-capacitance adjustable matching network and an adjustable frequency amplifier.
背景技术Background technique
现代微波系统的发展趋势是高性能、低成本,因此往往选用可以工作于多个频段的器件来完成设计。频率可调放大器可以通过外加控制电压,使放大器工作于不同的频段,可以在兼容不同的通信标准、满足不同应用场景需求的同时降低设备成本,适用于低成本、小体积、高集成度系统的设计。目前,设计频率可调放大器的常见方法是在输入或输出端口加载可调匹配网络,这些可调匹配网络多采用开关实现,通过开关的通断改变匹配电路中无源器件的值。The development trend of modern microwave systems is high performance and low cost, so devices that can work in multiple frequency bands are often selected to complete the design. The adjustable frequency amplifier can make the amplifier work in different frequency bands by adding a control voltage. It can reduce equipment costs while being compatible with different communication standards and meeting the needs of different application scenarios. It is suitable for low-cost, small-volume, and highly-integrated systems. design. At present, the common method of designing a frequency adjustable amplifier is to load an adjustable matching network on the input or output port. These adjustable matching networks are mostly realized by switches, and the values of the passive components in the matching circuit are changed by switching the switch on and off.
文献1(J.Busquere,K.Grenier,D.Dubuc,E.Fourn,P.Ancey and R.Plana,"MEMSIC concept for Reconfigurable Low Noise Amplifier,"2006 European MicrowaveConference,Manchester,2006,pp.1358-1361.)中通过利用MEMS开关的通断设计了电容可变的MEMS调谐器件,使该器件在开关通断情况下呈现不同的容值,从而实现匹配网络在不同的中心频率处分别匹配,此外还利用MEMS开关实现两个输出匹配网络间的切换。但是其只能实现两个频段的切换,应用范围十分受限,且MEMS无法和放大电路集成,也限制了电路的集成度。Document 1 (J.Busquere, K.Grenier, D.Dubuc, E.Fourn, P.Ancey and R.Plana, "MEMSIC concept for Reconfigurable Low Noise Amplifier," 2006 European Microwave Conference, Manchester, 2006, pp.1358-1361 .) by using the on-off of the MEMS switch to design a MEMS tuning device with variable capacitance, so that the device presents different capacitance values in the case of on-off of the switch, so as to realize the matching of the matching network at different center frequencies. In addition, the A MEMS switch is used to switch between the two output matching networks. However, it can only switch between two frequency bands, and the application range is very limited, and MEMS cannot be integrated with the amplifier circuit, which also limits the integration degree of the circuit.
文献2(R.Malmqvist et al.,"RF MEMS based impedance matching networksfor tunable multi-band microwave low noise amplifiers,"2009InternationalSemiconductor Conference,Sinaia,2009,pp.303-306.)同样采用加载射频MEMS的单端和差分匹配网络来实现低噪声放大器的频率可调。但其使用2位MEMS开关获得可变电容负载,所设计加工的两款MEMS单端匹配网络在25GHz左右分别可以实现10%和13%的调节范围。但是2位的MEMS开关只能实现4种状态的频段切换,且引入的损耗在1.5dB-2.0dB。Document 2 (R.Malmqvist et al., "RF MEMS based impedance matching networks for tunable multi-band microwave low noise amplifiers," 2009 International Semiconductor Conference, Sinaia, 2009, pp.303-306.) also uses single-ended and A differential matching network is used to realize the frequency tunability of the LNA. However, it uses 2-bit MEMS switches to obtain variable capacitive loads. The two MEMS single-ended matching networks designed and processed can achieve 10% and 13% adjustment ranges at around 25GHz, respectively. However, the 2-bit MEMS switch can only switch the frequency bands in 4 states, and the loss introduced is 1.5dB-2.0dB.
文献3(P.D.Fritsche,C.Carta and F.Ellinger,"A Passive TunableMatching Filter for Multiband RF Applications Demonstrated at 7to 14GHz,"inIEEE Microwave and Wireless Components Letters,vol.27,no.8,pp.703-705,Aug.2017.)利用CMOS开关实现可重构放大器,其提出可以实现高低阻抗变化的电感-电感-电容(LLC)匹配网络,其中的电容是通过4个MOS开关和普通电容构成的数字可变电容,通过四个控制电压控制MOS开关的通断,可以实现16种不同的容值组合,从而控制匹配网络中心频率的改变,但电路只有一个电容可调,故只有S参数的右边零点随频率变化,调节灵活度不高。Document 3 (P. D.Fritsche, C.Carta and F.Ellinger, "A Passive TunableMatching Filter for Multiband RF Applications Demonstrated at 7to 14GHz," in IEEE Microwave and Wireless Components Letters, vol.27, no.8, pp.703-705, Aug. 2017.) Using CMOS switches to realize reconfigurable amplifiers, it proposes an inductance-inductance-capacitance (LLC) matching network that can achieve high and low impedance changes, in which the capacitor is a digital variable capacitor composed of four MOS switches and ordinary capacitors. Through four control voltages to control the on-off of the MOS switch, 16 different capacitance combinations can be realized, thereby controlling the change of the center frequency of the matching network, but the circuit has only one adjustable capacitor, so only the right zero point of the S parameter changes with the frequency. Adjustment flexibility is not high.
总之,现有技术存在的问题是:MEMS电路影响系统的集成度,开关无法实现频率的连续可调,单个可变电容调节灵活度低等。In short, the problems in the prior art are: the MEMS circuit affects the integration of the system, the switch cannot realize the continuous adjustment of the frequency, and the adjustment flexibility of a single variable capacitor is low.
发明内容Contents of the invention
本发明的目的在于提供一种结构简单、易于实现的可调匹配网络,以及基于该网络的低成本、小体积、高集成度、高灵活度、频率连续可调的放大器。The object of the present invention is to provide an adjustable matching network with simple structure and easy realization, and an amplifier based on the network with low cost, small volume, high integration, high flexibility and continuously adjustable frequency.
实现本发明目的的技术解决方案为:一种电容-电感-电容可调匹配网络,该网络的中心频率可调,且能实现输入端和输出端的阻抗匹配;The technical solution to realize the object of the present invention is: a capacitance-inductance-capacitance adjustable matching network, the central frequency of the network is adjustable, and the impedance matching between the input end and the output end can be realized;
所述可调匹配网络,包括依次串联的第一可变电容、第一电感和第二可变电容,所述第一可变电容的另一端作为所述可调匹配网络的输入端或输出端,同时第一电感与第二可变电容的公共端作为所述可调匹配网络的输出端或输入端,第二可变电容的另一端接地;其中,所述第一可变电容和第二可变电容,分别用于调节S参数的左边零点和右边零点,进而实现所述可调匹配网络中心频率的调谐。The adjustable matching network includes a first variable capacitor, a first inductor and a second variable capacitor connected in series in sequence, and the other end of the first variable capacitor is used as the input or output end of the adjustable matching network , while the common end of the first inductance and the second variable capacitor is used as the output or input end of the adjustable matching network, and the other end of the second variable capacitor is grounded; wherein, the first variable capacitor and the second The variable capacitors are respectively used to adjust the left zero point and the right zero point of the S parameter, thereby realizing the tuning of the central frequency of the adjustable matching network.
进一步地,所述第一可变电容和第二可变电容均采用MOS变容管。Further, both the first variable capacitor and the second variable capacitor use MOS varactors.
进一步地,所述第一可变电容(Cv1)和第二可变电容(Cv2)通过曲线拟合,获得线性数值关系:Further, the first variable capacitance (C v1 ) and the second variable capacitance (C v2 ) obtain a linear numerical relationship through curve fitting:
C(v2)=aC(v1)+bC (v2) = aC (v1) + b
式中,C(v2)、C(v1)分别为第二可变电容(Cv2)、第一可变电容(Cv1)的电容值,a、b均为曲线拟合后的系数。In the formula, C (v2) and C (v1) are the capacitance values of the second variable capacitor (C v2 ) and the first variable capacitor (C v1 ), respectively, and a and b are coefficients after curve fitting.
一种频率可调放大器,包括:放大电路,以及设置于放大电路输入端或设置于放大电路输出端或同时设置于放大电路输入端和输出端的电容-电感-电容可调匹配网络;A frequency adjustable amplifier, comprising: an amplifying circuit, and a capacitance-inductance-capacitance adjustable matching network arranged at the input end of the amplifying circuit or at the output end of the amplifying circuit or at both the input end and the output end of the amplifying circuit;
所述电容-电感-电容可调匹配网络设置于放大电路输入端或设置于放大电路输出端时,所述频率可调放大器还包括设置于放大电路输出端或设置于放大电路输入端的宽带匹配网络;When the capacitance-inductance-capacitance adjustable matching network is set at the input end of the amplifying circuit or at the output end of the amplifying circuit, the adjustable frequency amplifier also includes a broadband matching network set at the output end of the amplifying circuit or at the input end of the amplifying circuit ;
所述电容-电感-电容可调匹配网络,设置于放大电路输入端时,用于实现信号源和放大电路输入端的阻抗匹配,同时宽带匹配网络用于实现放大电路输出端和负载的宽带阻抗匹配;设置于放大电路输出端时,用于实现放大电路输出端和负载的阻抗匹配,同时宽带匹配网络用于实现信号源和放大电路输入端的宽带阻抗匹配;设置于放大电路输入端和输出端时,分别用于实现信号源和放大电路输入端的阻抗匹配、放大电路输出端和负载的阻抗匹配;The capacitance-inductance-capacitance adjustable matching network is used to realize the impedance matching between the signal source and the input end of the amplifying circuit when it is set at the input end of the amplifying circuit, and the broadband matching network is used to realize the broadband impedance matching between the output end of the amplifying circuit and the load ;When it is set at the output end of the amplifying circuit, it is used to realize the impedance matching between the output end of the amplifying circuit and the load, and the broadband matching network is used to realize the broadband impedance matching between the signal source and the input end of the amplifying circuit; when it is set at the input end and the output end of the amplifying circuit , which are respectively used to achieve impedance matching between the signal source and the input end of the amplifier circuit, and impedance matching between the output end of the amplifier circuit and the load;
所述放大电路,用于对信号进行放大。The amplifying circuit is used to amplify the signal.
进一步地,所述放大电路,包括依次设置的:第一级放大电路,用于对信号进行一级放大;第二级放大电路,用于对信号进行二级放大。Further, the amplifying circuit includes sequentially arranged: a first-stage amplifying circuit for performing one-stage amplifying of the signal; a second-stage amplifying circuit for performing two-stage amplifying of the signal.
进一步地,所述第一级放大电路和第二级放大电路均采用共射共基结构。Further, both the first-stage amplifying circuit and the second-stage amplifying circuit adopt a cascode structure.
进一步地,所述第一级放大电路包括第一晶体管、第二晶体管、第三电感和第一电容;所述第一晶体管的集电极通过第三电感与第二晶体管的发射极相连,第二晶体管的集电极连接至集电极电压Vc1,第一电容的一端接地,另一端与第二晶体管的基极相连,第一晶体管的发射极接地,第一晶体管的基极通过第二电感与电容-电感-电容可调匹配网络或宽带匹配网络的输出端相连。Further, the first-stage amplifying circuit includes a first transistor, a second transistor, a third inductor and a first capacitor; the collector of the first transistor is connected to the emitter of the second transistor through the third inductor, and the second The collector of the transistor is connected to the collector voltage V c1 , one end of the first capacitor is connected to the ground, the other end is connected to the base of the second transistor, the emitter of the first transistor is connected to the ground, and the base of the first transistor is connected to the capacitor through the second inductor. - the output terminals of the inductance-capacitance adjustable matching network or the broadband matching network are connected.
进一步地,所述第二级放大电路包括第三晶体管、第四晶体管、第四电感、第三电容;所述第三晶体管的集电极通过第四电感与第四晶体管的发射极相连,第四晶体管的集电极连接集电极电压Vc2以及电容-电感-电容可调匹配网络或宽带匹配网络的输入端,第三电容的一端接地,另一端与第四晶体管的基极相连,第三晶体管的发射极接地,第三晶体管的基极通过第二电容与第二晶体管的集电极相连。Further, the second-stage amplifying circuit includes a third transistor, a fourth transistor, a fourth inductor, and a third capacitor; the collector of the third transistor is connected to the emitter of the fourth transistor through the fourth inductor, and the fourth The collector of the transistor is connected to the collector voltage V c2 and the input terminal of the capacitance-inductance-capacitance adjustable matching network or the broadband matching network, one end of the third capacitor is grounded, and the other end is connected to the base of the fourth transistor, and the third transistor The emitter is grounded, and the base of the third transistor is connected to the collector of the second transistor through the second capacitor.
进一步地,所述宽带匹配网络包括第四电容、第五电感和第五电容,所述第四电容和第五电容相串联,第四电容和第五电容的公共端通过第五电感接地,第四电容的另一端和第五电容的另一端分别作为宽带匹配网络的输入端和输出端。Further, the broadband matching network includes a fourth capacitor, a fifth inductor, and a fifth capacitor, the fourth capacitor and the fifth capacitor are connected in series, the common terminal of the fourth capacitor and the fifth capacitor is grounded through the fifth inductor, and the fifth capacitor The other end of the four capacitors and the other end of the fifth capacitor serve as the input end and the output end of the broadband matching network respectively.
本发明与现有技术相比,其显著优点为:1)电容-电感-电容可调匹配网络仅采用一个串联电容、一个串联电感和一个并联到地的电容,就可以实现匹配网络的中心频率随着两个电容值的变化而变化,从而达到放大器频率可调的目的,结构简单,易于实现;2)电容-电感-电容可调匹配网络中的两个电容用MOS变容管实现,容值随电压连续变化,从而可以实现频率的连续可调,且与放大器的工艺兼容,电路面积小,集成度高;3)两个MOS变容管可以分别调节S参数曲线的左右零点,调灵活度高,且可对两个MOS变容管采用曲线拟合的方法,使其用同一电压控制,调节频率时易于操作;4)由两个晶体管和峰化电感构成的共射共基放大结构,在提高输入输出端口隔离度的同时提升了高频增益,使得放大器在各个工作频段内的峰值增益趋于一致,增益平坦度高;5)宽带匹配网络采用两个串联电容和一个并联电感实现宽带匹配,使得输出端口在宽频带内均能获得良好匹配,结构简单。Compared with the prior art, the present invention has the remarkable advantages as follows: 1) The adjustable capacitance-inductance-capacitance matching network only adopts a series capacitor, a series inductor and a capacitor connected in parallel to the ground to realize the center frequency of the matching network It changes with the change of the two capacitance values, so as to achieve the purpose of adjustable frequency of the amplifier. The value changes continuously with the voltage, so that the frequency can be continuously adjusted, and it is compatible with the amplifier process, the circuit area is small, and the integration is high; 3) Two MOS varactors can adjust the left and right zero points of the S parameter curve respectively, and the adjustment is flexible High precision, and the method of curve fitting can be used for two MOS varactors, so that it can be controlled by the same voltage, and it is easy to operate when adjusting the frequency; 4) Cascode amplification structure composed of two transistors and peaking inductors , while improving the isolation of the input and output ports, the high-frequency gain is improved, so that the peak gain of the amplifier in each operating frequency band tends to be consistent, and the gain flatness is high; 5) The broadband matching network is realized by two series capacitors and a parallel inductor Broadband matching enables the output port to be well matched within a wide frequency band, and the structure is simple.
下面结合附图对本发明作进一步详细描述。The present invention will be described in further detail below in conjunction with the accompanying drawings.
附图说明Description of drawings
图1为一个实施例中电容-电感-电容可调匹配网络及频率可调放大器示意图。FIG. 1 is a schematic diagram of an adjustable capacitance-inductor-capacitance matching network and an adjustable frequency amplifier in one embodiment.
图2为一个实施例中两个可变电容值曲线拟合结果示意图。Fig. 2 is a schematic diagram of curve fitting results of two variable capacitance values in an embodiment.
图3为一个实施例中电容-电感-电容可调匹配网络中第一可变电容Cv1的结构图。FIG. 3 is a structural diagram of the first variable capacitor C v1 in the capacitance-inductance-capacitance adjustable matching network in one embodiment.
图4为一个实施例中电容-电感-电容可调匹配网络中第二可变电容Cv2的结构图。FIG. 4 is a structural diagram of the second variable capacitor C v2 in the capacitance-inductance-capacitance adjustable matching network in one embodiment.
图5为一个实施例中频率可调放大器S11和S21仿真结果图。Fig. 5 is a diagram of simulation results of frequency adjustable amplifiers S11 and S21 in one embodiment.
图6为一个实施例中频率可调放大器S22仿真结果图。FIG. 6 is a simulation result diagram of the frequency adjustable amplifier S22 in one embodiment.
具体实施方式Detailed ways
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。In order to make the purpose, technical solution and advantages of the present application clearer, the present application will be further described in detail below in conjunction with the accompanying drawings and embodiments. It should be understood that the specific embodiments described here are only used to explain the present application, and are not intended to limit the present application.
在一个实施例中,结合图1,提供了一种电容-电感-电容可调匹配网络,该网络的中心频率可调,且能实现输入端和输出端的阻抗匹配;In one embodiment, with reference to FIG. 1, a capacitance-inductance-capacitance adjustable matching network is provided, the center frequency of the network is adjustable, and impedance matching between the input end and the output end can be realized;
可调匹配网络,包括依次串联的第一可变电容Cv1、第一电感L1和第二可变电容Cv2,第一可变电容Cv1的另一端作为可调匹配网络的输入端或输出端,同时第一电感L1与第二可变电容Cv2的公共端作为可调匹配网络的输出端或输入端,第二可变电容Cv2的另一端接地;其中,第一可变电容Cv1和第二可变电容Cv2,分别用于调节S参数的左边零点和右边零点,进而实现可调匹配网络中心频率的调谐。The adjustable matching network includes a first variable capacitor C v1 , a first inductor L 1 and a second variable capacitor C v2 connected in series in sequence, and the other end of the first variable capacitor C v1 is used as an input end of the adjustable matching network or output terminal, while the common terminal of the first inductance L 1 and the second variable capacitor C v2 is used as the output terminal or input terminal of the adjustable matching network, and the other end of the second variable capacitor C v2 is grounded; wherein, the first variable The capacitor C v1 and the second variable capacitor C v2 are respectively used to adjust the left zero point and the right zero point of the S parameter, thereby realizing the tuning of the center frequency of the adjustable matching network.
这里,电容-电感-电容可调匹配网络可以在不同中心频率处实现高低阻抗的变化,即通过该匹配网络,可以将高电阻RH变为低电阻RL,且当匹配网络中的电容值改变时,匹配网络的中心频率随之改变。具体原理为:根据网络结构,经计算可得:Here, the capacitance-inductance-capacitance adjustable matching network can realize the change of high and low impedance at different center frequencies, that is, through this matching network, the high resistance R H can be changed into a low resistance R L , and when the capacitance value in the matching network When changing, the center frequency of the matching network changes accordingly. The specific principle is: according to the network structure, it can be obtained by calculation:
由式(1)可知,当RL和RH为确定值时,Cv2由ω唯一确定,而ω=2πf,即Cv2的变化将导致频率的变化,而由式(2)可知,当L1也确定时,Cv1仅随Cv2变化。故对于该可调匹配网络,可以通过同时改变Cv1和Cv2的值,来实现调节网络的中心频率。It can be known from formula (1) that when RL and R H are definite values, C v2 is uniquely determined by ω, and ω=2πf, that is, the change of C v2 will lead to the change of frequency, and it can be seen from formula (2) that when When L 1 is also determined, C v1 only varies with C v2 . Therefore, for the adjustable matching network, the center frequency of the network can be adjusted by changing the values of C v1 and C v2 at the same time.
进一步优选地,在其中一个实施例中,上述第一可变电容Cv1和第二可变电容Cv2均采用MOS变容管。Further preferably, in one of the embodiments, both the first variable capacitor C v1 and the second variable capacitor C v2 use MOS varactors.
进一步地,在其中一个实施例中,上述第一可变电容Cv1和第二可变电容Cv2通过曲线拟合,获得线性数值关系:Further, in one of the embodiments, the above-mentioned first variable capacitor C v1 and second variable capacitor C v2 obtain a linear numerical relationship through curve fitting:
C(v2)=aC(v1)+bC (v2) = aC (v1) + b
式中,C(v2)、C(v1)分别为第二可变电容(Cv2)、第一可变电容(Cv1)的电容值,a、b均为曲线拟合后的系数。In the formula, C (v2) and C (v1) are the capacitance values of the second variable capacitor (C v2 ) and the first variable capacitor (C v1 ), respectively, and a and b are coefficients after curve fitting.
采用本实施例的方案,可以使用统一的一个电压控制整个匹配网络的中心频率,易于操作。With the solution of this embodiment, a unified voltage can be used to control the center frequency of the entire matching network, which is easy to operate.
作为一种具体示例,对Cv1和Cv2进行曲线拟合,拟合结果如图2所示。在拟合过程中,通过改变串联电感L1的值来改变Cv1的变化范围,从而在一定程度上改变拟合的斜率及相关系数,经多次尝试,最终选择的L1为1.85nH,此时拟合出的结果为:Cv2=0.343Cv1+80(fF)。这意味着Cv2可以用三个Cv1电容串联再与一个80fF的电容并联来近似实现,如图3所示为利用两个MOS变容管MOSVAR1和MOSVAR2以及一个偏置电阻R0实现的第一可变电容Cv1,图4为利用三个相同的第一可变电容Cv1串联再并联一个80fF的电容而组成的第二可变电容Cv2。As a specific example, curve fitting is performed on Cv1 and Cv2 , and the fitting result is shown in FIG. 2 . During the fitting process, the variation range of C v1 is changed by changing the value of the series inductance L 1 , thereby changing the fitting slope and correlation coefficient to a certain extent. After many attempts, the final selected L 1 is 1.85nH, The fitting result at this time is: C v2 =0.343C v1 +80(fF). This means that C v2 can be approximated by using three C v1 capacitors connected in series and then connected in parallel with an 80fF capacitor. As shown in Figure 3, the first realized by using two MOS varactors MOSVAR1 and MOSVAR2 and a bias resistor R 0 A variable capacitor C v1 , FIG. 4 shows a second variable capacitor C v2 composed of three identical first variable capacitors C v1 connected in series and a capacitor of 80 fF in parallel.
在一个实施例中,结合图1,提供了一种频率可调放大器,包括:放大电路,以及设置于放大电路输入端或设置于放大电路输出端或同时设置于放大电路输入端和输出端的电容-电感-电容可调匹配网络1;In one embodiment, with reference to FIG. 1 , a frequency adjustable amplifier is provided, including: an amplifying circuit, and a capacitor arranged at the input end of the amplifying circuit or at the output end of the amplifying circuit or at the same time at the input end and the output end of the amplifying circuit - adjustable inductance-capacitance matching network 1;
电容-电感-电容可调匹配网络1设置于放大电路输入端或设置于放大电路输出端时,频率可调放大器还包括设置于放大电路输出端或设置于放大电路输入端的宽带匹配网络4;When the capacitance-inductance-capacitance adjustable matching network 1 is set at the input end of the amplifying circuit or at the output end of the amplifying circuit, the adjustable frequency amplifier also includes a
电容-电感-电容可调匹配网络1,设置于放大电路输入端时,用于实现信号源和放大电路输入端的阻抗匹配,同时宽带匹配网络4用于实现放大电路输出端和负载的宽带阻抗匹配;设置于放大电路输出端时,用于实现放大电路输出端和负载的阻抗匹配,同时宽带匹配网络4用于实现信号源和放大电路输入端的宽带阻抗匹配;设置于放大电路输入端和输出端时,分别用于实现信号源和放大电路输入端的阻抗匹配、放大电路输出端和负载的阻抗匹配;The capacitance-inductance-capacitance adjustable matching network 1 is used to realize the impedance matching between the signal source and the input end of the amplifying circuit when it is set at the input end of the amplifying circuit, and the
放大电路,用于对信号进行放大。The amplification circuit is used to amplify the signal.
这里,电容-电感-电容可调匹配网络的中心频率可调,即可实现放大器工作频率的调谐。Here, the center frequency of the capacitance-inductance-capacitance adjustable matching network can be adjusted to realize the tuning of the working frequency of the amplifier.
进一步地,在其中一个实施例中,结合图1,上述放大电路,包括依次设置的:第一级放大电路2,用于对信号进行一级放大;第二级放大电路3,用于对信号进行二级放大。Further, in one of the embodiments, with reference to FIG. 1, the above-mentioned amplifying circuit includes sequentially arranged: a first-
进一步地,在其中一个实施例中,上述第一级放大电路2和第二级放大电路3均采用带有峰化电感的共射共基结构。Further, in one of the embodiments, both the first-
进一步地,在其中一个实施例中,上述第一级放大电路2包括第一晶体管M1、第二晶体管M2、第三电感L3和第一电容C1;第一晶体管M1的集电极通过第三电感L3与第二晶体管M2的发射极相连,第二晶体管M2的集电极连接至集电极电压Vc1,第一电容C1的一端接地,另一端与第二晶体管M2的基极相连,第一晶体管M1的发射极接地,第一晶体管M1的基极通过第二电感L2与电容-电感-电容可调匹配网络1或宽带匹配网络4的输出端相连。Further, in one of the embodiments, the first-
这里,电容-电感-电容可调匹配网络1与第一级放大电路2之间设置第二电感L2,用以平衡放大器输入电抗。Here, a second inductance L 2 is provided between the capacitance-inductance-capacitance adjustable matching network 1 and the first-
进一步地,在其中一个实施例中,上述第二级放大电路3包括第三晶体管M3、第四晶体管M4、第四电感L4、第三电容C3;第三晶体管M3的集电极通过第四电感L4与第四晶体管M4的发射极相连,第四晶体管M4的集电极连接集电极电压Vc2以及电容-电感-电容可调匹配网络1或宽带匹配网络4的输入端,第三电容C3的一端接地,另一端与第四晶体管M4的基极相连,第三晶体管M3的发射极接地,第三晶体管M3的基极通过第二电容C2与第二晶体管M2的集电极相连。Further, in one of the embodiments, the second-
这里,第一级放大电路2和第二级放大电路3之间设置第二电容C2,用于实现级间隔直。Here, a second capacitor C 2 is provided between the first-
采用上述实施例的方案,共射共基结构可以优化反向隔离度,适当提高输出阻抗。同时,共基放大器的基极通过一个电容接地,使得它的输出电压的上下幅值明显大于单个晶体管。此外,加入峰化电感可以有效地提高高频增益,使得放大器在各个工作频段内的峰值增益趋于一致,提升增益平坦度。By adopting the solutions of the above embodiments, the cascode structure can optimize the reverse isolation and appropriately increase the output impedance. At the same time, the base of the common-base amplifier is grounded through a capacitor, so that the amplitude of its output voltage is significantly larger than that of a single transistor. In addition, adding a peaking inductor can effectively increase the high-frequency gain, so that the peak gain of the amplifier in each operating frequency band tends to be consistent, and the gain flatness is improved.
示例性优选地,在其中一个实施例中,上述晶体管均采用0.18um SiGe BiCMOS工艺的HBT晶体管。Exemplarily preferably, in one of the embodiments, the above-mentioned transistors all adopt HBT transistors of 0.18um SiGe BiCMOS process.
进一步地,在其中一个实施例中,上述宽带匹配网络4包括第四电容C4、第五电感L5和第五电容C5,第四电容C4和第五电容C5相串联,第四电容C4和第五电容C5的公共端通过第五电感L5接地,第四电容C4的另一端和第五电容C5的另一端分别作为宽带匹配网络4的输入端和输出端。Further, in one of the embodiments, the above
采用本实施例的方案,整个宽带匹配网络4采用简单的多级集总元件实现宽带匹配,结构简单,易于实现。With the solution of this embodiment, the entire
作为一种具体示例,选择发射结长度为9.9um,发射结宽度为0.2um的HBT管hss122_p2进行频率可调放大器的设计。在电路输出部分,尝试对其进行6-16GHz宽频带匹配,在匹配过程中先是串联一个400fF电容,然后并联一个到地的1.85nH的电感。对该示例中的频率可调放大器进行S参数仿真,仿真图如图5和图6所示,由图可知,当变容管的控制电压Vctrl从-1V变化到1V,电路的中心频率从7.9GHz变化到11.7GHz,在此过程中S11均在-18dB以下,S22均在-15dB以下,增益均大于15dB,调谐范围达38%。As a specific example, an HBT tube hss122_p2 with an emitter junction length of 9.9um and an emitter junction width of 0.2um is selected to design a frequency-tunable amplifier. In the output part of the circuit, try to match it with a 6-16GHz broadband. In the matching process, first connect a 400fF capacitor in series, and then connect a 1.85nH inductor in parallel to the ground. S-parameter simulation is performed on the frequency adjustable amplifier in this example. The simulation diagrams are shown in Figure 5 and Figure 6. It can be seen from the figure that when the control voltage Vctrl of the varactor changes from -1V to 1V, the center frequency of the circuit changes from 7.9 GHz changes to 11.7GHz, during this process, S11 is below -18dB, S22 is below -15dB, the gain is greater than 15dB, and the tuning range reaches 38%.
综上所述,本发明提出的电容-电感-电容可调匹配网络,结构简单,能实现匹配网络中心频率的连续可调,且经曲线拟合,可以用同一电压控制两个变容管,调节频率时易于操作。此外,利用电容-电感-电容可调匹配网络设计的频率可调放大器,具有结构简单、调节灵活度高,调谐范围大等特点,具有较好的性能,且电路整体面积较小,集成度高。In summary, the capacitance-inductance-capacitance adjustable matching network proposed by the present invention has a simple structure and can realize continuous adjustment of the center frequency of the matching network, and through curve fitting, two varactors can be controlled with the same voltage. Easy to operate when adjusting the frequency. In addition, the frequency-tunable amplifier designed by using the capacitance-inductance-capacitance adjustable matching network has the characteristics of simple structure, high adjustment flexibility, and large tuning range. It has better performance, and the overall circuit area is smaller and the integration is high .
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010111751.6A CN111181501B (en) | 2020-02-24 | 2020-02-24 | Capacitor-inductor-capacitor adjustable matching network and frequency adjustable amplifier |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010111751.6A CN111181501B (en) | 2020-02-24 | 2020-02-24 | Capacitor-inductor-capacitor adjustable matching network and frequency adjustable amplifier |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111181501A CN111181501A (en) | 2020-05-19 |
CN111181501B true CN111181501B (en) | 2023-06-09 |
Family
ID=70656841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010111751.6A Active CN111181501B (en) | 2020-02-24 | 2020-02-24 | Capacitor-inductor-capacitor adjustable matching network and frequency adjustable amplifier |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111181501B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101523759A (en) * | 2006-10-02 | 2009-09-02 | 施克莱无线公司 | Centralized wireless communication system |
CN103380576A (en) * | 2010-11-08 | 2013-10-30 | 黑莓有限公司 | Method and appartus for tuning antennas in a communication device |
CN105529997A (en) * | 2014-10-16 | 2016-04-27 | 恩智浦有限公司 | Automatic impedance adjustment |
-
2020
- 2020-02-24 CN CN202010111751.6A patent/CN111181501B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN101523759A (en) * | 2006-10-02 | 2009-09-02 | 施克莱无线公司 | Centralized wireless communication system |
CN103380576A (en) * | 2010-11-08 | 2013-10-30 | 黑莓有限公司 | Method and appartus for tuning antennas in a communication device |
CN105529997A (en) * | 2014-10-16 | 2016-04-27 | 恩智浦有限公司 | Automatic impedance adjustment |
Also Published As
Publication number | Publication date |
---|---|
CN111181501A (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7495515B1 (en) | Low-noise amplifier | |
KR100644273B1 (en) | Wideband Variable Input Matching Low Noise Amplifier | |
US7092691B2 (en) | Switchless multi-resonant, multi-band power amplifier | |
US20050012547A1 (en) | High linearity doherty communication amplifier with phase control | |
WO2006121650A2 (en) | Power amplifier with an output matching network | |
EP1719243A2 (en) | Radio frequency low noise amplifier with automatic gain control | |
CN105141263A (en) | Multi-band low-noise amplification method and multi-band low-noise amplifier | |
CN113381713A (en) | Dual-band low-noise amplifier based on reconfigurable inductor | |
US6630861B2 (en) | Variable gain amplifier | |
CN107659278A (en) | A kind of Ka wave bands SiGe BiCMOS radio-frequency power amplifiers | |
JP2009005137A (en) | High frequency circuit | |
Reja et al. | An area-efficient multistage 3.0-to 8.5-GHz CMOS UWB LNA using tunable active inductors | |
Manjula et al. | Design and performance analysis of active inductor based reconfigurable regulated cascode LNA for tunable RF front end | |
CN216216788U (en) | Three-stage power amplifier based on transformer matching and radio frequency front end structure | |
CN112583371A (en) | Broadband cascode extremely-low noise amplifier based on LC resonant load | |
CN115208329A (en) | Passive transconductance-enhanced differential amplification circuit | |
CN111181501B (en) | Capacitor-inductor-capacitor adjustable matching network and frequency adjustable amplifier | |
US11012113B2 (en) | Composite right-hand left-hand distributed attenuator | |
Datta et al. | Fully concurrent dual-band LNA operating in 900 MHz/2.4 GHz bands for multi-standard wireless receiver with sub-2dB noise figure | |
CN106936399B (en) | A kind of consumption high gain high linearity broadband low-noise amplifier | |
KR100776664B1 (en) | Ultra-wideband active differential signal low pass filter | |
Liu et al. | Bandwidth extension techniques for CMOS low-noise amplifiers | |
KR101699375B1 (en) | To support multiple frequency bands matching circuit | |
Linling et al. | A Wideband Low-Noise Amplifier in 0.13-µm CMOS | |
Lee et al. | Analysis and demonstration of mm-wave distributed amplifiers with modified artificial transmission line model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |