CN110890531B - 负极材料及包含其的电化学装置和电子装置 - Google Patents
负极材料及包含其的电化学装置和电子装置 Download PDFInfo
- Publication number
- CN110890531B CN110890531B CN201911114925.8A CN201911114925A CN110890531B CN 110890531 B CN110890531 B CN 110890531B CN 201911114925 A CN201911114925 A CN 201911114925A CN 110890531 B CN110890531 B CN 110890531B
- Authority
- CN
- China
- Prior art keywords
- anode material
- negative electrode
- carbon
- layer
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/386—Silicon or alloys based on silicon
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/483—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides for non-aqueous cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/628—Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Composite Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
本申请涉及负极材料及包含其的电化学装置和电子装置。本申请负极材料包括硅复合物基体,所述硅复合物基体的DV50的范围为2.5μm‑15μm,且所述硅复合物基体的粒径分布满足:0.1≤Dn10/Dv50≤0.6。本申请负极材料具有良好的循环性能,同时由该负极材料制备的电池具有较好的倍率性能和较低的膨胀率。
Description
技术领域
本申请涉及储能领域,具体涉及一种负极材料及包含其的电化学装置和电子装置,特别是锂离子电池。
背景技术
随着消费电子类的产品如笔记本电脑、手机、平板电脑、移动电源和无人机等的普及,对其中的电化学装置的要求越来越严格。例如,不仅要求电池轻便,而且还要求电池拥有高容量和较长的工作寿命。锂离子电池凭借其具有能量密度高、安全性高、无记忆效应和工作寿命长等突出的优点已经在市场上占据主流地位。
发明内容
本申请实施例提供了一种负极材料以及制备该负极材料的方法,以试图在至少某种程度上解决至少一种存在于相关领域中的问题。本申请实施例还提供了使用该负极材料的负极、电化学装置以及电子装置。
在一个实施例中,本申请提供了一种负极材料,所述负极材料包括硅复合物基体,所述硅复合物基体的DV50的范围为约2.5μm-15μm,且所述硅复合物基体的粒径分布满足:约0.1≤Dn10/Dv50≤约0.6。
在另一个实施例中,本申请提供一种负极,其包括根据本申请的实施例所述的负极材料。
在另一个实施例中,本申请提供一种电化学装置,其包括根据本申请的实施例所述的负极。
在另一个实施例中,本申请提供一种电子装置,其包括根据本申请的实施例所述的电化学装置。
本发明的负极活性材料具有良好的循环性能,同时由该负极活性材料制备的锂离子电池具有较好的倍率性能和较低的膨胀率。
本申请实施例的额外层面及优点将部分地在后续说明中描述和显示,或是经由本申请实施例的实施而阐释。
附图说明
在下文中将简要地说明为了描述本申请实施例或现有技术所必要的附图以便于描述本申请的实施例。显而易见地,下文描述中的附图仅只是本申请中的部分实施例。对本领域技术人员而言,在不需要创造性劳动的前提下,依然可以根据这些附图中所例示的结构来获得其他实施例的附图。
图1示出了本申请实施例2的负极活性材料的体积基准粒度分布曲线。
图2示出了本申请对比例2的负极活性材料的体积基准粒度分布曲线。
图3示出了本申请一个实施例的负极活性材料的结构示意图。
图4示出了本申请另一个实施例的负极活性材料的结构示意图。
图5示出了本申请的实施例25的负极活性材料的X射线衍射(XRD)图。
图6示出了本申请的对比例3的负极活性材料的X射线衍射(XRD)图。
图7示出了本申请实施例25的负极活性材料的扫描电子显微镜(SEM)图片。
图8示出了本申请对比例3的负极活性材料的扫描电子显微镜(SEM)图片。
具体实施方式
本申请的实施例将会被详细的描示在下文中。本申请的实施例不应该被解释为对本申请的限制。
如本申请中所使用,术语“约”用以描述及说明小的变化。当与事件或情形结合使用时,所述术语可指代其中事件或情形精确发生的例子以及其中事件或情形极近似地发生的例子。举例来说,当结合数值使用时,术语可指代小于或等于所述数值的±10%的变化范围,例如小于或等于±5%、小于或等于±4%、小于或等于±3%、小于或等于±2%、小于或等于±1%、小于或等于±0.5%、小于或等于±0.1%、或小于或等于±0.05%。
在本申请中,Dv50为负极活性材料累计体积百分数达到50%时所对应的粒径,单位为μm。
在本申请中,Dn10为负极活性材料累计数量百分数达到10%时所对应的粒径,单位为μm。
在本申请中,硅复合物包含硅单质、硅化合物、硅单质与硅化合物的混合物或不同硅化物的混合物。
另外,有时在本文中以范围格式呈现量、比率和其它数值。应理解,此类范围格式是用于便利及简洁起见,且应灵活地理解,不仅包含明确地指定为范围限制的数值,而且包含涵盖于所述范围内的所有个别数值或子范围,如同明确地指定每一数值及子范围一般。
在具体实施方式及权利要求书中,由术语“中的一者”、“中的一个”、“中的一种”或其他相似术语所连接的项目的列表可意味着所列项目中的任一者。例如,如果列出项目A及B,那么短语“A及B中的一者”意味着仅A或仅B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的一者”意味着仅A;仅B;或仅C。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
在具体实施方式及权利要求书中,由术语“中的至少一者”、“中的至少一个”、“中的至少一种”或其他相似术语所连接的项目的列表可意味着所列项目的任何组合。例如,如果列出项目A及B,那么短语“A及B中的至少一者”意味着仅A;仅B;或A及B。在另一实例中,如果列出项目A、B及C,那么短语“A、B及C中的至少一者”意味着仅A;或仅B;仅C;A及B(排除C);A及C(排除B);B及C(排除A);或A、B及C的全部。项目A可包含单个元件或多个元件。项目B可包含单个元件或多个元件。项目C可包含单个元件或多个元件。
一、负极材料
本申请实施例提供了一种负极材料,所述负极材料包括硅复合物基体,所述硅复合物基体的DV50的范围为2.5μm-15μm,且所述硅复合物基体的粒径分布满足:0.1≤Dn10/Dv50≤0.6。
在一些实施例中,所述硅复合物基体的DV50的范围为约2.5μm-15μm。在一些实施例中,所述硅复合物基体的DV50的范围为约2.5μm-10μm。在一些实施例中,所述硅复合物基体的DV50的范围为约3μm-9μm。在一些实施例中,所述硅复合物基体的DV50的范围为约4μm-7μm。
在一些实施例中,所述硅复合物基体的粒径分布满足约0.3≤Dn10/Dv50≤约0.5。在一些实施例中,所述硅复合物基体的粒径分布满足约Dn10/Dv50为约0.35或约0.4。
在一些实施例中,所述硅复合物基体包含含硅物质,其中,所述硅复合物基体中的所述含硅物质与所述负极材料中除了所述含硅物质以外的其它物质中的一种或多种可形成复合物。在一些实施例中,所述硅复合物基体包含能嵌入和脱出锂离子的粒子。
在一些实施例中,所述硅复合物基体包括SiOx,且约0.6≤x≤约1.5。
在一些实施例中,所述硅复合物基体包括纳米Si晶粒、SiO、SiO2或其任意组合。
在一些实施例中,所述纳米Si晶粒的尺寸为小于约100nm。在一些实施例中,所述纳米Si晶粒的尺寸为小于约50nm。在一些实施例中,所述纳米Si晶粒的尺寸为小于约20nm。在一些实施例中,所述纳米Si晶粒的尺寸为小于约5nm。在一些实施例中,所述纳米Si晶粒的尺寸为小于约2nm。在一些实施例中,所述纳米Si晶粒的尺寸为小于约0.5nm
在一些实施例中,所述负极材料进一步包含氧化物MeOy层,所述氧化物MeOy层包覆所述硅复合物基体的至少一部分,其中Me包括Al、Si、Ti、Mn、V、Cr、Co或Zr中的至少一种,其中y为约0.5-3;且其中所述氧化物MeOy层包含碳材料。
在一些实施例中,所述氧化物MeOy包括Al2O3、SiO2、TiO2、Mn2O3、MnO2、CrO3、Cr2O3、CrO2、V2O5、VO、CoO、Co2O3、Co3O4、ZrO2或其任意组合。
在一些实施例中,所述氧化物MeOy层中的碳材料包含无定形碳、碳纳米管、碳纳米颗粒、碳纤维、石墨烯或其任意组合。在一些实施例中,所述无定形碳为碳前驱体经过高温烧结后得到的碳材料。在一些实施例中,所述碳前驱体包括聚乙烯吡咯烷酮、羧甲基纤维素钠、聚乙烯醇、聚丙烯、酸酚醛树脂、聚酯树脂、聚酰胺树脂、环氧树脂、聚氨酯、聚丙烯酸树脂或其任意组合。
在一些实施例中,所述氧化物MeOy层的厚度为约1nm-1000nm。在一些实施例中,所述氧化物MeOy层的厚度为约10nm-900nm。在一些实施例中,所述氧化物MeOy层的厚度为约20nm-800nm。在一些实施例中,所述氧化物MeOy层的厚度为约1nm-20nm。在一些实施例中,所述氧化物MeOy层的厚度为约2nm、约5nm、约10nm、约15nm、约20nm或约50nm。
在一些实施例中,基于所述负极材料的总重量,Me元素的重量百分比为约0.01wt%-1wt%。在一些实施例中,基于所述负极材料的总重量,Me元素的重量百分比为约0.02wt%-1wt%。在一些实施例中,基于所述负极材料的总重量,Me元素的重量百分比为约0.03wt%-0.9wt%。在一些实施例中,基于所述负极材料的总重量,Me元素的重量百分比为约0.05wt%、约0.1wt%、约0.2wt%、约0.3wt%、约0.4wt%、约0.5wt%、约0.6wt%、约0.7wt%或约0.8wt%。
在一些实施例中,基于所述负极材料的总重量,所述氧化物MeOy层中碳材料的重量百分比为约0.05wt%-1wt%。在一些实施例中,基于所述负极材料的总重量,所述氧化物MeOy层中碳材料的重量百分比为约0.1wt%-0.8wt%。在一些实施例中,基于所述负极材料的总重量,所述氧化物MeOy层中碳材料的重量百分比为约0.2wt%-0.7wt%。在一些实施例中,基于所述负极材料的总重量,所述氧化物MeOy层中碳材料的重量百分比为约0.3wt%、约0.4wt%、约0.5wt%、约0.6wt%、约0.7wt%或约0.8wt%。
在一些实施例中,所述负极材料进一步包括聚合物层,所述聚合物层包覆所述氧化物MeOy层的至少一部分,并且所述聚合物层包含碳材料。
在一些实施例中,所述聚合物层包含聚偏氟乙烯及其衍生物、羧甲基纤维素及其衍生物、羧甲基纤维素钠及其衍生物、聚乙烯基吡咯烷酮及其衍生物、聚丙烯酸及其衍生物、聚丁苯橡胶、聚丙烯酰胺、聚酰亚胺、聚酰胺酰亚胺或其任意组合。
在一些实施例中,所述聚合物层中的碳材料包含碳纳米管、碳纳米颗粒、碳纤维、石墨烯或其任意组合。
在一些实施例中,基于所述负极材料的总重量,所述聚合物层的重量百分比为约0.1-10wt%。在一些实施例中,基于所述负极材料的总重量,所述聚合物层的重量百分比为约0.2-8wt%。在一些实施例中,基于所述负极材料的总重量,所述聚合物层的重量百分比为约0.3-7wt%。在一些实施例中,基于所述负极材料的总重量,所述聚合物层的重量百分比为约1wt%、约1.5wt%、约2wt%、约4wt%、约5wt%或约6wt%。
在一些实施例中,所述聚合物层的厚度为约2nm-100nm。在一些实施例中,所述聚合物层的厚度为约10nm-90nm。在一些实施例中,所述聚合物层的厚度为约15nm-80nm。在一些实施例中,所述聚合物层的厚度为约5nm、约20nm、约25nm、约45nm、约55nm或约75nm。
在一些实施例中,所述负极材料的比表面积为约1-50m2/g。在一些实施例中,所述负极材料的比表面积为约1-30m2/g。在一些实施例中,所述负极材料的比表面积为约1-10m2/g。在一些实施例中,所述负极材料的比表面积为约1m2/g、约5m2/g或约10m2/g。
在一些实施例中,所述负极材料在X射线衍射图案中2θ归属于约27.0°-30.0°范围内最高强度数值为I2,归属于约20.0°-22.0°范围内最高强度数值为I1,其中约0<I2/I1≤约1。
在一些实施例中,所述负极材料在X射线衍射图案中2θ归属于约28.4°最高强度数值为I2,归属于约21.0°范围内最高强度数值为I1,其中约0.1<I2/I1≤约1。在一些实施例中,I2/I1为0.2、0.4或0.5。
二、负极材料的制备方法
本申请实施例提供了一种制备上述任一种负极材料的方法,所述方法包括:对硅氧化物SiOx进行分级得到粒径分布满足如下条件的负极材料:0.1≤Dn10/Dv50≤0.6,其中0.6≤x≤1.5。
在一些实施例中,所述分级方法包括气流分级。
在一些实施例中,所述方法进一步包括包覆氧化物MeOy层的步骤,所述包覆氧化物MeOy层的步骤包括:
(1)将上述经分级后得到的固体、碳前驱体和氧化物前驱体MeTn在有机溶剂和去离子水的存在下形成混合溶液;
(2)干燥所述混合溶液得到粉末;以及
(3)将所述粉末在约200-900℃下烧结约0.5-20h得到表面具有氧化物MeOy层的负极材料;
其中y为约0.5-3,
其中Me包括Al、Si、Ti、Mn、Cr、V、Co或Zr中的至少一种,
其中T包括甲氧基、乙氧基、异丙氧基或卤素中的至少一种,且
其中n为1、2、3或4。
在一些实施例中,所述氧化物前驱体MeTn包括钛酸异丙酯、异丙醇铝或其组合。
在一些实施例中,所述碳材料包含无定形碳、碳纳米管、碳纳米颗粒、碳纤维、石墨烯或其任意组合。在一些实施例中,所述无定形碳为碳前驱体经过高温烧结后得到的碳材料。在一些实施例中,所述碳前驱体包括聚乙烯吡咯烷酮、羧甲基纤维素钠、聚乙烯醇、聚丙烯、酸酚醛树脂、聚酯树脂、聚酰胺树脂、环氧树脂、聚氨酯、聚丙烯酸树脂或其任意组合。
在一些实施例中,烧结温度为约250-800℃。在一些实施例中,烧结温度为约300-700℃。在一些实施例中,烧结温度为约400℃、约500℃或约600℃。
在一些实施例中,烧结时间为约1-18h。在一些实施例中,烧结时间为约1-16h。在一些实施例中,烧结时间为约1-12h。在一些实施例中,烧结时间为约1.5-6h。在一些实施例中,烧结时间为约1.5h、约2.5h、约3.5h、约5h或约6.5h。
在一些实施例中,所述有机溶剂包括如下溶剂中的至少一种:乙醇、甲醇、正己烷、N,N-二甲基甲酰胺、吡咯烷酮、丙酮、甲苯、异丙醇或正丙醇。在一些实施例中,所述有机溶剂为乙醇。
在一些实施例中,卤素包括F、Cl、Br或其组合。
在一些实施例中,烧结是在惰性气体保护下进行。在一些实施例中,所述惰性气体包括氮气、氩气或其组合。
在一些实施例中,干燥为喷雾干燥,干燥温度为约100-300℃。
在一些实施例中,所述方法进一步包括包覆聚合物层的步骤,所述包覆聚合物层的步骤包括:
(1)将上述经分级后得到的固体或表面具有氧化物MeOy层的负极材料与碳材料和聚合物在溶剂中高速分散1-15h得到悬浮液;和
(2)去除所述悬浮液中的溶剂。
在一些实施例中,所述聚合物包括聚偏氟乙烯及其衍生物、羧甲基纤维素及其衍生物、羧甲基纤维素钠及其衍生物、聚乙烯基吡咯烷酮及其衍生物、聚丙烯酸及其衍生物、聚丁苯橡胶、聚丙烯酰胺、聚酰亚胺、聚酰胺酰亚胺或其任意组合。
在一些实施例中,所述碳材料包含碳纳米管、碳纳米颗粒、碳纤维、石墨烯或其任意组合。
在一些实施例中,所述溶剂包含水、乙醇、甲醇、四氢呋喃、丙酮、三氯甲烷、N-甲基吡咯烷酮、二甲基甲酰胺、二甲基乙酰胺、甲苯、二甲苯或其任意组合。
在一些实施例中,所述硅氧化物SiOx可以是商业硅氧化物,也可以是根据本发明的方法制备得到的硅氧化物SiOx,其中根据本发明的方法制备得到的硅氧化物SiOx在X射线衍射图案中2θ归属于约27.0°-30.0°范围内最高强度数值为I2,归属于约20.0°-22.0°范围内最高强度数值为I1,其中约0<I2/I1≤约1。在一些实施例中,I2/I1为约0.2、约0.4或约0.5。
本发明中满足约0<I2/I1≤约1的硅氧化物SiOx的制备方法包括:
(1)将二氧化硅与金属硅粉末以摩尔比约1:6-6:1混合得到混合材料;
(2)在约10-4-10-1kPa压力范围下,在约1100-1800℃的温度范围内加热所述混合材料约1-25h获得气体;
(3)冷凝获得的所述气体得到固体;
(4)粉碎和筛分所述固体;以及
(5)在约400-1500℃的范围内热处理所述固体约0.5-24h,冷却经热处理的所述固体后得到满足约0<I2/I1≤约1的硅氧化物SiOx。
在一些实施例中,所述二氧化硅与金属硅粉末的摩尔比为约1:4-4:1。在一些实施例中,所述二氧化硅与金属硅粉末的摩尔比为约1:3-3:1。在一些实施例中,所述二氧化硅与金属硅粉末的摩尔比为约1:2-2:1。在一些实施例中,所述二氧化硅与金属硅粉末的摩尔比为约1:1、约1.5:1或约2.5:1。
在一些实施例中,所述压力范围为约10-4-10-1kPa。在一些实施例中,所述压力为约1Pa、约10Pa、约20Pa、约30Pa、约40Pa、约50Pa、约60Pa、约70Pa、约80Pa、约90Pa或者约100Pa。
在一些实施例中,所述加热温度为约1100-1500℃。在一些实施例中,所述加热温度为约1150℃、约1200℃、约1250℃或约1400℃。
在一些实施例中,所述加热时间为约1-20h。在一些实施例中,所述加热时间为约5-15h。在一些实施例中,所述加热时间为约2h、约4h、约6h、约8h、约10h、约12h、约14h、约16h或约18h。
在一些实施例中,混合通过球磨机、V型混料机、三维混料机、气流混料机或卧式搅拌机进行。
在一些实施例中,加热和热处理是在惰性气体保护下进行。在一些实施例中,所述惰性气体包括氮气、氩气、氦气或其组合。
在一些实施例中,所述方法在筛分后进一步包括热处理的步骤。
在一些实施例中,所述热处理的时间为约500-1500℃。在一些实施例中,所述热处理的时间为约400-1200℃。在一些实施例中,所述热处理的时间为约600℃、约800℃或约1000℃。
在一些实施例中,所述热处理的时间为约1-24h。在一些实施例中,所述热处理的时间为约2-12h。在一些实施例中,所述热处理的时间为约5h、约10h或约15h。
图1为实施例2的负极活性材料的体积基准粒度分布曲线。由图1可以看出实施例2的负极活性材料颗粒粒度分布比较均匀,且分布比较窄。由实施例2的负极活性材料制备的锂离子电池显示出较为满意的循环性能和抗膨胀性能。
图2为对比例2的负极活性材料的体积基准粒度分布曲线。从图2中可以看出对比例2的负极活性材料存在一定数目的小颗粒,因此循环性能较差。小细颗粒的存在会加速电解液对颗粒的刻蚀从而加快恶化循环性能。另一方面由于小颗粒快速的被电解液刻蚀,其表面产生大量的副产物,因此由其制备的锂离子电池的抗膨胀性能相比于由对比例2的负极活性材料制备的锂离子电池的抗膨胀性能较差。
图3示出了本申请一个实施例的负极活性材料的结构示意图。其中内层1为硅复合物基体,外层2为包含碳材料的氧化物MeOy层。
包覆所述硅复合物基体的氧化物MeOy层可以起到HF捕捉剂的作用,所述氧化物可与电解液中的HF反应而降低循环过程中电解液中HF的含量,降低HF对硅材料表面的刻蚀,从而进一步提升材料的循环性能。氧化物MeOy层中掺杂碳材料有利于在首次充放电过程中嵌锂后形成锂离子导体,有利于实现离子的导通。另外,氧化物MeOy层中掺杂一定量碳可以增强负极活性材料的导电性。
图4示出了本申请另一个实施例的负极活性材料的结构示意图。其中内层1为硅复合物基体,中间层2为包含碳材料的氧化物MeOy层,外层3为包含碳材料的聚合物层。本申请的负极活性材料也可以仅具有硅复合物基体和聚合物层,而不具有MeOy层。即,本申请的聚合物层可直接包覆于硅复合物基体的表面。
含有碳纳米管(CNT)的聚合物层包覆在负极活性材料的表面,可以利用聚合物将CNT束缚在负极活性材料表面,有利于提升CNT在负极活性材料表面的界面稳定性,从而提升其循环性能。
图5示出了本申请的实施例25的负极活性材料的X射线衍射(XRD)图。由图5可以看出,该负极活性材料在X射线衍射图案中2θ归属于28.0°-29.0°范围内最高强度数值为I2,归属于20.5°-21.5°范围内最高强度数值为I1,其中0<I2/I1≤1。I2/I1数值的大小反应了材料受到歧化的影响程度。I2/I1值越大,负极活性材料内部的纳米硅晶粒的尺寸越大。当I2/I1值大于1时,负极活性材料在嵌锂过程中会导致局部区域的应力急剧增大,从而导致负极活性材料在循环过程中结构衰退。另外由于产生纳米晶分布,在离子扩散过程中晶界扩散的能力会受到影响。本申请发明人发现,当I2/I1数值满足0<I2/I1≤1时,负极活性材料具有良好的循环性能,并且由其制备的锂离子电池具有良好的抗膨胀性能。
图6示出了本申请对比例3的负极活性材料的X射线衍射(XRD)图。由图6可以看出,对比例3的负极活性材料的I2/I1值明显大于1。与实施例25的负极活性材料相比,对比例3的负极活性材料的循环性能较差、由其制备的锂离子电池膨胀率较高且倍率性能较差。
图7和图8分别示出了实施例25和对比例3中的负极活性材料的扫描电子显微镜(SEM)图片。从图7和8中可以直观的看出颗粒的尺寸分布。图8显示对比例3的负极活性材料中存在一定数目的小颗粒。
三、负极
本申请实施例提供了一种负极。所述负极包括集流体和位于该集流体上的负极活性材料层。所述负极活性材料层包括根据本申请实施例的负极材料。
在一些实施例中,负极活性材料层包括粘合剂。在一些实施例中,粘合剂包括,但不限于:聚乙烯醇、羧甲基纤维素、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙。
在一些实施例中,负极活性材料层包括导电材料。在一些实施例中,导电材料包括,但不限于:天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维、金属粉、金属纤维、铜、镍、铝、银或聚亚苯基衍生物。
在一些实施例中,集流体包括,但不限于:铜箔、镍箔、不锈钢箔、钛箔、泡沫镍、泡沫铜或覆有导电金属的聚合物基底。
在一些实施例中,负极可以通过如下方法获得:在溶剂中将活性材料、导电材料和粘合剂混合,以制备活性材料组合物,并将该活性材料组合物涂覆在集流体上。
在一些实施例中,溶剂可以包括,但不限于:N-甲基吡咯烷酮。
四、正极
可用于本申请的实施例中正极的材料、构成和其制造方法包括任何现有技术中公开的技术。在一些实施例中,正极为美国专利申请US9812739B中记载的正极,其以全文引用的方式并入本申请中。
在一些实施例中,正极包括集流体和位于该集流体上的正极活性材料层。
在一些实施例中,正极活性材料包括,但不限于:钴酸锂(LiCoO2)、锂镍钴锰(NCM)三元材料、磷酸亚铁锂(LiFePO4)或锰酸锂(LiMn2O4)。
在一些实施例中,正极活性材料层还包括粘合剂,并且可选地包括导电材料。粘合剂提高正极活性材料颗粒彼此间的结合,并且还提高正极活性材料与集流体的结合。
在一些实施例中,粘合剂包括,但不限于:聚乙烯醇、羟丙基纤维素、二乙酰基纤维素、聚氯乙烯、羧化的聚氯乙烯、聚氟乙烯、含亚乙基氧的聚合物、聚乙烯吡咯烷酮、聚氨酯、聚四氟乙烯、聚偏1,1-二氟乙烯、聚乙烯、聚丙烯、丁苯橡胶、丙烯酸(酯)化的丁苯橡胶、环氧树脂或尼龙等。
在一些实施例中,导电材料包括,但不限于:基于碳的材料、基于金属的材料、导电聚合物和它们的混合物。在一些实施例中,基于碳的材料选自天然石墨、人造石墨、碳黑、乙炔黑、科琴黑、碳纤维或其任意组合。在一些实施例中,基于金属的材料选自金属粉、金属纤维、铜、镍、铝或银。在一些实施例中,导电聚合物为聚亚苯基衍生物。
在一些实施例中,集流体可以包括,但不限于:铝。
正极可以通过本领域公知的制备方法制备。例如,正极可以通过如下方法获得:在溶剂中将活性材料、导电材料和粘合剂混合,以制备活性材料组合物,并将该活性材料组合物涂覆在集流体上。在一些实施例中,溶剂可以包括,但不限于:N-甲基吡咯烷酮。
五、电解液
可用于本申请实施例的电解液可以为现有技术中已知的电解液。
在一些实施例中,所述电解液包括有机溶剂、锂盐和添加剂。根据本申请的电解液的有机溶剂可为现有技术中已知的任何可作为电解液的溶剂的有机溶剂。根据本申请的电解液中使用的电解质没有限制,其可为现有技术中已知的任何电解质。根据本申请的电解液的添加剂可为现有技术中已知的任何可作为电解液添加剂的添加剂。
在一些实施例中,所述有机溶剂包括,但不限于:碳酸乙烯酯(EC)、碳酸丙烯酯(PC)、碳酸二乙酯(DEC)、碳酸甲乙酯(EMC)、碳酸二甲酯(DMC)、碳酸亚丙酯或丙酸乙酯。
在一些实施例中,所述锂盐包括有机锂盐或无机锂盐中的至少一种。
在一些实施例中,所述锂盐包括,但不限于:六氟磷酸锂(LiPF6)、四氟硼酸锂(LiBF4)、二氟磷酸锂(LiPO2F2)、双三氟甲烷磺酰亚胺锂LiN(CF3SO2)2(LiTFSI)、双(氟磺酰)亚胺锂Li(N(SO2F)2)(LiFSI)、双草酸硼酸锂LiB(C2O4)2(LiBOB)或二氟草酸硼酸锂LiBF2(C2O4)(LiDFOB)。
在一些实施例中,所述电解液中锂盐的浓度为:约0.5-3mol/L、约0.5-2mol/L或约0.8-1.5mol/L。
六、隔离膜
在一些实施例中,正极与负极之间设有隔离膜以防止短路。可用于本申请的实施例中使用的隔离膜的材料和形状没有特别限制,其可为任何现有技术中公开的技术。在一些实施例中,隔离膜包括由对本申请的电解液稳定的材料形成的聚合物或无机物等。
例如,隔离膜可包括基材层和表面处理层。基材层为具有多孔结构的无纺布、膜或复合膜,基材层的材料选自聚乙烯、聚丙烯、聚对苯二甲酸乙二醇酯和聚酰亚胺中的至少一种。具体的,可选用聚丙烯多孔膜、聚乙烯多孔膜、聚丙烯无纺布、聚乙烯无纺布或聚丙烯-聚乙烯-聚丙烯多孔复合膜。
基材层的至少一个表面上设置有表面处理层,表面处理层可以是聚合物层或无机物层,也可以是混合聚合物与无机物所形成的层。
无机物层包括无机颗粒和粘结剂,无机颗粒选自氧化铝、氧化硅、氧化镁、氧化钛、二氧化铪、氧化锡、二氧化铈、氧化镍、氧化锌、氧化钙、氧化锆、氧化钇、碳化硅、勃姆石、氢氧化铝、氢氧化镁、氢氧化钙和硫酸钡中的一种或几种的组合。粘结剂选自聚偏氟乙烯、偏氟乙烯-六氟丙烯的共聚物、聚酰胺、聚丙烯腈、聚丙烯酸酯、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚甲基丙烯酸甲酯、聚四氟乙烯和聚六氟丙烯中的一种或几种的组合。
聚合物层中包含聚合物,聚合物的材料选自聚酰胺、聚丙烯腈、丙烯酸酯聚合物、聚丙烯酸、聚丙烯酸盐、聚乙烯呲咯烷酮、聚乙烯醚、聚偏氟乙烯或聚(偏氟乙烯-六氟丙烯)中的至少一种。
七、电化学装置
本申请的实施例提供了一种电化学装置,所述电化学装置包括发生电化学反应的任何装置。
在一些实施例中,本申请的电化学装置包括具有能够吸留、放出金属离子的正极活性物质的正极;根据本申请的实施例的负极;电解液;和置于正极和负极之间的隔离膜。
在一些实施例中,本申请的电化学装置包括,但不限于:所有种类的一次电池、二次电池、燃料电池、太阳能电池或电容。
在一些实施例中,所述电化学装置是锂二次电池。
在一些实施例中,锂二次电池包括,但不限于:锂金属二次电池、锂离子二次电池、锂聚合物二次电池或锂离子聚合物二次电池。
八、电子装置
本申请的电子装置可为任何使用根据本申请的实施例的电化学装置的装置。
在一些实施例中,所述电子装置包括,但不限于:笔记本电脑、笔输入型计算机、移动电脑、电子书播放器、便携式电话、便携式传真机、便携式复印机、便携式打印机、头戴式立体声耳机、录像机、液晶电视、手提式清洁器、便携CD机、迷你光盘、收发机、电子记事本、计算器、存储卡、便携式录音机、收音机、备用电源、电机、汽车、摩托车、助力自行车、自行车、照明器具、玩具、游戏机、钟表、电动工具、闪光灯、照相机、家庭用大型蓄电池或锂离子电容器等。
下面以锂离子电池为例并且结合具体的实施例说明锂离子电池的制备,本领域的技术人员将理解,本申请中描述的制备方法仅是实例,其他任何合适的制备方法均在本申请的范围内。
实施例
以下说明根据本申请的锂离子电池的实施例和对比例进行性能评估。
一、负极活性材料性能评估方法
1、负极活性材料粉末性质测试方法
(1)粉末颗粒微观形貌观察:利用扫面电子显微镜进行粉末微观形貌观察,表征材料表面包覆情况,所选测试仪器为:OXFORD EDS(X-max-20mm2),加速电压为15KV,调整焦距,观测倍数从50K进行高倍观察,低倍下500-2000主要观察颗粒团聚情况。
(2)比表面积测试:在恒温低温下,测定不同相对压力时的气体在固体表面的吸附量后,基于布朗诺尔-埃特-泰勒吸附理论及其公式(BET公式)求得试样单分子层吸附量,从而计算出固体的比表面积。
称取约1.5-3.5g粉末样品装入TriStar II 3020的测试样品管中,约200℃脱气120min后进行测试。
(3)粒度测试:50ml洁净烧杯中加入约0.02g粉末样品,加入约20ml去离子水,再滴加几滴1%的表面活性剂,使粉末完全分散于水中,120W超声清洗机中超声5分钟,利用MasterSizer 2000测试粒度分布。
(4)碳含量测试:样品在富氧条件下由高频炉高温加热燃烧使碳和硫分别氧化成二氧化碳和二氧化硫,该气体经处理后进入相应的吸收池,对相应的红外辐射进行吸收再由探测器转化成对应的信号。此信号由计算机采样,经线性校正后转换成与二氧化碳、二氧化硫浓度成正比的数值,然后把整个分析过程的取值累加,分析结束后,此累加值在计算机中除以重量值,再乘以校正系数,扣除空白,即可获得样品中碳、硫百分含量。利用高频红外碳硫分析仪(上海徳凯HCS-140)进行样品测试。
(5)XRD测试:称取样品1.0-2.0g倒入玻璃样品架的凹槽内,并用玻璃片将其压实和磨平,采用X射线衍射仪(布鲁克,D8)按照JJS K 0131-1996《X射线衍射分析法通则》进行测试,测试电压设置40kV,电流为30mA,扫描角度范围为10-85°,扫描步长为0.0167°,每个步长所设置的时间为0.24s,得到XRD衍射图案,从图中得到2θ归属于28.4°最高强度数值I2,与归属于21.0°最高强度I1,从而计算出I2/I1的比值。
(6)金属元素测试:称取一定量的样品加入一定量的浓硝酸进行微波消解后得到溶液,并将所得到的溶液和滤渣进行多次洗涤并定容到一定的体积,通过ICP-OES测试其中的金属元素的等离子体强度,根据所测金属的标准曲线计算出溶液中金属含量,从而计算出材料中所含的金属元素的量。
以下表格中各物质的重量百分比均是基于负极活性材料的总重量计算得到的。
二、负极活性材料的电性能测试方法
1、扣式电池测试方法:
在干燥氩气环境下,在碳酸丙烯酯(PC),碳酸乙烯酯(EC),碳酸二乙酯(DEC)(重量比约1:1:1)混合而成的溶剂中,加入LiPF6,混合均匀,其中LiPF6的浓度为约1.15mol/L,再加入约7.5wt%的氟代碳酸乙烯酯(FEC)后,混合均匀得到电解液。
将实施例和对比例中得到的负极活性材料、导电炭黑与粘结剂PAA(改性聚丙烯酸,PAA)按照重量比约80:10:10加入去离子水中,搅拌形成浆料,利用刮刀涂覆形成厚度为约100μm的涂层,在真空干燥箱中在约85℃烘干约12小时,在干燥环境中用冲压机切成直径为约1cm的圆片,在手套箱中以金属锂片作为对电极,隔离膜选择ceglard复合膜,加入电解液组装成扣式电池。用蓝电(LAND)系列电池测试对电池进行充放电测试,测试其充放电容量,其首次库伦效率为充电容量与放电容量的比值。
2、全电池测试
(1)锂离子电池的制备
正极的制备
将LiCoO2、导电炭黑和聚偏二氟乙烯(PVDF)按照约95%:2.5%:2.5%的重量比在N-甲基吡咯烷酮溶剂体系中充分搅拌混合均匀,制得正极浆料。将制得的正极浆料涂布在正极集流体铝箔上,烘干,冷压,得到正极。
负极的制备
将石墨、根据实施例和对比例制备的负极活性材料、导电剂(导电碳黑,Super)和粘结剂PAA按照约70%:15%:5%:10%的重量比混合,加入适量的水,在固体含量为约55wt%-70wt%下捏合。加入适量的水,调节浆料的粘度为约4000-6000Pa·s,制成负极浆料。
将制得的负极浆料涂布在负极集流体铜箔上,烘干,冷压,得到负极。
电解液的制备
在干燥氩气环境下,在碳酸丙烯酯(PC),碳酸乙烯酯(EC),碳酸二乙酯(DEC)(重量比约1:1:1)混合而成的溶剂中,加入LiPF6混合均匀,其中LiPF6的浓度为约1.15mol/L,再加入约7.5wt%的氟代碳酸乙烯酯(FEC)后混合均匀得到电解液。
隔离膜的制备
以PE多孔聚合薄膜作为隔离膜。
锂离子电池的制备
将正极、隔离膜、负极按顺序叠好,使隔离膜处于正极和负极中间以起到隔离的作用。卷绕得到裸电芯。将裸电芯置于外包装中,注入电解液,封装。经过化成、脱气、切边等工艺流程得到锂离子电池。
(2)循环性能测试:
测试温度为25/45℃,以0.7C恒流充电到4.4V,恒压充电到0.025C,静置5分钟后以0.5C放电到3.0V。以此步骤得到的容量为初始容量,进行0.7C充电/0.5C放电进行循环测试,以每一步的容量与初始容量做比值,得到容量衰减曲线。以25℃循环截至到容量保持率为90%的圈数记为电池的室温循环性能,以45℃循环截至到容量保持率为80%的圈数记为电池的高温循环性能,通过比较上述两种情况下的循环圈数比较材料的循环性能。
(3)放电倍率测试:
在25℃下,以0.2C放电到3.0V,静置5min,以0.5C充电到4.45V,恒压充电到0.05C后静置5分钟,调整放电倍率,分别以0.2C、0.5C、1C、1.5C、2.0C进行放电测试,分别得到放电容量,以每个倍率下得到的容量与0.2C得到的容量对比,通过比较2C与0.2C下的比值比较倍率性能。
(4)电池满充膨胀率测试:
用螺旋千分尺测试半充(50%充电状态(SOC))时新鲜电池的厚度,循环至400圈时,电池处于满充(100%SOC)状态下,再用螺旋千分尺测试此时电池的厚度,与初始半充(50%SOC)时新鲜电池的厚度对比,即可得此时满充(100%SOC)电池膨胀率。
三、负极活性材料的制备
1、对商业购买的硅氧化物SiOx(0.6≤x≤1.5,Dv50为约5μm)进行分级处理制备实施例1-3和对比例1-2的负极活性材料:
表1-1和表1-2示出了实施例1-3以及对比例1和2的负极活性材料的性能测试结果。
表1-1
表1-2
Dn10/Dv50值为通过激光散射粒度仪测试得到的数量基准分布中的累计10%直径Dn10与体积基准分布中累计50%直径DV50的比值,其数值越大表示材料中小颗粒数量越少。
由实施例1-3和对比例1和2的测试结果可以看出,由满足0.1≤Dn10/Dv50≤0.6的负极活性材料制备的锂离子电池的循环性能和倍率性能以及抗膨胀性能均优于由Dn10/Dv50<0.1或0.6<Dn10/Dv50的负极活性材料制备的锂离子电池。
2、制备表面具有氧化物MeOy层的负极活性材料
通过以下方法制备实施例4-12的负极活性材料:
(1)将上述实施例2中的负极活性材料、碳前躯体和氧化物前驱体MeTn加入到约150mL乙醇和约1.47mL去离子水中,搅拌约4小时直至形成均匀的悬浮液;
(2)喷雾干燥(进口温度约220℃,出口温度约110℃)所述悬浮液得到粉末;以及
(3)将所述粉末在约200900℃下烧结约0.5-20h得到表面具有氧化物MeOy层的负极活性材料。
表2-1中示出了制备实施例4-12中的负极活性材料的工艺条件。
表2-1
其中“-”表示未添加该物质。
表2-2和表2-3示出了实施例2和实施例4-12的负极活性材料的性能测试结果。
表2-2
其中“-”表示未添加该物质。
表2-3
由实施例2和实施例4-12的测试结果可以看出,对满足0.1≤Dn10/Dv50≤0.6条件的负极活性材料包覆氧化物MeOy层可以进一步提高锂离子电池的循环性能和倍率性能,而首次效率和电池膨胀率未发生明显变化。
3、制备表面具有聚合物层的负极活性材料
通过以下方法制备实施例13-17和20-21中的负极活性材料:
(1)将碳材料(单壁碳纳米管(SCNT)和/或多壁碳纳米管(MCNT))和聚合物在水中高速分散约12h得到均匀混合的浆料;
(2)将实施例4中的负极活性材料加入(1)中均匀混合的浆料中进行搅拌约4小时得到均匀混合的分散液;和
(3)喷雾干燥(进口温度约200℃,出口温度约110℃)所述分散液得到粉末。
其中实施例18和19中的负极活性材料的制备方法与上述方法相似,不同之处在于实施例18和19中第一步的溶剂为N-乙烯吡咯烷酮。
表3-1示出了实施例13-21的负极活性材料的组成。
表3-1
其中“-”表示未添加该物质。
表3-1中的英文缩写的全称如下所示:
表3-1中的英文缩写的中文全称如下所示:
SCNT:单壁碳纳米管
MCNT:多壁碳纳米管
CMC-Na:羧甲基纤维素钠
PVP:聚乙烯吡咯烷酮
PVDF:聚偏二氟乙烯
PAANa:聚丙烯酸钠
表3-2示出了实施例4和实施例13-21的负极活性材料的性能测试结果。
表3-2
由实施例4和实施例13-21的测试结果可以看出,在实施例4中的负极活性材料的基础上包覆一定量的含有CNT的聚合物层可以显著提升锂离子电池的循环性能和倍率性能。
4、按照如下方法制备实施例22-24和对比例3的负极活性材料:
(1)将二氧化硅与金属硅粉末以摩尔比约1:1分别经过机械干混和球磨混合得到混合材料;
(2)在Ar2气氛下,在约10-3-10-1kPa压力范围下,在约1100-1800℃的温度范围内加热所述混合材料约1-25h获得气体;
(3)冷凝获得的所述气体得到固体;
(4)粉碎、筛分所述固体;以及
(5)在约400-1500℃的范围内,在氮气气氛下,热处理所述固体约0.5-24h,冷却经热处理的所述固体并对其进行分级处理;
(6)在分级处理后得到的固体表面包覆含有碳材料的氧化物MeOy层,具体包覆步骤请参见上述制备表面具有氧化物MeOy层的负极活性材料的方法;
(7)对步骤(6)中得到的固体进一步包覆含有碳材料的聚合物层,具体包覆步骤请参见上述制备表面具有聚合物层的负极活性材料的步骤。
表4-1中示出了步骤(1)-(5)中的具体工艺参数,且表4-2示出了步骤(6)中的具体工艺参数。
表4-1
表4-2
表4-3中示出了实施例22-24和对比例3中的负极活性材料的组成。
表4-3
表4-4中示出了由实施例22-24和对比例3中的负极活性材料的制备的锂离子电池的性能参数。
表4-4
由实施例22-24以及对比例3的测试结果可以看出,在硅氧化物满足0.1≤Dn10/Dv50≤0.6的条件下,进一步选择0<I2/I1≤1的硅氧化物进行金属氧化物层包覆和聚合物层包覆,可以进一步提高锂离子电池的循环性能和倍率性能。
5、通过以下方法制备实施例25-27和对比例4的负极活性材料。
实施例25-27和对比例4的负极活性材料的制备方法分别与实施例22-24和对比例3的制备方法相似,区别在于实施例25-27和对比例4的制备方法不包括步骤(7)。即实施例25-27和对比例4的负极活性材料仅具有金属氧化物包覆层,不具有聚合物包覆层。
表5-1示出了实施例25-27和对比例4的负极活性材料的组成。
表5-1
表5-2示出了实施例25-27和对比例4的负极活性材料的性能测试结果。
表5-2
由实施例25-27以及对比例4的测试结果可以看出,在硅氧化物满足0.1≤Dn10/Dv50≤0.6的条件下,进一步选择0<I2/I1≤1的硅氧化物进行金属氧化物层包覆可以进一步提高锂离子电池的循环性能和倍率性能.
整个说明书中对“一些实施例”、“部分实施例”、“一个实施例”、“另一举例”、“举例”、“具体举例”或“部分举例”的引用,其所代表的意思是在本申请中的至少一个实施例或举例包含了该实施例或举例中所描述的特定特征、结构、材料或特性。因此,在整个说明书中的各处所出现的描述,例如:“在一些实施例中”、“在实施例中”、“在一个实施例中”、“在另一个举例中”,“在一个举例中”、“在特定举例中”或“举例“,其不必然是引用本申请中的相同的实施例或示例。此外,本文中的特定特征、结构、材料或特性可以以任何合适的方式在一个或多个实施例或举例中结合。
尽管已经演示和描述了说明性实施例,本领域技术人员应该理解上述实施例不能被解释为对本申请的限制,并且可以在不脱离本申请的精神、原理及范围的情况下对实施例进行改变,替代和修改。
Claims (20)
1.一种负极材料,其包括硅复合物基体,所述硅复合物基体的DV50的范围为2.5μm-15μm,且所述硅复合物基体的粒径分布满足:0.1≤Dn10/Dv50≤0.6,其中Dv50为负极活性材料累计体积百分数达到50%时所对应的粒径,且Dn10为负极活性材料累计数量百分数达到10%时所对应的粒径。
2.根据权利要求1所述的负极材料,其中所述硅复合物基体包括SiOx,且0.6≤x≤1.5。
3.根据权利要求1所述的负极材料,其中所述硅复合物基体包括纳米Si晶粒、SiO、SiO2或其任意组合。
4.根据权利要求3所述的负极材料,其中所述纳米Si晶粒的尺寸为小于100nm。
5.根据权利要求1所述的负极材料,其进一步包括氧化物MeOy层,所述氧化物MeOy层包覆所述硅复合物基体的至少一部分,其中Me包括Al、Si、Ti、Mn、V、Cr、Co或Zr中的至少一种,其中y为0.5-3;且其中所述氧化物MeOy层包含碳材料。
6.根据权利要求5所述的负极材料,其中所述氧化物MeOy层的厚度为1nm-1000nm。
7.根据权利要求5所述的负极材料,其中基于所述负极材料的总重量,Me元素的重量百分比为0.01wt%-1wt%。
8.根据权利要求5所述的负极材料,其中基于所述负极材料的总重量,所述氧化物MeOy层中碳的重量百分比为0.05wt%-1wt%。
9.根据权利要求5所述的负极材料,其进一步包括聚合物层,所述聚合物层包覆所述氧化物MeOy层的至少一部分,并且所述聚合物层包含碳材料。
10.根据权利要求9所述的负极材料,其中所述聚合物层包含聚偏氟乙烯及其衍生物、羧甲基纤维素及其衍生物、羧甲基纤维素钠及其衍生物、聚乙烯基吡咯烷酮及其衍生物、聚丙烯酸及其衍生物、聚丁苯橡胶、聚丙烯酰胺、聚酰亚胺、聚酰胺酰亚胺或其任意组合。
11.根据权利要求5或9所述的负极材料,其中所述碳材料包含碳纳米管、碳纳米颗粒、碳纤维、石墨烯或其任意组合。
12.根据权利要求9所述的负极材料,其中基于所述负极材料的总重量,所述聚合物层的重量百分比为0.1-10wt%。
13.根据权利要求9所述的负极材料,其中所述聚合物层的厚度为2nm-100nm。
14.根据权利要求5所述的负极材料,其在X射线衍射图案中2θ归属于27.0°-30.0°范围内最高强度数值为I2,归属于20.0°-22.0°范围内最高强度数值为I1,其中0<I2/I1≤1。
15.根据权利要求9所述的负极材料,其在X射线衍射图案中2θ归属于27.0°-30.0°范围内最高强度数值为I2,归属于20.0°-22.0°范围内最高强度数值为I1,其中0<I2/I1≤1。
16.根据权利要求1所述的负极材料,其比表面积为1-50m2/g。
17.一种负极,其包含如权利要求1-16中任一项所述的负极材料。
18.一种电化学装置,其包含如权利要求17所述的负极。
19.根据权利要求18所述的电化学装置,其为锂离子电池。
20.一种电子设备,其包含如权利要求18所述的电化学装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911114925.8A CN110890531B (zh) | 2019-11-14 | 2019-11-14 | 负极材料及包含其的电化学装置和电子装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911114925.8A CN110890531B (zh) | 2019-11-14 | 2019-11-14 | 负极材料及包含其的电化学装置和电子装置 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110890531A CN110890531A (zh) | 2020-03-17 |
CN110890531B true CN110890531B (zh) | 2021-03-05 |
Family
ID=69747539
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911114925.8A Active CN110890531B (zh) | 2019-11-14 | 2019-11-14 | 负极材料及包含其的电化学装置和电子装置 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110890531B (zh) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN114982009B (zh) * | 2020-03-26 | 2023-10-24 | 宁德新能源科技有限公司 | 负极材料、负极极片及包含其的电化学装置及电子装置 |
WO2021189339A1 (zh) * | 2020-03-26 | 2021-09-30 | 宁德新能源科技有限公司 | 负极极片、电化学装置和电子装置 |
CN111834623A (zh) * | 2020-07-27 | 2020-10-27 | 江西远东电池有限公司 | 一种锂离子电池硅系负极浆料的匀浆方法 |
WO2022140902A1 (zh) * | 2020-12-28 | 2022-07-07 | 宁德时代新能源科技股份有限公司 | 负极极片及其制备方法、二次电池、电池模块、电池包和装置 |
CN113161601B (zh) * | 2021-02-22 | 2023-02-28 | 宁德新能源科技有限公司 | 电化学装置和包含该电化学装置的电子装置 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103682279A (zh) * | 2013-12-27 | 2014-03-26 | 浙江大学 | 一种硅基复合锂离子电池负极材料及其制备方法和应用 |
CN109449446A (zh) * | 2018-10-17 | 2019-03-08 | 宁德时代新能源科技股份有限公司 | 二次电池 |
CN109638254A (zh) * | 2018-12-17 | 2019-04-16 | 宁德新能源科技有限公司 | 负极材料及使用其的电化学装置和电子装置 |
CN109841823A (zh) * | 2019-03-19 | 2019-06-04 | 宁德新能源科技有限公司 | 负极材料及使用其的电化学装置和电子装置 |
CN109888217A (zh) * | 2019-02-20 | 2019-06-14 | 宁德新能源科技有限公司 | 负极活性材料和使用其的负极极片以及电化学和电子装置 |
CN109920987A (zh) * | 2019-02-20 | 2019-06-21 | 宁德新能源科技有限公司 | 负极材料及包含所述负极材料的电化学装置及电子装置 |
CN109980199A (zh) * | 2019-03-20 | 2019-07-05 | 宁德新能源科技有限公司 | 负极活性材料及其制备方法及使用该负极活性材料的装置 |
CN110071280A (zh) * | 2019-05-14 | 2019-07-30 | 山东泰纳新材料科技有限公司 | 一种固态电解质包覆硅基负极材料及其制备方法 |
CN110391406A (zh) * | 2019-07-01 | 2019-10-29 | 深圳市比克动力电池有限公司 | 一种锂离子电池硅氧负极材料及其制备方法、锂离子电池 |
CN110416543A (zh) * | 2019-08-07 | 2019-11-05 | 宁德新能源科技有限公司 | 负极材料及包含其的电化学装置和电子装置 |
CN110444750A (zh) * | 2019-08-07 | 2019-11-12 | 宁德新能源科技有限公司 | 负极材料及包含其的电化学装置和电子装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103229336A (zh) * | 2010-12-07 | 2013-07-31 | 株式会社大阪钛技术 | 锂离子二次电池负极材料用粉末、使用其的锂离子二次电池负极及电容器负极、以及锂离子二次电池及电容器 |
CN109616614B (zh) * | 2018-12-14 | 2020-12-11 | 宁德新能源科技有限公司 | 负极极片和使用其的电化学装置和电子装置 |
-
2019
- 2019-11-14 CN CN201911114925.8A patent/CN110890531B/zh active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103682279A (zh) * | 2013-12-27 | 2014-03-26 | 浙江大学 | 一种硅基复合锂离子电池负极材料及其制备方法和应用 |
CN109449446A (zh) * | 2018-10-17 | 2019-03-08 | 宁德时代新能源科技股份有限公司 | 二次电池 |
CN109638254A (zh) * | 2018-12-17 | 2019-04-16 | 宁德新能源科技有限公司 | 负极材料及使用其的电化学装置和电子装置 |
CN109888217A (zh) * | 2019-02-20 | 2019-06-14 | 宁德新能源科技有限公司 | 负极活性材料和使用其的负极极片以及电化学和电子装置 |
CN109920987A (zh) * | 2019-02-20 | 2019-06-21 | 宁德新能源科技有限公司 | 负极材料及包含所述负极材料的电化学装置及电子装置 |
CN109841823A (zh) * | 2019-03-19 | 2019-06-04 | 宁德新能源科技有限公司 | 负极材料及使用其的电化学装置和电子装置 |
CN109980199A (zh) * | 2019-03-20 | 2019-07-05 | 宁德新能源科技有限公司 | 负极活性材料及其制备方法及使用该负极活性材料的装置 |
CN110071280A (zh) * | 2019-05-14 | 2019-07-30 | 山东泰纳新材料科技有限公司 | 一种固态电解质包覆硅基负极材料及其制备方法 |
CN110391406A (zh) * | 2019-07-01 | 2019-10-29 | 深圳市比克动力电池有限公司 | 一种锂离子电池硅氧负极材料及其制备方法、锂离子电池 |
CN110416543A (zh) * | 2019-08-07 | 2019-11-05 | 宁德新能源科技有限公司 | 负极材料及包含其的电化学装置和电子装置 |
CN110444750A (zh) * | 2019-08-07 | 2019-11-12 | 宁德新能源科技有限公司 | 负极材料及包含其的电化学装置和电子装置 |
Also Published As
Publication number | Publication date |
---|---|
CN110890531A (zh) | 2020-03-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110911636B (zh) | 负极材料及包含其的电化学装置和电子装置 | |
CN110797520B (zh) | 负极材料及包含其的电化学装置和电子装置 | |
CN111146414B (zh) | 负极材料及包含其的电化学装置和电子装置 | |
CN110890531B (zh) | 负极材料及包含其的电化学装置和电子装置 | |
CN114975980A (zh) | 负极材料及使用其的电化学装置和电子装置 | |
CN111146421B (zh) | 负极材料及包含其的电化学装置和电子装置 | |
CN110931742B (zh) | 负极及包含其的电化学装置和电子装置 | |
US20210391567A1 (en) | Negative electrode, and electrochemical apparatus and electronic apparatus including same | |
CN110911635B (zh) | 负极材料及包含其的电化学装置和电子装置 | |
CN111146434A (zh) | 负极材料及包含其的电化学装置和电子装置 | |
US20220199988A1 (en) | Anode material, electrochemical device and electronic device comprising the same | |
CN111146420A (zh) | 负极材料及包含其的电化学装置和电子装置 | |
CN111146433A (zh) | 负极及包含其的电化学装置和电子装置 | |
CN114026713A (zh) | 硅碳复合颗粒、负极活性材料及包含它的负极、电化学装置和电子装置 | |
US20220271281A1 (en) | Anode material, electrochemical device and electronic device comprising the same | |
US20220052328A1 (en) | Anode material, electrochemical device and electronic device comprising the same | |
US20220140322A1 (en) | Anode material, electrochemical device and electronic device including the same | |
US20220199969A1 (en) | Anode material, electrochemical device and electronic device comprising the same | |
CN113054167A (zh) | 负极材料及包含其的电化学装置和电子装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |