CN110867559A - A Porous Lithium Metal Anode, Preparation and Application in Lithium Metal Batteries - Google Patents
A Porous Lithium Metal Anode, Preparation and Application in Lithium Metal Batteries Download PDFInfo
- Publication number
- CN110867559A CN110867559A CN201810978735.XA CN201810978735A CN110867559A CN 110867559 A CN110867559 A CN 110867559A CN 201810978735 A CN201810978735 A CN 201810978735A CN 110867559 A CN110867559 A CN 110867559A
- Authority
- CN
- China
- Prior art keywords
- lithium
- porous
- metal
- current collector
- anode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229910052744 lithium Inorganic materials 0.000 title claims abstract description 146
- 238000002360 preparation method Methods 0.000 title claims abstract description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims abstract description 94
- 229910052751 metal Inorganic materials 0.000 claims abstract description 81
- 239000002184 metal Substances 0.000 claims abstract description 81
- FUJCRWPEOMXPAD-UHFFFAOYSA-N lithium oxide Chemical compound [Li+].[Li+].[O-2] FUJCRWPEOMXPAD-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910001947 lithium oxide Inorganic materials 0.000 claims abstract description 19
- 238000011065 in-situ storage Methods 0.000 claims abstract description 14
- 238000006243 chemical reaction Methods 0.000 claims abstract description 8
- 238000011049 filling Methods 0.000 claims abstract description 7
- 238000010301 surface-oxidation reaction Methods 0.000 claims abstract description 7
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 claims abstract description 5
- 229910001416 lithium ion Inorganic materials 0.000 claims abstract description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 34
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 34
- 229910052760 oxygen Inorganic materials 0.000 claims description 34
- 239000001301 oxygen Substances 0.000 claims description 34
- 229910052802 copper Inorganic materials 0.000 claims description 33
- 239000010949 copper Substances 0.000 claims description 33
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 22
- 239000011148 porous material Substances 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 15
- 239000012298 atmosphere Substances 0.000 claims description 13
- 238000000034 method Methods 0.000 claims description 11
- 229910052759 nickel Inorganic materials 0.000 claims description 11
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 238000004070 electrodeposition Methods 0.000 claims description 8
- 230000001590 oxidative effect Effects 0.000 claims description 8
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical group [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 claims description 7
- 229910044991 metal oxide Inorganic materials 0.000 claims description 6
- 150000004706 metal oxides Chemical class 0.000 claims description 6
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 229910003002 lithium salt Inorganic materials 0.000 claims description 4
- 159000000002 lithium salts Chemical class 0.000 claims description 4
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 3
- 229910052804 chromium Inorganic materials 0.000 claims description 3
- 239000011651 chromium Substances 0.000 claims description 3
- 239000010941 cobalt Substances 0.000 claims description 3
- 229910017052 cobalt Inorganic materials 0.000 claims description 3
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- 239000010936 titanium Substances 0.000 claims description 3
- 229910052719 titanium Inorganic materials 0.000 claims description 3
- YFXWODPYUNGUEE-UHFFFAOYSA-N [I].[Li] Chemical compound [I].[Li] YFXWODPYUNGUEE-UHFFFAOYSA-N 0.000 claims description 2
- WFLRGOXPLOZUMC-UHFFFAOYSA-N [Li].O=C=O Chemical compound [Li].O=C=O WFLRGOXPLOZUMC-UHFFFAOYSA-N 0.000 claims description 2
- QTJOIXXDCCFVFV-UHFFFAOYSA-N [Li].[O] Chemical compound [Li].[O] QTJOIXXDCCFVFV-UHFFFAOYSA-N 0.000 claims description 2
- ZVSWQJGHNTUXDX-UHFFFAOYSA-N lambda1-selanyllithium Chemical compound [Se].[Li] ZVSWQJGHNTUXDX-UHFFFAOYSA-N 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 claims description 2
- 229910052714 tellurium Inorganic materials 0.000 claims description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims 1
- 239000003792 electrolyte Substances 0.000 abstract description 23
- 230000009286 beneficial effect Effects 0.000 abstract description 3
- 230000005540 biological transmission Effects 0.000 abstract 1
- 230000000087 stabilizing effect Effects 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 36
- 239000006260 foam Substances 0.000 description 32
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 22
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 16
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 16
- 210000004027 cell Anatomy 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 11
- 238000000151 deposition Methods 0.000 description 11
- 230000008021 deposition Effects 0.000 description 11
- 239000012299 nitrogen atmosphere Substances 0.000 description 10
- IYRDVAUFQZOLSB-UHFFFAOYSA-N copper iron Chemical compound [Fe].[Cu] IYRDVAUFQZOLSB-UHFFFAOYSA-N 0.000 description 9
- -1 copper oxide modified copper Chemical class 0.000 description 8
- 230000001351 cycling effect Effects 0.000 description 7
- UGKDIUIOSMUOAW-UHFFFAOYSA-N iron nickel Chemical compound [Fe].[Ni] UGKDIUIOSMUOAW-UHFFFAOYSA-N 0.000 description 7
- 239000005751 Copper oxide Substances 0.000 description 6
- 229910013553 LiNO Inorganic materials 0.000 description 6
- 229910000431 copper oxide Inorganic materials 0.000 description 6
- 210000001787 dendrite Anatomy 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 239000010405 anode material Substances 0.000 description 5
- 238000001354 calcination Methods 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 description 3
- IYSZZDVKUXVSQY-UHFFFAOYSA-N [O-2].[Fe+2].[Cu]=O Chemical compound [O-2].[Fe+2].[Cu]=O IYSZZDVKUXVSQY-UHFFFAOYSA-N 0.000 description 3
- 239000012300 argon atmosphere Substances 0.000 description 3
- 239000002041 carbon nanotube Substances 0.000 description 3
- 229910021393 carbon nanotube Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 239000013068 control sample Substances 0.000 description 3
- GOECOOJIPSGIIV-UHFFFAOYSA-N copper iron nickel Chemical compound [Fe].[Ni].[Cu] GOECOOJIPSGIIV-UHFFFAOYSA-N 0.000 description 3
- 238000010406 interfacial reaction Methods 0.000 description 3
- 229910000480 nickel oxide Inorganic materials 0.000 description 3
- 230000001681 protective effect Effects 0.000 description 3
- 229910001030 Iron–nickel alloy Inorganic materials 0.000 description 2
- 229910018487 Ni—Cr Inorganic materials 0.000 description 2
- VDGMIGHRDCJLMN-UHFFFAOYSA-N [Cu].[Co].[Ni] Chemical compound [Cu].[Co].[Ni] VDGMIGHRDCJLMN-UHFFFAOYSA-N 0.000 description 2
- WCERXPKXJMFQNQ-UHFFFAOYSA-N [Ti].[Ni].[Cu] Chemical compound [Ti].[Ni].[Cu] WCERXPKXJMFQNQ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910002056 binary alloy Inorganic materials 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- VNNRSPGTAMTISX-UHFFFAOYSA-N chromium nickel Chemical compound [Cr].[Ni] VNNRSPGTAMTISX-UHFFFAOYSA-N 0.000 description 2
- RYTYSMSQNNBZDP-UHFFFAOYSA-N cobalt copper Chemical compound [Co].[Cu] RYTYSMSQNNBZDP-UHFFFAOYSA-N 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- UTICYDQJEHVLJZ-UHFFFAOYSA-N copper manganese nickel Chemical compound [Mn].[Ni].[Cu] UTICYDQJEHVLJZ-UHFFFAOYSA-N 0.000 description 2
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 238000001878 scanning electron micrograph Methods 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 229910002058 ternary alloy Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000599 Cr alloy Inorganic materials 0.000 description 1
- 229910017518 Cu Zn Inorganic materials 0.000 description 1
- 229910017752 Cu-Zn Inorganic materials 0.000 description 1
- 229910017943 Cu—Zn Inorganic materials 0.000 description 1
- 239000002000 Electrolyte additive Substances 0.000 description 1
- 229910000914 Mn alloy Inorganic materials 0.000 description 1
- QXZUUHYBWMWJHK-UHFFFAOYSA-N [Co].[Ni] Chemical compound [Co].[Ni] QXZUUHYBWMWJHK-UHFFFAOYSA-N 0.000 description 1
- QVYYOKWPCQYKEY-UHFFFAOYSA-N [Fe].[Co] Chemical compound [Fe].[Co] QVYYOKWPCQYKEY-UHFFFAOYSA-N 0.000 description 1
- KGWWEXORQXHJJQ-UHFFFAOYSA-N [Fe].[Co].[Ni] Chemical compound [Fe].[Co].[Ni] KGWWEXORQXHJJQ-UHFFFAOYSA-N 0.000 description 1
- HZEWFHLRYVTOIW-UHFFFAOYSA-N [Ti].[Ni] Chemical compound [Ti].[Ni] HZEWFHLRYVTOIW-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000788 chromium alloy Substances 0.000 description 1
- XRBURMNBUVEAKD-UHFFFAOYSA-N chromium copper nickel Chemical compound [Cr].[Ni].[Cu] XRBURMNBUVEAKD-UHFFFAOYSA-N 0.000 description 1
- UPHIPHFJVNKLMR-UHFFFAOYSA-N chromium iron Chemical compound [Cr].[Fe] UPHIPHFJVNKLMR-UHFFFAOYSA-N 0.000 description 1
- BIJOYKCOMBZXAE-UHFFFAOYSA-N chromium iron nickel Chemical compound [Cr].[Fe].[Ni] BIJOYKCOMBZXAE-UHFFFAOYSA-N 0.000 description 1
- MZZUATUOLXMCEY-UHFFFAOYSA-N cobalt manganese Chemical compound [Mn].[Co] MZZUATUOLXMCEY-UHFFFAOYSA-N 0.000 description 1
- NNSIWZRTNZEWMS-UHFFFAOYSA-N cobalt titanium Chemical compound [Ti].[Co] NNSIWZRTNZEWMS-UHFFFAOYSA-N 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- TVZPLCNGKSPOJA-UHFFFAOYSA-N copper zinc Chemical compound [Cu].[Zn] TVZPLCNGKSPOJA-UHFFFAOYSA-N 0.000 description 1
- 230000005518 electrochemistry Effects 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004146 energy storage Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000013538 functional additive Substances 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010952 in-situ formation Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 230000002687 intercalation Effects 0.000 description 1
- 239000002608 ionic liquid Substances 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 1
- IXQWNVPHFNLUGD-UHFFFAOYSA-N iron titanium Chemical compound [Ti].[Fe] IXQWNVPHFNLUGD-UHFFFAOYSA-N 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- ZAUUZASCMSWKGX-UHFFFAOYSA-N manganese nickel Chemical compound [Mn].[Ni] ZAUUZASCMSWKGX-UHFFFAOYSA-N 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000007773 negative electrode material Substances 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000007086 side reaction Methods 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Cell Electrode Carriers And Collectors (AREA)
Abstract
Description
技术领域technical field
本发明属于能源存储领域,具体涉及一种多孔锂金属阳极的制备与应用。The invention belongs to the field of energy storage, and in particular relates to the preparation and application of a porous lithium metal anode.
背景技术Background technique
金属锂阳极在电池中的作用机制是金属锂的沉积和溶解,其基本反映式为:The mechanism of action of metallic lithium anode in batteries is the deposition and dissolution of metallic lithium, and its basic reaction formula is:
充电:Li++e=Li;放电:Li-e=Li+。不同于常规的锂离子电池的负极发生的是锂离子在石墨负极中的嵌入和脱出。Charge: Li + +e=Li; discharge: Li-e=Li + . Different from the negative electrode of the conventional lithium ion battery, the intercalation and extraction of lithium ions in the graphite negative electrode occurs.
金属锂凭借着超高的理论比容量(3860mAh/g)以及最低的电极电位(-3.04 V),被越来越多的科研工作者视为下一代锂电池最具发展前景的阳极材料。在这一背景下,以金属锂为阳极的锂硫电池和锂空气电池在近几年中得到长足的发展。但是,锂枝晶和锂金属电池循环过程中巨大的体积效应限制了其实际的应用。为了应对这些问题,大量的策略,如优化电解液中的锂盐,溶剂,功能性的添加剂甚至是离子液体也被广泛的开发和研究。如Miao Wang等人[P.Zhang,J.Zhu, M.Wang,N.Imanishi,O.Yamamoto,Lithium dendritesuppression and cycling efficiency of lithium anode,ElectrochemistryCommunications 87(2018)27-30.]采用 2.5M锂盐来改变电解液的理化性质,从而抑制锂枝晶的生长。而Ji-Guang Zhang 等人[J.Qian,W.Xu,P.Bhattacharya,M.Engelhard,W.A.Henderson,Y.Zhang,J.-G. Zhang,Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive,Nano Energy 15(2015)135-144.]通过在电解液中加入痕量的水,是锂片表面生成一层富氟化锂的SEI膜,从而来抑制枝晶的生长。在这些研究的背后,科研工作者们取得了十分可喜的成绩,大量的锂枝晶被成功的抑制。但是锂金属电池循环过程中巨大的体积效应,特别是高的面积容量下,这一问题始终还有待解决。With its ultra-high theoretical specific capacity (3860mAh/g) and the lowest electrode potential (-3.04 V), metal lithium is regarded by more and more researchers as the most promising anode material for next-generation lithium batteries. In this context, lithium-sulfur batteries and lithium-air batteries using lithium metal as anodes have made great strides in recent years. However, the huge volume effect during cycling of Li dendrites and Li metal batteries limits their practical applications. To deal with these problems, a large number of strategies, such as optimizing lithium salts in electrolytes, solvents, functional additives and even ionic liquids, have been extensively developed and studied. For example, Miao Wang et al. [P.Zhang, J.Zhu, M.Wang, N.Imanishi, O.Yamamoto, Lithium dendritesuppression and cycling efficiency of lithium anode, Electrochemistry Communications 87(2018) 27-30.] adopt 2.5M lithium salt to change the physicochemical properties of the electrolyte, thereby inhibiting the growth of lithium dendrites. While Ji-Guang Zhang et al. [J.Qian, W.Xu, P.Bhattacharya, M.Engelhard, W.A.Henderson, Y.Zhang, J.-G. Zhang, Dendrite-free Li deposition using trace-amounts of water as an electrolyte additive, Nano Energy 15 (2015) 135-144.] By adding a trace amount of water to the electrolyte, a lithium fluoride-rich SEI film is formed on the surface of the lithium sheet, thereby inhibiting the growth of dendrites. Behind these studies, researchers have achieved very gratifying results, and a large number of lithium dendrites have been successfully suppressed. However, the huge volume effect during cycling of lithium metal batteries, especially at high areal capacities, remains to be resolved.
近年来,科研工作者发现,将金属锂负载在3D多孔集流体中可以有效缓解金属锂沉积/溶解过程中的体积变化。同时,3D多孔集流体超高的比表面积可以充分降低电极表面的电流密度,使金属锂在较低的电流密度下无枝晶的锂沉积如Quan-Hong Yang等人[Q.Yun,Y.-B.He,W.Lv,Y.Zhao,B.Li,F.Kang,Q.-H.Yang, Chemical dealloying derived3D porous current collector for Li metal anodes, Advanced Materials 28(32)(2016)6932-6939.]通过对Cu-Zn合金去合金化制备了多孔铜集流体,作为工作电极,多孔铜集流体在1mA/cm2的电流密度下实现150 圈的循环。类似的,Yu-Guo Guo等人[S.-H.Wang,Y.-X.Yin,T.-T.Zuo,W.Dong, J.-Y.Li,J.-L.Shi,C.-H.Zhang,N.-W.Li,C.-J.Li,Y.-G.Guo,Stable Li metal anodes via regulating lithium plating/stripping invertically aligned microchannels,Advanced Materials 29(40)(2017)1703729-1703736.]通过激光技术制备了多孔铜,实现了在 1mA/cm2的电流密度下200圈的稳定循环。但是,3D多孔集流体作为一把双刃剑,其超高的比表面积在降低电极表面的电流密度同时,也导致了金属锂与电解液接触面积的大大增加。大量的接触面积就导致了大量界面副反应的发生,使活性锂大量的损失。因此,目前传统的负载金属锂的3D多孔集流体难以作为锂金属电池的阳极材料在工业上得到真正的应用。In recent years, researchers have found that loading metallic lithium in 3D porous current collectors can effectively alleviate the volume change during the deposition/dissolution of metallic lithium. At the same time, the ultra-high specific surface area of the 3D porous current collectors can fully reduce the current density on the electrode surface, enabling dendrite-free Li deposition of metallic lithium at lower current densities, such as Quan-Hong Yang et al. [Q.Yun, Y. -B.He, W.Lv, Y.Zhao, B.Li, F.Kang, Q.-H.Yang, Chemical dealloying derived3D porous current collector for Li metal anodes, Advanced Materials 28(32)(2016)6932- 6939.] A porous copper current collector was prepared by dealloying a Cu-Zn alloy. As a working electrode, the porous copper current collector achieved 150 cycles at a current density of 1 mA/cm 2 . Similarly, Yu-Guo Guo et al. [S.-H.Wang, Y.-X.Yin, T.-T.Zuo, W.Dong, J.-Y.Li, J.-L.Shi, C. .-H. Zhang, N.-W.Li, C.-J.Li, Y.-G.Guo, Stable Li metal anodes via regulating lithium plating/stripping invertically aligned microchannels, Advanced Materials 29(40) (2017) 1703729-1703736.] Porous copper was prepared by laser technology, and a stable cycle of 200 cycles was achieved at a current density of 1 mA/ cm2 . However, as a double-edged sword, the 3D porous current collector's ultra-high specific surface area not only reduces the current density on the electrode surface, but also greatly increases the contact area between metal lithium and the electrolyte. A large amount of contact area leads to a large number of interfacial side reactions, resulting in a large loss of active lithium. Therefore, the current traditional lithium-supported 3D porous current collectors are difficult to be truly applied in industry as anode materials for lithium metal batteries.
发明内容SUMMARY OF THE INVENTION
针对3D锂金属阳极普遍存在的问题,本发明第一目的在于提供一种原位包覆有氧化锂层的多孔锂金属阳极。In view of the common problems of 3D lithium metal anodes, the first object of the present invention is to provide a porous lithium metal anode coated with a lithium oxide layer in situ.
本发明第二目的在于,提供一种所述的多孔锂金属阳极的制备方法,旨在在 3D集流体的骨架上原位沉积锂并原位覆盖氧化锂层,显著提升阳极的电学性能。The second object of the present invention is to provide a method for preparing the porous lithium metal anode, which aims to deposit lithium in-situ on the skeleton of the 3D current collector and cover the lithium oxide layer in-situ to significantly improve the electrical performance of the anode.
本发明第三目的在于,提供一种所述的多孔锂金属阳极的应用。The third object of the present invention is to provide an application of the porous lithium metal anode.
一种多孔锂金属阳极,包括多孔金属集流体,复合在所述多孔金属集流体骨架上的金属锂层,以及覆盖金属锂层表面的氧化锂层。A porous lithium metal anode comprises a porous metal current collector, a metal lithium layer compounded on the framework of the porous metal current collector, and a lithium oxide layer covering the surface of the metal lithium layer.
本发明所述的锂金属阳极,创新地在3D多孔金属集流体的孔隙的骨架上复合沉积有金属锂层,并在该金属锂层表面包覆氧化锂层;该结构配合所述的物质成分,可以显著降低锂金属表面的表观电流密度,实现金属锂高电流密度下稳定的循环,有效提升高电流密度下(2~5mA/cm2)的循环性能。同时,均匀致密氧化锂层的存在有效的避免了电解液与金属锂的直接接触,抑制了常规3D锂金属阳极界面反应的发生和持续金属锂的损失。In the lithium metal anode of the present invention, a metal lithium layer is innovatively deposited on the skeleton of the pores of the 3D porous metal current collector, and a lithium oxide layer is coated on the surface of the metal lithium layer; , which can significantly reduce the apparent current density of the lithium metal surface, achieve stable cycling of metal lithium at high current density, and effectively improve the cycling performance at high current density (2-5 mA/cm 2 ). At the same time, the existence of a uniform and dense lithium oxide layer effectively avoids the direct contact between the electrolyte and metal lithium, and inhibits the occurrence of the conventional 3D lithium metal anode interfacial reaction and the continuous loss of metal lithium.
作为优选,3D多孔金属集流体的材料为钛、铬、锰、铁、钴、镍、铜中的至少一种。Preferably, the material of the 3D porous metal current collector is at least one of titanium, chromium, manganese, iron, cobalt, nickel, and copper.
作为优选,所述的多孔金属集流体为多孔钛,多孔铬,多孔锰,多孔铁,多孔钴,多孔镍,多孔铜等多孔金属集流体及其他们的二元和三元多孔合金集流体中的任意一种。Preferably, the porous metal current collector is porous titanium, porous chromium, porous manganese, porous iron, porous cobalt, porous nickel, porous copper and other porous metal current collectors and their binary and ternary porous alloy current collectors. any of the .
作为优选,所述的3D多孔二元合金集流体为多孔镍铜,多孔镍钛,多孔镍铬,多孔镍铁,多孔镍钴,多孔镍锰,多孔铁钛,多孔铁铬,多孔铁铜,多孔铁钴,多孔铁锰,多孔钴钛,多孔钴铜,多孔钴锰合金中的任意一种。所述的3D 多孔二元合金的成分配比是任意的。Preferably, the 3D porous binary alloy current collector is porous nickel copper, porous nickel titanium, porous nickel chromium, porous nickel iron, porous nickel cobalt, porous nickel manganese, porous iron titanium, porous iron chromium, porous iron copper, Any one of porous iron-cobalt, porous iron-manganese, porous cobalt-titanium, porous cobalt-copper, and porous cobalt-manganese alloy. The composition ratio of the 3D porous binary alloy is arbitrary.
作为优选,所述的3D多孔三元合金集流体为多孔镍铜钛,多孔镍铜铁,多孔镍铜钴,多孔镍铜锰,多孔铁钴镍,多孔铁铬镍,多孔镍铜铬合金中的任意一种。所述的3D多孔三元合金的成分配比是任意的。Preferably, the 3D porous ternary alloy current collector is porous nickel-copper-titanium, porous nickel-copper-iron, porous nickel-copper-cobalt, porous nickel-copper-manganese, porous iron-cobalt-nickel, porous iron-chromium-nickel, porous nickel-copper-chromium alloy any of the . The composition ratio of the 3D porous ternary alloy is arbitrary.
进一步优选,所述的3D多孔金属集流体的材料为多孔镍,多孔铜,多孔镍铬,多孔镍铁,多孔镍铜,多孔铁铜,多孔钴铜,多孔镍铜钛,多孔镍铜铁,多孔镍铜钴,多孔镍铜锰。优选的金属集流体的性能更优。Further preferably, the material of the 3D porous metal current collector is porous nickel, porous copper, porous nickel-chromium, porous nickel-iron, porous nickel-copper, porous iron-copper, porous cobalt-copper, porous nickel-copper-titanium, porous nickel-copper-iron, Porous nickel copper cobalt, porous nickel copper manganese. Preferred metal current collectors perform better.
最优选,所述的3D多孔金属集流体的材料为多孔镍(也称为泡沫镍)。Most preferably, the material of the 3D porous metal current collector is porous nickel (also called nickel foam).
所述的3D多孔集流体的厚度为10~1200μm;优选为30~500μm;进一步优选为40~70μm。The thickness of the 3D porous current collector is 10-1200 μm; preferably 30-500 μm; more preferably 40-70 μm.
所述的3D多孔集流体的孔隙率为20~99%;优选为30~90%;进一步优选为40~90%。本发明人研究发现,采用较高的孔隙率的集流体有助于提升制得的阳极的电学性能,特别是高电流密度下的循环性能。The porosity of the 3D porous current collector is 20-99%; preferably 30-90%; more preferably 40-90%. The inventors have found that the use of a current collector with higher porosity helps to improve the electrical performance of the prepared anode, especially the cycle performance under high current density.
3D多孔集流体的孔隙率最优选为40~60%。The porosity of the 3D porous current collector is most preferably 40 to 60%.
所述的3D多孔集流体的孔间距为1~400μm;优选为5~300μm;进一步优选为40~120μm。较大孔径有助于进一步提升制得的阳极的电学性能。The pore spacing of the 3D porous current collector is 1-400 μm; preferably 5-300 μm; more preferably 40-120 μm. The larger pore size helps to further improve the electrical performance of the prepared anode.
作为优选,多孔锂金属阳极中,金属锂含量范围10~90wt.%。Preferably, in the porous lithium metal anode, the content of metallic lithium ranges from 10 to 90 wt.%.
作为优选,氧化锂厚度的范围10~700nm。Preferably, the thickness of lithium oxide is in the range of 10 to 700 nm.
优选地,金属锂的含量为2~12mAh/cm2;进一步优选为5~8mAh/cm2。Preferably, the content of metallic lithium is 2-12 mAh/cm 2 ; more preferably, it is 5-8 mAh/cm 2 .
本发明所述的金属锂层以及氧化锂层由复合在3D多孔集流体表面的金属氧化材料和金属锂进行置换反应原位形成。所述的金属氧化材料的金属元素和3D 多孔集流体的金属元素相同。The metal lithium layer and the lithium oxide layer described in the present invention are formed in situ by the metal oxide material and metal lithium compounded on the surface of the 3D porous current collector through a replacement reaction. The metal element of the metal oxide material is the same as that of the 3D porous current collector.
作为优选,所述的金属氧化材料由所述的3D多孔集流体氧化焙烧得到。Preferably, the metal oxide material is obtained by the oxidative roasting of the 3D porous current collector.
氧化焙烧的气氛例如为含氧气氛,其中氧体积含量为5~90%;优选为15~70%;进一步优选为25~55%。The atmosphere of the oxidative roasting is, for example, an oxygen-containing atmosphere, wherein the oxygen volume content is 5-90%; preferably 15-70%; more preferably 25-55%.
氧化焙烧的温度为500~800℃。The temperature of the oxidative roasting is 500 to 800°C.
本发明还提供了一种所述多孔锂金属阳极的制备方法,将多孔金属集流体进行表面氧化(氧化预处理),随后向表面氧化后的多孔金属集流体中填充金属锂,进行置换反应,在骨架表面原位形成所述的金属锂层,以及覆盖在金属锂层表面的氧化锂层,制得所述的多孔锂金属阳极。The present invention also provides a method for preparing the porous lithium metal anode. The porous metal current collector is subjected to surface oxidation (oxidative pretreatment), and then metal lithium is filled into the surface-oxidized porous metal current collector to perform a replacement reaction, The metal lithium layer and the lithium oxide layer covering the surface of the metal lithium layer are formed in situ on the surface of the framework to prepare the porous lithium metal anode.
本发明创新地预先对多孔金属集流体进行氧化预处理,使骨架表明的进行微氧化,随后再利用该原位形成的氧化产物作为诱导锂沉积材料,使锂优先进入骨架内和其进行置换反应,达到诱导锂在骨架中原位沉积的目的,此外,置换反应生成的致密氧化锂原位覆盖的锂的表面,形成原生SEI保护。本发明所述的制备方法实现了锂的诱导原位沉积以及SEI保护膜的原位一步形成,如此可以充分保证锂沉积以及氧化锂层的均匀性,可以充分利用3D金属集流体有效比表面积,解决锂枝晶问题,显著提升阳极的循环寿命,特别是在高电流密度下的循环性能。The invention innovatively pre-oxidizes the porous metal current collector in advance, so that the surface of the skeleton is slightly oxidized, and then the in-situ formed oxidation product is used as a material for inducing lithium deposition, so that lithium preferentially enters the skeleton and undergoes a replacement reaction. , to achieve the purpose of inducing the in-situ deposition of lithium in the framework, and in addition, the dense lithium oxide generated by the replacement reaction in-situ covers the surface of lithium, forming native SEI protection. The preparation method of the present invention realizes the induced in-situ deposition of lithium and the in-situ one-step formation of the SEI protective film, so that the uniformity of the lithium deposition and the lithium oxide layer can be fully guaranteed, and the effective specific surface area of the 3D metal current collector can be fully utilized. Solve the problem of lithium dendrites and significantly improve the cycle life of the anode, especially the cycle performance at high current densities.
作为优选,表面氧化为:将多孔金属集流体在含氧气氛下焙烧。研究发现,该处理方式下,不仅处理方便,还有助于后续的金属锂层和氧化锂层的一步原位沉积。Preferably, the surface oxidation is: calcining the porous metal current collector in an oxygen-containing atmosphere. The study found that this processing method is not only convenient for processing, but also facilitates the one-step in-situ deposition of the subsequent metal lithium layer and lithium oxide layer.
本发明人研究发现,对于本发明创新的多孔金属锂阳极而言,控制3D金属集流体骨架表面的氧化程度对后续阳极性能的发挥具有较大影响;进一步研究发现,通过调控氧化气氛、焙烧温度以及时间等参数,可以进一步提升金属锂层以及氧化锂层的原位沉积效果,可以进一步提升制得的多孔金属锂阳极的电学表现。The inventors found that, for the innovative porous metal lithium anode of the present invention, controlling the degree of oxidation of the surface of the 3D metal current collector skeleton has a great influence on the performance of the subsequent anode; As well as time and other parameters, the in-situ deposition effect of the metal lithium layer and the lithium oxide layer can be further improved, and the electrical performance of the prepared porous metal lithium anode can be further improved.
含氧气氛的氧体积含量为5~90%。The oxygen volume content of the oxygen-containing atmosphere is 5 to 90%.
作为优选,含氧气氛的氧体积含量为15~70%。Preferably, the oxygen volume content of the oxygen-containing atmosphere is 15 to 70%.
进一步优选,含氧气氛的氧体积含量为25~55%。在该优选的气氛下,可以出人意料地提升后续制得的阳极的电学性能。More preferably, the oxygen volume content of the oxygen-containing atmosphere is 25 to 55%. Under this preferred atmosphere, the electrical properties of the subsequently produced anodes can be unexpectedly improved.
所述的含氧气氛包含氧气、还包含保护性气体。所述的保护性气体例如为氮气或者惰性气体。The oxygen-containing atmosphere includes oxygen and protective gas. The protective gas is, for example, nitrogen or an inert gas.
优选地,所述的含氧气氛为氧气和氮气的混合气氛。Preferably, the oxygen-containing atmosphere is a mixed atmosphere of oxygen and nitrogen.
焙烧的温度为100~1000℃;优选为500~800℃;进一步优选为500~700℃。The calcination temperature is 100 to 1000°C; preferably 500 to 800°C; more preferably 500 to 700°C.
本发明人研究发现,对于本发明锂金属阳极而言,将氧化焙烧温度控制在500~800℃、特别是500~700℃下,可以出人意料地提升制得的锂金属阳极的电学性能特别是高电流密度下的循环性能。The inventors of the present invention have found that, for the lithium metal anode of the present invention, controlling the oxidative roasting temperature at 500-800°C, especially 500-700°C, can unexpectedly improve the electrical performance of the prepared lithium metal anode, especially the high Cycling performance at current density.
作为优选,氧化焙烧的时间为0.2~10h。Preferably, the oxidative roasting time is 0.2-10 h.
作为优选,所述的氧化焙烧时间为0.5~5h。在所述的气氛、焙烧温度下,优选的焙烧时间的焙烧结果更优。Preferably, the oxidative roasting time is 0.5-5h. Under the stated atmosphere and calcination temperature, the preferred calcination time yields better calcination results.
作为优选,填充金属锂的方法为电沉积或熔融;优选为电沉积。研究发现,采用电沉积方法进行锂填充,利用所述的金属锂层以及氧化锂层的原位形成。Preferably, the method of filling metallic lithium is electrodeposition or melting; preferably electrodeposition. It is found that the lithium filling is performed by the electrodeposition method, and the in-situ formation of the metal lithium layer and the lithium oxide layer is utilized.
优选地,电沉积步骤为:将氧化处理后的多孔金属集流体作为工作电极,锂片作为对电极,在包含锂盐的有机溶剂中进行电沉积。Preferably, the electrodeposition step is as follows: using the oxidized porous metal current collector as a working electrode and a lithium sheet as a counter electrode, electrodepositing in an organic solvent containing a lithium salt.
优选地,电沉积金属锂量为2~12mAh/cm2;进一步优选为5~8mAh/cm2。优选的沉积锂量下,得到的阳极材料的电学性能,特别是循环性能优异。Preferably, the amount of electrodeposited metal lithium is 2-12 mAh/cm 2 ; more preferably, it is 5-8 mAh/cm 2 . Under the preferred amount of deposited lithium, the obtained anode material has excellent electrical properties, especially cycle properties.
本发明还提供了一种所述的多孔锂金属阳极的应用,将其作为锂金属电池的阳极。The present invention also provides an application of the porous lithium metal anode as an anode of a lithium metal battery.
本发明还提供了一种以本发明所述的多孔锂金属阳极为电极的锂金属电池。The present invention also provides a lithium metal battery using the porous lithium metal anode of the present invention as an electrode.
优选地,所述的锂金属电池为锂硫电池、锂碘电池、锂硒电池、锂碲电池、锂氧气电池或锂二氧化碳电池。Preferably, the lithium metal battery is a lithium sulfur battery, a lithium iodine battery, a lithium selenium battery, a lithium tellurium battery, a lithium oxygen battery or a lithium carbon dioxide battery.
有益效果:Beneficial effects:
所述提出的一种多孔锂金属阳极,该多孔锂金属阳极高的比表面积可以显著降低锂金属表面的表观电流密度,实现金属锂高电流密度下稳定的循环。同时,均匀致密氧化锂层的存在有效的避免了电解液与金属锂的直接接触,抑制了常规 3D锂阳极界面反应的发生和持续金属锂的损失。而且通过该方法制备的3D锂阳极实际比容量可高达~3500mAh/g,是常规锂离子电池负极材料的3~10倍。此外,简便的制备工艺有利于推动3D金属锂产业化的实际应用。In the proposed porous lithium metal anode, the high specific surface area of the porous lithium metal anode can significantly reduce the apparent current density of the lithium metal surface and achieve stable cycling of metal lithium at high current density. At the same time, the existence of a uniform and dense lithium oxide layer effectively avoids the direct contact between the electrolyte and metallic lithium, and suppresses the occurrence of conventional 3D lithium anode interfacial reactions and the continuous loss of metallic lithium. Moreover, the actual specific capacity of the 3D lithium anode prepared by this method can be as high as ~3500mAh/g, which is 3-10 times that of the conventional lithium-ion battery negative electrode material. In addition, the facile preparation process is beneficial to promote the practical application of 3D metal lithium industrialization.
附图说明Description of drawings
图1为实施例1中泡沫铜的SEM图。FIG. 1 is a SEM image of the copper foam in Example 1. FIG.
图2为实施例1中氧化后的泡沫铜的SEM图。FIG. 2 is an SEM image of the oxidized copper foam in Example 1. FIG.
图3为实施例1中氧化后的泡沫铜的EDS。FIG. 3 is the EDS of the oxidized copper foam in Example 1. FIG.
图4为实施例1中泡沫铜和氧化后泡沫铜的循环性能图。4 is a graph showing the cycle performance of the copper foam in Example 1 and the oxidized copper foam.
具体实施方式Detailed ways
以下是本发明的较佳实施例的具体说明,并不对本发明构成任何限制,即本发明并不意味着仅限于上述实施例,本技术领域中常见的变型或替代化合物均包含在本申请权利要求所限定的范围内。The following are specific descriptions of preferred embodiments of the present invention, which do not constitute any limitation to the present invention, that is, the present invention is not meant to be limited to the above-mentioned embodiments, and common modifications or alternative compounds in the technical field are included in the right of the application within the limits of the requirements.
实施例1Example 1
商品化的泡沫铜集流体(图1)的厚度为40μm、孔隙率为60%、孔间距为 80μm,将此泡沫铜放置在含氧的氮气气氛(氧含量20%)中,500℃下烧结1h 得到氧化铜修饰的泡沫铜(图2)。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,进行充放电循环测试。同时,以纯泡沫铜为对比样进行相应的充放电循环测试。The commercialized copper foam current collector (Fig. 1) has a thickness of 40 μm, a porosity of 60%, and a pore spacing of 80 μm. The copper foam was placed in an oxygen-containing nitrogen atmosphere (oxygen content of 20%) and sintered at 500°C In 1 h, copper oxide modified copper foam was obtained (Fig. 2). The electrode was used as the working electrode, the metal lithium sheet was used as the counter electrode, and 1M LiTFSI/DOL:DME (volume ratio = 1:1) containing 1 wt.% LiNO 3 was used as the electrolyte to assemble a button battery, and the charge-discharge cycle test was carried out. . At the same time, the corresponding charge-discharge cycle test was carried out with pure copper foam as the control sample.
测试发现,泡沫铜表面均匀的覆盖了一层致密的氧化铜(图3),实现了均匀无枝晶的锂沉积,有效避免了锂枝晶和界面反应的发生。特别在2mA/cm2的电流密度下,氧化后的泡沫铜电极的循环寿命为纯泡沫铜电极循环寿命的6倍以上(图4)。The test found that the surface of the copper foam was uniformly covered with a layer of dense copper oxide (Figure 3), which achieved uniform dendrite-free lithium deposition and effectively avoided the occurrence of lithium dendrites and interfacial reactions. Especially at a current density of 2 mA/cm 2 , the cycle life of the oxidized copper foam electrode was more than 6 times that of the pure copper foam electrode (Fig. 4).
实施例2Example 2
商品化的多孔镍铁集流体的厚度为70μm、孔隙率为40%、孔间距为120μm,将此多孔镍铁放置在含氧的氩气气氛(氧含量30%)中,700℃下烧结2h得到氧化层修饰的多孔镍铁。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,进行充放电循环测试。同时,以纯多孔镍铁为对比样进行相应的充放电循环测试。The thickness of the commercial porous nickel-iron current collector is 70 μm, the porosity is 40%, and the pore spacing is 120 μm. The porous nickel-iron current collector was placed in an oxygen-containing argon atmosphere (oxygen content of 30%), and sintered at 700 ° C for 2 h The porous nickel iron modified by the oxide layer is obtained. The electrode was used as the working electrode, the metal lithium sheet was used as the counter electrode, and 1M LiTFSI/DOL:DME (volume ratio = 1:1) containing 1 wt.% LiNO 3 was used as the electrolyte to assemble a button battery, and the charge-discharge cycle test was carried out. . At the same time, the corresponding charge-discharge cycle tests were carried out with pure porous nickel-iron as the control sample.
测试发现,多孔镍铁表面均匀的覆盖了一层致密的氧化层。特别在5mA/cm2的电流密度下,氧化后的多孔镍铁电极的循环寿命为纯多孔镍铁电极循环寿命的 5倍以上。The test found that the porous nickel-iron surface was uniformly covered with a dense oxide layer. Especially at a current density of 5 mA/cm 2 , the cycle life of the oxidized porous NiFe electrode is more than 5 times that of the pure porous NiFe electrode.
实施例3Example 3
全电池案例:Full battery case:
将实施例1所制备的氧化铜修饰的泡沫铜作为工作电极,然后在0.5mA/cm2的电流密度下,沉积5mAh/cm2金属锂到该电极上制备成复合阳极材料,然后与富S单质的碳纳米管正极组成锂硫电池,在1M LiTFSI/DOL∶DME(体积比=1∶ 1)含1wt.%LiNO3的电解液中,在1C下,进行充放电循环测试。The copper oxide-modified foam copper prepared in Example 1 was used as the working electrode, and then at a current density of 0.5 mA/cm 2 , 5 mAh/cm 2 of metallic lithium was deposited on the electrode to prepare a composite anode material, and then mixed with S-rich A lithium-sulfur battery composed of a simple carbon nanotube positive electrode was subjected to a charge-discharge cycle test at 1C in a 1M LiTFSI/DOL:DME (volume ratio=1:1) electrolyte containing 1wt.% LiNO 3 .
对比例1Comparative Example 1
以泡沫铜作为工作电极,然后在0.5mA/cm2的电流密度下,沉积5mAh/cm2金属锂到泡沫铜中,然后与富S单质的碳纳米管正极组成锂硫电池,在1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3的电解液中进行充放电循环测试。Using foamed copper as the working electrode, and then at a current density of 0.5mA/ cm2 , 5mAh/ cm2 of metallic lithium was deposited into the foamed copper, and then combined with the S-rich carbon nanotube positive electrode to form a lithium-sulfur battery at 1M LiTFSI/ The charge-discharge cycle test was carried out in an electrolyte solution containing 1 wt.% LiNO 3 in DOL:DME (volume ratio=1:1).
制得的电池测试相关结果见附表1。The test results of the prepared battery are shown in Table 1.
表1Table 1
实施例3和对比例1比较发现,本发明所述的多孔锂金属阳极的库伦效率、循环性能明显提升。Comparing Example 3 with Comparative Example 1, it is found that the coulombic efficiency and cycle performance of the porous lithium metal anode of the present invention are significantly improved.
实施例4Example 4
商品化的泡沫镍和泡沫铁集流体的厚度均为50μm、孔隙率均为50%、孔间距均为90μm,将此泡沫镍和泡沫铁放置在含氧的氮气气氛(氧含量30%)中, 600℃下烧结1.5h分别得到氧化镍修饰的泡沫镍和氧化铁修饰的泡沫铁。将这两类电极分别作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下进行充放电循环测试。The thickness of commercial nickel foam and foam iron current collectors are both 50 μm, the porosity is 50%, and the pore spacing is 90 μm. The nickel foam and iron foam are placed in an oxygen-containing nitrogen atmosphere (
制得的电池测试相关结果见附表2。The test results of the prepared battery are shown in Table 2.
实施例5Example 5
两种商品化的泡沫镍集流体的厚度均为50μm、孔间距均为90μm,而孔隙率分别为30%和90%,将这两种泡沫镍放置在含氧的氮气气氛(氧含量30%) 中,600℃下烧结1.5h得到氧化镍修饰的泡沫镍。将这两种电极作为工作电极,以金属锂片为对电极,以1MLiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下进行充放电循环测试。The thickness of the two commercial nickel foam current collectors is 50 μm, the pore spacing is 90 μm, and the porosity is 30% and 90%, respectively. ), sintered at 600 °C for 1.5 h to obtain nickel oxide modified nickel foam. The two electrodes were used as the working electrode, the metal lithium sheet was used as the counter electrode, and 1MLiTFSI/DOL:DME (volume ratio = 1:1) containing 1wt.% LiNO3 was used as the electrolyte for button cell assembly. The charge-discharge cycle test was carried out at a current density of 2 .
制得的电池测试相关结果见附表2。The test results of the prepared battery are shown in Table 2.
实施例6Example 6
商品化的泡沫镍集流体的厚度为50μm、孔隙率为50%,而孔间距分别为5 μm和300μm,将这两种泡沫镍放置在含氧的氮气气氛(氧含量30%)中,600℃下烧结1.5h得到氧化镍修饰的泡沫镍。将两种电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下进行充放电循环测试。The thickness of the commercial nickel foam current collector is 50 μm, the porosity is 50%, and the pore spacing is 5 μm and 300 μm, respectively. Sintered at ℃ for 1.5 h to obtain nickel oxide modified nickel foam. Two kinds of electrodes were used as the working electrode, the metal lithium sheet was used as the counter electrode, and 1M LiTFSI/DOL:DME (volume ratio = 1:1) containing 1wt.% LiNO3 was used as the electrolyte for button cell assembly. The charge-discharge cycle test was carried out at a current density of 2 .
制得的电池测试相关结果见附表2。The test results of the prepared battery are shown in Table 2.
表2Table 2
实施例4表明,集流体材料对电学性能有一定影响,通过实施例4发现,采用泡沫镍作为多孔金属集流体时,可以出人意料地进一步提升电学性能。Example 4 shows that the current collector material has a certain influence on the electrical properties. It is found in Example 4 that when the foamed nickel is used as the porous metal current collector, the electrical properties can be further improved unexpectedly.
实施例5表明,孔隙率大有助于提升性能,特别是在40~60%的孔隙率下,得到的阳极的电学性能,特别是循环性能优异。Example 5 shows that the large porosity helps to improve the performance, especially when the porosity is 40-60%, the electrical performance of the obtained anode, especially the cycle performance, is excellent.
实施例6表明,在优选范围内,孔间距大有助于提升性能,在优选的 40~300μm得到的阳极的电学性能,特别是循环性能优异。Example 6 shows that within the preferred range, a large pore spacing helps to improve performance, and the anode obtained at the preferred 40-300 μm has excellent electrical performance, especially cycle performance.
实施例7Example 7
商品化的多孔铁铜集流体的厚度为60μm、孔隙率为60%、孔间距为45μm,将此多孔铁铜分别放置在氧含量为40%的氮气和氩气气氛中,并在700℃下烧结 2h得到两种氧化铁-氧化铜共同修饰的多孔铁铜。将得到的两种电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.% LiNO3为电解液进行扣式电池组装,在3mA/cm2的电流密度下进行充放电循环测试。The commercialized porous iron-copper current collector has a thickness of 60 μm, a porosity of 60%, and a pore spacing of 45 μm. After sintering for 2 h, two kinds of iron oxide-copper oxide co-modified porous iron-copper were obtained. The two electrodes obtained were used as working electrodes, metal lithium sheets were used as counter electrodes, and 1M LiTFSI/DOL:DME (volume ratio = 1:1) containing 1wt.% LiNO3 was used as electrolyte for button cell assembly. The charge-discharge cycle test was carried out at a current density of cm 2 .
制得的电池测试相关结果见附表3。The test results of the prepared battery are shown in Table 3.
实施例8Example 8
商品化的多孔铁铜集流体的厚度为60μm、孔隙率为60%、孔间距为45μm,将此多孔铁铜分别放置在氧含量为5%,15%,25%,55%,70%,90%的氮气气氛中,分别在700℃下烧结2h得到两种氧化铁-氧化铜共同修饰的多孔铁铜。将得到的这些电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME (体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,在3mA/cm2的电流密度下进行充放电循环测试。The thickness of the commercialized porous iron-copper current collector is 60 μm, the porosity is 60%, and the pore spacing is 45 μm. Two kinds of iron oxide-copper oxide co-modified porous iron-copper were obtained by sintering at 700 °C for 2 h in a 90% nitrogen atmosphere. The obtained electrodes were used as working electrodes, metal lithium sheets were used as counter electrodes, and 1M LiTFSI/DOL:DME (volume ratio = 1:1) containing 1wt.% LiNO3 was used as electrolyte for button cell assembly. The charge-discharge cycle test was carried out at a current density of 2 .
制得的电池测试相关结果见附表3。The test results of the prepared battery are shown in Table 3.
实施例9Example 9
商品化的多孔铁铜集流体的厚度为60μm、孔隙率为60%、孔间距为45μm,将此多孔铁铜放置在氧含量为40%的氮气气氛中,分别在700℃下烧结0.2,0.5, 3,5,10h得到两种氧化铁-氧化铜共同修饰的多孔铁铜。将得到的这些电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1) 含1wt.%LiNO3为电解液进行扣式电池组装,在3mA/cm2的电流密度下进行充放电循环测试。The commercialized porous iron-copper current collector has a thickness of 60 μm, a porosity of 60%, and a pore spacing of 45 μm. The porous iron-copper was placed in a nitrogen atmosphere with an oxygen content of 40%, and sintered at 700 °C for 0.2 and 0.5 μm, respectively. , 3, 5, 10h to obtain two kinds of iron oxide-copper oxide co-modified porous iron-copper. The obtained electrodes were used as working electrodes, metal lithium sheets were used as counter electrodes, and 1M LiTFSI/DOL:DME (volume ratio = 1:1) containing 1wt.% LiNO3 was used as electrolyte for button cell assembly. The charge-discharge cycle test was carried out at a current density of 2 .
制得的电池测试相关结果见附表3。The test results of the prepared battery are shown in Table 3.
表3table 3
实施例7表明在氮气气氛中得到的集流体性能较好,实施例8和9表明,氧含量在25~55%时,制得的材料的性能更优,另外,在焙烧0.5~5h,后续制得的阳极的电学性能更优。Example 7 shows that the performance of the current collector obtained in a nitrogen atmosphere is better. Examples 8 and 9 show that when the oxygen content is 25-55%, the performance of the obtained material is better. The electrical properties of the prepared anode are better.
实施例10Example 10
商品化的多孔镍铜铁集流体的厚度为150μm、孔隙率为75%、孔间距为100 μm,将此多孔镍铜铁放置在氧含量为35%的氮气气氛中,分别在650℃下烧结 3.5h得到氧化物修饰的多孔镍铜铁。将得到的电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,随后在1mA/cm2的电流密度下沉积0.5,2,5,8,12 mAh/cm2的金属锂到工作电极上得到复合的3D锂阳极,并与富S单质的石墨烯正极组成锂硫电池,在1C下,进行充放电循环测试。The commercialized porous NiCuFe current collector has a thickness of 150 μm, a porosity of 75%, and a pore spacing of 100 μm. The porous NiCuFe collector was placed in a nitrogen atmosphere with an oxygen content of 35%, and sintered at 650 °C, respectively. Oxide-modified porous nickel-copper-iron was obtained in 3.5h. The obtained electrode was used as the working electrode, the metal lithium sheet was used as the counter electrode, and 1M LiTFSI/DOL:DME (volume ratio = 1:1) containing 1 wt.% LiNO3 was used as the electrolyte for button cell assembly. At the current density of 2 , 0.5, 2, 5, 8, and 12 mAh/cm2 of metallic lithium was deposited on the working electrode to obtain a composite 3D lithium anode, which was combined with the S-rich graphene cathode to form a lithium-sulfur battery. At 1C, Perform a charge-discharge cycle test.
制得的电池测试相关结果见附表4。The test results of the prepared battery are shown in Table 4.
表4Table 4
结果表明,沉积锂量在5~8mAh/cm2内得到的3D锂阳极性能较好。The results show that the performance of the 3D lithium anode with the deposited lithium content within 5~8mAh/cm2 is better.
实施例11Example 11
将实施例1所制备的氧化铜修饰的泡沫铜作为电极,与在220℃的氩气气氛下熔融的金属锂接触,制得复合锂阳极材料,然后与富S单质的碳纳米管正极组成锂硫电池,在1MLiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3的电解液中,在1C下,进行充放电循环测试。The copper oxide-modified foam copper prepared in Example 1 was used as an electrode, and contacted with metallic lithium melted in an argon atmosphere at 220° C. to obtain a composite lithium anode material, and then combined with the S-rich carbon nanotube positive electrode to form lithium Sulfur battery, in 1M LiTFSI/DOL:DME (volume ratio=1:1) electrolyte containing 1wt.% LiNO3, at 1C, the charge-discharge cycle test was carried out.
制得的电池测试相关结果见附表1。The test results of the prepared battery are shown in Table 1.
从表1可知,采用熔融填充锂的效果稍差于电沉积填充锂。It can be seen from Table 1 that the effect of filling lithium by melting is slightly worse than that of filling lithium by electrodeposition.
对比例2Comparative Example 2
本对比例探讨采用平面集流体,具体如下:This comparative example discusses the use of planar current collectors, as follows:
将商品化的铜箔放置在含氧的氮气气氛(氧含量20%)中,500℃下烧结1h 得到氧化铜修饰的铜箔。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下,进行充放电循环测试。同时,以铜箔为对比样进行相应的充放电循环测试。The commercial copper foil was placed in an oxygen-containing nitrogen atmosphere (oxygen content of 20%), and sintered at 500° C. for 1 h to obtain a copper oxide-modified copper foil. The electrode was used as the working electrode, the metal lithium sheet was used as the counter electrode, and 1M LiTFSI/DOL:DME (volume ratio = 1 :1) containing 1wt.% LiNO3 was used as the electrolyte for button cell assembly. Under the current density, the charge-discharge cycle test was carried out. At the same time, the corresponding charge-discharge cycle test was carried out with copper foil as the control sample.
制得的电池测试相关结果见附表5。The test results of the prepared battery are shown in Table 5.
对比例3Comparative Example 3
商品化的泡沫铜集流体的厚度为40μm、孔隙率为10%、孔间距为80μm,将此泡沫铜放置在含氧的氮气气氛(氧含量20%)中,500℃下烧结1h得到氧化铜修饰的泡沫铜。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下,进行充放电循环测试。The thickness of the commercial foamed copper current collector is 40 μm, the porosity is 10%, and the pore spacing is 80 μm. The copper foam is placed in an oxygen-containing nitrogen atmosphere (
制得的电池测试相关结果见附表5。The test results of the prepared battery are shown in Table 5.
对比例4Comparative Example 4
商品化的泡沫铜集流体的厚度为40μm、孔隙率为60%、孔间距为500μm,将此泡沫铜放置在含氧的氮气气氛(氧含量20%)中,500℃下烧结1h得到氧化铜修饰的泡沫铜。将该电极作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下,进行充放电循环测试。The thickness of the commercial foamed copper current collector is 40 μm, the porosity is 60%, and the pore spacing is 500 μm. The copper foam is placed in an oxygen-containing nitrogen atmosphere (
制得的电池测试相关结果见附表5。The test results of the prepared battery are shown in Table 5.
对比例5Comparative Example 5
本对比例探讨焙烧温度,具体如下:This comparative example discusses the roasting temperature as follows:
商品化的泡沫铜集流体的厚度为40μm、孔隙率为60%、孔间距为80μm,将此泡沫铜放置在含氧的氮气气氛(氧含量20%)中,分别在50和1200℃下烧结1h得到两种氧化铜修饰的泡沫铜。将这两种电极分别作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME(体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下,进行充放电循环测试。A commercialized copper foam current collector with a thickness of 40 μm, a porosity of 60%, and a pore spacing of 80 μm was placed in an oxygen-containing nitrogen atmosphere (oxygen content of 20%) and sintered at 50 and 1200 °C, respectively. In 1 h, two kinds of copper oxide modified copper foams were obtained. The two electrodes were used as the working electrodes, the metal lithium sheet was used as the counter electrode, and 1M LiTFSI/DOL:DME (volume ratio = 1:1) containing 1 wt.% LiNO 3 was used as the electrolyte for button cell assembly. Under the current density of / cm2 , the charge-discharge cycle test was carried out.
制得的电池测试相关结果见附表5。The test results of the prepared battery are shown in Table 5.
对比例6Comparative Example 6
本对比例探讨氧气含量,具体如下:This comparative example explores oxygen levels as follows:
商品化的泡沫铜集流体的厚度为40μm、孔隙率为60%、孔间距为80μm,将此泡沫铜分别放置在纯氧气气氛中,氧含量为2%的氮气气氛中,氧含量为2%的氩气气氛中,并分别在500℃下烧结1h得到三种氧化铜修饰的泡沫铜。将这三种电极分别作为工作电极,以金属锂片为对电极,以1M LiTFSI/DOL∶DME (体积比=1∶1)含1wt.%LiNO3为电解液进行扣式电池组装,在2mA/cm2的电流密度下,进行充放电循环测试。The thickness of the commercial foamed copper current collector is 40 μm, the porosity is 60%, and the pore spacing is 80 μm. In an argon atmosphere, and sintered at 500 °C for 1 h, three kinds of copper oxide modified copper foams were obtained. The three electrodes were used as the working electrodes, the metal lithium sheet was used as the counter electrode, and 1M LiTFSI/DOL:DME (volume ratio = 1:1) containing 1wt.% LiNO3 was used as the electrolyte for button cell assembly. Under the current density of /cm 2 , the charge-discharge cycle test was carried out.
制得的电池测试相关结果见附表5。The test results of the prepared battery are shown in Table 5.
表5table 5
对比例2~6表明,采用平面集流体或者不在优选的范围条件内,将得到较差的性能。Comparative Examples 2 to 6 show that with planar current collectors or not within the preferred range conditions, poorer performance will be obtained.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810978735.XA CN110867559B (en) | 2018-08-27 | 2018-08-27 | A Porous Lithium Metal Anode, Preparation and Application in Lithium Metal Batteries |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810978735.XA CN110867559B (en) | 2018-08-27 | 2018-08-27 | A Porous Lithium Metal Anode, Preparation and Application in Lithium Metal Batteries |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110867559A true CN110867559A (en) | 2020-03-06 |
CN110867559B CN110867559B (en) | 2021-06-29 |
Family
ID=69651742
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810978735.XA Active CN110867559B (en) | 2018-08-27 | 2018-08-27 | A Porous Lithium Metal Anode, Preparation and Application in Lithium Metal Batteries |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110867559B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230018137A (en) * | 2021-07-29 | 2023-02-07 | 성균관대학교산학협력단 | Current collector for lithium metal battery, preparing method of the same, and lithium metal battery comprising the same |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3634144A (en) * | 1970-07-14 | 1972-01-11 | Foote Mineral Co | Process for preparing lithium-filled foraminous metal bodies |
CN103915649A (en) * | 2014-04-22 | 2014-07-09 | 合肥工业大学 | High-energy-density lithium ion battery and preparation method thereof |
CN107579204A (en) * | 2017-08-28 | 2018-01-12 | 珠海光宇电池有限公司 | Lithium anode piece and preparation method thereof and lithium metal secondary battery |
CN108365200A (en) * | 2018-02-11 | 2018-08-03 | 清华大学 | A kind of preparation method of compound lithium an- ode |
-
2018
- 2018-08-27 CN CN201810978735.XA patent/CN110867559B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3634144A (en) * | 1970-07-14 | 1972-01-11 | Foote Mineral Co | Process for preparing lithium-filled foraminous metal bodies |
CN103915649A (en) * | 2014-04-22 | 2014-07-09 | 合肥工业大学 | High-energy-density lithium ion battery and preparation method thereof |
CN107579204A (en) * | 2017-08-28 | 2018-01-12 | 珠海光宇电池有限公司 | Lithium anode piece and preparation method thereof and lithium metal secondary battery |
CN108365200A (en) * | 2018-02-11 | 2018-08-03 | 清华大学 | A kind of preparation method of compound lithium an- ode |
Non-Patent Citations (1)
Title |
---|
ZHENGGANG ZHANG等: "Li2O-Reinforced Cu Nanoclusters as Porous Structure for Dendrite-Free and Long-Lifespan Lithium Metal Anode", 《ACS APPLIED MATERIALS & INTERFACES》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20230018137A (en) * | 2021-07-29 | 2023-02-07 | 성균관대학교산학협력단 | Current collector for lithium metal battery, preparing method of the same, and lithium metal battery comprising the same |
KR102682544B1 (en) * | 2021-07-29 | 2024-07-05 | 성균관대학교산학협력단 | Current collector for lithium metal battery, preparing method of the same, and lithium metal battery comprising the same |
Also Published As
Publication number | Publication date |
---|---|
CN110867559B (en) | 2021-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
An et al. | Heteroatom-doped 3D porous carbon architectures for highly stable aqueous zinc metal batteries and non-aqueous lithium metal batteries | |
Li et al. | Electrochemical synthesis of nanostructured materials for electrochemical energy conversion and storage | |
Zuo et al. | Facilitating the redox reaction of polysulfides by an electrocatalytic layer-modified separator for lithium–sulfur batteries | |
CN108232114B (en) | Composite negative electrode, preparation and its application in the preparation of lithium ion battery | |
CN110828828B (en) | A 3D porous zinc-supported current collector, natriophilic or potassium battery anode and its preparation and application | |
CN102666887B (en) | Manufacturing method of aluminum structure and aluminum structure | |
AU2009241331A1 (en) | Cathode active material coated with resistance-reduction coating layer, and all solid-state lithium secondary battery using the same | |
CN110291666A (en) | Lithium metal negative electrode, preparation method thereof, and lithium secondary battery including the same | |
CN113073496B (en) | Method for preparing conductive fiber paper with hydrophilic-hydrophobic lithium gradient structure and conductive fiber paper | |
Li et al. | Pressure-tuned and surface-oxidized copper foams for dendrite-free Li metal anodes | |
CN116093261A (en) | Lithium metal composite material, preparation method thereof, and application of negative electrode of lithium metal battery | |
Wei et al. | Zn@ C core–shell nanocomposite for rechargeable aqueous Zn//MnO2 batteries with long lifetime | |
CN112928238B (en) | Ultrathin metal lithium electrode and its preparation and use as negative electrode of secondary lithium battery | |
Plichta et al. | The rechargeable LixTiS2/LiAlCl4/Li1− xCoO2 solid‐state cell | |
CN111799443A (en) | A three-dimensional porous metal lithium negative electrode for secondary battery and its preparation and application | |
CN112786885A (en) | Long-life and dendrite-free metal lithium negative electrode for lithium battery and preparation method and application thereof | |
Lv et al. | A homogenous mixed coating enabled significant stability and capacity enhancement of iron oxide anodes for aqueous nickel–iron batteries | |
US11158849B2 (en) | Lithium ion battery including nano-crystalline graphene electrode | |
KR20220054074A (en) | Anode assembly for lithium secondary battery, method for producing the same, and lithium secondary battery using the same | |
KR102626113B1 (en) | Current collector of negative electrode and metal battery comprising same | |
Li et al. | Porous Ni3 (PO4) 2 thin film as a binder-free and low-cost anode of a high-capacity lithium-ion battery | |
CN110867559A (en) | A Porous Lithium Metal Anode, Preparation and Application in Lithium Metal Batteries | |
Shi et al. | Free-standing MoS x-based dual functional polysulfide catalyzer and immobilizer for high performance Li–S batteries | |
Qiu et al. | Lithium–sulfur battery | |
JP5488994B2 (en) | Aluminum structure manufacturing method and aluminum structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20221010 Address after: 516000 1st, 2nd and 4th floors, building 3, shengnuoda Industrial Park, No.4, Xingju West Road, Dongxing District, Dongjiang hi tech Industrial Park, Zhongkai hi tech Zone, Huizhou City, Guangdong Province Patentee after: GUANGDONG MICROELECTRONICS NEW ENERGY Co.,Ltd. Address before: Yuelu District City, Hunan province 410083 Changsha Lushan Road No. 932 Patentee before: CENTRAL SOUTH University |
|
CP03 | Change of name, title or address |
Address after: 516000 Guangdong Province Huizhou Zhongkai High tech Zone Dongjiang High tech Industrial Park Dongxing Area, No. 4 Xingju West Road, Shengnuoda Industrial Park, Building 3, 1st, 2nd, and 4th floors Patentee after: Guangdong Microelectronics New Energy Co.,Ltd. Country or region after: China Address before: No. 4 Xingju West Road, Dongxing Area, Dongjiang High tech Industrial Park, Zhongkai High tech Zone, Huizhou City, Guangdong Province Patentee before: GUANGDONG MICROELECTRONICS NEW ENERGY Co.,Ltd. Country or region before: China |