CN111149237B - Porous separator and electrochemical device comprising same - Google Patents
Porous separator and electrochemical device comprising same Download PDFInfo
- Publication number
- CN111149237B CN111149237B CN201880060789.6A CN201880060789A CN111149237B CN 111149237 B CN111149237 B CN 111149237B CN 201880060789 A CN201880060789 A CN 201880060789A CN 111149237 B CN111149237 B CN 111149237B
- Authority
- CN
- China
- Prior art keywords
- inorganic particles
- porous
- plate
- separator
- binder polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000010954 inorganic particle Substances 0.000 claims abstract description 113
- 229920000642 polymer Polymers 0.000 claims abstract description 54
- 239000011230 binding agent Substances 0.000 claims abstract description 50
- 239000010410 layer Substances 0.000 claims description 58
- 238000000576 coating method Methods 0.000 claims description 33
- 239000011248 coating agent Substances 0.000 claims description 32
- 239000000203 mixture Substances 0.000 claims description 26
- 229910052744 lithium Inorganic materials 0.000 claims description 18
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 13
- 239000002131 composite material Substances 0.000 claims description 9
- 239000012528 membrane Substances 0.000 claims description 9
- CPLXHLVBOLITMK-UHFFFAOYSA-N Magnesium oxide Chemical compound [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 claims description 8
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 claims description 8
- 239000011247 coating layer Substances 0.000 claims description 8
- 239000000377 silicon dioxide Substances 0.000 claims description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 7
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 7
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 claims description 6
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 claims description 6
- 239000000395 magnesium oxide Substances 0.000 claims description 4
- 239000011787 zinc oxide Substances 0.000 claims description 4
- SIWVEOZUMHYXCS-UHFFFAOYSA-N oxo(oxoyttriooxy)yttrium Chemical compound O=[Y]O[Y]=O SIWVEOZUMHYXCS-UHFFFAOYSA-N 0.000 claims description 3
- VKJLWXGJGDEGSO-UHFFFAOYSA-N barium(2+);oxygen(2-);titanium(4+) Chemical compound [O-2].[O-2].[O-2].[Ti+4].[Ba+2] VKJLWXGJGDEGSO-UHFFFAOYSA-N 0.000 claims description 2
- CETPSERCERDGAM-UHFFFAOYSA-N ceric oxide Chemical compound O=[Ce]=O CETPSERCERDGAM-UHFFFAOYSA-N 0.000 claims description 2
- 229910000422 cerium(IV) oxide Inorganic materials 0.000 claims description 2
- 210000001787 dendrite Anatomy 0.000 description 20
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 18
- 229910001416 lithium ion Inorganic materials 0.000 description 17
- 239000011148 porous material Substances 0.000 description 14
- 239000000758 substrate Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 11
- 238000004519 manufacturing process Methods 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 10
- 239000002585 base Substances 0.000 description 9
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 7
- 229910021645 metal ion Inorganic materials 0.000 description 7
- -1 LiI-Li 2 SP 2 S 5 Chemical compound 0.000 description 6
- 238000010586 diagram Methods 0.000 description 6
- 239000003792 electrolyte Substances 0.000 description 6
- 229920000098 polyolefin Polymers 0.000 description 6
- 150000003839 salts Chemical class 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 230000009467 reduction Effects 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 4
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 210000004027 cell Anatomy 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- 229920000307 polymer substrate Polymers 0.000 description 4
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 238000003618 dip coating Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000008151 electrolyte solution Substances 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000037427 ion transport Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000007774 positive electrode material Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 125000001731 2-cyanoethyl group Chemical group [H]C([H])(*)C([H])([H])C#N 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 2
- 229920002799 BoPET Polymers 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- 239000004373 Pullulan Substances 0.000 description 2
- 229920001218 Pullulan Polymers 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- QVQLCTNNEUAWMS-UHFFFAOYSA-N barium oxide Chemical compound [Ba]=O QVQLCTNNEUAWMS-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 239000008199 coating composition Substances 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 239000007772 electrode material Substances 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- 238000004880 explosion Methods 0.000 description 2
- 229910002804 graphite Inorganic materials 0.000 description 2
- 239000010439 graphite Substances 0.000 description 2
- 238000010191 image analysis Methods 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000007773 negative electrode material Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920000131 polyvinylidene Polymers 0.000 description 2
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 2
- 235000019423 pullulan Nutrition 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 230000008961 swelling Effects 0.000 description 2
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- KXJGSNRAQWDDJT-UHFFFAOYSA-N 1-acetyl-5-bromo-2h-indol-3-one Chemical compound BrC1=CC=C2N(C(=O)C)CC(=O)C2=C1 KXJGSNRAQWDDJT-UHFFFAOYSA-N 0.000 description 1
- JMVIVASFFKKFQK-UHFFFAOYSA-N 1-phenylpyrrolidin-2-one Chemical compound O=C1CCCN1C1=CC=CC=C1 JMVIVASFFKKFQK-UHFFFAOYSA-N 0.000 description 1
- XCKPLVGWGCWOMD-YYEYMFTQSA-N 3-[[(2r,3r,4s,5r,6r)-6-[(2s,3s,4r,5r)-3,4-bis(2-cyanoethoxy)-2,5-bis(2-cyanoethoxymethyl)oxolan-2-yl]oxy-3,4,5-tris(2-cyanoethoxy)oxan-2-yl]methoxy]propanenitrile Chemical compound N#CCCO[C@H]1[C@H](OCCC#N)[C@@H](COCCC#N)O[C@@]1(COCCC#N)O[C@@H]1[C@H](OCCC#N)[C@@H](OCCC#N)[C@H](OCCC#N)[C@@H](COCCC#N)O1 XCKPLVGWGCWOMD-YYEYMFTQSA-N 0.000 description 1
- 229910017089 AlO(OH) Inorganic materials 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229920008347 Cellulose acetate propionate Polymers 0.000 description 1
- 229910052684 Cerium Inorganic materials 0.000 description 1
- 229910020366 ClO 4 Inorganic materials 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910007860 Li3.25Ge0.25P0.75S4 Inorganic materials 0.000 description 1
- 229910013043 Li3PO4-Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910013035 Li3PO4-Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910012810 Li3PO4—Li2S-SiS2 Inorganic materials 0.000 description 1
- 229910012797 Li3PO4—Li2S—SiS2 Inorganic materials 0.000 description 1
- 229910010116 LiAlTiP Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910013870 LiPF 6 Inorganic materials 0.000 description 1
- MKGYHFFYERNDHK-UHFFFAOYSA-K P(=O)([O-])([O-])[O-].[Ti+4].[Li+] Chemical compound P(=O)([O-])([O-])[O-].[Ti+4].[Li+] MKGYHFFYERNDHK-UHFFFAOYSA-K 0.000 description 1
- PPVYRCKAOVCGRJ-UHFFFAOYSA-K P(=S)([O-])([O-])[O-].[Ge+2].[Li+] Chemical compound P(=S)([O-])([O-])[O-].[Ge+2].[Li+] PPVYRCKAOVCGRJ-UHFFFAOYSA-K 0.000 description 1
- 229910020213 PB(Mg3Nb2/3)O3-PbTiO3 Inorganic materials 0.000 description 1
- 229910020210 Pb(Mg3Nb2/3)O3—PbTiO3 Inorganic materials 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910020346 SiS 2 Inorganic materials 0.000 description 1
- 229910006404 SnO 2 Inorganic materials 0.000 description 1
- 229910002367 SrTiO Inorganic materials 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- GEIAQOFPUVMAGM-UHFFFAOYSA-N ZrO Inorganic materials [Zr]=O GEIAQOFPUVMAGM-UHFFFAOYSA-N 0.000 description 1
- 238000001994 activation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- CVJYOKLQNGVTIS-UHFFFAOYSA-K aluminum;lithium;titanium(4+);phosphate Chemical compound [Li+].[Al+3].[Ti+4].[O-]P([O-])([O-])=O CVJYOKLQNGVTIS-UHFFFAOYSA-K 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- ODINCKMPIJJUCX-UHFFFAOYSA-N calcium oxide Inorganic materials [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 229920006217 cellulose acetate butyrate Polymers 0.000 description 1
- GWXLDORMOJMVQZ-UHFFFAOYSA-N cerium Chemical compound [Ce] GWXLDORMOJMVQZ-UHFFFAOYSA-N 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- CJNBYAVZURUTKZ-UHFFFAOYSA-N hafnium(iv) oxide Chemical compound O=[Hf]=O CJNBYAVZURUTKZ-UHFFFAOYSA-N 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229920001600 hydrophobic polymer Polymers 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910000664 lithium aluminum titanium phosphates (LATP) Inorganic materials 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- CASZBAVUIZZLOB-UHFFFAOYSA-N lithium iron(2+) oxygen(2-) Chemical compound [O-2].[Fe+2].[Li+] CASZBAVUIZZLOB-UHFFFAOYSA-N 0.000 description 1
- 229910000659 lithium lanthanum titanates (LLT) Inorganic materials 0.000 description 1
- 229910002102 lithium manganese oxide Inorganic materials 0.000 description 1
- IDBFBDSKYCUNPW-UHFFFAOYSA-N lithium nitride Chemical compound [Li]N([Li])[Li] IDBFBDSKYCUNPW-UHFFFAOYSA-N 0.000 description 1
- 229910001386 lithium phosphate Inorganic materials 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- VLXXBCXTUVRROQ-UHFFFAOYSA-N lithium;oxido-oxo-(oxomanganiooxy)manganese Chemical compound [Li+].[O-][Mn](=O)O[Mn]=O VLXXBCXTUVRROQ-UHFFFAOYSA-N 0.000 description 1
- URIIGZKXFBNRAU-UHFFFAOYSA-N lithium;oxonickel Chemical compound [Li].[Ni]=O URIIGZKXFBNRAU-UHFFFAOYSA-N 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910003465 moissanite Inorganic materials 0.000 description 1
- GNRSAWUEBMWBQH-UHFFFAOYSA-N nickel(II) oxide Inorganic materials [Ni]=O GNRSAWUEBMWBQH-UHFFFAOYSA-N 0.000 description 1
- 239000005486 organic electrolyte Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000002006 petroleum coke Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920005569 poly(vinylidene fluoride-co-hexafluoropropylene) Polymers 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920005596 polymer binder Polymers 0.000 description 1
- 239000002491 polymer binding agent Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000032258 transport Effects 0.000 description 1
- TWQULNDIKKJZPH-UHFFFAOYSA-K trilithium;phosphate Chemical compound [Li+].[Li+].[Li+].[O-]P([O-])([O-])=O TWQULNDIKKJZPH-UHFFFAOYSA-K 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/446—Composite material consisting of a mixture of organic and inorganic materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D67/00—Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
- B01D67/0079—Manufacture of membranes comprising organic and inorganic components
- B01D67/00793—Dispersing a component, e.g. as particles or powder, in another component
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/025—Aluminium oxide
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D71/00—Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
- B01D71/02—Inorganic material
- B01D71/024—Oxides
- B01D71/027—Silicium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/431—Inorganic material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/443—Particulate material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/409—Separators, membranes or diaphragms characterised by the material
- H01M50/449—Separators, membranes or diaphragms characterised by the material having a layered structure
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/46—Separators, membranes or diaphragms characterised by their combination with electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M50/00—Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
- H01M50/40—Separators; Membranes; Diaphragms; Spacing elements inside cells
- H01M50/489—Separators, membranes, diaphragms or spacing elements inside the cells, characterised by their physical properties, e.g. swelling degree, hydrophilicity or shut down properties
- H01M50/491—Porosity
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2325/00—Details relating to properties of membranes
- B01D2325/02—Details relating to pores or porosity of the membranes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Composite Materials (AREA)
- Cell Separators (AREA)
- Electric Double-Layer Capacitors Or The Like (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
根据本发明,提供一种多孔隔膜,所述多孔隔膜具有多孔层,所述多孔层包含:多个板状无机粒子;和位于所述板状无机粒子的一部分或全部表面上以连接并固定所述板状无机粒子的第一粘结剂聚合物。本发明还提供包含所述多孔隔膜的电化学装置。
According to the present invention, there is provided a porous separator having a porous layer comprising: a plurality of plate-shaped inorganic particles; The first binder polymer of the plate-shaped inorganic particles. The present invention also provides an electrochemical device comprising the porous separator.
Description
技术领域technical field
本申请要求于2017年12月15日向韩国知识产权局提交的韩国专利申请第10-2017-0173537号和于2018年12月14日向韩国知识产权局提交的韩国专利申请第10-2018-0162329号的优先权和权益,所述专利申请的全部内容通过引用并入本文中。This application claims Korean Patent Application No. 10-2017-0173537 filed with the Korean Intellectual Property Office on December 15, 2017 and Korean Patent Application No. 10-2018-0162329 filed with the Korean Intellectual Property Office on December 14, 2018 The entire content of said patent application is incorporated herein by reference.
本发明涉及一种多孔隔膜和包含其的电化学装置,并且涉及一种能够阻止锂离子枝晶且由于优异的热性能而具有提高的高温安全性的多孔隔膜以及包含其的电化学装置。The present invention relates to a porous separator and an electrochemical device including the same, and to a porous separator capable of preventing lithium ion dendrites and having improved high-temperature safety due to excellent thermal properties, and an electrochemical device including the same.
背景技术Background technique
近来,人们对能量存储技术的关注日益增长。随着应用扩展到手机、便携式摄像机和笔记本PC的能源,以及此外扩展到电动车辆,对电化学装置的研究和开发的工作越来越具体化。在这些方面,电化学装置是最受关注的领域,其中,能够充放电的二次电池的开发一直是关注的焦点,并且已经进行了这样的电池的开发以研究和开发用于提高容量密度和比能量的新电极和电池的设计。Recently, there has been a growing interest in energy storage technologies. As applications expand to energy sources for cell phones, camcorders, and notebook PCs, and furthermore, to electric vehicles, research and development efforts on electrochemical devices are becoming more and more concrete. In these respects, electrochemical devices are the field receiving the most attention, and among them, the development of secondary batteries capable of charging and discharging has been the focus of attention, and the development of such batteries has been carried out to research and develop methods for improving capacity density and Design of new electrodes and batteries for specific energy.
在当前使用的二次电池中,20世纪90年代早期开发的锂二次电池以其相比于使用水溶液电解液的常规电池如Ni-MH电池、Ni-Cd电池和硫酸铅电池的更高的工作电压和显著更高的能量密度的优势而受到关注。然而,这样的锂离子电池具有安全性问题,例如由于使用有机电解液而引起的着火和爆炸,并且具有制造复杂的缺点。Among the currently used secondary batteries, lithium secondary batteries developed in the early 1990s are known for their higher The advantages of operating voltage and significantly higher energy density have attracted attention. However, such lithium ion batteries have safety problems such as fire and explosion due to the use of an organic electrolyte, and have disadvantages of complicated manufacture.
近来的锂离子聚合物电池通过改善锂离子电池的这些弱点已经被认为是下一代电池之一,但是,与锂离子电池相比,其电池容量仍相对较低,并且特别是,低温下的放电容量不足,并且迫切需要对其进行改进。The recent lithium-ion polymer battery has been considered as one of the next-generation batteries by improving these weaknesses of lithium-ion batteries, however, its battery capacity is still relatively low compared to lithium-ion batteries, and in particular, discharge at low temperatures The capacity is insufficient, and there is an urgent need to improve it.
诸如上述的电化学装置已经在许多公司生产,但是它们的安全特性却大不相同。对于这些电化学装置,评价安全性和确保安全性是非常重要的。最重要的考虑是在电化学装置发生故障的情况下不对使用者造成伤害,并且为此,在安全性要求中严格控制了电化学装置中的着火和发烟等。在电化学装置的安全特性方面,当由于电化学装置过热而发生热失控或隔膜被穿透时,非常担心爆炸。特别是,通常用作电化学装置的隔膜的聚烯烃类多孔基材,由于材料特性和包含拉伸的制造工艺的特性,在100℃以上的温度下显示出极端的热收缩行为,从而导致正极与正极之间的短路。Electrochemical devices such as those described above have been produced by many companies, but their safety profiles vary widely. For these electrochemical devices, it is very important to evaluate safety and ensure safety. The most important consideration is not to cause harm to the user in the event of a malfunction of the electrochemical device, and for this reason, fire, smoke generation, etc. in the electrochemical device are strictly controlled in the safety requirements. In terms of the safety characteristics of electrochemical devices, there is a great fear of explosion when thermal runaway occurs due to overheating of electrochemical devices or a separator is penetrated. In particular, polyolefin-based porous substrates commonly used as separators for electrochemical devices show extreme thermal shrinkage behavior at temperatures above 100°C due to material properties and characteristics of manufacturing processes involving stretching, resulting in positive electrode short circuit to positive.
为了解决电化学装置的这样的安全性问题,已经提出了一种通过在具有许多孔的聚烯烃类多孔基材的至少一个表面上涂布过量的无机粒子和粘结剂聚合物的混合物来形成多孔的有机-无机涂层的隔膜。In order to solve such safety problems of electrochemical devices, there has been proposed a method of forming an electrochemical device by coating an excess of a mixture of inorganic particles and a binder polymer on at least one surface of a polyolefin-based porous substrate having many pores. Porous organic-inorganic coated separator.
然而,由于在制备过程例如干燥过程中发生的裂纹,本文的多孔层可能在表面上具有涂层缺陷。结果,当组装二次电池或使用电池时,有机/无机复合多孔层可能容易地从聚烯烃类多孔基材上脱离,并且这导致电池安全性下降。另外,用于形成涂布在聚烯烃类多孔基材上以形成多孔层的多孔层的浆料增加了干燥期间粒子的堆积密度,导致产生以高密度填充的部分,这引起透气性降低的问题。However, the porous layer herein may have coating defects on the surface due to cracks that occur during the preparation process such as the drying process. As a result, when a secondary battery is assembled or the battery is used, the organic/inorganic composite porous layer may be easily detached from the polyolefin-based porous substrate, and this leads to a decrease in battery safety. In addition, a slurry for forming a porous layer coated on a polyolefin-based porous substrate to form a porous layer increases the bulk density of particles during drying, resulting in the generation of a portion filled at a high density, which causes a problem of decreased air permeability .
另外,在电池电极板制备过程和原料制备过程中不可避免地混入的重金属成分在电池活化过程中被氧化和还原的同时在负极表面上析出,由此产生的金属锂针状晶体(枝晶)导致正极或负极中发生微短路,从而导致电池电压下降。In addition, the heavy metal components inevitably mixed in the battery electrode plate preparation process and raw material preparation process are oxidized and reduced during the battery activation process while being precipitated on the surface of the negative electrode, and the resulting metal lithium needle crystals (dendrites) This causes a micro-short circuit in the positive or negative electrode, which causes the battery voltage to drop.
因此,由于电池行业的特性而需要越来越高水平的稳定性,因此仍然需要可有助于电池稳定性的进一步改进的隔膜。Therefore, there remains a need for further improved separators that can contribute to battery stability, as higher and higher levels of stability are required due to the nature of the battery industry.
[现有技术文献][Prior art literature]
(专利文献1)韩国专利申请公开第10-2017-0053448号(Patent Document 1) Korean Patent Application Publication No. 10-2017-0053448
发明内容Contents of the invention
【技术问题】【technical problem】
因此,本发明的一个方面提供一种能够防止由枝晶生长引起的正极与负极之间的短路现象并且由于优异的热性能而具有改善的高温安全性的多孔隔膜,以及包含所述多孔隔膜的电化学装置。Accordingly, an aspect of the present invention provides a porous separator capable of preventing a short circuit phenomenon between a positive electrode and a negative electrode caused by dendrite growth and having improved high-temperature safety due to excellent thermal properties, and a battery including the porous separator. chemical device.
【技术方案】【Technical solutions】
根据本发明的一个方面,提供以下实施方式的多孔隔膜。According to one aspect of the present invention, a porous separator of the following embodiments is provided.
第一实施方式涉及一种多孔隔膜,其包含多孔层,所述多孔层包含:多个板状无机粒子;和位于所述板状无机粒子的一部分或全部表面上以连接并固定所述板状无机粒子的第一粘结剂聚合物。The first embodiment relates to a porous separator comprising a porous layer comprising: a plurality of plate-shaped inorganic particles; A first binder polymer for the inorganic particles.
第二实施方式涉及第一实施方式所述的多孔隔膜,其还包含多孔涂层,所述多孔涂层位于所述多孔层的至少一个表面上并且包含:多个球状无机粒子;和位于所述球状无机粒子的一部分或全部表面上以连接并固定所述球状无机粒子的第二粘结剂聚合物。A second embodiment relates to the porous separator of the first embodiment, further comprising a porous coating on at least one surface of the porous layer and comprising: a plurality of spherical inorganic particles; The second binder polymer is used to connect and fix the spherical inorganic particles on a part or the whole surface of the spherical inorganic particles.
第三实施方式涉及第一实施方式或第二实施方式所述的多孔隔膜,其中所述板状无机粒子的长径比为5至100。A third embodiment relates to the porous separator according to the first embodiment or the second embodiment, wherein the plate-shaped inorganic particles have an aspect ratio of 5 to 100.
第四实施方式涉及第一实施方式至第三实施方式中任一实施方式所述的多孔隔膜,其中所述板状无机粒子包含氧化铝、二氧化硅、氧化锆、二氧化钛、氧化镁、二氧化铈、氧化钇、氧化锌、氧化铁、氧化钡钛、氧化铝-二氧化硅复合氧化物、或其中两种以上的混合物。The fourth embodiment relates to the porous separator according to any one of the first to third embodiments, wherein the plate-shaped inorganic particles include alumina, silica, zirconia, titania, magnesia, Cerium, yttrium oxide, zinc oxide, iron oxide, barium titanium oxide, alumina-silica composite oxide, or a mixture of two or more thereof.
第五实施方式涉及第二实施方式至第四实施方式中任一实施方式所述的多孔隔膜,其中所述球状无机粒子的长径比为1至2。A fifth embodiment relates to the porous separator according to any one of the second to fourth embodiments, wherein the spherical inorganic particles have an aspect ratio of 1 to 2.
第六实施方式涉及第二实施方式至第五实施方式中任一实施方式所述的多孔隔膜,其中所述球状无机粒子包含氧化铝、二氧化硅或其混合物。A sixth embodiment relates to the porous separator according to any one of the second to fifth embodiments, wherein the spherical inorganic particles contain alumina, silica, or a mixture thereof.
第七实施方式涉及第一实施方式至第六实施方式中任一实施方式所述的多孔隔膜,其中所述多孔层还包含球状无机粒子。A seventh embodiment relates to the porous separator according to any one of the first to sixth embodiments, wherein the porous layer further contains spherical inorganic particles.
根据本发明的另一方面,提供以下实施方式的电化学装置。According to another aspect of the present invention, electrochemical devices of the following embodiments are provided.
第八实施方式涉及一种电化学装置,其包含正极、负极以及设置在所述正极与所述负极之间的隔膜,其中所述隔膜是第一实施方式至第七实施方式中任一实施方式所述的多孔隔膜。The eighth embodiment relates to an electrochemical device, which includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, wherein the separator is any one of the first to seventh embodiments The porous diaphragm.
第九实施方式涉及第八实施方式所述的电化学装置,其为锂二次电池。The ninth embodiment relates to the electrochemical device according to the eighth embodiment, which is a lithium secondary battery.
【有益效果】【Beneficial effect】
根据本发明的一个实施方式,通过提供包含板状无机粒子的基础层能够增加正极/负极之间的路径,即所谓的曲折度,且即使当在电池中产生枝晶时,相应的枝晶也难以从负极到达正极,并且可以进一步提高关于枝晶短路的可靠性。According to one embodiment of the present invention, the path between the positive electrode/negative electrode, the so-called tortuosity, can be increased by providing the base layer containing plate-shaped inorganic particles, and even when dendrites are generated in the battery, the corresponding dendrites are It is difficult to reach the positive electrode from the negative electrode, and the reliability regarding dendrite short circuit can be further improved.
另外,由于根据本发明的一个实施方式的多孔隔膜不具有多孔聚合物基材,因此可获得降低成本的效果,通过控制整体隔膜的孔径和孔隙率获得均一的多孔隔膜,并且可以通过减小隔膜的厚度来减轻重量。另外,由于即使暴露在120℃以上的高温下也不存在诸如热收缩的现象,因此可获得提高安全性的优点。In addition, since the porous separator according to one embodiment of the present invention does not have a porous polymer substrate, the effect of cost reduction can be obtained, a uniform porous separator can be obtained by controlling the pore size and porosity of the entire separator, and it is possible to obtain a uniform porous separator by reducing the size of the separator. thickness to reduce weight. In addition, since there is no phenomenon such as thermal shrinkage even when exposed to a high temperature of 120° C. or higher, an advantage of improved safety can be obtained.
附图说明Description of drawings
图1是说明由无机粒子形成的多孔层中的曲折度的示意图。FIG. 1 is a schematic diagram illustrating the degree of tortuosity in a porous layer formed of inorganic particles.
图2是说明由球状无机粒子形成的多孔层中的曲折度的示意图。Fig. 2 is a schematic diagram illustrating the degree of tortuosity in a porous layer formed of spherical inorganic particles.
图3是说明由板状无机粒子形成的多孔层中的曲折度的示意图。Fig. 3 is a schematic diagram illustrating the degree of tortuosity in a porous layer formed of plate-like inorganic particles.
图4是根据本发明的一个实施方式的多孔隔膜的示意图。Figure 4 is a schematic diagram of a porous membrane according to one embodiment of the present invention.
图5是根据本发明的一个实施方式的多孔隔膜的示意图。Figure 5 is a schematic diagram of a porous membrane according to one embodiment of the present invention.
图6是根据本发明的一个实施方式的多孔隔膜的示意图。Figure 6 is a schematic diagram of a porous membrane according to one embodiment of the present invention.
图7是呈现实施例1、实施例2和比较例1的寿命特性评价结果的图。FIG. 7 is a graph presenting the evaluation results of life characteristics of Example 1, Example 2, and Comparative Example 1. FIG.
具体实施方式detailed description
在下文中,将详细描述本发明。本说明书和权利要求中所用的术语或词语不应当被解释为限于一般含义和字典中的含义,而应基于允许本发明人可以适当地定义术语的概念以对本发明进行最佳解释的原则基于符合本公开的技术构思的含义和概念来解释。Hereinafter, the present invention will be described in detail. The terms or words used in the specification and claims should not be construed as limited to the ordinary meaning and the meaning in the dictionary, but should be based on the principle of allowing the inventor to properly define the concept of the term to best explain the present invention. The meaning and concept of the technical concept of the present disclosure will be explained.
根据本发明的一个方面的多孔隔膜具有多孔层,其包含:多个板状无机粒子;和位于所述板状无机粒子的一部分或全部表面上以连接并固定所述板状无机粒子的第一粘结剂聚合物。A porous separator according to one aspect of the present invention has a porous layer including: a plurality of plate-shaped inorganic particles; binder polymer.
如下所述,本发明的多孔隔膜可以通过设置在正极与负极之间而发挥隔膜的作用。因此,多孔隔膜可以对应于多孔隔离膜(分离膜、隔膜),且由于在构成成分方面是将有机材料和无机材料混合,因此也可以对应于有机-无机复合物。As described below, the porous separator of the present invention can function as a separator by being disposed between a positive electrode and a negative electrode. Therefore, the porous separator can correspond to a porous separator (separation membrane, separator), and can also correspond to an organic-inorganic composite since an organic material and an inorganic material are mixed in terms of constituent components.
这样的有机-无机复合物仅由无机材料和粘结剂聚合物形成而没有诸如聚烯烃的多孔聚合物基材,因此,与由多孔聚合物基材形成的常规隔膜相比,即使当暴露于120℃以上的高温时所述隔膜也不会热收缩,并且即使当温度升高到聚合物基材的熔点附近时也不会分解或损坏,因此,可以从根本上阻止正极和负极短路的可能性,并且可以通过减小隔膜的厚度来减轻重量。Such organic-inorganic composites are formed only of inorganic materials and binder polymers without porous polymer substrates such as polyolefins, therefore, compared to conventional separators formed of porous polymer substrates, even when exposed to The separator will not heat shrink at high temperatures above 120°C, and will not decompose or be damaged even when the temperature rises to near the melting point of the polymer substrate, so the possibility of short circuiting between the positive and negative electrodes can be fundamentally prevented performance, and can reduce weight by reducing the thickness of the diaphragm.
同时,为了长时间安全地使用诸如二次电池的电化学装置,有必要抑制在充放电期间产生的电池中的外来金属离子通过在负极表面上的还原而形成枝晶以及由这样的枝晶引起的电池的内部短路现象。另外,从电池的制造品质的观点来看,由于通过电池制造过程的充放电中的这样的金属离子的还原而产生的枝晶,因此电池制造期间的缺陷率增加。此外,当在制造过程中产生的枝晶通过外部压力或振动将正极和负极电连接时,在使用期间可能会出现电池的安全性和稳定性的问题,并且在电池使用期间额外产生的金属离子的还原也会导致枝晶的形成,这极大地损害电池的安全性和稳定性。因此,在这样的锂二次电池中,需要抑制可能使电池内部的正极和负极电连接的枝晶的形成和生长。Meanwhile, in order to safely use an electrochemical device such as a secondary battery for a long time, it is necessary to suppress the formation of dendrites by foreign metal ions in the battery generated during charge and discharge through reduction on the surface of the negative electrode and the formation of dendrites caused by such dendrites. internal short circuit of the battery. In addition, from the standpoint of battery manufacturing quality, the defect rate during battery manufacturing increases due to dendrites generated by the reduction of such metal ions in charge and discharge in the battery manufacturing process. In addition, when the dendrites generated during the manufacturing process electrically connect the positive and negative electrodes by external pressure or vibration, there may be problems with the safety and stability of the battery during use, and the metal ions additionally generated during the use of the battery The reduction of α also leads to the formation of dendrites, which greatly impairs the safety and stability of the battery. Therefore, in such lithium secondary batteries, it is necessary to suppress the formation and growth of dendrites that may electrically connect the positive and negative electrodes inside the battery.
当使用具有无机粒子的多孔有机-无机层作为隔膜时,这样的多孔有机-无机层的孔,即无机粒子之间的空间和路径可能对枝晶生长和正极与负极之间的电短路现象具有显著影响。当金属离子穿过隔膜并传输到负极所需的时间增加时、或者即使当金属离子穿过隔膜且枝晶在负极表面上析出时,当由于析出和生长而导致连接到相对正极的路径复杂或花费的时间增加时,由金属离子还原并在负极表面上析出所产生的枝晶的生长可能受到抑制或被延迟。When using a porous organic-inorganic layer with inorganic particles as a separator, the pores of such a porous organic-inorganic layer, that is, the spaces and paths between the inorganic particles may have an effect on dendrite growth and the electrical short circuit phenomenon between the positive and negative electrodes. Significantly affected. When the time required for metal ions to pass through the separator and transport to the negative electrode increases, or even when metal ions pass through the separator and dendrites are precipitated on the surface of the negative electrode, when the path to the opposite positive electrode is complicated due to precipitation and growth or As the time taken increases, the growth of dendrites resulting from the reduction of metal ions and precipitation on the surface of the negative electrode may be inhibited or delayed.
可以通过曲折度来说明在这样的具有无机粒子的多孔有机-无机层中的影响外来金属离子的析出和生长的移动路径。The movement path affecting the precipitation and growth of foreign metal ions in such a porous organic-inorganic layer with inorganic particles can be explained by the tortuosity.
曲折度是量化曲线的弯曲或扭曲程度的值,并且在描述多孔材料中发生的扩散时一般经常使用这种曲折度。当参考图1时,曲折度τ可以定义如下。Tortuosity is a value that quantifies how curved or twisted a curve is, and is often used in general when describing diffusion that occurs in porous materials. When referring to FIG. 1 , the tortuosity τ can be defined as follows.
此处,△ι:实际移动长度,△χ:单位长度。 Here, Δι: actual moving length, Δχ: unit length.
换句话说,即使当由多个粒子(1)形成的多孔层的厚度对应于△χ时,穿过多孔层的孔(2)并从一侧通到另一侧的时间与实际移动距离△ι成正比。In other words, even when the thickness of the porous layer formed by a plurality of particles (1) corresponds to Δχ, the time to pass through the pores (2) of the porous layer and pass from one side to the other is different from the actual moving distance Δ ι is directly proportional.
当参考图2和图3时,可以看出,在具有粘结剂聚合物和无机粒子的多孔隔膜中,实际的移动距离可能根据无机粒子的类型而显著不同。与图3中的板状无机粒子(5)相比,图2中的球状无机粒子(3)在通过孔(4、6)的路径中具有较小的扭曲的程度,这使得可以通过较短的移动长度从一侧通到相对侧。由此可见,当多孔隔膜的无机粒子形状为板状时,与球状时相比,由于移动长度增加,在负极表面上形成的枝晶生长、穿过隔膜的孔并连接至正极侧是困难的并花费更长的时间,因此枝晶生长和由此引起的短路现象得以抑制。When referring to FIGS. 2 and 3 , it can be seen that in a porous separator with a binder polymer and inorganic particles, the actual moving distance may vary significantly depending on the type of inorganic particles. Compared with the plate-shaped inorganic particles (5) in FIG. 3, the spherical inorganic particles (3) in FIG. The length of travel passes from one side to the opposite side. From this, it can be seen that when the inorganic particle shape of the porous separator is plate-like, it is difficult for dendrites formed on the surface of the negative electrode to grow, pass through the pores of the separator, and connect to the positive electrode side due to the increase in the travel length compared to when they are spherical. And take a longer time, so the dendrite growth and the resulting short circuit phenomenon is suppressed.
因此,本发明提供一种多孔隔膜,其包含设置有板状无机粒子的多孔层。Therefore, the present invention provides a porous separator including a porous layer provided with plate-shaped inorganic particles.
当参考图4时,根据本发明的一个实施方式的多孔隔膜(100)具有多孔层(10),所述多孔层(10)包含:多个板状无机粒子(11);和位于所述板状无机粒子(11)的一部分或全部表面上以连接并固定所述板状无机粒子的第一粘结剂聚合物(未示出)。When referring to Fig. 4, a porous diaphragm (100) according to one embodiment of the present invention has a porous layer (10) comprising: a plurality of plate-shaped inorganic particles (11); A first binder polymer (not shown) on a part or all of the surface of the plate-shaped inorganic particles (11) to connect and fix the plate-shaped inorganic particles.
另外,根据本发明的一个实施方式,可以还提供一种多孔涂层,其位于多孔层的至少一个表面上并且包含:多个球状无机粒子;和位于所述球状无机粒子的一部分或全部表面上以连接并固定所述球状无机粒子的第二粘结剂聚合物。In addition, according to one embodiment of the present invention, there may be further provided a porous coating, which is located on at least one surface of the porous layer and includes: a plurality of spherical inorganic particles; A second binder polymer to connect and fix the spherical inorganic particles.
与多孔隔膜包含由板状无机粒子形成的多孔层的情况相比,在进一步设置包含球状无机粒子的多孔涂层的情况下,可使来自电极的锂离子均匀地扩散并穿过隔膜。在此,当球状无机粒子均匀地分散到涂层中时,锂离子可以更均匀地穿过隔膜。当通过均匀地分散球状无机粒子形成涂层时,涂层的孔也均匀分布,因此,锂离子可进入均匀分散的孔中。具体来说,锂离子可通过困难地穿过板状无机粒子的多孔层,然后均匀地穿过相对侧的球状无机粒子的多孔涂层而镀在电极上。换句话说,球状无机粒子用于使锂离子的传输和分布均匀,而板状无机粒子可以通过使锂离子难以通过来减少电池的短路现象。Compared with the case where the porous separator includes a porous layer formed of plate-like inorganic particles, when a porous coating layer including spherical inorganic particles is further provided, lithium ions from the electrodes can be uniformly diffused and passed through the separator. Here, when spherical inorganic particles are uniformly dispersed into the coating, lithium ions can pass through the separator more uniformly. When the coating is formed by uniformly dispersing spherical inorganic particles, the pores of the coating are also uniformly distributed, and therefore, lithium ions can enter the uniformly dispersed pores. Specifically, lithium ions can be plated on the electrode by passing through the porous layer of plate-shaped inorganic particles with difficulty, and then uniformly passing through the porous coating of spherical inorganic particles on the opposite side. In other words, the spherical inorganic particles are used to make the transmission and distribution of lithium ions uniform, while the plate-shaped inorganic particles can reduce the short circuit phenomenon of the battery by making it difficult for lithium ions to pass through.
当参考图5时,根据本发明的一个实施方式的多孔隔膜(200)具有多孔层(10),其包含:多个板状无机粒子(11),和位于所述板状无机粒子(11)的一部分或全部表面上以连接并固定所述板状无机粒子的第一粘结剂聚合物(未示出);和多孔涂层(20),其位于基础多孔层的一个表面上并且包含:多个球状无机粒子(21),和位于所述球状无机粒子(21)的一部分或全部表面上以连接并固定所述球状无机粒子的第二粘结剂聚合物(未示出)。When referring to FIG. 5, a porous membrane (200) according to one embodiment of the present invention has a porous layer (10) comprising: a plurality of plate-shaped inorganic particles (11), and A first binder polymer (not shown) to connect and fix the plate-shaped inorganic particles on a part or all of the surface; and a porous coating (20) located on one surface of the base porous layer and comprising: A plurality of spherical inorganic particles (21), and a second binder polymer (not shown) positioned on a part or all of the surfaces of the spherical inorganic particles (21) to connect and fix the spherical inorganic particles.
另外,图6中所示的根据本发明的一个实施方式的多孔隔膜(300)具有:多孔层10,其包含多个板状无机粒子(11),和位于所述板状无机粒子(11)的一部分或全部表面上以连接并固定所述板状无机粒子的第一粘结剂聚合物(未示出);多孔涂层(20),其位于基础多孔层的一个表面上,并且包含多个球状无机粒子(21),和位于所述球状无机粒子(21)的一部分或全部表面上以连接并固定所述球状无机粒子的第二粘结剂聚合物(未示出);和多孔涂层(30),其位于所述基础多孔层的另一个表面上,并且包含多个球状无机粒子(31),和位于所述球状无机粒子(31)的一部分或全部表面上以连接并固定所述球状无机粒子的第二粘结剂聚合物(未示出)。In addition, the porous separator (300) according to one embodiment of the present invention shown in FIG. 6 has: a
根据本发明的一个实施方式,在多孔层中所述无机粒子可以仅由板状无机粒子形成,或者可以具有相对于多孔层的无机粒子的总重量为50重量%以上并且具体为50重量%至90重量%的板状无机粒子。在后一种情况下,可以进一步包含球状无机粒子作为多孔层的无机粒子。According to one embodiment of the present invention, the inorganic particles in the porous layer may be formed only of plate-shaped inorganic particles, or may have an amount of 50% by weight or more and specifically 50% by weight to 50% by weight relative to the total weight of the inorganic particles in the porous layer. 90% by weight of plate-shaped inorganic particles. In the latter case, spherical inorganic particles may be further contained as inorganic particles of the porous layer.
另外,根据本发明的一个实施方式,在多孔涂层中无机粒子可以仅由球状无机粒子形成,或者可以具有相对于多孔涂层的无机粒子的总重量为50重量%以上并且具体为50重量%至90重量%的球状无机粒子。在后一种情况下,可以进一步包含板状无机粒子作为多孔涂层的无机粒子。In addition, according to one embodiment of the present invention, the inorganic particles in the porous coating may be formed only of spherical inorganic particles, or may have an amount of 50% by weight or more and specifically 50% by weight relative to the total weight of the inorganic particles of the porous coating. to 90% by weight of spherical inorganic particles. In the latter case, plate-shaped inorganic particles may be further contained as inorganic particles of the porous coating layer.
板状无机粒子的非限制性实例可以包含氧化铝、二氧化硅、氧化锆、二氧化钛、氧化镁、二氧化铈、氧化钇、氧化锌、氧化铁、氧化钡钛、氧化铝-二氧化硅复合氧化物、或其中两种以上的混合物。Non-limiting examples of plate-like inorganic particles may include alumina, silica, zirconia, titania, magnesia, ceria, yttrium oxide, zinc oxide, iron oxide, barium oxide, titanium oxide, alumina-silica composite oxides, or a mixture of two or more of them.
球状无机粒子的非限制性实例可以包含介电常数为5以上并且具体为10以上的高介电性无机粒子、具有锂离子传输能力的无机粒子、或其混合物。Non-limiting examples of the spherical inorganic particles may include highly dielectric inorganic particles having a dielectric constant of 5 or more, specifically 10 or more, inorganic particles having lithium ion transport capability, or a mixture thereof.
介电常数为5以上的无机粒子的非限制性实例可以包含BaTiO3、Pb(Zr,Ti)O3(PZT)、Pb1-xLaxZr1-yTiyO3(PLZT)、PB(Mg3Nb2/3)O3-PbTiO3(PMN-PT)、二氧化铪(HfO2)、SrTiO3、SnO2、CeO2、MgO、NiO、CaO、ZnO、ZrO2、Y2O3、Al2O3、TiO2、SiC、AlO(OH)、Al2O3·H2O或它们的混合物。Non-limiting examples of inorganic particles having a dielectric constant of 5 or more may include BaTiO 3 , Pb(Zr,Ti)O 3 (PZT), Pb 1-x La x Zr 1-y Ti y O 3 (PLZT), PB (Mg 3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), hafnium dioxide (HfO 2 ), SrTiO 3 , SnO 2 , CeO 2 , MgO, NiO, CaO, ZnO, ZrO 2 , Y 2 O 3. Al 2 O 3 , TiO 2 , SiC, AlO(OH), Al 2 O 3 ·H 2 O or mixtures thereof.
另外,具有锂离子传输能力的无机粒子是指含有锂元素但具有移动锂离子而不是储存锂的功能的无机粒子,并且具有锂离子传输能力的无机粒子的非限制性实例可以包含磷酸锂(Li3PO4)、磷酸锂钛(LixTiy(PO4)3,0<x<2,0<y<3)、磷酸锂铝钛(LixAlyTiz(PO4)3,0<x<2,0<y<1,0<z<3)、(LiAlTiP)xOy系列玻璃(0<x<4,0<y<13)如14Li2O-9Al2O3-38TiO2-39P2O5、钛酸锂镧(LixLayTiO3,0<x<2,0<y<3),硫代磷酸锂锗(LixGeyPzSw,0<x<4,0<y<1,0<z<1,0<w<5)如Li3.25Ge0.25P0.75S4、氮化锂(LixNy,0<x<4,0<y<2)如Li3N、SiS2系列玻璃(LixSiySz,0<x<3,0<y<2,0<z<4)如Li3PO4-Li2S-SiS2、P2S5系列玻璃(LixPySz,0<x<3,0<y<3,0<z<7)如LiI-Li2S-P2S5、或它们的混合物。In addition, the inorganic particle having lithium ion transport ability refers to an inorganic particle containing lithium element but having a function of moving lithium ion instead of storing lithium, and a non-limiting example of the inorganic particle having lithium ion transport ability may include lithium phosphate (Li 3 PO 4 ), lithium titanium phosphate (Li x Ti y (PO 4 ) 3 , 0<x<2, 0<y<3), lithium aluminum titanium phosphate (Li x Al y Tiz (PO 4 ) 3 , 0 <x<2, 0<y<1, 0<z<3), (LiAlTiP) x O y series glass (0<x<4, 0<y<13) such as 14Li 2 O-9Al 2 O 3 -38TiO 2 -39P 2 O 5 , lithium lanthanum titanate (Li x La y TiO 3 , 0<x<2, 0<y<3), lithium germanium thiophosphate (Li x Ge y P z S w , 0<x <4, 0<y<1, 0<z<1, 0<w<5) such as Li 3.25 Ge 0.25 P 0.75 S 4 , lithium nitride (Li x N y , 0<x<4, 0<y< 2) Such as Li 3 N, SiS 2 series glasses (Li x Si y S z , 0<x<3, 0<y<2, 0<z<4) such as Li 3 PO 4 -Li 2 S-SiS 2 , P 2 S 5 series glasses (Li x P y S z , 0<x<3, 0<y<3, 0<z<7) such as LiI-Li 2 SP 2 S 5 , or their mixtures.
板状无机粒子的长径比可以为5至100,具体可以为50至100。The aspect ratio of the plate-shaped inorganic particles may be 5 to 100, specifically 50 to 100.
球状无机粒子的长径比可以为1至2,具体可以为1至1.5。The aspect ratio of the spherical inorganic particles may be 1 to 2, specifically 1 to 1.5.
在此,长径比是指无机粒子的长轴方向上的长度与短轴方向上的长度之比(长轴方向上的长度/短轴方向上的长度)的平均值。Here, the aspect ratio refers to the average value of the ratio of the length in the major axis direction to the length in the minor axis direction (length in the major axis direction/length in the minor axis direction) of the inorganic particles.
可以通过例如对利用扫描电子显微镜拍摄的照片进行图像分析来获得无机粒子的长径比,即长轴方向上的长度与短轴方向上的长度之比的平均值。另外,无机粒子的长径比也可以通过对利用SEM拍摄的照片进行图像分析来获得。The aspect ratio of the inorganic particles, that is, the average value of the ratio of the length in the major axis direction to the length in the minor axis direction, can be obtained by, for example, image analysis of photographs taken with a scanning electron microscope. In addition, the aspect ratio of inorganic particles can also be obtained by image analysis of photographs taken by SEM.
在根据本发明的一个方面的多孔隔膜中,玻璃化转变温度(Tg)为-200℃至200℃的聚合物可以用作所使用的第一粘结剂聚合物和第二粘结剂聚合物,这是由于可以提高最终形成的多孔隔膜的机械性能如柔韧性和弹性。这样的粘结剂聚合物通过可靠地发挥粘结剂的连接并稳定地固定无机粒子的作用而有助于防止多孔隔膜的机械性能下降。In the porous separator according to one aspect of the present invention, a polymer having a glass transition temperature (T g ) of -200°C to 200°C can be used as the first binder polymer and the second binder polymer used. This is because the mechanical properties such as flexibility and elasticity of the final porous membrane can be improved. Such a binder polymer contributes to preventing deterioration of the mechanical properties of the porous separator by reliably exerting the link of the binder and stably fixing the inorganic particles.
另外,第一粘结剂聚合物和第二粘结剂聚合物不一定具有离子传导能力,但是,当使用具有离子传导能力的聚合物时,电化学装置的性能可以进一步得到提高。因此,可以将具有高介电常数的聚合物用作第一粘结剂聚合物和第二粘结剂聚合物。实际上,电解液中盐的解离程度取决于电解液溶剂的介电常数,因此,随着粘结剂聚合物的介电常数的增加,盐在电解质中的解离程度可以得到提高。作为这样的第一粘结剂聚合物和第二粘结剂聚合物的介电常数,可以使用1.0至100的范围(测量频率=1kHz),并且特别地,可以使用10以上。In addition, the first binder polymer and the second binder polymer do not necessarily have ion conductivity, but when polymers having ion conductivity are used, the performance of the electrochemical device can be further improved. Therefore, a polymer having a high dielectric constant can be used as the first binder polymer and the second binder polymer. In fact, the degree of dissociation of salt in electrolyte depends on the dielectric constant of the electrolyte solvent, therefore, the degree of dissociation of salt in electrolyte can be enhanced with the increase of the dielectric constant of the binder polymer. As the dielectric constant of such a first binder polymer and a second binder polymer, a range of 1.0 to 100 (measurement frequency=1 kHz) can be used, and in particular, 10 or more can be used.
除了上述功能之外,第一粘结剂聚合物和第二粘结剂聚合物还可以具有当浸渗液态电解液时通过胶凝而显示出高电解液溶胀度的性质。因此,粘结剂聚合物的溶解度参数,即Hildebrand溶解度参数在15MPa1/2至45MPa1/2或15MPa1/2至25MPa1/2和30MPa1/2至45MPa1/2的范围内。因此,与疏水性聚合物例如聚烯烃相比,可以更多地使用具有更多极性官能团的亲水性聚合物。这是由于,当溶解度参数小于15MPa1/2或大于45MPa1/2时,难以通过常规的电池用液态电解液进行溶胀。In addition to the above functions, the first binder polymer and the second binder polymer may also have a property of exhibiting a high degree of swelling of the electrolyte by gelling when impregnated with the liquid electrolyte. Thus, the solubility parameter of the binder polymer, ie the Hildebrand solubility parameter, is in the range of 15 MPa 1/2 to 45 MPa 1/2 or 15 MPa 1/2 to 25 MPa 1/2 and 30 MPa 1/2 to 45 MPa 1/2 . Therefore, hydrophilic polymers with more polar functional groups can be used to a greater extent than hydrophobic polymers such as polyolefins. This is because, when the solubility parameter is less than 15 MPa 1/2 or greater than 45 MPa 1/2 , it is difficult to perform swelling by a conventional liquid electrolyte for batteries.
在多孔隔膜中,无机粒子在填充且彼此接触的同时通过第一粘结剂聚合物和第二粘结剂聚合物彼此结合,结果在无机粒子之间形成间隙体积,并且无机粒子之间的间隙体积变成空的空间而形成孔。In the porous separator, the inorganic particles are bound to each other by the first binder polymer and the second binder polymer while being filled and in contact with each other, as a result, interstitial volumes are formed between the inorganic particles, and the gaps between the inorganic particles The volume becomes empty space forming pores.
换句话说,第一粘结剂聚合物和第二粘结剂聚合物粘附无机粒子,使得无机粒子可以保持彼此结合,例如,第一粘结剂聚合物和第二粘结剂聚合物连接并固定无机粒子。另外,多孔隔膜的孔是由变成空的空间的无机粒子之间的间隙体积形成的孔,并且这是由基本上由无机粒子以密堆积或致密堆积的结构接合的无机粒子限定的空间。In other words, the first binder polymer and the second binder polymer adhere to the inorganic particles so that the inorganic particles can remain bonded to each other, for example, the first binder polymer and the second binder polymer are connected And fixed inorganic particles. In addition, the pores of the porous separator are pores formed by interstitial volumes between inorganic particles that become empty spaces, and this is a space defined by inorganic particles substantially joined by inorganic particles in a close-packed or close-packed structure.
作为这样的第一粘结剂聚合物和第二粘结剂聚合物,可以不加限制地使用满足上述重均分子量且在本领域中通常使用的那些。其实例可以包含聚偏二氟乙烯、聚偏二氟乙烯-共-六氟丙烯、聚偏二氟乙烯-共-三氯乙烯、聚酰亚胺、聚甲基丙烯酸甲酯、聚丙烯酸丁酯、聚丙烯腈、聚乙烯基吡咯烷酮、聚乙酸乙烯酯、聚乙烯-共-乙酸乙烯酯、聚环氧乙烷、聚芳酯、乙酸纤维素、乙酸丁酸纤维素、乙酸丙酸纤维素、氰乙基支链淀粉、氰乙基聚乙烯醇、氰乙基纤维素、氰乙基蔗糖、支链淀粉、羧甲基纤维素等,但不限于此。As such a first binder polymer and a second binder polymer, those satisfying the above weight average molecular weight and generally used in the art may be used without limitation. Examples thereof may include polyvinylidene fluoride, polyvinylidene fluoride-co-hexafluoropropylene, polyvinylidene fluoride-co-trichloroethylene, polyimide, polymethyl methacrylate, polybutyl acrylate , polyacrylonitrile, polyvinylpyrrolidone, polyvinyl acetate, polyethylene-co-vinyl acetate, polyethylene oxide, polyarylate, cellulose acetate, cellulose acetate butyrate, cellulose acetate propionate, Cyanoethyl pullulan, cyanoethyl polyvinyl alcohol, cyanoethyl cellulose, cyanoethyl sucrose, pullulan, carboxymethyl cellulose, etc., but not limited thereto.
相对于多孔层的总重量,第一粘结剂聚合物的重量可以为0.1重量%至30重量%,具体地可以为0.3重量%至25重量%,并且更具体地可以为0.5重量%至20重量%。Relative to the total weight of the porous layer, the weight of the first binder polymer may be 0.1% by weight to 30% by weight, specifically 0.3% by weight to 25% by weight, and more specifically 0.5% by weight to 20% by weight. weight%.
另外,相对于多孔涂层的总重量,第二粘结剂聚合物的重量可以为0.1重量%至30重量%,具体地可以为0.3重量%至25重量%,并且更具体地可以为0.5重量%至20重量%。In addition, relative to the total weight of the porous coating layer, the weight of the second binder polymer may be 0.1% by weight to 30% by weight, specifically 0.3% by weight to 25% by weight, and more specifically 0.5% by weight % to 20% by weight.
当第一粘结剂聚合物和第二粘结剂聚合物的重量各自满足该范围时,可以防止由于存在于多孔隔膜的形成的孔中的过量粘结剂聚合物而导致的孔径和孔隙率减小的问题,并且无机粒子可以通过粘结剂聚合物稳定地固定,而在多孔隔膜的制备过程中、或者在具有这种多孔隔膜的电化学装置的存储或处理过程中不会脱离。When the weights of the first binder polymer and the second binder polymer each satisfy the range, the pore size and porosity due to excess binder polymer present in the formed pores of the porous separator can be prevented Reduced problems, and the inorganic particles can be stably fixed by the binder polymer without detachment during the preparation of the porous separator, or during the storage or handling of the electrochemical device having the porous separator.
根据本发明的一个方面的多孔隔膜,除了上述无机粒子和粘结剂聚合物以外,其还可以包含其它添加剂。The porous separator according to one aspect of the present invention may contain other additives in addition to the above-mentioned inorganic particles and binder polymer.
根据本发明的一个实施方式的多孔隔膜可以通过以下步骤制备:首先准备具有板状无机粒子和第一粘结剂聚合物的基础层组合物,将这样的组合物涂布在脱模基材的一个表面上,干燥所得物,然后除去所述脱模基材。或者,将用于形成多孔隔膜的组合物直接涂布在诸如正极或负极的电极层的一个表面上,然后干燥以制备直接结合至电极层的电极-多孔层复合物。The porous separator according to one embodiment of the present invention can be prepared by the following steps: first, prepare a base layer composition having plate-shaped inorganic particles and a first binder polymer, and apply such a composition on the release substrate. On one surface, the resultant is dried and the release substrate is removed. Alternatively, the composition for forming a porous separator is directly coated on one surface of an electrode layer such as a positive electrode or a negative electrode, and then dried to prepare an electrode-porous layer composite directly bonded to the electrode layer.
首先,可以通过将第一粘结剂聚合物溶解在溶剂中,向其中添加板状无机粒子并分散所得物来制备基础层组合物。板状无机粒子可以以预先粉碎而具有一定平均粒径的状态添加,或者在将无机粒子加入到粘结剂聚合物的溶液中之后,可以使用球磨法等将无机粒子控制为具有一定平均粒径的同时粉碎并分散。First, the base layer composition may be prepared by dissolving the first binder polymer in a solvent, adding plate-shaped inorganic particles thereto, and dispersing the resultant. The plate-shaped inorganic particles may be added in a state of being pulverized in advance to have a certain average particle diameter, or after the inorganic particles are added to the solution of the binder polymer, the inorganic particles may be controlled to have a certain average particle diameter by using a ball milling method or the like. crushed and dispersed at the same time.
对将基础层组合物涂布在脱模基材或电极层上的方法没有特别限制,但是,优选使用狭缝涂布、逗号涂布、幕式涂布、微凹版印刷涂布、旋涂、辊涂、浸涂等。There is no particular limitation on the method of coating the base layer composition on the release substrate or the electrode layer, however, preferably, slit coating, comma coating, curtain coating, microgravure coating, spin coating, Roll coating, dip coating, etc.
狭缝涂布是将通过缝形模头供给的组合物涂布在基材的整个表面上的方法,并且可以根据从计量泵供给的流量来调节涂层厚度。另外,浸涂是通过将基材浸入含有组合物的罐中进行涂布的方法,并且可以根据组合物浓度和将基材从组合物罐中取出的速度来调节涂层厚度,并且为了更精确地调节涂布厚度,可以通过迈耶棒(Meyer bar)等在浸渍之后进行后测量。Slot coating is a method of coating a composition supplied through a slot die on the entire surface of a substrate, and the coating thickness can be adjusted according to the flow rate supplied from a metering pump. In addition, dip coating is a method of coating by dipping the substrate into a tank containing the composition, and the coating thickness can be adjusted according to the composition concentration and the speed at which the substrate is taken out of the composition tank, and for more precise To accurately adjust the coating thickness, post-measurement can be performed after dipping by a Meyer bar or the like.
通过使用干燥器如烘箱在例如90℃至150℃的温度下干燥涂布有用于形成多孔隔膜的组合物的脱模基材,然后除去脱模基材,可制备多孔层。作为这样的脱模基材,可以使用玻璃板、聚乙烯类膜、聚酯类膜等,但脱模基材不限于此。选择性地,可以通过电晕处理(例如,在0.5kV至1.5kV的电压下处理10秒至30秒)等来对脱模基材的表面进行表面改性。The porous layer can be prepared by drying the release substrate coated with the composition for forming a porous separator using a drier such as an oven at a temperature of, for example, 90°C to 150°C, and then removing the release substrate. As such a release base material, a glass plate, a polyethylene film, a polyester film, etc. can be used, but the release base material is not limited thereto. Alternatively, the surface of the release substrate may be surface-modified by corona treatment (eg, treatment at a voltage of 0.5 kV to 1.5 kV for 10 seconds to 30 seconds) or the like.
或者,当将基础层组合物直接涂布在电极层上时,可以以相同的方式进行干燥以制备结合至电极层的电极-多孔层复合物。Alternatively, when the base layer composition is directly coated on the electrode layer, drying may be performed in the same manner to prepare an electrode-porous layer composite bonded to the electrode layer.
通过以上述方式涂布形成的多孔层的涂布厚度可以为5μm至20μm。The coating thickness of the porous layer formed by coating in the above-mentioned manner may be 5 μm to 20 μm.
接着,可以在将多孔涂层组合物涂布在所制备的多孔层的至少一个表面上并将所得物干燥之后,另外形成多孔涂层。Next, a porous coating layer may be additionally formed after coating the porous coating composition on at least one surface of the prepared porous layer and drying the resultant.
可以通过将第二粘结剂聚合物溶解在溶剂中,然后向其中添加球状无机粒子,并将所得物分散来制备多孔涂层组合物,并且对于除此以外的方法,可以以相同方式使用制备基础层组合物的方法。The porous coating composition can be prepared by dissolving the second binder polymer in a solvent, adding spherical inorganic particles thereto, and dispersing the resultant, and for methods other than this, the preparation can be used in the same manner. Method for base layer composition.
当在多孔层的两个表面上形成多孔涂层时,可以使用浸涂法,并且当仅在一个表面上形成时,可以使用上述的其它各种涂布方法。When the porous coating is formed on both surfaces of the porous layer, the dip coating method may be used, and when formed on only one surface, other various coating methods described above may be used.
通过以上述方式涂布形成的多孔涂层的涂布厚度可以为5μm至20μm。The coating thickness of the porous coating layer formed by coating in the above-mentioned manner may be 5 μm to 20 μm.
在本发明中,孔隙率是使用Porous Materials Inc.的毛细管流动孔隙率计装置测量的。In the present invention, porosity is measured using a capillary flow porosimeter device from Porous Materials Inc. .
根据本发明的一个实施方式,关于多孔层中板状无机粒子的存在类型,优选板面基本平行于多孔层的表面。According to one embodiment of the present invention, regarding the existence type of the plate-shaped inorganic particles in the porous layer, it is preferable that the plate surface is substantially parallel to the surface of the porous layer.
根据本发明的一个方面的电化学装置包含正极、负极以及设置在正极与负极之间的隔膜,并且所述隔膜是上述根据本发明的一个实施方式的多孔隔膜。An electrochemical device according to one aspect of the present invention includes a positive electrode, a negative electrode, and a separator disposed between the positive electrode and the negative electrode, and the separator is the above-described porous separator according to one embodiment of the present invention.
这样的电化学装置包含进行电化学反应的所有装置,并且其具体实例可以包含所有类型的一次电池、二次电池、燃料电池、太阳能电池、诸如超级电容器装置的电容器等。特别地,在二次电池中,优选包含锂金属二次电池、锂离子二次电池、锂聚合物二次电池、锂离子聚合物二次电池等的锂二次电池。Such electrochemical devices include all devices that perform electrochemical reactions, and specific examples thereof may include all types of primary batteries, secondary batteries, fuel cells, solar cells, capacitors such as supercapacitor devices, and the like. In particular, among the secondary batteries, lithium secondary batteries including lithium metal secondary batteries, lithium ion secondary batteries, lithium polymer secondary batteries, lithium ion polymer secondary batteries, and the like are preferable.
与本发明的多孔隔膜一起使用的正极和负极的两个电极均没有特别限制,并且可以根据本领域中已知的常见方法以将电极活性材料粘合在电极集电器上的形式制备。电极活性材料的正极活性材料的非限制性实例可以包含可用于现有电化学装置的正极的常规正极活性材料,特别优选使用锂锰氧化物、锂钴氧化物、锂镍氧化物、锂铁氧化物,或将这些组合的锂复合氧化物。负极活性材料的非限制性实例可以包含可用于现有电化学装置的负极的常规负极活性材料,并且特别优选锂金属或锂合金,或锂吸附材料如碳、石油焦炭、活性炭、石墨或其它碳类等。正极集电器的非限制性实例可以包含由铝、镍或其组合制备的箔,并且负极集电器的非限制性实例可以包含由铜、金、镍、铜合金或其组合制备的箔。Both positive and negative electrodes used with the porous separator of the present invention are not particularly limited, and can be prepared in the form of bonding electrode active materials on electrode collectors according to common methods known in the art. Non-limiting examples of the positive electrode active material of the electrode active material can include conventional positive electrode active materials that can be used in the positive electrode of existing electrochemical devices, particularly preferably using lithium manganese oxide, lithium cobalt oxide, lithium nickel oxide, lithium iron oxide substances, or lithium composite oxides combining these. Non-limiting examples of negative electrode active materials may include conventional negative electrode active materials that can be used in negative electrodes of existing electrochemical devices, and particularly preferably lithium metal or lithium alloys, or lithium adsorbent materials such as carbon, petroleum coke, activated carbon, graphite, or other carbons class etc. Non-limiting examples of positive electrode current collectors may include foils made of aluminum, nickel, or combinations thereof, and non-limiting examples of negative electrode current collectors may include foils made of copper, gold, nickel, copper alloys, or combinations thereof.
可以用于本发明的电化学装置的电解液是具有诸如A+B-的结构的盐,并且可以包含以下的盐:其中A+包含由碱金属阳离子如Li+、Na+、K+或其组合形成的离子并且B-包含由阴离子如PF6 -、BF4 -、Cl-、Br-、I-、ClO4 -、AsF6 -、CH3CO2 -、CF3SO3 -、N(CF3SO2)2 -、C(CF2SO2)3 -或其组合形成的离子,且将所述盐溶解或离解在包含碳酸亚丙酯(PC)、碳酸亚乙酯(EC)、碳酸二乙酯(DEC)、碳酸二甲酯(DMC)、碳酸二丙酯(DPC)、二甲亚砜、乙腈、二甲氧基乙烷、二乙氧基乙烷、四氢呋喃、N-甲基-2-吡咯烷酮(NMP)、碳酸甲乙酯(EMC)、γ-丁内酯(g-丁内酯)或它们的混合物的有机溶剂中,但是盐不限于此。The electrolyte solution that can be used in the electrochemical device of the present invention is a salt having a structure such as A + B − , and may contain a salt in which A + is composed of an alkali metal cation such as Li + , Na + , K + or ions formed by combination and B - contains anions such as PF 6 - , BF 4 - , Cl - , Br - , I - , ClO 4 - , AsF 6 - , CH 3 CO 2 - , CF 3 SO 3 - , N( CF 3 SO 2 ) 2 - , C(CF 2 SO 2 ) 3 - or ions formed by a combination thereof, and the salt is dissolved or dissociated in an environment containing propylene carbonate (PC), ethylene carbonate (EC), Diethyl carbonate (DEC), dimethyl carbonate (DMC), dipropyl carbonate (DPC), dimethyl sulfoxide, acetonitrile, dimethoxyethane, diethoxyethane, tetrahydrofuran, N-methyl In an organic solvent of phenyl-2-pyrrolidone (NMP), ethyl methyl carbonate (EMC), γ-butyrolactone (g-butyrolactone) or a mixture thereof, but the salt is not limited thereto.
取决于制造过程和最终产品的所需特性,可以在电池制造过程中的适当阶段注入电解液。换句话说,电解液可以在组装电池之前的阶段或电池组装的最终阶段使用。Depending on the manufacturing process and the desired properties of the final product, the electrolyte can be injected at an appropriate stage in the battery manufacturing process. In other words, the electrolyte can be used at a stage before battery assembly or at the final stage of battery assembly.
在下文中,将参考实施例详细描述本发明,以具体描述本发明。然而,根据本发明的实施例可以被修改为各种其它形式,并且本发明的范围不被解释为限于以下描述的实施例。提供本发明的实施例以向本领域普通技术人员更充分地描述本发明。Hereinafter, the present invention will be described in detail with reference to Examples to specifically describe the present invention. However, the embodiments according to the present invention can be modified into various other forms, and the scope of the present invention is not construed as being limited to the embodiments described below. The embodiments of the present invention are provided to more fully describe the present invention to those of ordinary skill in the art.
[实施例1][Example 1]
<多孔隔膜1的制备><Preparation of Porous Separator 1>
将PVdF-HFP聚合物粘结剂(阿科玛(Arkema)集团,LBG级)和无机粒子(氧化铝,TCERA有限公司,NW-710级)以9:1的比例混合后,将所得物与N-甲基-2-吡咯烷酮(NMP)溶剂以固体浓度为40%混合以制备涂布液。After mixing PVdF-HFP polymer binder (Arkema Group, LBG grade) and inorganic particles (alumina, TCERA Co., Ltd., NW-710 grade) at a ratio of 9:1, the resultant was mixed with An N-methyl-2-pyrrolidone (NMP) solvent was mixed at a solid concentration of 40% to prepare a coating liquid.
在表面用0.7Kw的强度电晕处理过的聚对苯二甲酸乙二醇酯(PET)膜(SKC,RX12G50μm)上,使用涂布器涂布上述制备的涂布液,并将所得物在Mathis烘箱中在130℃下干燥5分钟,以制备厚度为100μm的涂有多孔隔膜的PET膜。On the polyethylene terephthalate (PET) film (SKC, RX12G50 μm) that the intensity corona of 0.7Kw has been treated on the surface, use applicator to coat the above-mentioned prepared coating solution, and the resultant is in Dry in a Mathis oven at 130 °C for 5 min to prepare a PET film coated with a porous separator with a thickness of 100 μm.
在轧制机(压延机,CIS有限公司,CLP-2025H)中轧制涂有多孔隔膜的PET膜,以制备厚度为20μm的多孔隔膜,然后剥离。The PET film coated with the porous separator was rolled in a rolling machine (calender, CIS Co., Ltd., CLP-2025H) to prepare a porous separator with a thickness of 20 μm, and then peeled off.
<多孔隔膜2的制备><Preparation of
除了使用球状氧化铝(Dae Han Ceramics有限公司,SRA-05S)以外,以与所述多孔隔膜的制备相同的方式制备了厚度为10μm的隔膜。A separator having a thickness of 10 μm was prepared in the same manner as the preparation of the porous separator except for using spherical alumina (Dae Han Ceramics Co., Ltd., SRA-05S).
<锂二次电池的制造><Manufacture of Lithium Secondary Batteries>
将96.7重量份的用作正极活性材料的LiCoO2、1.3重量份的用作导电材料的石墨和2.0重量份的用作粘结剂的聚偏二氟乙烯(PVdF)进行混合以制备正极混合物。通过将获得的正极混合物分散到用作溶剂的1-甲基-2-吡咯烷酮中,制备正极混合物浆料。将该浆料涂布在厚度为20μm的铝箔的两个表面上,干燥并压缩以制备正极。96.7 parts by weight of LiCoO 2 used as a positive electrode active material, 1.3 parts by weight of graphite used as a conductive material, and 2.0 parts by weight of polyvinylidene fluoride (PVdF) used as a binder were mixed to prepare a positive electrode mixture. A cathode mixture slurry was prepared by dispersing the obtained cathode mixture into 1-methyl-2-pyrrolidone used as a solvent. This slurry was coated on both surfaces of an aluminum foil having a thickness of 20 μm, dried and compressed to prepare a positive electrode.
作为负极,使用在铜箔集电器上形成有厚度为20μm的100%Li金属层的Li金属电极(日本本城金属有限公司)。As the negative electrode, a Li metal electrode (Honjo Metal Co., Ltd., Japan) in which a 100% Li metal layer was formed with a thickness of 20 μm on a copper foil current collector was used.
通过将LiPF6以1.0M的浓度溶解在以1:2:1(体积比)的组成将碳酸亚乙酯(EC)、碳酸二乙酯(DEC)和碳酸二甲酯(DMC)混合而得到的有机溶剂中,并且相对于100重量份的有机溶剂溶解2重量份的碳酸亚乙烯酯来制备非水电解液。Obtained by dissolving LiPF 6 at a concentration of 1.0M in a composition of 1:2:1 (volume ratio) and mixing ethylene carbonate (EC), diethyl carbonate (DEC) and dimethyl carbonate (DMC) In an organic solvent, and with respect to 100 parts by weight of the organic solvent, 2 parts by weight of vinylene carbonate was dissolved to prepare a non-aqueous electrolytic solution.
在上述制备的正极与负极之间设置多孔隔膜,并且注入电解液以制造纽扣电池型锂二次电池。A porous separator was provided between the positive electrode and the negative electrode prepared above, and an electrolytic solution was injected to manufacture a button cell type lithium secondary battery.
[实施例2][Example 2]
除了通过在将多孔隔膜1的制备中制备的隔膜放置在中间而在其上方和下方设置在多孔隔膜2的制备中制备的两片隔膜以获得三层结构的隔膜以外,以与实施例1相同的方式制造了锂二次电池。In the same manner as in Example 1, except that the separator prepared in the preparation of the porous diaphragm 1 was placed in the middle and the two sheets of the diaphragm prepared in the preparation of the
[比较例1][Comparative example 1]
除了使用由Optodot制造的CSP20产品作为多孔隔膜以外,以与实施例1相同的方式制造了锂二次电池。A lithium secondary battery was fabricated in the same manner as in Example 1 except that a CSP20 product manufactured by Optodot was used as the porous separator.
物性评价Physical property evaluation
寿命特性评价Evaluation of life characteristics
实施例1和2以及比较例1的锂二次电池各自使用PNE SOLUTION有限公司的小型电池循环仪装置以0.2C的恒定电流(CC)进行CC充电至4.25V,然后在4.25V的恒定电压下以相对于1C的5%截止电流充电一次作为充电,然后以0.5C的恒定电流放电至3V。将此作为1个循环,并且重复进行该循环。The lithium secondary batteries of Examples 1 and 2 and Comparative Example 1 were each subjected to CC charging at a constant current (CC) of 0.2C to 4.25V using a small battery cycler device of PNE SOLUTION Co., Ltd., and then at a constant voltage of 4.25V Charge once at a cut-off current of 5% relative to 1C, and then discharge to 3V at a constant current of 0.5C. This is regarded as 1 cycle, and this cycle is performed repeatedly.
当参考图7时,可以看出,虽然比较例1的多孔无机隔膜在20次循环之前开始劣化,但是实施例1和2的多孔隔膜在较长的循环中显示出稳定的放电容量。由于实施例1和2的多孔隔膜更长时间地阻止枝晶,因此对其进行了分析。特别是可以看出,当如实施例2那样使用同时使用板状粒子层和球状粒子层的多孔隔膜时,枝晶阻止效果更优异并且放电容量得到进一步提高。When referring to FIG. 7 , it can be seen that while the porous inorganic separator of Comparative Example 1 started to deteriorate before 20 cycles, the porous separators of Examples 1 and 2 showed stable discharge capacity over longer cycles. The porous separators of Examples 1 and 2 were analyzed because they prevented dendrites for a longer time. In particular, it can be seen that when a porous separator using both a plate-shaped particle layer and a spherical particle layer is used as in Example 2, the dendrite prevention effect is more excellent and the discharge capacity is further improved.
Claims (8)
Applications Claiming Priority (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR20170173537 | 2017-12-15 | ||
KR10-2017-0173537 | 2017-12-15 | ||
KR10-2018-0162329 | 2018-12-14 | ||
KR1020180162329A KR102207528B1 (en) | 2017-12-15 | 2018-12-14 | POROUS SEPARATING FiLM AND ELECTROCHEMICAL DEVICE CONTAINING THE SAME |
PCT/KR2018/015984 WO2019117687A1 (en) | 2017-12-15 | 2018-12-17 | Porous separator and electrochemical device comprising same |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111149237A CN111149237A (en) | 2020-05-12 |
CN111149237B true CN111149237B (en) | 2022-12-13 |
Family
ID=67065589
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201880060789.6A Active CN111149237B (en) | 2017-12-15 | 2018-12-17 | Porous separator and electrochemical device comprising same |
Country Status (5)
Country | Link |
---|---|
US (1) | US11411282B2 (en) |
EP (1) | EP3664189A4 (en) |
JP (1) | JP7049540B2 (en) |
KR (1) | KR102207528B1 (en) |
CN (1) | CN111149237B (en) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA3150049A1 (en) * | 2019-08-12 | 2021-02-18 | Monash University | Lithium ion conductor-polymer-ceramic membrane |
CN111769242A (en) * | 2020-06-23 | 2020-10-13 | 合肥国轩高科动力能源有限公司 | Diaphragm coating slurry capable of improving safety performance of lithium ion battery and preparation method thereof |
CN115832166B (en) * | 2021-09-23 | 2024-01-12 | 宁德时代新能源科技股份有限公司 | Positive electrode sheet, secondary battery, battery module, battery pack, and power consumption device |
CN114024095B (en) * | 2021-10-27 | 2022-08-05 | 长园泽晖新能源材料研究院(珠海)有限公司 | Coating diaphragm with special pore structure and preparation method thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009064566A (en) * | 2007-09-04 | 2009-03-26 | Hitachi Maxell Ltd | Separator for battery and nonaqueous electrolyte battery |
CN102150298A (en) * | 2008-09-12 | 2011-08-10 | 日本韦琳株式会社 | Separator for lithium ion secondary battery, method for manufacture thereof, and lithium ion secondary battery |
JP2014063570A (en) * | 2012-09-19 | 2014-04-10 | Japan Vilene Co Ltd | Manufacturing method and manufacturing apparatus of separator for electrochemical element |
CN105324870A (en) * | 2013-10-31 | 2016-02-10 | 株式会社Lg化学 | Organic/inorganic composite porous membrane and separator and electrode structure comprising the membrane |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10238943B4 (en) * | 2002-08-24 | 2013-01-03 | Evonik Degussa Gmbh | Separator-electrode unit for lithium-ion batteries, method for their production and use in lithium batteries and a battery, comprising the separator-electrode unit |
WO2008029922A1 (en) * | 2006-09-07 | 2008-03-13 | Hitachi Maxell, Ltd. | Battery separator, method for manufacture thereof, and lithium secondary battery |
JP5657856B2 (en) * | 2007-01-29 | 2015-01-21 | 日立マクセル株式会社 | Porous membrane, battery separator and lithium secondary battery |
KR100754746B1 (en) * | 2007-03-07 | 2007-09-03 | 주식회사 엘지화학 | Organic / inorganic composite membrane coated with porous active layer and electrochemical device |
KR101351700B1 (en) * | 2007-03-08 | 2014-01-16 | 삼성에스디아이 주식회사 | Electrode assembly and rechargeable battery with the same |
JP2009032677A (en) | 2007-07-04 | 2009-02-12 | Hitachi Maxell Ltd | Porous membrane for separator and its manufacturing method; separator for battery and its manufacturing method; electrode for battery and its manufacturing method, and lithium secondary cell |
WO2009151054A1 (en) | 2008-06-09 | 2009-12-17 | 日立マクセル株式会社 | Porous film for separator, battery separator, battery electrode, and manufacturing methods therefor, and lithium secondary battery |
CN102460772A (en) | 2009-05-26 | 2012-05-16 | 奥普图多特公司 | Battery utilizing electrodes coated directly on nanoporous separators |
KR20110064689A (en) * | 2009-12-08 | 2011-06-15 | 삼성에스디아이 주식회사 | Lithium secondary battery |
JP5648284B2 (en) | 2009-12-24 | 2015-01-07 | 住友化学株式会社 | Laminated film and non-aqueous electrolyte secondary battery |
CN102725670A (en) | 2011-10-28 | 2012-10-10 | 华为技术有限公司 | Optical connector socket |
TWI620368B (en) | 2011-11-11 | 2018-04-01 | Lg化學股份有限公司 | Separator, fabricating method thereof and electrochemical device having the same |
JP5930387B2 (en) * | 2012-04-16 | 2016-06-08 | 株式会社Gsユアサ | Electricity storage element |
KR101433198B1 (en) | 2012-05-29 | 2014-08-22 | 주식회사 엘지화학 | A separator having porous coating layer and electrochemical device including the same |
JP2014179321A (en) | 2013-03-13 | 2014-09-25 | Samsung Sdi Co Ltd | Separator and rechargeable lithium battery including the same |
JP2015088430A (en) | 2013-11-01 | 2015-05-07 | 日立マクセル株式会社 | Nonaqueous electrolyte secondary battery separator, and nonaqueous electrolyte secondary battery having the same |
KR20160007147A (en) | 2014-07-11 | 2016-01-20 | 주식회사 엘지화학 | A porous membrane for secondary battery and preparation method thereof |
WO2017018483A1 (en) | 2015-07-29 | 2017-02-02 | 東レバッテリーセパレータフィルム株式会社 | Battery separator and production method therefor |
CN107925034B (en) * | 2015-08-27 | 2020-12-18 | 东丽株式会社 | Battery separator and method for manufacturing same |
KR101837562B1 (en) | 2015-11-06 | 2018-03-12 | 삼성에스디아이 주식회사 | Separator for rechargeable battery and rechargeable battery including the same |
PL3367465T3 (en) | 2016-06-08 | 2021-02-22 | Lg Energy Solution, Ltd. | Separator and electrochemical device including the same |
KR102016717B1 (en) * | 2016-08-26 | 2019-10-14 | 주식회사 엘지화학 | An electrode lead member for an electrochemical device |
CN107275670A (en) * | 2017-07-06 | 2017-10-20 | 钟旭航 | The preparation method of lithium-ion-power cell and preparation method thereof, its barrier film and barrier film, and for forming the slurry of barrier film |
-
2018
- 2018-12-14 KR KR1020180162329A patent/KR102207528B1/en active IP Right Grant
- 2018-12-17 EP EP18889691.4A patent/EP3664189A4/en active Pending
- 2018-12-17 JP JP2020511786A patent/JP7049540B2/en active Active
- 2018-12-17 CN CN201880060789.6A patent/CN111149237B/en active Active
- 2018-12-17 US US16/644,624 patent/US11411282B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009064566A (en) * | 2007-09-04 | 2009-03-26 | Hitachi Maxell Ltd | Separator for battery and nonaqueous electrolyte battery |
CN102150298A (en) * | 2008-09-12 | 2011-08-10 | 日本韦琳株式会社 | Separator for lithium ion secondary battery, method for manufacture thereof, and lithium ion secondary battery |
JP2014063570A (en) * | 2012-09-19 | 2014-04-10 | Japan Vilene Co Ltd | Manufacturing method and manufacturing apparatus of separator for electrochemical element |
CN105324870A (en) * | 2013-10-31 | 2016-02-10 | 株式会社Lg化学 | Organic/inorganic composite porous membrane and separator and electrode structure comprising the membrane |
Also Published As
Publication number | Publication date |
---|---|
EP3664189A4 (en) | 2020-11-18 |
JP2020533732A (en) | 2020-11-19 |
JP7049540B2 (en) | 2022-04-07 |
EP3664189A1 (en) | 2020-06-10 |
KR20190072479A (en) | 2019-06-25 |
US20210083250A1 (en) | 2021-03-18 |
KR102207528B1 (en) | 2021-01-26 |
US11411282B2 (en) | 2022-08-09 |
CN111149237A (en) | 2020-05-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109314207B (en) | Separator and electrochemical device including the same | |
KR101703957B1 (en) | An organic-inoranic composite porous layer, a seperator and an electrode structure comprising the same | |
KR101173202B1 (en) | Preparation method of separator, separator formed therefrom, and preparation method of electrochemical device containing the same | |
CN108292728B (en) | Separator and electrochemical device comprising the same | |
CN108370015B (en) | Separator and electrochemical device comprising the same | |
KR101739080B1 (en) | A separator having microcapsules and electrochemical device containing the same | |
KR100873570B1 (en) | Organic / inorganic composite porous film and electrochemical device using same | |
JP7477626B2 (en) | Separator for lithium secondary battery and method for producing same | |
CN109891633B (en) | Separator and electrochemical device comprising the same | |
WO2007066966A1 (en) | Electrode with enhanced safety and electrochemical device having the same | |
CN111149237B (en) | Porous separator and electrochemical device comprising same | |
KR20130141234A (en) | A separator having porous coating layer and electrochemical device including the same | |
US20240274981A1 (en) | Porous separator and lithium secondary battery comprising same | |
CN105794032B (en) | Secondary cell with improved life characteristic | |
CN114651367B (en) | Separator for electrochemical device and electrochemical device including the same | |
KR20130070170A (en) | A separator having porous coating and electrochemical device containing the same | |
KR20130134926A (en) | Separator for electrochemical device and electrochemical device containing the same | |
KR20120036061A (en) | Preparation method of separator, separator formed therefrom, and electrochemical device having the same | |
KR102576176B1 (en) | Porous separating layer and electrochemical device containing the same | |
KR20150047875A (en) | Separator for lithium secondary battery and lithium secondary battery comprising the same | |
WO2019117687A1 (en) | Porous separator and electrochemical device comprising same | |
CN118696457A (en) | Separator for secondary battery, method for preparing the same, and secondary battery including the same | |
KR20150051506A (en) | Separator for electrochemical device and Electrochemical device comprising the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
TA01 | Transfer of patent application right | ||
TA01 | Transfer of patent application right |
Effective date of registration: 20220321 Address after: Seoul, South Kerean Applicant after: LG Energy Solution Address before: Seoul, South Kerean Applicant before: LG CHEM, Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant |