Nothing Special   »   [go: up one dir, main page]

CN111074217A - 一种掺杂非晶硅的靶材及太阳能电池制备方法 - Google Patents

一种掺杂非晶硅的靶材及太阳能电池制备方法 Download PDF

Info

Publication number
CN111074217A
CN111074217A CN201911346159.8A CN201911346159A CN111074217A CN 111074217 A CN111074217 A CN 111074217A CN 201911346159 A CN201911346159 A CN 201911346159A CN 111074217 A CN111074217 A CN 111074217A
Authority
CN
China
Prior art keywords
target material
amorphous silicon
doped
silicon
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911346159.8A
Other languages
English (en)
Inventor
上官泉元
刘宁杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jietai Photoelectric Technology Co Ltd
Original Assignee
Jiangsu Jietai Photoelectric Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Jietai Photoelectric Technology Co Ltd filed Critical Jiangsu Jietai Photoelectric Technology Co Ltd
Priority to CN201911346159.8A priority Critical patent/CN111074217A/zh
Publication of CN111074217A publication Critical patent/CN111074217A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • C23C14/3414Metallurgical or chemical aspects of target preparation, e.g. casting, powder metallurgy
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/04Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the coating material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/131Wire arc spraying
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C4/00Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge
    • C23C4/12Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying
    • C23C4/14Coating by spraying the coating material in the molten state, e.g. by flame, plasma or electric discharge characterised by the method of spraying for coating elongate material
    • C23C4/16Wires; Tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02524Group 14 semiconducting materials
    • H01L21/02532Silicon, silicon germanium, germanium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/0257Doping during depositing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02587Structure
    • H01L21/0259Microstructure
    • H01L21/02592Microstructure amorphous
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/02631Physical deposition at reduced pressure, e.g. MBE, sputtering, evaporation
    • H01L31/202
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明通过制备一种预先混合好掺杂元素的硅靶,并利用PVD方法完成掺杂非晶硅镀膜,在PVD镀膜过程中可以直接在硅片表面形成原位掺杂非晶硅;而且,根据掺杂浓度的需要,通过在硅靶里掺入相应浓度的磷元素或硼元素用于TOPCon掺杂非晶硅层膜,一道PVD镀膜工序即可实现掺杂。相比于用气体硅烷通过LPCVD镀膜再用离子注入方法加入掺杂元素,本发明具有工艺简单、成本低且使用安全性高的优点。

Description

一种掺杂非晶硅的靶材及太阳能电池制备方法
技术领域
本发明涉及一种太阳能电池制备技术领域,特别涉及一种用于太阳能电池原位掺杂非晶硅的靶材制备方法,以及基于制备的靶材进行原位掺杂非晶硅的太阳能电池制备方法。
背景技术
太阳能电池是一种能将太阳能转换成电能的半导体装置,高效太阳能电池是降低利用太阳能发电的成本的有效途径。
其中,晶硅太阳能电池利用晶硅基底,经过类似半导体技术进行表面处理形成太阳能电池,以N型硅为基底的太阳能电池有发电效率高,衰减小等优点,但是需要有效钝化表面,一般钝化膜都是绝缘体,无法让载流子通过。
TOPCon电池用一层超薄氧化硅膜生长在洁净硅片表面,再在氧化硅上生长一层掺杂非晶硅,根据收集载流子的类型,对应收集电子或空穴,对于掺杂元素分布是磷或硼。由于掺杂产生的场效应,在氧化硅和本底硅之间排斥少数载流子,从而产生钝化表面的作用,同时氧化硅厚度做到1nm左右时,多数载流子可以“隧道效应”的方式穿透氧化硅层并进入掺杂非晶硅层,从而实现多数载流子的收集效果。掺杂的浓度越高,钝化效果越好,同时对多数载流子的导电性越好。这种钝化+选择性穿透的效果被认为是提高太阳能转换效率的有效途径。
实现掺杂的非晶硅,目前的方法是先把硅片放置在合适的温度下通过硅烷的分解在表面上形成非晶硅层(LPCVD),然后再通过另一种离子注入设备把磷或硼原子注入到非晶硅层里,再经过高温退火,使非晶硅转换成多晶硅,同时原来离子注入的没有均匀分布的掺杂元素在高温下进行再扩散而实现均匀分布。
在LPCVD镀膜过程中,硅片的另一面需要保护起来以避免镀膜,唯一的方法是镀膜时把两块硅片背靠背叠在一起,这种方法虽然简单,但无法避免另一面会有一定的渗透而镀上一层薄膜,需要在高温退火前增加一道清洗工艺把它去除掉。所以,用LPCVD生长非晶硅,再加离子注入的方法制备掺杂多晶硅,其缺点是需要4道工序以及4台独立的设备来完成,具有投入成本高、工艺复杂、高温镀膜耗能高、硅烷利用率低等缺点。
利用PVD真空溅射硅靶形成非晶硅是一种常用的方法,如果硅靶材里预先掺磷,就可以在PVD真空溅射产生掺杂非晶硅。但是目前市场能够做成圆柱形靶材的硅靶都是通过拉晶法形成的,这种靶材不仅成本高,而且掺杂的浓度受到限制。
发明内容
为解决上述技术问题,本发明提供了一种掺杂非晶硅的靶材制备方法,包括如下步骤:
1)预先把高纯硅粉料和掺杂元素按需求比例混合;
2)将基于步骤1)得到的混合物料转移到真空高温密封炉里生成硅和掺杂元素的合金,冷却取出后进行粉碎,清洗并筛选一定颗粒大小的粉末;
3)将基于步骤2)获得的粉末经过高温电弧喷枪用氩气等惰性气体作为载气喷射到作为基底的钢管上,从而获得均匀分布在钢管上的合金靶材。
其中,步骤1)中,高纯硅粉料的纯度≥99.99%,掺杂元素为磷元素或者硼元素。
其中,步骤2)中,获得的粉末粒径为50~200um。
其中,步骤3)中,钢管在喷镀过程中多次反复旋转平移,合金靶材的厚度为3~10mm;其中,钢管的直径为50~300mm,长度为1000~4000mm;获得的靶材中掺杂元素的质量百分比含量为0.1~1.5%,且靶材中含氧量≤2000ppm,含氮量≤300ppm。
本发明还提供了另一种掺杂非晶硅的靶材制备方法,包括如下步骤:
1)预先把高纯硅粉料和掺杂元素按需求比例混合;
2)用喷镀法把混合后的物料喷到靶芯表面形成合金靶材。
其中,步骤1)中,高纯硅粉料的大小为:50~200目,纯度≥99.99%;掺杂元素为磷元素或者硼元素:大小为50~200目,纯度≥99.9%;且高纯硅粉料和掺杂元素混合后进行研磨均匀。
其中,步骤2)中,靶芯为钢管或钛钢管,靶芯直径为50~300mm,长度为1000~4000mm;喷镀厚度为3~10mm;获得的靶材中掺杂元素的质量百分比含量为0.1~1.5%,且靶材中含氧量≤2000ppm,含氮量≤300ppm。
其中,步骤2)中,喷镀时,把高温高压氩气和混合粉料混合,通过喷嘴喷出融熔态的液态粉并在靶芯表面形成合金靶材。
本发明还提供了一种掺杂非晶硅的太阳能电池制备方法,其基于上述任一方法获得的靶材,并采用PVD方法完成掺杂非晶硅镀膜,以在硅片表面形成原位掺杂非晶硅。
通过上述技术方案,本发明通过制备一种预先混合好掺杂元素的硅靶,并利用PVD方法完成掺杂非晶硅镀膜,在PVD镀膜过程中可以直接在硅片表面形成原位掺杂非晶硅;而且,根据掺杂浓度的需要,通过在硅靶里掺入相应浓度的磷元素或硼元素用于TOPCon掺杂非晶硅层膜,一道PVD镀膜工序即可实现掺杂。相比用气体硅烷通过LPCVD镀膜再用离子注入方法加入掺杂元素,本发明具有工艺简单、成本低且使用安全性高的优点。
具体实施方式
下面将对本发明实施例中的技术方案进行清楚、完整地描述。
实施例1:
本发明提供了一种掺杂非晶硅的靶材制备方法,包括如下步骤:
1)预先把高纯硅粉料和掺杂元素按需求比例混合;其中,高纯硅粉料的纯度≥99.99%,掺杂元素为磷元素或者硼元素;
2)将基于步骤1)得到的混合物料转移到真空高温密封炉里生成硅和掺杂元素的合金,冷却取出后进行粉碎,清洗并筛选一定颗粒大小的粉末;其中,获得的粉末粒径为50~200um;
3)将基于步骤2)获得的粉末经过高温电弧喷枪用氩气等惰性气体作为载气喷射到作为基底的钢管上,从而获得均匀分布在钢管上的合金靶材;其中,钢管在喷镀过程中多次反复旋转平移,合金靶材的厚度为3~10mm;其中,钢管的直径优选为135mm,长度根据PVD镀膜设备的宽度来决定,越长的靶材可以一次覆盖更多硅片,使镀膜生成硅片的产能提升,长度范围为1000~4000mm;获得的靶材中掺杂元素的质量百分比含量为0.1~1.5%,且靶材中含氧量≤2000ppm,含氮量≤300ppm。
实施例2:
本发明提供了一种掺杂非晶硅的靶材制备方法,包括如下步骤:
1)预先把高纯硅粉料和掺杂元素按需求比例混合;其中,高纯硅粉料的大小为:50~200目,纯度≥99.99%;掺杂元素为磷元素或者硼元素:大小为50~200目,纯度≥99.9%;且高纯硅粉料和掺杂元素混合后进行研磨均匀;
2)用喷镀法把混合后的物料喷到靶芯表面形成合金靶材;其中,靶芯为钢管或钛钢管,靶芯直径为50~300mm,长度根据PVD镀膜设备的宽度来决定,越长的靶材可以一次覆盖更多硅片,使镀膜生成硅片的产能提升,长度范围为1000~4000mm;喷镀厚度为3~10mm;获得的靶材中掺杂元素的质量百分比含量为0.1~1.5%,且靶材中含氧量≤2000ppm,含氮量≤300ppm;喷镀时,把高温高压氩气和混合粉料混合,通过喷嘴喷出融熔态的液态粉并在靶芯表面形成合金靶材。
实施例3:
本发明提供了一种掺杂非晶硅的太阳能电池制备方法,其基于实施例1或2获得的靶材,并采用PVD方法完成掺杂非晶硅镀膜,以在硅片表面形成原位掺杂非晶硅。
本发明通过制备一种预先混合好掺杂元素的硅靶,并利用PVD方法完成掺杂非晶硅镀膜,在PVD镀膜过程中可以直接在硅片表面形成原位掺杂非晶硅;而且,根据掺杂浓度的需要,通过在硅靶里掺入相应浓度的磷元素或硼元素用于TOPCon掺杂非晶硅层膜,一道PVD镀膜工序即可实现掺杂。相比于用气体硅烷LPCVD工艺镀膜再用离子注入工艺加入掺杂元素,本发明具有工艺简单、成本低且使用安全性高的优点。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对上述实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (9)

1.一种掺杂非晶硅的靶材制备方法,其特征在于,包括如下步骤:
1)预先把高纯硅粉料和掺杂元素按需求比例混合;
2)将基于步骤1)得到的混合物料转移到真空高温密封炉里生成硅和掺杂元素的合金,冷却取出后进行粉碎,清洗并筛选一定颗粒大小的粉末;
3)将基于步骤2)获得的粉末经过高温电弧喷枪用氩气等惰性气体作为载气喷射到作为基底的钢管上,从而获得均匀分布在钢管上的合金靶材。
2.根据权利要求1所述的一种掺杂非晶硅的靶材制备方法,其特征在于,步骤1)中,高纯硅粉料的纯度≥99.99%,掺杂元素为磷元素或者硼元素。
3.根据权利要求1所述的一种掺杂非晶硅的靶材制备方法,其特征在于,步骤2)中,获得的粉末粒径为50~200um。
4.根据权利要求3所述的一种掺杂非晶硅的靶材制备方法,其特征在于,步骤3)中,钢管在喷镀过程中多次反复旋转平移,合金靶材的厚度为3~10mm;其中,钢管的直径为50~300mm,长度为1000~4000mm;获得的靶材中掺杂元素的质量百分比含量为0.1~1.5%,且靶材中含氧量≤2000ppm,含氮量≤300ppm。
5.一种掺杂非晶硅的靶材制备方法,其特征在于,包括如下步骤:
1)预先把高纯硅粉料和掺杂元素按需求比例混合;
2)用喷镀法把混合后的物料喷到靶芯表面形成合金靶材。
6.根据权利要求5所述的一种掺杂非晶硅的靶材制备方法,其特征在于,步骤1)中,高纯硅粉料的大小为:50~200目,纯度≥99.99%;掺杂元素为磷元素或者硼元素:大小为50~200目,纯度≥99.9%;且高纯硅粉料和掺杂元素混合后进行研磨均匀。
7.根据权利要求5所述的一种掺杂非晶硅的靶材制备方法,其特征在于,步骤2)中,靶芯为钢管或钛钢管,靶芯直径为50~300mm,长度为1000~4000mm;喷镀厚度为3~10mm;获得的靶材中掺杂元素的质量百分比含量为0.1~1.5%,且靶材中含氧量≤2000ppm,含氮量≤300ppm。
8.根据权利要求5所述的一种掺杂非晶硅的靶材制备方法,其特征在于,步骤2)中,喷镀时,把高温高压氩气和混合粉料混合,通过喷嘴喷出融熔态的液态粉并在靶芯表面形成合金靶材。
9.一种掺杂非晶硅的太阳能电池制备方法,其特征在于,基于权利要求1~8任一项获得的靶材,并采用PVD方法完成掺杂非晶硅镀膜,以在硅片表面形成原位掺杂非晶硅。
CN201911346159.8A 2019-12-24 2019-12-24 一种掺杂非晶硅的靶材及太阳能电池制备方法 Pending CN111074217A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911346159.8A CN111074217A (zh) 2019-12-24 2019-12-24 一种掺杂非晶硅的靶材及太阳能电池制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911346159.8A CN111074217A (zh) 2019-12-24 2019-12-24 一种掺杂非晶硅的靶材及太阳能电池制备方法

Publications (1)

Publication Number Publication Date
CN111074217A true CN111074217A (zh) 2020-04-28

Family

ID=70317250

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911346159.8A Pending CN111074217A (zh) 2019-12-24 2019-12-24 一种掺杂非晶硅的靶材及太阳能电池制备方法

Country Status (1)

Country Link
CN (1) CN111074217A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359320A (zh) * 2020-10-22 2021-02-12 江苏杰太光电技术有限公司 一种用于制备掺杂非晶硅薄膜的气源
WO2023285639A1 (en) * 2021-07-16 2023-01-19 Soleras Advanced Coatings Bv Conductive silicon sputtering targets

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064853A2 (en) * 2001-02-12 2002-08-22 Asm America, Inc. Thin films and methods of making them using trisilane
CN104775097A (zh) * 2014-09-15 2015-07-15 厦门映日新材料科技有限公司 一种低电阻率微硼掺杂旋转溅射硅靶材及其制备方法
CN104911541A (zh) * 2015-06-24 2015-09-16 大连大学 一种磷掺杂多晶硅薄膜及其制备方法
CN105637114A (zh) * 2014-04-17 2016-06-01 三菱综合材料株式会社 溅射靶及溅射靶的制造方法
CN106425156A (zh) * 2016-07-14 2017-02-22 宁波诺迈特新材料科技有限公司 药芯焊丝及其用途、熔敷金属及涂层

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002064853A2 (en) * 2001-02-12 2002-08-22 Asm America, Inc. Thin films and methods of making them using trisilane
CN105637114A (zh) * 2014-04-17 2016-06-01 三菱综合材料株式会社 溅射靶及溅射靶的制造方法
CN104775097A (zh) * 2014-09-15 2015-07-15 厦门映日新材料科技有限公司 一种低电阻率微硼掺杂旋转溅射硅靶材及其制备方法
CN104911541A (zh) * 2015-06-24 2015-09-16 大连大学 一种磷掺杂多晶硅薄膜及其制备方法
CN106425156A (zh) * 2016-07-14 2017-02-22 宁波诺迈特新材料科技有限公司 药芯焊丝及其用途、熔敷金属及涂层

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
莲井淳: "《喷镀技术》", 30 September 1978 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112359320A (zh) * 2020-10-22 2021-02-12 江苏杰太光电技术有限公司 一种用于制备掺杂非晶硅薄膜的气源
WO2023285639A1 (en) * 2021-07-16 2023-01-19 Soleras Advanced Coatings Bv Conductive silicon sputtering targets
BE1029590B1 (nl) * 2021-07-16 2023-02-14 Soleras Advanced Coatings Jiangyin Co Ltd Geleidende sputterdoelen van silicium

Similar Documents

Publication Publication Date Title
US11133481B2 (en) Method for manufacturing solar cell
JP4829211B2 (ja) 結晶シリコンからなる太陽電池への高速水素パッシベーションの方法
US20110297227A1 (en) Hetero solar cell and method for producing hetero solar cells
TW200913292A (en) Multi-junction solar cells and methods and apparatuses for forming the same
US8124502B2 (en) Semiconductor device manufacturing method, semiconductor device and semiconductor device manufacturing installation
US9105803B2 (en) Polycrystalline-type solar cell panel and process for production thereof
JP2004186320A (ja) シリコン膜形成用組成物および太陽電池
US20130160849A1 (en) Polycrystalline silicon solar cell panel and manufacturing method thereof
WO2022037289A1 (zh) 钝化接触电池及制备方法和钝化接触结构制备方法及装置
JP2012506629A (ja) 半導体デバイス製造方法、半導体デバイス、及び半導体デバイス製造設備
CN111074217A (zh) 一种掺杂非晶硅的靶材及太阳能电池制备方法
CN103866277B (zh) 一种原子层沉积制备双受主共掺氧化锌薄膜的方法
CN102255006B (zh) 一种厚膜太阳能电池的制备方法
TW200824140A (en) Methods and systems for manufacturing polycrystalline silicon and silicon-germanium solar cells
Jeong et al. Lifetime enhancement in EFG multicrystalline silicon [solar cells]
CN115020536A (zh) 一种ibc电池图形化p区制备方法
CN101997058A (zh) 一种晶体硅太阳能电池选择性发射极结构的制备方法
JP5351132B2 (ja) 多結晶型シリコン太陽電池パネルの製造方法
JP2011519158A (ja) シリコン系薄膜太陽電池の製造方法
JP5083957B2 (ja) 太陽電池の製造方法
CN110718604A (zh) P型晶硅太阳能电池的背场及背钝化层制备方法
EP2426136B1 (en) Use of trialkylaluminum for the growth of Al2O3 thin films for photovoltaic applications
Li et al. Comparative study of PECVD deposited a-Si: H/SiNx: H double passivating layer on CZ crystalline si substrate
JP2675174B2 (ja) 太陽電池の製造方法
CN117219690A (zh) 基于掺氮多晶硅钝化接触的TOPCon光伏电池及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200428

RJ01 Rejection of invention patent application after publication