Nothing Special   »   [go: up one dir, main page]

CN111122666B - 一种Ag-SnO2-rGO气凝胶气敏材料的制备方法 - Google Patents

一种Ag-SnO2-rGO气凝胶气敏材料的制备方法 Download PDF

Info

Publication number
CN111122666B
CN111122666B CN201911387387.XA CN201911387387A CN111122666B CN 111122666 B CN111122666 B CN 111122666B CN 201911387387 A CN201911387387 A CN 201911387387A CN 111122666 B CN111122666 B CN 111122666B
Authority
CN
China
Prior art keywords
sno
rgo
temperature
drying
stirring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911387387.XA
Other languages
English (en)
Other versions
CN111122666A (zh
Inventor
沈晓冬
严文倩
崔升
朱昆萌
宋梓豪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suqian Advanced Materials Institute Of Nanjing Tech University
Nanjing Tech University
Original Assignee
Suqian Advanced Materials Institute Of Nanjing Tech University
Nanjing Tech University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suqian Advanced Materials Institute Of Nanjing Tech University, Nanjing Tech University filed Critical Suqian Advanced Materials Institute Of Nanjing Tech University
Priority to CN201911387387.XA priority Critical patent/CN111122666B/zh
Publication of CN111122666A publication Critical patent/CN111122666A/zh
Application granted granted Critical
Publication of CN111122666B publication Critical patent/CN111122666B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • B22F2009/245Reduction reaction in an Ionic Liquid [IL]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Health & Medical Sciences (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种Ag‑SnO2‑rGO气凝胶气敏材料的制备方法,本发明先制备Ag‑SnO2‑rGO溶胶,然后老化再冷冻干燥,最后将初步形成的Ag‑SnO2‑rGO气凝胶放入真空干燥,得到Ag‑SnO2‑rGO气凝胶气敏材料。使用石墨烯作为网络骨架结构,SnO2包覆于其片层结构上,再将Ag单质作为金属催化剂,可提高材料整体的灵敏度和回复率。Ag作为材料的催化剂,可增强反应活性,降低活化能,提高制备效率。采用一步法和水热还原法制备气凝胶样品,该工艺用料简单,操作便捷,可减少由于杂质带来的负效应,能够提高样品纯度,从而提升材料选择性。

Description

一种Ag-SnO2-rGO气凝胶气敏材料的制备方法
技术领域
本发明属于纳米多孔复合材料的制备工艺领域,具体涉及一种Ag-SnO2-rGO 气凝胶气敏材料的制备方法,涉及一种高比表面积、高孔隙率和高电子迁移率的气体传感材料的制备方法。
背景技术
作为一种具有高比表面积、高孔隙率、高电子迁移率和化学稳定的三维网络状材料,石墨烯可被用于承载纳米级的金属氧化物颗粒。金属氧化物SnO2是一种典型的n型宽禁带半导体,其在300K温度下的能带隙为3.6eV,是作为气敏材料的主要选择之一,被广泛应用于对H2S、SOx、NOx等气体的传感检测。在之前的研究工作中,我们曾尝试将石墨烯与SnO2复合形成具有p-n异质结的气凝胶材料,用来检测空气中的NOx。但是,由于功耗大、操作环境温度高、响应时间长等问题,SnO2/石墨烯气凝胶仍具有较大的研究空间。
Ag作为一种高电导率的金属材料,其理化性质均较稳定,由于其高电子迁移率,可被用来当做气敏材料中的催化剂,通过增大材料中的电子迁移率,从而提高反应活性,最终提升气敏性能。在室温条件下,为了实现气体灵敏度的检测技术,掺杂Ag单质的SnO2/石墨烯复合气凝胶不仅可以有效阻止金属氧化物的团聚和石墨烯层的重叠,而且可以提高材料的电学、化学和物理性能,成为一种新型的气体传感器材料。
西南科技大学的肖国原利用氧化石墨烯和二水氯化亚锡之间自身的氧化还原反应,通过超声分散氧化石墨烯以及超声混合两种物质,制备出SnO2/rGO复合材料,该材料对50ppm浓度下的NO2响应达35%,但由于比表面积较小导致反应进行平缓,灵敏度较低。河南工业大学的张赛赛等人提出一种Ag/SnO2/rGO 纳米复合材料,得到对三甲胺气体在220℃下具有良好响应性的新型气敏材料,通过添加金属Ag单质提高了材料的电子迁移率,从而提高整体灵敏度,但由于粉体材料的结构较为致密,导致其回复时间过长,很难进行实际应用。因此,提高比表面积和孔隙率,是制备出一种具有高灵敏度、高恢复性能以及高循环率气敏材料的研究目标。
发明内容
本发明的目的是为了改进现有技术的不足而提供一种Ag-SnO2-rGO气凝胶气敏材料的制备方法。
本发明的技术方案为:在制备SnO2/石墨烯复合材料的基础上,掺杂单质 Ag纳米颗粒,通过添加金属催化剂,来降低反应的活化能,从而改善气敏材料的传感效应。掺杂单质Ag不仅提高了材料的气敏性能,并且避免了因颗粒过小而导致的SnO2团聚以及石墨烯层的重叠。其中引入气凝胶的还原剂,可以有效促进氧化石墨烯的还原,形成三维状多孔网络结构。
本发明的具体技术方案为:一种Ag-SnO2-rGO气凝胶气敏材料的制备方法,其具体步骤如下:
(1)溶胶的制备
称取锡源、银源和还原剂加入去离子水中,并搅拌一段时间,通过加入醇溶液、氧化石墨烯溶液进行交联,再加入碱性试剂调节PH值后超声,最后放入水热反应釜内反应,得到Ag-SnO2-rGO溶胶;
(2)老化
将制得的Ag-SnO2-rGO溶胶取出放入容器中,静置凝胶完全后倒入老化液,老化3~5天;
(3)冷冻干燥
将步骤(2)中得到的Ag-SnO2-rGO溶胶放入冷冻干燥机中,干燥温度为-55~ -60℃,压力为1~5Pa,恒温恒压状态下维持36~72h,待冷冻干燥机温度升至室温后即取出样品;
(4)升温干燥
将步骤(3)中初步形成的Ag-SnO2-rGO气凝胶放入真空干燥箱中继续干燥,得到Ag-SnO2-rGO气凝胶气敏材料。
优选步骤(1)中所述的锡源为五水合四氯化锡(SnCl4·5H2O)或四氯化锡;银源为硝酸银(AgNO3)或氯化银(AgCl);氧化石墨烯溶液的浓度为3~8mg/mL;还原剂为尿素或抗坏血酸(VC);醇溶液为甲醇或乙醇;碱性试剂为氨水或氢氧化钠溶液。
优选步骤(1)中锡源、石墨烯、银源、还原剂和去离子水按1:(0.13-0.35):(0.19~0.20):(0.41~1.61):(19~58)的质量比进行配制;搅拌30~60min后按醇水体积比为1:(3~8)加入醇溶液;继续搅拌10~30min后加入氧化石墨烯溶液并搅拌2~3h,再加入碱性试剂调节PH值至10~12,搅拌10~30min后进行超声处理。
优选步骤(1)中的搅拌速度均为500~700rpm。优选步骤(1)中加入碱性试剂的速度控制在0.1~0.2mL/s。优选步骤(1)中超声频率为80~120Hz,超声时间为30~60min,超声温度为40~60℃。优选步骤(1)中溶胶在水热反应釜内的反应温度为120~200℃,反应时间为10~14h。
优选步骤(2)中使用体积比为1:(4~6)的乙醇与水的混合溶液作为老化液;老化时间为3~5天。
优选步骤(4)中干燥温度为40~60℃,干燥时间为5~8h。
本发明制得的Ag-SnO2-rGO气凝胶气敏材料的密度为0.11~0.18g/cm3,比表面积为231~256m2/g,响应度为31~47%。
有益效果:
(1)相比较于Ag/SnO2/rGO纳米复合材料,本发明研究的Ag-SnO2-rGO复合气凝胶具有更大的比表面积和孔隙率,为气敏材料的吸附性能提供了有利基础。
(2)相比较于SnO2/石墨烯气凝胶样品,本发明制备得到的Ag-SnO2/rGO 复合气凝胶样品具有良好的气敏性能、对NOx的选择性较高,响应较强,灵敏度高,可初步用于气体的检测系统。
(3)相比较于传统金属氧化物/石墨烯复合材料,本发明所制备的 Ag-SnO2/rGO复合气凝胶具有更高的电子迁移率,导电性能更好。
(4)相比较于传统的复合气凝胶制品,本发明在保证产品性能的基础上采用一步法和水热还原法对气凝胶进行交联,减少了反应过程中的杂质,提高产物纯度。
附图说明
图1是实例1中所制备的Ag-SnO2-rGO复合气凝胶材料的XRD图。
图2是实例1中所制备的Ag-SnO2-rGO复合气凝胶材料的傅里叶-红外光谱图。
图3是实例1中所制备的Ag-SnO2-rGO复合气凝胶材料在(a)500(b)1000 (c)5000(d)20000倍数下的SEM图。
图4是实例1中所制备的Ag-SnO2-rGO气凝胶的(a)mapping面扫图和(b) EDS能谱图。
图5是实例1中所制备的Ag-SnO2-rGO复合气凝胶材料的BET测试图。
具体实施方式
下面结合实例对本发明作进一步说明,但保护范围并不限于此。
实例1
在烧杯中加入10mL去离子水,再用电子天平称量0.5259g五水合四氯化锡,0.1019g硝酸银和0.216g尿素,以500rpm的转速将溶液搅拌30min后,加入2mL 乙醇,搅拌10min后再加入5mg/mL的氧化石墨烯溶液14.4mL,搅拌2h后,以 0.1mL/s的速度逐滴加入氨水调节PH值为11,继续搅拌30min后在温度为50℃,频率为100Hz的条件下超声处理30min,再倒入容积为50mL的水热反应釜内,在180℃条件下反应12h。待反应釜冷却至室温后将凝胶取出,浸入醇水比为1:5 的混合溶液中进行老化,每天按时更换老化液,老化过程为5天。将样品安置在 10mL小烧杯内并放入冷冻干燥机进行干燥,设定干燥温度为-60℃,干燥时间为 48h,干燥压力为1Pa。冷冻干燥完成后,将样品放入真空干燥箱,在50℃下干燥6h,干燥完成后可得到Ag-SnO2/rGO复合气凝胶材料,所制备材料的密度为0.11g/cm3,比表面积为256m2/g,响应度为47%。
图1为Ag-SnO2-rGO气凝胶材料的XRD图。图中26.6°,38.4°,51.8°处的峰分别对应SnO2的(110),(101),(211)晶面,符合四方的金红石结构,38.1°, 44.3°,64.4°,77.4°,81.5°处的峰分别对应Ag单质的(111),(200),(220),(311), (222)晶面,峰形尖锐,说明该材料具有良好的结晶度。
图2为Ag-SnO2-rGO气凝胶材料的傅里叶-红外谱图。图中在波长1570cm-1处是C=C键的特征峰;1240cm-1处是C-O-C键的特征峰,这都是由于石墨烯的存在,624cm-1处是Sn-O键的特征峰,证实了SnO2的存在。
图3是实例1中所制备的Ag-SnO2-rGO复合气凝胶材料在(a)500(b)1000 (c)5000(d)20000倍数下的SEM图。从图(a)可以明显的看到,石墨烯被还原后呈三维网络状结构,图(b)其表面具有清晰可见的褶皱,图(c)中SnO2和Ag大量地附着在石墨烯片层的表面,图(d)能够观察到四方晶型的石墨烯。
图4是实例1中所制备的Ag-SnO2-rGO气凝胶的(a)mapping面扫图和(b) EDS能谱图。图4(a)是该材料的mapping面扫图,可以观察到各元素均匀地分布,但出现部分Ag单质的不规则长大,图4(b)分析了各元素的含量,均与 XRD测试相符合。
图5为Ag-SnO2-rGO气凝胶材料的BET测试图,该类曲线属于第Ⅳ类等温线,H4型回滞环,材料的比表面积可达到256m2/g,是一种具有高孔隙率的材料,其孔径大多分布在2-5nm,属于介孔材料的范围。
实例2
在烧杯中加入15mL去离子水,再用电子天平称量0.4207g四氯化锡,0.0815g 硝酸银和0.634g抗坏血酸,以500rpm的转速将溶液搅拌35min后,加入2mL 甲醇,搅拌15min后再加入8mg/mL的氧化石墨烯溶液9mL,搅拌2.5h后,以 0.15mL/s的速度逐滴加入氨水调节PH值为10,继续搅拌10min后在温度为40℃,频率为120Hz的条件下超声处理40min,再倒入容积为50mL的水热反应釜内,在120℃条件下反应10h。待反应釜冷却至室温后将凝胶取出,浸入醇水比为1:4 的混合溶液中进行老化,每天按时更换老化液,老化过程为3天。将样品安置在 10mL小烧杯内并放入冷冻干燥机进行干燥,设定干燥温度为-55℃,干燥时间为 36h,干燥压力为3Pa。冷冻干燥完成后,将样品放入真空干燥箱,在40℃下干燥5h,干燥完成后可得到Ag-SnO2-rGO复合气凝胶材料,所制备材料的密度为 0.15g/cm3,比表面积为226m2/g,响应度为34%。
实例3
在烧杯中加入10mL去离子水,再用电子天平称量0.3506g五水合四氯化锡,0.0679g氯化银和0.324g尿素,以550rpm的转速将溶液搅拌40min后,加入3mL 乙醇,搅拌20min后再加入3mg/mL的氧化石墨烯溶液24mL,搅拌3h后,以 0.2mL/s的速度逐滴加入氨水调节PH值为12,继续搅拌15min后在温度为60℃,频率为80Hz的条件下超声处理45min,再倒入容积为50mL的水热反应釜内,在140℃条件下反应12h。待反应釜冷却至室温后将凝胶取出,浸入醇水比为1:6 的混合溶液中进行老化,每天按时更换老化液,老化过程为4天。将样品安置在 10mL小烧杯内并放入冷冻干燥机进行干燥,设定干燥温度为-55℃,干燥时间为42h,干燥压力为5Pa。冷冻干燥完成后,将样品放入真空干燥箱,在55℃下干燥7h,干燥完成后可得到Ag-SnO2-rGO复合气凝胶材料,所制备材料的密度为 0.13g/cm3,比表面积为241m2/g,响应度为39%。
实例4
在烧杯中加入15mL去离子水,再用电子天平称量0.2629g四氯化锡,0.0509g 硝酸银和0.4227g抗坏血酸,以600rpm的转速将溶液搅拌50min后,加入3mL 甲醇,搅拌25min后再加入6mg/mL的氧化石墨烯溶液12mL,搅拌2.5h后,以 0.15mL/s的速度逐滴加入氨水调节PH值为10,继续搅拌20min后在温度为50℃,频率为100Hz的条件下超声处理50min,再倒入容积为50mL的水热反应釜内,在160℃条件下反应13h。待反应釜冷却至室温后将凝胶取出,浸入醇水比为1:4 的混合溶液中进行老化,每天按时更换老化液,老化过程为3天。将样品安置在10mL小烧杯内并放入冷冻干燥机进行干燥,设定干燥温度为-60℃,干燥时间为60h,干燥压力为3Pa。冷冻干燥完成后,将样品放入真空干燥箱,在60℃下干燥8h,干燥完成后可得到Ag-SnO2-rGO复合气凝胶材料,所制备材料的密度为 0.17g/cm3,比表面积为231m2/g,响应度为31%。
实例5
在烧杯中加入10mL去离子水,再用电子天平称量0.2104g五水合四氯化锡,0.0408g氯化银和0.216g尿素,以700rpm的转速将溶液搅拌60min后,加入2mL 乙醇,搅拌30min后再加入5mg/mL的氧化石墨烯溶液14.4mL,搅拌3h后,以 0.1mL/s的速度逐滴加入氨水调节PH值为11,继续搅拌30min后在温度为50℃,频率为100Hz的条件下超声处理60min,再倒入容积为50mL的水热反应釜内,在180℃条件下反应14h。待反应釜冷却至室温后将凝胶取出,浸入醇水比为1:5 的混合溶液中进行老化,每天按时更换老化液,老化过程为5天。将样品安置在 10mL小烧杯内并放入冷冻干燥机进行干燥,设定干燥温度为-60℃,干燥时间为 72h,干燥压力为1Pa。冷冻干燥完成后,将样品放入真空干燥箱,在50℃下干燥6h,干燥完成后可得到Ag-SnO2-rGO复合气凝胶材料,所制备材料的密度为 0.18g/cm3,比表面积为239m2/g,响应度为42%。

Claims (6)

1.一种Ag-SnO2-rGO气凝胶气敏材料的制备方法,其具体步骤如下:
(1)溶胶的制备
称取锡源、银源和还原剂加入去离子水中,并搅拌一段时间,通过加入醇溶液、氧化石墨烯溶液进行交联,再加入碱性试剂调节pH值后超声,最后放入水热反应釜内反应,得到Ag-SnO2-rGO溶胶;
(2)老化
将制得的Ag-SnO2-rGO溶胶取出放入容器中,静置凝胶完全后倒入老化液;
(3)冷冻干燥
将步骤(2)中得到的Ag-SnO2-rGO溶胶放入冷冻干燥机中,干燥温度为-55~-60℃,压力为1~5Pa,恒温恒压状态下维持36~72h,待冷冻干燥机温度升至室温后即取出样品;
(4)升温干燥
将步骤(3)中初步形成的Ag-SnO2-rGO气凝胶放入真空干燥箱中继续干燥,得到Ag-SnO2-rGO气凝胶气敏材料;
其中步骤(1)中锡源、石墨烯、银源、还原剂和去离子水按1:(0.13-0.35):(0.19~0.20):(0.41~1.61):(19~58)的质量比进行配制;搅拌30~60min后按醇水体积比为1:(3~8)加入醇溶液;继续搅拌10~30min后加入氧化石墨烯溶液并搅拌2~3h,再加入碱性试剂调节pH值至10~12,搅拌10~30min后进行超声处理;加入碱性试剂的速度控制在0.1~0.2mL/s;超声频率为80~120Hz,超声时间为30~60min,超声温度为40~60℃;溶胶在水热反应釜内的反应温度为120~200℃,反应时间为10~14h。
2.根据权利要求1所述的制备方法,其特征在于步骤(1)中所述的锡源为五水合四氯化锡或四氯化锡;银源为硝酸银或氯化银;氧化石墨烯溶液的浓度为3~8mg/mL;还原剂为尿素或抗坏血酸;醇溶液为甲醇或乙醇;碱性试剂为氨水或氢氧化钠溶液。
3.根据权利要求1所述的制备方法,其特征在于步骤(1)中的搅拌速度均为500~700rpm。
4.根据权利要求1所述的制备方法,其特征在于步骤(2)中使用体积比为1:(4~6)的乙醇与水的混合溶液作为老化液;老化时间为3~5天。
5.根据权利要求1所述的制备方法,其特征在于步骤(4)中干燥温度为40~60℃,干燥时间为5~8h。
6.根据权利要求1所述的制备方法,其特征在于步骤(4)中制得的Ag-SnO2-rGO气凝胶气敏材料的密度为0.11~0.18g/cm3,比表面积为231~256m2/g,响应度为31~47%。
CN201911387387.XA 2019-12-30 2019-12-30 一种Ag-SnO2-rGO气凝胶气敏材料的制备方法 Active CN111122666B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911387387.XA CN111122666B (zh) 2019-12-30 2019-12-30 一种Ag-SnO2-rGO气凝胶气敏材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911387387.XA CN111122666B (zh) 2019-12-30 2019-12-30 一种Ag-SnO2-rGO气凝胶气敏材料的制备方法

Publications (2)

Publication Number Publication Date
CN111122666A CN111122666A (zh) 2020-05-08
CN111122666B true CN111122666B (zh) 2022-07-08

Family

ID=70504459

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911387387.XA Active CN111122666B (zh) 2019-12-30 2019-12-30 一种Ag-SnO2-rGO气凝胶气敏材料的制备方法

Country Status (1)

Country Link
CN (1) CN111122666B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111982981B (zh) * 2020-08-17 2022-09-30 微纳感知(合肥)技术有限公司 一种SnO2基气敏材料、气敏材料的制备方法及其应用
CN113019324B (zh) * 2021-03-12 2023-02-10 南京工业大学 一种银-二氧化钛-石墨烯复合气凝胶的制备方法
CN114324498B (zh) * 2022-01-06 2024-02-27 吉林大学 一种基于Au-SnO2纳米花敏感材料的ppb级别NO2气体传感器及其制备方法
CN115266843A (zh) * 2022-07-21 2022-11-01 东北大学 一种在强碱性液体环境下制备rGO-SnO2纳米复合材料的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0916031D0 (en) * 2009-09-14 2009-10-28 Univ Nottingham Cellulose nanoparticle aerogels,hydrogels and organogels
CN102941042B (zh) * 2012-10-25 2016-03-09 北京理工大学 一种石墨烯/金属氧化物杂化气凝胶、制备方法及其应用
DE102016012746A1 (de) * 2016-10-25 2018-04-26 WindplusSonne GmbH Vorprodukte zur Herstellung von porösen, mineralischen Leichtbaumaterialien, Verfahren zur Herstellung von porösen, mineralischen Leichtbaumaterialien und ihre Verwendung
CN106622046B (zh) * 2016-11-14 2019-08-27 江苏大学 一种Ag/CeO2/石墨烯气凝胶及其制备方法和用途
CN109775748B (zh) * 2019-03-07 2021-06-22 南京工业大学 一种具有气敏特性的SnO2-石墨烯气凝胶材料的制备方法

Also Published As

Publication number Publication date
CN111122666A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
CN111122666B (zh) 一种Ag-SnO2-rGO气凝胶气敏材料的制备方法
Yang et al. In situ electrochemical synthesis of MOF-5 and its application in improving photocatalytic activity of BiOBr
Zhang et al. Enhanced humidity sensing properties of SmFeO3-modified MoS2 nanocomposites based on the synergistic effect
Li et al. A facile synthesis method for Ni (OH) 2 ultrathin nanosheets and their conversion to porous NiO nanosheets used for formaldehyde sensing
CN102680539B (zh) 多孔氧化镍/二氧化锡微纳米球的制备方法
CN110759376B (zh) 一种ZnO掺杂SnO2-石墨烯气凝胶气敏材料的制备方法
Li et al. UV excited gas sensing SnO2-ZnO aerogels to ppb-level ethanol detection
CN112125328B (zh) 一种十二面体状氧化锌纳米材料的制备方法及应用
CN105301062A (zh) 一种基于分级多孔wo3微米球的气体传感器及其制备方法
CN103274451B (zh) 二氧化锡/氧化锌核壳结构纳米复合材料的合成及应用
CN108190970A (zh) 一种钴掺杂氧化锌气敏材料的制备方法及其应用
Navale et al. Low-temperature wet chemical synthesis strategy of In2O3 for selective detection of NO2 down to ppb levels
CN113908827A (zh) 一种氧化钨@钨酸铋异质结压电催化材料制备方法及用途
CN102502794A (zh) 多孔纳米二氧化锡的制备方法
CN101941731B (zh) 一种空隙型片状纳米氧化锌及活性炭负载复合物的制备方法
CN111208172B (zh) 通过浸渍法掺银的Ag-SnO2-石墨烯气凝胶气敏材料的制备方法
Pavasupree et al. Synthesis and dye-sensitized solar cell performance of nanorods/nanoparticles TiO2 from high surface area nanosheet TiO2
Li et al. In-situ growth of hierarchical SnO2/In2O3 heterostructures with multiple effective nn heterojunctions for superior triethylamine-sensing performances
CN1724383A (zh) 一种制备一维纳米二氧化锡材料的方法
CN103713016A (zh) 钯掺杂二氧化锡包覆碳纳米管及其制备方法和应用
CN105439555A (zh) 一种高比表面积纳米锡酸钡的制备方法
CN108760831B (zh) 一种氧化铟气敏元件的制备方法
CN113061221A (zh) 一种共价有机框架材料及其制备方法和用途
CN103058173A (zh) 纳米金属氧化物功能化碳纳米管的制备方法及气体传感器
CN115372414A (zh) 一种Ti3C2TxMXene改性ZnO敏感材料及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant