CN111169656B - Convective cooling heat transfer test device - Google Patents
Convective cooling heat transfer test device Download PDFInfo
- Publication number
- CN111169656B CN111169656B CN202010016168.7A CN202010016168A CN111169656B CN 111169656 B CN111169656 B CN 111169656B CN 202010016168 A CN202010016168 A CN 202010016168A CN 111169656 B CN111169656 B CN 111169656B
- Authority
- CN
- China
- Prior art keywords
- test piece
- gas
- heating
- test
- air flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012360 testing method Methods 0.000 title claims abstract description 103
- 238000001816 cooling Methods 0.000 title claims abstract description 44
- 238000012546 transfer Methods 0.000 title claims description 17
- 238000010438 heat treatment Methods 0.000 claims abstract description 37
- 238000009413 insulation Methods 0.000 claims abstract description 28
- 230000007704 transition Effects 0.000 claims abstract description 22
- 239000010453 quartz Substances 0.000 claims abstract description 10
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 10
- 229920000742 Cotton Polymers 0.000 claims description 4
- 238000005259 measurement Methods 0.000 claims description 3
- 230000008859 change Effects 0.000 claims description 2
- 238000009792 diffusion process Methods 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 238000010586 diagram Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 239000012774 insulation material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64F—GROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
- B64F5/00—Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
- B64F5/60—Testing or inspecting aircraft components or systems
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64G—COSMONAUTICS; VEHICLES OR EQUIPMENT THEREFOR
- B64G7/00—Simulating cosmonautic conditions, e.g. for conditioning crews
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Remote Sensing (AREA)
- Manufacturing & Machinery (AREA)
- Transportation (AREA)
- Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
Abstract
本发明公开了一种对流冷却换热试验装置,其加热系统采用石英灯加热器,其测量系统包括气体比例阀、气体流量计、加热控制器、温度测量计和试验件,其冷却系统包括气源、气路软管、气流整流装置和气流过渡装置,其支撑系统包括气路固定装置和试验件隔热装置,试验件、试验件隔热装置布置在气流过渡装置内,试验件隔热装置设置在试验件下底面的左右两侧,石英灯加热器安装在气流过渡装置的上顶面上与试验件相对应的位置处,用于实现试验件的加热面的加热,冷空气依次经气体比例阀、气体流量计、气流整流装置进入位于气流过渡装置内的试验件的内部,实现试验件的对流冷却。本发明部件简单,操作简便,成本低廉,外界干扰小,试验结果可靠。
The invention discloses a convection cooling heat exchange test device. The heating system adopts a quartz lamp heater. The measuring system includes a gas proportional valve, a gas flow meter, a heating controller, a temperature measuring instrument and a test piece. The cooling system includes a gas Source, air path hose, air flow rectification device and air flow transition device, its support system includes air path fixing device and test piece heat insulation device, the test piece and test piece heat insulation device are arranged in the air flow transition device, and the test piece heat insulation device It is arranged on the left and right sides of the lower bottom surface of the test piece, and the quartz lamp heater is installed on the upper top surface of the airflow transition device at the position corresponding to the test piece to realize the heating of the heating surface of the test piece. The proportional valve, gas flow meter, and airflow rectification device enter the interior of the test piece located in the airflow transition device to realize convection cooling of the test piece. The invention has simple components, simple operation, low cost, little external interference and reliable test results.
Description
技术领域technical field
本发明涉及试验装置领域,具体涉及一种对流冷却换热试验装置。The invention relates to the field of test devices, in particular to a convection cooling heat exchange test device.
背景技术Background technique
航空、航天使用的各种结构部件既要满足一定刚度和强度承载功能,又要满足良好的散热功能。点阵结构有望同时满足航空航天器特定结构的防热、承载功能。点阵结构作为近年来出现的新型结构,对其流动传热规律的研究非常有限。因此,提供一种换热装置,研究不同点阵结构换热性能具有重要意义。对流冷却换热是用途最为广泛的一种换热方式。Various structural components used in aviation and aerospace must not only meet a certain rigidity and strength bearing function, but also meet a good heat dissipation function. The lattice structure is expected to meet the heat-proof and load-bearing functions of the specific structure of the aerospace vehicle at the same time. As a new type of structure in recent years, the research on the law of flow and heat transfer of lattice structure is very limited. Therefore, it is of great significance to provide a heat exchange device to study the heat exchange performance of different lattice structures. Convective cooling heat transfer is the most widely used heat transfer method.
目前,很少有简单有效的装置可以研究对流换热。现有的一些实验装置主要由基座,风机,气流管道,换热器以及检测装置组成,这种装置不能保证气流在通过试验件前形成均匀、稳定、匀速的气流,并且没有对试验件进行隔热处理,由于换热器的扩散传热问题容易导致实验数据不准确。Currently, there are few simple and effective devices to study convective heat transfer. Some existing experimental devices are mainly composed of a base, a fan, an air flow duct, a heat exchanger and a detection device. This kind of device cannot ensure that the air flow forms a uniform, stable and uniform air flow before passing through the test piece, and the test piece is not tested. Insulation treatment, due to the diffusion heat transfer problem of the heat exchanger, it is easy to cause inaccurate experimental data.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于提供了一种对流冷却换热试验装置,克服了现有实验装置换热器扩散传热问题、外部环境干扰问题、气流不均匀不稳定等问题,实验结果可靠。The purpose of the present invention is to provide a convection cooling heat exchange test device, which overcomes the problems of heat exchanger diffusion heat transfer, external environment interference, uneven and unstable airflow, etc. in the existing experimental device, and the experimental results are reliable.
为实现上述目的,本发明采取的技术方案为:To achieve the above object, the technical scheme adopted in the present invention is:
一种对流冷却换热试验装置,包括加热系统、测量系统、冷却系统以及支撑系统,所述加热系统采用石英灯加热器,所述测量系统包括气体比例阀、气体流量计、加热控制器、温度测量计和试验件,所述冷却系统包括气源、气路软管、气流整流装置和气流过渡装置,所述支撑系统包括气路固定装置和试验件隔热装置,试验件、试验件隔热装置布置在气流过渡装置内,试验件隔热装置设置在试验件下底面的左右两侧,实现试验件下底面的绝热处理,构成冷却面,石英灯加热器安装在气流过渡装置的上顶面上与试验件相对应的位置处,用于实现试验件的加热面的加热,试验件前后两侧面上设有用于实现空气流进流出的通孔,冷空气依次经气体比例阀、气体流量计、气流整流装置进入位于气流过渡装置内的试验件的内部,实现试验件的对流冷却,温度测量计安装在试验件的加热面和冷却面上,用于记录试验件的加热面与冷却面的温度变化。A convection cooling heat exchange test device includes a heating system, a measuring system, a cooling system and a supporting system, the heating system adopts a quartz lamp heater, and the measuring system includes a gas proportional valve, a gas flow meter, a heating controller, a temperature A measuring gauge and a test piece, the cooling system includes an air source, an air path hose, an air flow rectification device and an air flow transition device, the support system includes an air path fixing device and a test piece heat insulation device, the test piece and the test piece are insulated The device is arranged in the airflow transition device, and the thermal insulation device of the test piece is arranged on the left and right sides of the lower bottom surface of the test piece to realize the thermal insulation treatment of the lower bottom surface of the test piece to form a cooling surface, and the quartz lamp heater is installed on the upper surface of the airflow transition device. The position corresponding to the test piece is used to realize the heating of the heating surface of the test piece. There are through holes on the front and rear sides of the test piece to realize the inflow and outflow of air. The cold air passes through the gas proportional valve and the gas flowmeter in turn. . The airflow rectification device enters the interior of the test piece located in the airflow transition device to realize the convection cooling of the test piece. The temperature measuring instrument is installed on the heating surface and the cooling surface of the test piece to record the heating surface and cooling surface of the test piece. temperature change.
进一步地,气体比例阀、气体流量计、气流整流装置、气流过渡装置依次经气路软管相连,气路软管通过气路固定装置实现固定支撑。Further, the gas proportional valve, the gas flow meter, the air flow rectifying device, and the air flow transition device are connected in sequence through the air path hose, and the air path hose is fixedly supported by the air path fixing device.
进一步地,气体比例阀、气体流量计用于实现冷空气进气速度、流量的定量控制。Further, the gas proportional valve and the gas flow meter are used to realize quantitative control of the cold air intake speed and flow.
进一步地,加热控制器采用恒温控制器,保证试验件的加热温度恒定。Further, the heating controller adopts a constant temperature controller to ensure that the heating temperature of the test piece is constant.
进一步地,试验件隔热装置采用隔热棉或隔热板。Further, the thermal insulation device of the test piece adopts thermal insulation cotton or thermal insulation board.
进一步地,气流过渡装置要求四周壁面光滑,尽量不对气体的流动产生扰动,让气体以层流的状态进入试验件内部Further, the airflow transition device requires smooth surrounding walls, try not to disturb the flow of the gas, and let the gas enter the interior of the test piece in a laminar flow state.
本发明具有以下有益效果:The present invention has the following beneficial effects:
本试验装置为国内首个可用于进行点阵结构主动冷却换热性能实验的装置,其可用于完成不同气流速度、不同点阵结构试验件的对流冷却换热试验,通过对比分析试验结果,指导完成主动冷却点阵结构的设计及工程应用,结构简单,易于操作,克服了现有实验装置换热器扩散传热问题、外部环境干扰问题、气流不均匀不稳定等问题,实验结果可靠。其冷却系统的气流整流装置和气流过度装置可以使空气进入试验件前尽量保持层流状态;使用隔热材料对试验件冷却面进行隔热处理,消除外部环境干扰;加热系统采用热惯性小、控制精度高的石英灯加热系统,可以保证对试验件稳定、均匀加热,测量系统的恒温控制器可以保证试验件的加热温度恒定。This test device is the first device in China that can be used to conduct experiments on active cooling and heat transfer performance of lattice structures. It can be used to complete convective cooling heat transfer tests for test pieces with different airflow rates and different lattice structures. The design and engineering application of the active cooling lattice structure is completed. The structure is simple and easy to operate. It overcomes the problems of diffusion heat transfer, external environment interference, uneven and unstable airflow in the existing experimental device, and the experimental results are reliable. The airflow rectification device and the airflow over-flow device of the cooling system can keep the air in a laminar flow state as much as possible before entering the test piece; the cooling surface of the test piece is insulated with thermal insulation materials to eliminate external environmental interference; the heating system adopts a small thermal inertia, The quartz lamp heating system with high control precision can ensure stable and uniform heating of the test piece, and the constant temperature controller of the measurement system can ensure the constant heating temperature of the test piece.
附图说明Description of drawings
图1为本发明实施例一种对流冷却换热试验装置的整体结构示意图。FIG. 1 is a schematic diagram of the overall structure of a convection cooling heat exchange test device according to an embodiment of the present invention.
图2为本发明实施例一种对流冷却换热试验装置的局部结构示意图。FIG. 2 is a partial structural schematic diagram of a convection cooling heat exchange test device according to an embodiment of the present invention.
具体实施方式Detailed ways
为了使本发明的目的及优点更加清楚明白,以下结合实施例对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。In order to make the objects and advantages of the present invention more clear, the present invention will be further described in detail below with reference to the embodiments. It should be understood that the specific embodiments described herein are only used to explain the present invention, but not to limit the present invention.
如图1-图2所示,本发明实施例提供了一种对流冷却换热试验装置,包括加热系统、测量系统、冷却系统以及支撑系统,所述加热系统采用石英灯加热器1,所述测量系统包括气体比例阀2、气体流量计3、加热控制器、温度测量计和试验件4,所述冷却系统包括气源、气路软管5、气流整流装置8和气流过渡装置6,所述支撑系统包括气路固定装置7和试验件隔热装置,试验件4、试验件隔热装置布置在气流过渡装置6内,试验件隔热装置设置在试验件4下底面的左右两侧,实现试验件下底面的绝热处理,构成冷却面,石英灯加热器1安装在气流过渡装置6的上顶面上与试验件相对应的位置处,用于实现试验件的加热面的加热,加热控制器采用恒温控制器,保证试验件的加热温度恒定,试验件前后两侧面上设有用于实现空气流进流出的通孔,气体比例阀2、气体流量计3、气流整流装置、气流过渡装置6依次经气路软管5相连,气路软管5通过气路固定装置7实现固定支撑,冷空气依次经气体比例阀2、气体流量计3、气流整流装置进入位于气流过渡装置6内的试验件的内部,实现试验件的对流冷却,安装在试验件的加热面和冷却面上,用于记录试验件的加热面与冷却面的温度变化,气体比例阀2、气体流量计3用于实现冷空气进气速度、流量的定量控制。As shown in FIG. 1-FIG. 2, the embodiment of the present invention provides a convection cooling heat exchange test device, including a heating system, a measuring system, a cooling system and a supporting system, the heating system adopts a quartz lamp heater 1, and the The measurement system includes a gas proportional valve 2, a
本实施例中,试验件隔热装置采用隔热棉或隔热板,试验过程中对试验件左右两侧采用隔热装置进行绝热处理,对下底面可以选择采用隔热处理或不进行隔热处理,其为两种不同的边界条件,布置时,将隔热棉或者隔热板放置在试验件左右两侧以及下底面使得在不影响内部流场的情况下做到隔绝外界与试验件内部的热交换。气流过渡装置6要求四周壁面光滑,尽量不对气体的流动产生扰动,让气体以层流的状态进入试验件内部。In this embodiment, the thermal insulation device of the test piece adopts thermal insulation cotton or thermal insulation board. During the test, the left and right sides of the test piece are thermally insulated with thermal insulation devices, and the bottom surface of the test piece can be thermally insulated or not thermally insulated. Treatment, which is two different boundary conditions. When arranging, place insulation cotton or insulation board on the left and right sides of the test piece and the bottom surface to isolate the outside world from the inside of the test piece without affecting the internal flow field. heat exchange. The
本具体实施试验时,采用石英灯加热器对试验件的加热面进行热流加热,由加热控制器保证加热温度恒定,试验件的另一个面不加热,进行或不进行绝热处理(视为试验中两种不同的边界条件),这个面称为冷却面,左右两侧进行隔热处理,避免外界环境对试验结果的影响,前后两个面用于空气的流入流出,冷空气由气源、气路软管进入,经过气体比例阀和气体流量计进行进气速度、流量的定量调节,经过气流整流装置,保证冷空气能够以稳定、均匀的流速进入试验件的内部结构区域,冷空气在试验件内部流经过程中,与试件进行充分的热交换,将试件的热量带走,实现试验件的对流冷却,试验件的加热面和冷却面均安装温度测量设备,记录不同试件、不同流量等工况下冷却面的温度变化情况并分析对流交换冷却效果。在整个试验过程中,试验件左右两侧采用隔热装置将试验件与周围环境进行隔离,消除外围环境对试验结果的影响,保证对流换热试验结果真实可靠。In this specific implementation test, a quartz lamp heater is used to heat the heating surface of the test piece by heat flow, and the heating controller ensures that the heating temperature is constant, and the other surface of the test piece is not heated. Two different boundary conditions), this surface is called the cooling surface, and the left and right sides are insulated to avoid the influence of the external environment on the test results. The front and rear surfaces are used for the inflow and outflow of air. Through the gas proportional valve and the gas flow meter, the intake speed and flow rate are quantitatively adjusted, and the airflow rectification device ensures that the cold air can enter the internal structure area of the test piece at a stable and uniform flow rate. During the internal flow of the test piece, it conducts sufficient heat exchange with the test piece, takes away the heat of the test piece, and realizes the convection cooling of the test piece. The temperature changes of the cooling surface under different flow conditions and other working conditions are analyzed and the cooling effect of convection exchange is analyzed. During the whole test process, the left and right sides of the test piece are insulated from the surrounding environment by thermal insulation devices, so as to eliminate the influence of the surrounding environment on the test results and ensure the authenticity and reliability of the convective heat transfer test results.
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以作出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。The above are only the preferred embodiments of the present invention. It should be pointed out that for those skilled in the art, without departing from the principles of the present invention, several improvements and modifications can be made, and these improvements and modifications should also be It is regarded as the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010016168.7A CN111169656B (en) | 2020-01-07 | 2020-01-07 | Convective cooling heat transfer test device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010016168.7A CN111169656B (en) | 2020-01-07 | 2020-01-07 | Convective cooling heat transfer test device |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111169656A CN111169656A (en) | 2020-05-19 |
CN111169656B true CN111169656B (en) | 2022-07-19 |
Family
ID=70654551
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010016168.7A Active CN111169656B (en) | 2020-01-07 | 2020-01-07 | Convective cooling heat transfer test device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111169656B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114383935A (en) * | 2022-01-18 | 2022-04-22 | 西安交通大学 | A comprehensive gas heating test device with high air tightness, vibration resistance, heat resistance, stress deformation |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3387335B2 (en) * | 1995-10-24 | 2003-03-17 | 株式会社豊田中央研究所 | Thermal fatigue test apparatus and thermal fatigue test method |
CN201945567U (en) * | 2010-12-14 | 2011-08-24 | 哈尔滨工程大学 | Multi-functional wide-flowing path one-phase heat convection testing apparatus |
CN102081060B (en) * | 2010-12-14 | 2012-07-11 | 哈尔滨工程大学 | Multifunctional wide flow single convection heat transfer test device |
CN204368446U (en) * | 2014-12-26 | 2015-06-03 | 北京强度环境研究所 | A kind of to the omnidistance controlled test system of test article surface intensification cooling |
CN106383022A (en) * | 2016-09-13 | 2017-02-08 | 中国北方发动机研究所(天津) | Multifunctional thermic load fatigue testing system |
CN108088869B (en) * | 2017-11-30 | 2021-03-09 | 中国航空工业集团公司沈阳飞机设计研究所 | Heat insulation performance test device of thermal protection system |
CN207703750U (en) * | 2017-12-26 | 2018-08-07 | 中国航天空气动力技术研究院 | Radiant heating-transpiration-cooling test device |
-
2020
- 2020-01-07 CN CN202010016168.7A patent/CN111169656B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN111169656A (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111855737B (en) | Plane wind tunnel heat exchange coefficient measurement method and system triggered by electromagnetic attraction | |
CN111169656B (en) | Convective cooling heat transfer test device | |
CN108844589A (en) | A kind of boiler air preheater air leakage rate calculation method | |
CN109186815A (en) | A kind of low temperature High Mach number detecting probe temperature calibration device | |
CN103884220B (en) | Elliptical perforated fins for finned tube refrigeration heat exchangers suitable for frosting conditions | |
CN201289467Y (en) | Device for testing heat dispersion of radiator surface | |
CN106989846A (en) | A kind of device for measuring high temperature gas flow stagnation temperature | |
CN101149312B (en) | Heat exchanger performance test system for heat dissipation in sealed cabinets | |
CN201897577U (en) | Heat pipe testing device | |
CN111578418A (en) | A thermal compensation module in a high-precision constant temperature environment and its control method | |
CN208140203U (en) | A kind of gas mass flow measuring device based on improvement temperature-compensation method | |
CN107526868A (en) | A kind of Thermal design for radar electric cabinet system | |
CN101866189A (en) | A temperature control device for temperature stress measurement in civil engineering | |
CN202614703U (en) | Quick determination device of convective heat transfer coefficient of surface of thermo-technical test piece | |
CN219064878U (en) | Equivalent rack device | |
CN206990624U (en) | A kind of air velocity transducer mounting structure of automobile radiators | |
CN204536022U (en) | The heat exchange of system, the proving installation of drag characteristic emulation is utilized for smoke discharging residual heat | |
CN217278963U (en) | A detector air-cooled test device | |
CN205898096U (en) | Pneumatic drying and integrated experimental system of boundary layer survey are reinforceed to sound field | |
CN109026557A (en) | One kind being used for wind-driven generator cooler comprehensive performance test device | |
CN204043937U (en) | A kind of water-cooled server Performance Test System | |
CN202066816U (en) | Device used for testing heat-insulating and flame-retardant materials | |
CN102426175B (en) | Wall thermal performance evaluation apparatus and method thereof | |
CN221725430U (en) | A movable temperature sensor verification device | |
CN107271476B (en) | Motor iron core axial heat conductivity coefficient testing device and testing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |