Nothing Special   »   [go: up one dir, main page]

CN110866588B - A training and learning method and system for realizing the individualization of the learnable ability model of intelligent virtual digital animals - Google Patents

A training and learning method and system for realizing the individualization of the learnable ability model of intelligent virtual digital animals Download PDF

Info

Publication number
CN110866588B
CN110866588B CN201911086750.4A CN201911086750A CN110866588B CN 110866588 B CN110866588 B CN 110866588B CN 201911086750 A CN201911086750 A CN 201911086750A CN 110866588 B CN110866588 B CN 110866588B
Authority
CN
China
Prior art keywords
animal
learnable
virtual digital
intelligent virtual
model
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911086750.4A
Other languages
Chinese (zh)
Other versions
CN110866588A (en
Inventor
周鹏
武延军
赵琛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Software of CAS
Original Assignee
Institute of Software of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Software of CAS filed Critical Institute of Software of CAS
Priority to CN201911086750.4A priority Critical patent/CN110866588B/en
Publication of CN110866588A publication Critical patent/CN110866588A/en
Application granted granted Critical
Publication of CN110866588B publication Critical patent/CN110866588B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/008Artificial life, i.e. computing arrangements simulating life based on physical entities controlled by simulated intelligence so as to replicate intelligent life forms, e.g. based on robots replicating pets or humans in their appearance or behaviour
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F8/00Arrangements for software engineering
    • G06F8/60Software deployment
    • G06F8/65Updates

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Software Systems (AREA)
  • General Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Computing Systems (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Robotics (AREA)
  • Computer Security & Cryptography (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

本发明公开了一种实现智能虚拟数字动物的可学习能力模型个性化的训练学习方法与系统。该方法包括:在云端生成智能虚拟数字动物的程序实例;为智能虚拟数字动物云端实例构造生产动物机器人实物映射,并派发给用户,动物机器人从云端下载相应的可学习能力模型;用户与动物机器人实物进行自然场景交互,动物机器人自动采集、生成个性化训练数据、训练更新可学习能力模型副本并上传到云端,云端更新相应虚拟数字动物的可学习能力模型。本发明有效地解决了现有人工智能模型训练模式对普通人门槛过高、无法大范围发挥大众劳动力的价值,不能参与到虚拟数字智能体能力模型的个性化训练中、和用户交互真实场景缺失等问题。

Figure 201911086750

The invention discloses a training and learning method and system for realizing the individualization of the learnable ability model of an intelligent virtual digital animal. The method includes: generating a program instance of an intelligent virtual digital animal on the cloud; constructing and producing an animal robot physical mapping for the cloud instance of the intelligent virtual digital animal, and distributing it to the user, and the animal robot downloads a corresponding learnable ability model from the cloud; the user and the animal robot The physical objects interact with natural scenes, and the animal robot automatically collects and generates personalized training data, trains and updates a copy of the learnable ability model and uploads it to the cloud, and the cloud updates the learnable ability model of the corresponding virtual digital animal. The present invention effectively solves the problem that the existing artificial intelligence model training mode has too high a threshold for ordinary people, cannot exert the value of the public labor force on a large scale, cannot participate in the personalized training of the virtual digital agent ability model, and lacks the real scene of interacting with users. And other issues.

Figure 201911086750

Description

一种实现智能虚拟数字动物的可学习能力模型个性化的训练学习方法与系统A training and learning method and system for realizing the personalization of the learnable ability model of intelligent virtual digital animals

技术领域technical field

本发明属于机器学习训练技术领域,具体涉及一种实现智能虚拟数字动物的可学习能力模型个性化的训练学习方法与系统。The invention belongs to the technical field of machine learning training, and in particular relates to a training and learning method and system for realizing individualized learning ability models of intelligent virtual digital animals.

背景技术Background technique

虚拟数字动物是在云服务器端,通过计算机程序数据结构和代码片段,定义基本属性列表、行为列表所刻画的虚拟对象,这些虚拟对象通常是现实场景中一种或多种真实动物的概念映射,并且该概念映射甚至可以叠加其他生物物种和虚构物种的属性。随着人工智能的发展,人们提出了为虚拟数字动物增加可通过训练来学习的“可学习能力模型”智能模块,称之为智能虚拟数字动物。这里提到的“可学习能力模型”智能模块,典型地,可通过构造神经网络模型来表示,同时可通过为智能虚拟数字动物设计多个面向不同能力学习的智能模块,实现支持多种能力的训练学习。Virtual digital animals are virtual objects described by defining basic attribute lists and behavior lists on the cloud server side through computer program data structures and code fragments. These virtual objects are usually conceptual mappings of one or more real animals in real scenes. And the concept map can even superimpose the attributes of other biological species and fictional species. With the development of artificial intelligence, it is proposed to add a "learnable ability model" intelligent module that can be learned through training to virtual digital animals, which is called intelligent virtual digital animals. The "learnable ability model" intelligent module mentioned here can typically be expressed by constructing a neural network model, and at the same time, by designing multiple intelligent modules for intelligent virtual digital animals that are oriented to different ability learning, the ability to support multiple abilities can be realized. Train to learn.

近年来,随着人工智能技术理论和方法的突飞猛进,以及智能制造能力的巨大进步(机器狗、机器人、机器人蜂群等智能体层出不穷,更新换代),用户对传统的纯软件交互的智能虚拟数字动物,提出了个性化训练学习能力,和交互方式革新(传统的完全是在软件界面虚拟场景交互,比如使用鼠标或触摸屏,通过软件绘制的虚拟图形、图片界面跟虚拟宠物互动)的新期盼。In recent years, with the rapid development of artificial intelligence technology theory and methods, and the great progress of intelligent manufacturing capabilities (robot dogs, robots, robot bee colonies and other intelligent bodies emerge in endlessly and are updated), users are more interested in traditional pure software interactive intelligent virtual digital Animals, put forward the new expectation of personalized training and learning ability, and innovation of interaction mode (traditionally, the interaction is completely in the virtual scene of the software interface, such as using the mouse or touch screen, and interacting with the virtual pet through the virtual graphics and picture interface drawn by the software) .

当前智能虚拟数字动物训练智能模块的技术方法是,由专业的计算机人才,通过编程等专业的手段,用预先统一收集的数据对可学习模型进行训练得到统一的能力模型,然后将得到的统一能力模型无差别地复制到各“智能虚拟数字动物”的用户程序对象实例。这种训练技术,其方法或模式存在的缺点与不足概括起来包括“缺乏个性化的用户真实互动场景数据对智能虚拟数字动物的个性化可学习训练”、“缺乏在真实场景的人与虚拟数字动物的物理交互”,具体表现在:用户(普通人)无法个性化地、直接地训练调教自己的智能虚拟数字动物,用户(普通人)只能在软件场景,而不能在物理世界中真实地跟自己的智能虚拟数字动物直接互动。因此难以满足诸如智能数字宠物狗部分或全部代替生物狗(主人可以按照自己的需要,有选择地调教生物狗学会个性化技能),让普通人可以像驯养动物一样无门槛地参与到智能虚拟数字动物训练、以及针对特定用户行为习惯的可训练学习成长的智能服务机器狗、智能服务机器人等对个性化培育训练学习能力的更高需求。The current technical method for training intelligent modules of intelligent virtual digital animals is that professional computer talents, through professional means such as programming, use pre-collected data to train the learnable model to obtain a unified ability model, and then the obtained unified ability The model is copied indiscriminately to the user program object instance of each "intelligent virtual digital animal". The shortcomings and deficiencies of this training technology, its method or mode can be summed up as "lack of individualized learnable training of intelligent virtual digital animals based on real interaction scene data of users", "lack of human and virtual digital animals in real scenes". The physical interaction of animals” is specifically manifested in: users (ordinary people) cannot personally and directly train and adjust their own intelligent virtual digital animals, and users (ordinary people) can only interact in the software scene, not in the physical world. Interact directly with your own smart virtual digital animal. Therefore, it is difficult to meet the requirements such as intelligent digital pet dogs partially or completely replacing biological dogs (owners can selectively train biological dogs to learn personalized skills according to their own needs), so that ordinary people can participate in intelligent virtual digital pets without threshold like domesticated animals. Animal training, as well as intelligent service robot dogs and intelligent service robots that can be trained to learn and grow for specific user behavior habits, have a higher demand for personalized training and learning capabilities.

发明内容Contents of the invention

本发明的目的在于:克服现有训练学习技术在方法模式上的不足,提供一种新的实现智能虚拟数字动物的可学习能力模型个性化的训练学习方法与系统。The purpose of the present invention is to overcome the shortcomings of the existing training and learning technology in the method mode, and provide a new training and learning method and system for realizing the individualization of the learnable ability model of intelligent virtual digital animals.

本发明为每一个“智能虚拟数字动物”生产制造一个对应的动物机器人,动物机器人从云端同步下载“智能虚拟数字动物”的“可学习能力模型”智能模块,存储为本地副本。在每个用户(普通人)跟隶属于自己的动物机器人直接交互的真实场景中,或者在用户有意识地训练(调教,注意:不同于传统的配置一些固定参数)自己的动物机器人过程中,自动生成个性化训练数据,训练可学习能力模型副本并更新模型参数,同步到云端,从而解决“缺乏个性化的用户真实互动场景数据对智能虚拟数字动物的个性化可学习训练”、“缺乏在真实场景的人与虚拟数字动物的物理交互”等问题。The present invention manufactures a corresponding animal robot for each "intelligent virtual digital animal", and the animal robot synchronously downloads the "learnable ability model" intelligent module of the "intelligent virtual digital animal" from the cloud, and stores it as a local copy. In the real scene where each user (ordinary person) directly interacts with his own animal robot, or in the process of the user consciously training (tuning, note: different from the traditional configuration of some fixed parameters) his own animal robot, automatic Generate personalized training data, train a copy of the learnable ability model and update the model parameters, and synchronize to the cloud, thus solving the "lack of personalized learning training for intelligent virtual digital animals based on real user interaction scene data" and "lack of real-world The physical interaction between people in the scene and virtual digital animals" and other issues.

本发明采用的技术方案如下:The technical scheme that the present invention adopts is as follows:

第一方面,本发明提供一种实现智能虚拟数字动物的可学习能力模型个性化的训练学习方法,其步骤包括:In the first aspect, the present invention provides a training and learning method for realizing the individualization of the learnable ability model of an intelligent virtual digital animal, the steps of which include:

动物机器人实物从云服务器端下载可学习能力模型副本;所述动物机器人实物是按照云服务器端的智能虚拟数字动物实例制造的动物机器人;The actual animal robot downloads a copy of the learnable ability model from the cloud server; the animal robot is an animal robot manufactured according to the intelligent virtual digital animal instance on the cloud server;

动物机器人实物通过与用户进行场景交互,实现对智能虚拟数字动物的可学习能力模型的个性化训练;The animal robot realizes the personalized training of the learnable ability model of the intelligent virtual digital animal through scene interaction with the user;

动物机器人实物将训练完成的可学习能力模型副本上传至云服务器端,以使得云服务器端能够根据上传的可学习能力模型副本更新智能虚拟数字动物的可学习能力模型。The actual animal robot uploads a copy of the trained learnable ability model to the cloud server, so that the cloud server can update the learnable ability model of the intelligent virtual digital animal according to the uploaded copy of the learnable ability model.

进一步地,所述的动物机器人实物从云服务器端下载可学习能力模型副本,包括:Further, the animal robot downloads a copy of the learnable ability model from the cloud server, including:

动物机器人实物向云服务器端发送身份验证请求,以便云端收到请求后进行身份验证,并在验证通过后写锁定相应的可学习能力模型;The animal robot sends an identity verification request to the cloud server, so that the cloud can perform identity verification after receiving the request, and write and lock the corresponding learnable ability model after the verification is passed;

动物机器人实物向云服务器端请求下载可学习能力模型;The animal robot in kind requests to the cloud server to download the learnable ability model;

动物机器人实物校验下载的可学习能力模型的数据完整性;The data integrity of the learnable ability model downloaded by the physical verification of the animal robot;

动物机器人实物将下载的可学习能力模型载入,设置为动物机器人实物的“可学习能力模型初始副本”。The animal robot object will load the downloaded learnable ability model, and set it as the "initial copy of the learnable ability model" of the animal robot object.

进一步地,所述的动物机器人实物通过与用户进行场景交互,实现对智能虚拟数字动物的可学习能力模型的个性化训练,包括:Further, the animal robot realizes the personalized training of the learnable ability model of the intelligent virtual digital animal by interacting with the user in the scene, including:

用户给动物机器人实物选择一个训练目标;The user selects a training target for the animal robot;

用户与动物机器人实物进行个性化场景交互;The user interacts with the animal robot in a personalized scene;

在交互过程中,动物机器人实物通过传感器自动采集、生成个性化训练数据,按照训练目标标注数据;During the interaction process, the animal robot automatically collects and generates personalized training data through sensors, and labels the data according to the training objectives;

基于采集的数据,自动训练更新可学习能力模型副本。Based on the collected data, the copy of the learnable ability model is automatically trained and updated.

第二方面,本发明提供一种实现智能虚拟数字动物的可学习能力模型个性化的训练学习方法,其步骤包括:In a second aspect, the present invention provides a training and learning method for realizing the individualization of the learnable ability model of an intelligent virtual digital animal, the steps of which include:

云服务器端生成智能虚拟数字动物实例;The cloud server generates intelligent virtual digital animal instances;

云服务器端根据动物机器人实物的请求,向所述动物机器人实物发送可学习能力模型副本;所述动物机器人实物是按照云服务器端的智能虚拟数字动物实例制造的动物机器人;According to the request of the real animal robot, the cloud server sends a copy of the learnable ability model to the real animal robot; the real animal robot is an animal robot manufactured according to the intelligent virtual digital animal instance on the cloud server side;

云服务器端接收动物机器人实物上传的训练完成的可学习能力模型副本,并更新智能虚拟数字动物的可学习能力模型;所述训练完成的可学习能力模型副本,是用户通过与动物机器人实物进行场景交互并进行个性化训练完成的可学习能力模型副本。The cloud server end receives the learned ability model copy of the training completed by the animal robot, and updates the learnable ability model of the intelligent virtual digital animal; Interact with and perform personalized training to complete a copy of the learnable ability model.

进一步地,所述云服务器端采用以下步骤生成智能虚拟数字动物实例:Further, the cloud server adopts the following steps to generate an intelligent virtual digital animal instance:

对用户进行注册;register users;

用户选择要领取的智能虚拟数字动物的类型;The user selects the type of intelligent virtual digital animal to receive;

为用户生成智能虚拟数字动物程序实例。Generate intelligent virtual digital animal program instances for users.

进一步地,所述的更新智能虚拟数字动物的可学习能力模型,包括:Further, the learning ability model of updating the intelligent virtual digital animal includes:

校验可学习能力模型副本的数据完整性;Verify the data integrity of the copy of the learnable capability model;

解除可学习能力模型写锁定;Unlock the learnable capability model write lock;

根据上传的可学习能力模型副本,更新智能虚拟数字动物的可学习能力模型。Update the learnable ability model of the intelligent virtual digital animal according to the uploaded copy of the learnable ability model.

进一步地,所述云服务器端设置智能虚拟数字动物程序对象实例云托管平台,所述智能虚拟数字动物程序对象实例云托管平台在云端运行智能虚拟数字动物的程序逻辑,存储用户资源,保存管理虚拟数字动物类型、智能虚拟数字动物的所有属性和行为列表、属性列表,负责跟动物机器人实物交互,并提供访问页面供用户直接访问;所述虚拟数字动物类型定义了不同动物类别的数据结构体,包括动物属性、动物行为、动物的可学习能力模型的框架;所述智能虚拟数字动物是智能虚拟数字动物类型的实例化程序对象,由智能虚拟数字动物的可学习能力模型、属性列表、行为列表组成,其中属性列表记录了智能虚拟动物实例的属性值,行为列表定义了动物的基本动作行为。Further, the cloud server end is provided with a cloud hosting platform for the program object instance of the smart virtual digital animal, and the cloud hosting platform for the program object instance of the smart virtual digital animal runs the program logic of the smart virtual digital animal in the cloud, stores user resources, saves and manages virtual Digital animal types, all attributes, behavior lists, and attribute lists of intelligent virtual digital animals are responsible for interacting with animal robots and providing access pages for users to directly access; the virtual digital animal types define data structures of different animal categories, Including the framework of animal attributes, animal behaviors, and animal learnable ability models; the intelligent virtual digital animal is an instantiation program object of the intelligent virtual digital animal type, which consists of the learnable ability model, attribute list, and behavior list of the intelligent virtual digital animal The attribute list records the attribute values of the intelligent virtual animal instance, and the behavior list defines the basic action behavior of the animal.

进一步地,所述可学习能力模型,由可学习能力模型结构定义、模型参数、和模型参数完整性校验值组成;通过训练学习得到一组参数集合,即模型参数,对于每一组稳定的模型参数,生成完整性校验值。Further, the learnable capability model is composed of a learnable capability model structure definition, model parameters, and model parameter integrity check values; a set of parameter sets, namely model parameters, are obtained through training and learning, and for each set of stable Model parameters, generate integrity check values.

第三方面,本发明提供一种动物机器人,其包括物理机体和计算系统;所述计算系统从云服务器端下载智能虚拟数字动物的可学习能力模型副本,通过与用户进行场景交互实现对可学习能力模型的个性化训练,并将训练完成的可学习能力模型副本上传至云服务器端,以使得云服务器端能够根据上传的可学习能力模型副本更新智能虚拟数字动物的可学习能力模型。In a third aspect, the present invention provides an animal robot, which includes a physical body and a computing system; the computing system downloads a copy of the learnable ability model of an intelligent virtual digital animal from a cloud server, and realizes the learnable ability model copy of the intelligent virtual digital animal through scene interaction with the user. Personalized training of the ability model, and upload the copy of the trained learnable ability model to the cloud server, so that the cloud server can update the learnable ability model of the intelligent virtual digital animal according to the uploaded copy of the learnable ability model.

进一步地,所述的动物机器人是按照云服务器端的智能虚拟数字动物实例的结构体信息制造的动物机器人,是对智能虚拟数字动物实例的物理映射,实现了虚拟数字世界向物理世界的延伸;所述物理机体包含对智能虚拟数字动物的属性、行为的物理呈现,包括颜色、纹理、可编程控制的机械手、机械臂、视觉传感器所述计算系统包括实例管理代理模块、可学习能力模型副本模块、NPU模块、控制逻辑集成电路、存储模块。Further, the animal robot is an animal robot manufactured according to the structure information of the intelligent virtual digital animal instance on the cloud server side, which is a physical mapping of the intelligent virtual digital animal instance, and realizes the extension of the virtual digital world to the physical world; The physical body includes the physical presentation of the attributes and behaviors of intelligent virtual digital animals, including color, texture, programmable control of manipulators, manipulators, and visual sensors. The computing system includes an instance management agent module, a learnable ability model copy module, NPU module, control logic integrated circuit, storage module.

进一步地,所述实例管理代理模块通过网络跟云服务器端的实例管理模块通信,负责向云托管平台提交身份认证请求、下载可学习能力模型、校验下载的可学习能力模型、安装可学习能力模型为动物机器人实物的本地模型副本、调度训练更新可学习能力模型副本的程序、上传训练更新后的可学习能力模型副本到云端;所述NPU模块是智能计算专用处理器,用于加速神经网络推理和训练性能,所述控制逻辑集成电路是实现对动物机器人可编程控制的处理器,所述存储模块为可学习能力模型副本、训练数据、程序运行提供快速存储功能。Further, the instance management agent module communicates with the instance management module on the cloud server side through the network, and is responsible for submitting an identity authentication request to the cloud hosting platform, downloading the learnable capability model, verifying the downloaded learnable capability model, and installing the learnable capability model A copy of the local model of the animal robot, a program for scheduling training and updating the copy of the learnable ability model, uploading the copy of the learned ability model after training and updating to the cloud; the NPU module is a special processor for intelligent computing, used to accelerate neural network reasoning and training performance, the control logic integrated circuit is a processor that realizes the programmable control of the animal robot, and the storage module provides a fast storage function for the copy of the learnable ability model, training data, and program operation.

第四方面,本发明提供一种云服务器,其设置有智能虚拟数字动物程序对象实例云托管平台;In the fourth aspect, the present invention provides a cloud server, which is provided with an intelligent virtual digital animal program object instance cloud hosting platform;

所述智能虚拟数字动物程序对象实例云托管平台生成智能虚拟数字动物实例,根据动物机器人实物的请求,向所述动物机器人实物发送可学习能力模型副本;所述动物机器人实物是按照云服务器端的智能虚拟数字动物实例制造的动物机器人;The intelligent virtual digital animal program object instance cloud hosting platform generates an intelligent virtual digital animal instance, and according to the request of the animal robot, sends a copy of the learnable ability model to the animal robot; Animal robots manufactured by virtual digital animal instances;

所述智能虚拟数字动物程序对象实例云托管平台接收动物机器人实物上传的训练完成的可学习能力模型副本,并更新智能虚拟数字动物的可学习能力模型;所述训练完成的可学习能力模型副本,是用户通过与动物机器人实物进行场景交互并进行个性化训练完成的可学习能力模型副本。The intelligent virtual digital animal program object instance cloud hosting platform receives the copy of the trained learnable ability model uploaded by the animal robot, and updates the learnable ability model of the intelligent virtual digital animal; the trained copy of the learnable ability model, It is a copy of the learnable ability model completed by the user through scene interaction with the animal robot and personalized training.

进一步地,所述的云服务器包括实例管理模块、虚拟数字动物类型模块和智能虚拟动物实例模块;Further, the cloud server includes an instance management module, a virtual digital animal type module and an intelligent virtual animal instance module;

所述实例管理模块管理智能虚拟数字动物实例的全生命周期、实例的可学习能力模型管理,并负责通过网络与运行在动物机器人实物中的实例管理代理模块进行交互通信;The instance management module manages the whole life cycle of the intelligent virtual digital animal instance, manages the learnable ability model of the instance, and is responsible for interactive communication with the instance management agent module running in the animal robot object through the network;

所述虚拟数字动物类型模块包含不同动物类别类型,定义了不同动物类别的数据结构体,包括动物属性、动物行为、动物的可学习能力模型的框架;The virtual digital animal type module includes different types of animal types, and defines data structures of different animal types, including animal attributes, animal behaviors, and the framework of animal learnable ability models;

所述智能虚拟动物实例模块是智能虚拟数字动物类型的具体实例化,包含可学习能力模型、属性列表、行为列表。The intelligent virtual animal instance module is a specific instantiation of the intelligent virtual digital animal type, including a learnable ability model, an attribute list, and a behavior list.

第五方面,本发明提供一种实现智能虚拟数字动物的可学习能力模型个性化的训练学习系统,其包括上面所述的动物机器人以及云服务器。In the fifth aspect, the present invention provides a training and learning system for realizing the personalization of the learnable ability model of an intelligent virtual digital animal, which includes the above-mentioned animal robot and a cloud server.

本发明与现有技术相比的优点在于:The advantage of the present invention compared with prior art is:

(1)当前,智能虚拟数字动物的人工智能能力模型(如RNN、CNN网络、深度强化模型等实现)的训练需要专业的计算机工程师,门槛高;而本发明提出的为线上智能虚拟数字动物生产线下动物机器人实物映射,普通人在与线下动物机器人实物的自然场景交互中,为智能虚拟数字动物训练能力模型的方法、模式,显著降低了训练虚拟数字动物的人工智能能力模型的门槛,这种新的技术模式为大众劳动力参与虚拟数字智能体的能力模型训练提供了简便途径。(1) At present, the training of the artificial intelligence ability model (such as RNN, CNN network, deep reinforcement model, etc.) of intelligent virtual digital animals requires professional computer engineers, and the threshold is high; and the present invention proposes online intelligent virtual digital animals The physical mapping of animal robots under the production line, the method and mode for ordinary people to train ability models for intelligent virtual digital animals in the natural scene interaction with offline animal robots, significantly reduces the threshold for training artificial intelligence ability models of virtual digital animals, This new technology model provides a convenient way for the general labor force to participate in the ability model training of virtual digital agents.

(2)当前,智能虚拟数字动物的可学习能力模型训练,采用线上或上线前统一收集数据、统一训练、统一部署的方式,存在缺乏个性化智能、灵活性、和真实场景参与感的问题;本发明提出的训练学习方法与系统非常灵活,解决了面向大量用户的智能虚拟数字动物的可学习能力模型个性化,和人与虚拟数字动物的真实场景物理交互等问题。这种线上智能虚拟数字实例与线下实物机器人映射相结合的训练和互动方式,为实现,诸如在“主人”的“培训下”,个性化能力(如学会叫、识别颜色、捡回抛出的球等)不断“学习成长”的数字宠物等应用提供了技术方法与模式。(2) At present, the learning ability model training of intelligent virtual digital animals adopts the method of unified data collection, unified training, and unified deployment online or before going online, and there are problems of lack of personalized intelligence, flexibility, and sense of participation in real scenes The training and learning method and system proposed by the present invention are very flexible, and solve the problems such as the personalization of the learnable ability model of intelligent virtual digital animals for a large number of users, and the real scene physical interaction between people and virtual digital animals. This combination of online intelligent virtual digital instances and offline physical robot mapping training and interaction methods, in order to achieve, such as "under the training" of the "master", personalized abilities (such as learning to call, recognize colors, pick up and throw objects, etc.) Applications such as digital pets that continuously "learn and grow" provide technical methods and models.

附图说明Description of drawings

图1是本发明的整体结构示意图;Fig. 1 is the overall structural representation of the present invention;

图2是本发明的为智能虚拟数字动物构造生成动物机器人映射的过程;Fig. 2 is the process of generating an animal robot mapping for an intelligent virtual digital animal structure of the present invention;

图3是本发明的实现智能虚拟数字动物的可学习能力模型个性化的训练学习过程。Fig. 3 is the training and learning process of realizing the personalization of the learnable ability model of the intelligent virtual digital animal according to the present invention.

具体实施方式Detailed ways

下面结合附图和实施例对本发明作进一步的说明,但不以任何方式限制本发明的范围。The present invention will be further described below in conjunction with the accompanying drawings and examples, but the scope of the present invention is not limited in any way.

本实施例的实现智能虚拟数字动物的可学习能力模型个性化的训练学习系统,如图1所示,是主要由智能虚拟数字动物程序对象实例云托管平台1、动物机器人实物2、网络3组成。其中智能虚拟数字动物程序对象实例云托管平台1主要由实例管理模块101、虚拟数字动物类型模块102、和智能虚拟数字动物实例模块103(多个不同实例构成实例集合)等组成。智能虚拟数字动物实例模块103包含可学习能力模型1031、属性列表1032和行为列表1033。动物机器人实物2由实例管理代理模块201、可学习能力模型副本模块202、NPU(神经网络处理器)模块203、存储模块205、控制逻辑集成电路204、和物理机体等组成。图中虚线框表示的模块不是本发明的核心组成部分。人4是用户,是某智能虚拟数字动物实例和相应的动物机器人实物的所有者,跟对应的动物机器人实物在物理场景中直接交互,动物机器人实物通过视觉传感器、碰撞检测传感器、触觉传感器、压力传感器、光纤传感器等在交互中采集、生成训练数据,训练更新可学习能力模型副本。智能虚拟数字动物程序对象实例云托管平台1运行在云端,动物机器人实物2在用户端(普通人),网络3连接了云端和动物机器人实物,提供数据传输链路。The individualized training and learning system for realizing the learnable ability model of intelligent virtual digital animals in this embodiment, as shown in FIG. . The intelligent virtual digital animal program object instance cloud hosting platform 1 is mainly composed of an instance management module 101, a virtual digital animal type module 102, and an intelligent virtual digital animal instance module 103 (multiple different instances form an instance set). The intelligent virtual digital animal instance module 103 includes a learnable ability model 1031 , an attribute list 1032 and a behavior list 1033 . The animal robot object 2 is composed of an instance management agent module 201, a learnable ability model copy module 202, an NPU (neural network processor) module 203, a storage module 205, a control logic integrated circuit 204, and a physical body. The modules indicated by the dotted boxes in the figure are not the core components of the present invention. Person 4 is the user, who is the owner of a certain intelligent virtual digital animal instance and the corresponding physical animal robot, and interacts directly with the corresponding physical animal robot in the physical scene. Sensors, fiber optic sensors, etc. collect and generate training data in the interaction, and the training updates the copy of the learnable ability model. The intelligent virtual digital animal program object instance cloud hosting platform 1 runs on the cloud, the real animal robot 2 is on the user end (ordinary person), and the network 3 connects the cloud and the real animal robot to provide a data transmission link.

所述智能虚拟数字动物程序对象实例云托管平台1,在云端运行智能虚拟数字动物程序逻辑,存储用户资源,保存管理虚拟数字动物类型、智能虚拟数字动物的所有属性和行为属性列表,负责跟动物机器人实物交互,也提供访问页面供用户(人)直接访问等。其中实例管理模块101管理智能虚拟数字动物实例的全生命周期、实例的可学习能力模型管理(锁定可学习能力模型、解锁可学习能力模型、更新可学习能力模型等),并负责通过网络3跟运行在动物机器人实物2中的实例管理代理模块201进行交互通信,通信内容主要包括验证用户和实例身份、提供可学习能力模型下载、接收可学习能力模型上传、校验可学习能力模型等。The intelligent virtual digital animal program object instance cloud hosting platform 1 runs the intelligent virtual digital animal program logic in the cloud, stores user resources, saves and manages virtual digital animal types, all attributes and behavior attribute lists of intelligent virtual digital animals, and is responsible for tracking animals The robot interacts with physical objects, and also provides access pages for users (humans) to directly access, etc. Among them, the instance management module 101 manages the whole life cycle of the intelligent virtual digital animal instance, manages the learnable ability model of the instance (locking the learnable ability model, unlocking the learnable ability model, updating the learnable ability model, etc.), and is responsible for tracking through the network 3 The instance management agent module 201 running in the animal robot object 2 conducts interactive communication, and the communication content mainly includes verifying user and instance identities, providing learnable ability model downloads, receiving learnable ability model uploads, and verifying learnable ability models.

所述虚拟数字动物类型模块102,是平台管理的不同动物类别类型,定义了不同动物类别的数据结构体,如动物属性、动物行为、动物的可学习能力模型的框架。The virtual digital animal type module 102 is different types of animal types managed by the platform, and defines the data structure of different animal types, such as the framework of animal attributes, animal behaviors, and animal learnable ability models.

所述智能虚拟动物实例模块103,是智能虚拟数字动物类型的具体实例化,每个动物类型通常有多个实例,每个实例都有独立保存的可学习能力模型,所有实例构成实例集合。智能虚拟动物实例是由可学习能力模型1031、属性列表1032、行为列表1033等组成。其中属性列表定义了智能虚拟动物实例的属性(如唯一身份标识ID、颜色、年龄、性别等),行为列表定义了动物的基本动作行为(如跑、走、转弯、跳、旺旺叫等)。The intelligent virtual animal instance module 103 is the specific instantiation of intelligent virtual digital animal types. Each animal type usually has multiple instances, and each instance has an independently saved learnable ability model. All instances form an instance set. An instance of an intelligent virtual animal is composed of a learnable ability model 1031 , an attribute list 1032 , a behavior list 1033 and so on. The attribute list defines the attributes of the intelligent virtual animal instance (such as unique ID, color, age, gender, etc.), and the behavior list defines the basic behavior of the animal (such as running, walking, turning, jumping, screaming, etc.).

所述可学习能力模型1031,是由可学习模型结构定义、模型参数、和模型参数完整性校验值组成,可学习模型结构可以是人工神经网络(ANN)、深度强化学习(ReinforcementLearning)、脉冲神经网络(SNN)等,可学习模型结构的不同选型不影响本发明的权利。通过训练学习得到一组参数集合,即模型参数,对于每一组稳定的模型参数,会生成哈希值,作为完整性校验值(完整性校验值生成算法是可选项,选择哈希算法之外的其他算法不影响本发明的权利)。The learnable capability model 1031 is composed of learnable model structure definitions, model parameters, and model parameter integrity check values. The learnable model structure can be artificial neural network (ANN), deep reinforcement learning (Reinforcement Learning), pulse Neural network (SNN), etc., different selections of learnable model structures do not affect the rights of the present invention. A set of parameter sets, that is, model parameters, is obtained through training and learning. For each set of stable model parameters, a hash value will be generated as an integrity check value (the integrity check value generation algorithm is optional, and the hash algorithm is selected Algorithms other than that do not affect the rights of the present invention).

所述动物机器人实物2,是按照智能虚拟数字动物实例模块103的结构体信息制造的动物机器人,是对智能虚拟数字动物实例的物理映射,实现了虚拟数字世界向物理世界的延伸。这种训练智能虚拟数字动物的方法和模式是本发明方法首次提出,是实现普通大众用户(而非专业的计算机人才)能够在真实互动场景结合个人愿望有目的性地生成数据、训练模型,达到对智能虚拟数字动物的个性化能力训练的关键一步。动物机器人实物是由物理机体和计算系统组成。其中物理机体包含了对智能虚拟数字动物的属性、行为的物理呈现,如颜色、纹理、可编程控制的机械手、机械臂、视觉传感器等;这些物理机体的设计、实现、制造方法不是本发明的重要组成部分,其制造方法、技术、工艺等的不同选型不影响本发明的权利。计算系统是重点,主要由实例管理代理模块201、可学习能力模型副本模块202、NPU模块203、控制逻辑集成电路204、存储模块205组成。The animal robot object 2 is an animal robot manufactured according to the structure information of the intelligent virtual digital animal instance module 103, and is a physical mapping of the intelligent virtual digital animal instance, realizing the extension of the virtual digital world to the physical world. This method and mode of training intelligent virtual digital animals is proposed for the first time by the method of the present invention. It is to realize that ordinary public users (rather than professional computer talents) can purposefully generate data and train models in combination with personal wishes in real interactive scenes, so as to achieve A critical step towards personalized ability training for intelligent virtual digital animals. The animal robot is composed of a physical body and a computing system. Among them, the physical body includes the physical presentation of the attributes and behaviors of intelligent virtual digital animals, such as color, texture, programmable control of manipulators, mechanical arms, visual sensors, etc.; the design, realization and manufacturing methods of these physical bodies are not part of the present invention. Important components, different selections of their manufacturing methods, technologies, processes, etc. do not affect the rights of the present invention. The computing system is the focus, mainly composed of instance management agent module 201 , learnable capability model copy module 202 , NPU module 203 , control logic integrated circuit 204 , and storage module 205 .

所述实例管理代理模块201,通过网络3跟实例管理模块101通信,负责向云托管平台提交身份认证请求、下载可学习能力模型1031、校验下载的可学习能力模型1031、安装可学习能力模型1031为本地副本、上传用户端训练更新后的可学习能力模型副本202到云端。所述NPU模块203是智能计算专用处理器,用于加速神经网络推理和训练性能,所述控制逻辑集成电路204是实现对动物机器人可编程控制的处理器,所述存储模块205为可学习能力模型副本、训练数据、程序运行等提供快速存储,模块203、204、205的不同选型不影响本发明的权利。The instance management agent module 201 communicates with the instance management module 101 through the network 3, and is responsible for submitting an identity authentication request to the cloud hosting platform, downloading the learnable capability model 1031, verifying the downloaded learnable capability model 1031, and installing the learnable capability model 1031 is a local copy, uploading the updated learnable ability model copy 202 after client training to the cloud. The NPU module 203 is a dedicated processor for intelligent computing, which is used to accelerate neural network reasoning and training performance, the control logic integrated circuit 204 is a processor for realizing programmable control of animal robots, and the storage module 205 is a learnable Model copy, training data, program operation, etc. provide fast storage, and different types of modules 203, 204, 205 do not affect the rights of the present invention.

下面结合图2和图3,通过两个普通用户,各自训练自己的智能虚拟数字狗学会有差异技能的实施例对本发明作进一步的说明。图2说明了为智能虚拟数字动物构造生成动物机器人实物映射的流程,图3说明了实现智能虚拟数字动物的可学习能力模型个性化的训练学习流程。Below in conjunction with Fig. 2 and Fig. 3, the present invention will be further described through the embodiment in which two ordinary users train their own intelligent virtual digital dog to learn different skills respectively. Fig. 2 illustrates the process of generating physical mapping of animal robots for the construction of intelligent virtual digital animals, and Fig. 3 illustrates the training and learning process of realizing the individualized learning ability model of intelligent virtual digital animals.

(1)为智能虚拟数字动物构造生成动物机器人实物映射。如图2所示,主要包括以下步骤:(1) Generating animal-robot physical mappings for intelligent virtual digital animal construction. As shown in Figure 2, it mainly includes the following steps:

(1.1)用户甲注册智能虚拟数字动物程序对象实例云托管平台1,并领取智能虚拟数字动物实例;在该实施例中,用户甲领取的是智能虚拟数字狗,其属性列表包括唯一身份编号10001、颜色灰色、年龄3个月等;10001号智能虚拟数字狗的可学习能力模型集成了,基于深度学习实现的图像识别、语音理解、运动轨迹跟踪等模型框架,因此具备通过训练学习,获得识别图像、理解语音、自动调整运动轨迹等能力。其中图像识别模型基于CNN网络(卷积神经网络)实现;(1.1) User A registers the cloud hosting platform 1 for the program object instance of the intelligent virtual digital animal, and receives the instance of the intelligent virtual digital animal; , gray color, age 3 months, etc.; the learnable ability model of No. 10001 intelligent virtual digital dog integrates image recognition, speech understanding, motion trajectory tracking and other model frameworks based on deep learning, so it has the ability to obtain recognition through training and learning Images, understanding speech, automatic adjustment of motion trajectory and other capabilities. The image recognition model is realized based on CNN network (convolutional neural network);

(1.2)生产制造10001号虚拟数字狗的动物机器人实物映射;(1.2) The physical mapping of the animal robot that produces the virtual digital dog No. 10001;

(1.3)派发10001号动物机器人实物给用户甲;(1.3) Distribute No. 10001 animal robot to user A;

(1.4)用户甲启动10001号动物机器人实物,机器人联网;(1.4) User A activates the animal robot No. 10001, and the robot is connected to the Internet;

(1.5)10001号动物机器人实物向云托管平台发送身份验证请求;(1.5) No. 10001 animal robot sends an identity verification request to the cloud hosting platform;

(1.6)云端实例管理模块收到请求,进行身份验证,鉴定为10001号动物机器人实物(如果身份验证未通过,向动物机器人实物反馈身份验证失败信息,动物机器人实物可重新发送身份验证请求),然后对10001号智能虚拟数字动物的可学习能力模型进行写锁定(避免并行写造成模型不一致,或写冲突);(1.6) The cloud instance management module receives the request, performs identity verification, and identifies it as the real animal robot No. 10001 (if the identity verification fails, feedback the authentication failure information to the real animal robot, and the real animal robot can resend the identity verification request), Then write-lock the learnable ability model of No. 10001 intelligent virtual digital animal (to avoid model inconsistency or write conflict caused by parallel writing);

(1.7)10001号动物机器人实物请求下载云端托管的10001号智能虚拟数字动物的可学习能力模型,下载完成并通过了模型完整性校验(如果未通过完整性校验,说明模型下载不完整,需重新下载);(1.7) No. 10001 animal robot requests to download the learnable ability model of No. 10001 intelligent virtual digital animal hosted in the cloud. The download is completed and passed the model integrity verification (if the integrity verification fails, it means that the model download is incomplete. need to re-download);

(1.8)加载下载的模型,初始化为10001号动物机器人实物的可学习能力模型副本。(1.8) Load the downloaded model and initialize it as a copy of the learnable ability model of the No. 10001 animal robot.

(2)对智能虚拟数字动物的可学习能力模型进行个性化训练。如图3所示,主要包括以下步骤:(2) Carry out personalized training on the learnable ability model of the intelligent virtual digital animal. As shown in Figure 3, it mainly includes the following steps:

(2.1)用户甲通过10001号动物机器人实物,选择一个训练目标(可通过语音唤醒、菜单选择等技术实现,方式不限):学会识别苹果;然后机器人实物进入训练交互模式;(2.1) User A chooses a training target through the physical animal robot No. 10001 (it can be realized through voice wake-up, menu selection and other technologies, the method is not limited): learn to recognize apples; then the real robot enters the training interaction mode;

(2.2)用户甲在10001号动物机器人面前展示不同苹果和苹果的不同侧面,动物机器人通过视觉传感器采集苹果照片,苹果的每次移动、角度变换都会触发采集新照片;(2.2) User A shows different apples and different sides of apples in front of No. 10001 animal robot. The animal robot collects photos of apples through visual sensors. Every movement and angle change of the apple will trigger the collection of new photos;

(2.3)结合第2.1)步设置的训练目标,这些采集的照片都被标注为“苹果”,10001号动物机器人使用NPU加速,训练更新可学习能力模型副本的图像分类子系统模型,直到收敛。这里图像分类子系统基于CNN卷积神经网络、多分类器等技术实现(但其他技术选择不影响本发明权利);(2.3) Combined with the training target set in step 2.1), these collected photos are marked as "apple", and the No. 10001 animal robot uses NPU acceleration to train and update the image classification subsystem model that can learn a copy of the ability model until convergence. Here the image classification subsystem is realized based on technologies such as CNN convolutional neural network and multiple classifiers (but other technical choices do not affect the rights of the present invention);

(2.4)10001号动物机器人,将训练更新后的可学习能力模型副本上传到云端;(2.4) No. 10001 animal robot uploads a copy of the learned ability model after training to the cloud;

(2.5)云端实例管理模块接收上传,校验模型数据完整性(如果未通过完整性校验,说明模型上传不完整,需重新上传);(2.5) The cloud instance management module receives the upload and verifies the integrity of the model data (if the integrity verification fails, it means that the model upload is incomplete and needs to be re-uploaded);

(2.6)云端实例管理模块解除对10001号智能虚拟数字动物实例的可学习能力模型写锁定;(2.6) The cloud instance management module releases the write lock of the learnable ability model of the 10001 intelligent virtual digital animal instance;

(2.7)云端根据上传的能力模型副本,更新10001号虚拟数字动物的可学习能力模型。于是用户甲的智能虚拟数字动物具备了个性化的识别苹果的能力。用户甲在训练过程中,通过场景互动帮模型生成了个性化训练数据,适用于普通大众。(2.7) The cloud updates the learnable ability model of the virtual digital animal No. 10001 according to the uploaded copy of the ability model. Therefore, user A's intelligent virtual digital animal has a personalized ability to identify apples. During the training process, user A helped the model generate personalized training data through scene interaction, which is suitable for the general public.

用户乙领取的智能虚拟数字狗的唯一身份编号是10002,通过跟用户甲类似的流程,用户乙可以训练自己的10002号智能虚拟数字狗获得识别足球、篮球、橘子等个性化的能力,采用类似的训练方法模式,普通用户也可以训练自己的智能虚拟数字动物获得特定形态的轨迹跟踪能力以及其他可学习能力。在这种低技术门槛训练方法与模式下,用户甲和乙的智能虚拟数字狗呈现了差异化、个性化的可训练学习能力“成长”。The unique ID number of the smart virtual digital dog received by user B is 10002. Through a process similar to that of user A, user B can train his own smart virtual digital dog No. 10002 to acquire the ability to recognize football, basketball, oranges, etc. Ordinary users can also train their own intelligent virtual digital animals to obtain a specific form of trajectory tracking ability and other learnable abilities. In this low-tech threshold training method and mode, the intelligent virtual digital dog of users A and B presents a differentiated and personalized "growth" of trainable learning ability.

本发明“一种实现智能虚拟数字动物的可学习能力模型个性化的训练学习方法与系统”提出的这种新的模型训练技术模式,为普通大众劳动力参与到虚拟数字智能体的能力模型训练提供了简单、便捷而高效的途径。The new model training technology mode proposed in the present invention "a training and learning method and system for realizing the individualization of the learnable ability model of intelligent virtual digital animals" provides for the general public labor force to participate in the ability model training of virtual digital agents. A simple, convenient and efficient way.

在本发明方案的具体实施中,用户在训练过程中,通过场景互动帮助动物机器人实物生成或收集个性化训练数据后,如果系统不立即在动物机器人实物端做模型训练,而是将数据先上传到云端,推迟到在云端训练更新用户的相应的虚拟数字动物的可学习能力模型,实现可学习能力模型个性化,视为本发明的变形方式。In the specific implementation of the solution of the present invention, during the training process, after the user helps the animal robot to generate or collect personalized training data through scene interaction, if the system does not immediately perform model training on the animal robot, but uploads the data first Going to the cloud, postponing the training and updating the learnable ability model of the user's corresponding virtual digital animal on the cloud, and realizing the personalization of the learnable ability model are regarded as the deformation mode of the present invention.

以上实施例仅用以说明本发明的技术方案而非对其进行限制,本领域的普通技术人员可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明的原理和范围,本发明的保护范围应以权利要求书所述为准。The above embodiments are only used to illustrate the technical solution of the present invention and not to limit it. Those skilled in the art can modify or equivalently replace the technical solution of the present invention without departing from the principle and scope of the present invention. The scope of protection should be determined by the claims.

Claims (12)

1.一种实现智能虚拟数字动物的可学习能力模型个性化的训练学习方法,其步骤包括:1. A method of training and learning that realizes the personalization of the learnable ability model of an intelligent virtual digital animal, the steps of which include: 动物机器人实物从云服务器端下载可学习能力模型副本;所述动物机器人实物是按照云服务器端的智能虚拟数字动物实例制造的动物机器人;The actual animal robot downloads a copy of the learnable ability model from the cloud server; the animal robot is an animal robot manufactured according to the intelligent virtual digital animal instance on the cloud server; 动物机器人实物通过与用户进行场景交互,实现对智能虚拟数字动物的可学习能力模型的个性化训练;The animal robot realizes the personalized training of the learnable ability model of the intelligent virtual digital animal through scene interaction with the user; 动物机器人实物将训练完成的可学习能力模型副本上传至云服务器端,以使得云服务器端能够根据上传的可学习能力模型副本更新智能虚拟数字动物的可学习能力模型;The animal robot uploads a copy of the trained learnable ability model to the cloud server, so that the cloud server can update the learnable ability model of the intelligent virtual digital animal according to the uploaded copy of the learnable ability model; 所述的动物机器人是按照云服务器端的智能虚拟数字动物实例的结构体信息制造的动物机器人,是对智能虚拟数字动物实例的物理映射,实现虚拟数字世界向物理世界的延伸;所述动物机器人包括物理机体和计算系统;所述计算系统从云服务器端下载智能虚拟数字动物的可学习能力模型副本,通过与用户进行场景交互实现对可学习能力模型的个性化训练,并将训练完成的可学习能力模型副本上传至云服务器端,以使得云服务器端能够根据上传的可学习能力模型副本更新智能虚拟数字动物的可学习能力模型;所述物理机体包含对智能虚拟数字动物的属性、行为的物理呈现;The animal robot is an animal robot manufactured according to the structure information of the intelligent virtual digital animal instance on the cloud server side, and is a physical mapping of the intelligent virtual digital animal instance, realizing the extension of the virtual digital world to the physical world; the animal robot includes The physical body and the computing system; the computing system downloads a copy of the learnable ability model of the intelligent virtual digital animal from the cloud server, realizes the personalized training of the learnable ability model through scene interaction with the user, and transfers the learned learnable ability model after the training A copy of the ability model is uploaded to the cloud server, so that the cloud server can update the learnable ability model of the intelligent virtual digital animal according to the uploaded copy of the learnable ability model; present; 所述云服务器端设置智能虚拟数字动物程序对象实例云托管平台,所述智能虚拟数字动物程序对象实例云托管平台在云端运行智能虚拟数字动物的程序逻辑,存储用户资源,保存管理虚拟数字动物类型、智能虚拟数字动物的所有属性和行为列表、属性列表,负责跟动物机器人实物交互,并提供访问页面供用户直接访问;所述虚拟数字动物类型定义不同动物类别的数据结构体,包括动物属性、动物行为、动物的可学习能力模型的框架;所述智能虚拟数字动物是智能虚拟数字动物类型的实例化程序对象,由智能虚拟数字动物的可学习能力模型、属性列表、行为列表组成,其中属性列表记录了智能虚拟动物实例的属性值,行为列表定义了动物的基本动作行为。The cloud server end is provided with an intelligent virtual digital animal program object instance cloud hosting platform, and the intelligent virtual digital animal program object instance cloud hosting platform runs the program logic of the intelligent virtual digital animal in the cloud, stores user resources, saves and manages the virtual digital animal type , a list of all attributes and behaviors of intelligent virtual digital animals, and a list of attributes, which are responsible for interacting with animal robots and providing access pages for users to directly access; the types of virtual digital animals define data structures of different animal categories, including animal attributes, The frame of animal behavior and the learnable ability model of animals; the intelligent virtual digital animal is an instantiation program object of the intelligent virtual digital animal type, which is composed of the learnable ability model, attribute list, and behavior list of the intelligent virtual digital animal, wherein the attribute The list records the attribute values of the intelligent virtual animal instance, and the behavior list defines the basic action behavior of the animal. 2.根据权利要求1所述的方法,其特征在于,所述的动物机器人实物从云服务器端下载可学习能力模型副本,包括:2. The method according to claim 1, wherein the animal robot downloads a learnable ability model copy from the cloud server in kind, including: 动物机器人实物向云服务器端发送身份验证请求,以便云端收到请求后进行身份验证,并在验证通过后写锁定相应的可学习能力模型;The animal robot sends an identity verification request to the cloud server, so that the cloud can perform identity verification after receiving the request, and write and lock the corresponding learnable ability model after the verification is passed; 动物机器人实物向云服务器端请求下载可学习能力模型;The animal robot in kind requests to the cloud server to download the learnable ability model; 动物机器人实物校验下载的可学习能力模型的数据完整性;The data integrity of the learnable ability model downloaded by the physical verification of the animal robot; 动物机器人实物将下载的可学习能力模型载入,设置为动物机器人实物的“可学习能力模型初始副本”。The animal robot object will load the downloaded learnable ability model, and set it as the "initial copy of the learnable ability model" of the animal robot object. 3.根据权利要求1所述的方法,其特征在于,所述的动物机器人实物通过与用户进行场景交互,实现对智能虚拟数字动物的可学习能力模型的个性化训练,包括:3. The method according to claim 1, characterized in that, the physical object of the animal robot realizes the personalized training of the learnable ability model of the intelligent virtual digital animal by interacting with the user, including: 用户给动物机器人实物选择一个训练目标;The user selects a training target for the animal robot; 用户与动物机器人实物进行个性化场景交互;The user interacts with the animal robot in a personalized scene; 在交互过程中,动物机器人实物通过传感器自动采集、生成个性化训练数据,按照训练目标标注数据;During the interaction process, the animal robot automatically collects and generates personalized training data through sensors, and labels the data according to the training objectives; 基于采集的数据,自动训练更新可学习能力模型副本。Based on the collected data, the copy of the learnable ability model is automatically trained and updated. 4.一种实现智能虚拟数字动物的可学习能力模型个性化的训练学习方法,其步骤包括:4. A method of training and learning that realizes the individualization of the learnable ability model of an intelligent virtual digital animal, the steps of which include: 云服务器端生成智能虚拟数字动物实例;The cloud server generates intelligent virtual digital animal instances; 云服务器端根据动物机器人实物的请求,向所述动物机器人实物发送可学习能力模型副本;所述动物机器人实物是按照云服务器端的智能虚拟数字动物实例制造的动物机器人;According to the request of the real animal robot, the cloud server sends a copy of the learnable ability model to the real animal robot; the real animal robot is an animal robot manufactured according to the intelligent virtual digital animal instance on the cloud server side; 云服务器端接收动物机器人实物上传的训练完成的可学习能力模型副本,并更新智能虚拟数字动物的可学习能力模型;所述训练完成的可学习能力模型副本,是用户通过与动物机器人实物进行场景交互并进行个性化训练完成的可学习能力模型副本;The cloud server end receives the learned ability model copy of the training completed by the animal robot, and updates the learnable ability model of the intelligent virtual digital animal; A copy of the learnable ability model completed by interaction and personalized training; 所述的动物机器人是按照云服务器端的智能虚拟数字动物实例的结构体信息制造的动物机器人,是对智能虚拟数字动物实例的物理映射,实现虚拟数字世界向物理世界的延伸;所述动物机器人包括物理机体和计算系统;所述计算系统从云服务器端下载智能虚拟数字动物的可学习能力模型副本,通过与用户进行场景交互实现对可学习能力模型的个性化训练,并将训练完成的可学习能力模型副本上传至云服务器端,以使得云服务器端能够根据上传的可学习能力模型副本更新智能虚拟数字动物的可学习能力模型;所述物理机体包含对智能虚拟数字动物的属性、行为的物理呈现;The animal robot is an animal robot manufactured according to the structure information of the intelligent virtual digital animal instance on the cloud server side, and is a physical mapping of the intelligent virtual digital animal instance, realizing the extension of the virtual digital world to the physical world; the animal robot includes The physical body and the computing system; the computing system downloads a copy of the learnable ability model of the intelligent virtual digital animal from the cloud server, realizes the personalized training of the learnable ability model through scene interaction with the user, and transfers the learned learnable ability model after the training A copy of the ability model is uploaded to the cloud server, so that the cloud server can update the learnable ability model of the intelligent virtual digital animal according to the uploaded copy of the learnable ability model; present; 所述云服务器端设置智能虚拟数字动物程序对象实例云托管平台,所述智能虚拟数字动物程序对象实例云托管平台在云端运行智能虚拟数字动物的程序逻辑,存储用户资源,保存管理虚拟数字动物类型、智能虚拟数字动物的所有属性和行为列表、属性列表,负责跟动物机器人实物交互,并提供访问页面供用户直接访问;所述虚拟数字动物类型定义不同动物类别的数据结构体,包括动物属性、动物行为、动物的可学习能力模型的框架;所述智能虚拟数字动物是智能虚拟数字动物类型的实例化程序对象,由智能虚拟数字动物的可学习能力模型、属性列表、行为列表组成,其中属性列表记录了智能虚拟动物实例的属性值,行为列表定义了动物的基本动作行为。The cloud server end is provided with an intelligent virtual digital animal program object instance cloud hosting platform, and the intelligent virtual digital animal program object instance cloud hosting platform runs the program logic of the intelligent virtual digital animal in the cloud, stores user resources, saves and manages the virtual digital animal type , a list of all attributes and behaviors of intelligent virtual digital animals, and a list of attributes, which are responsible for interacting with animal robots and providing access pages for users to directly access; the types of virtual digital animals define data structures of different animal categories, including animal attributes, The frame of animal behavior and the learnable ability model of animals; the intelligent virtual digital animal is an instantiated program object of the intelligent virtual digital animal type, which is composed of the learnable ability model, attribute list, and behavior list of the intelligent virtual digital animal, wherein the attribute The list records the attribute values of the intelligent virtual animal instance, and the behavior list defines the basic action behavior of the animal. 5.根据权利要求4所述的方法,其特征在于,所述云服务器端采用以下步骤生成智能虚拟数字动物实例:5. The method according to claim 4, wherein the cloud server uses the following steps to generate an intelligent virtual digital animal instance: 对用户进行注册;register users; 用户选择要领取的智能虚拟数字动物的类型;The user selects the type of intelligent virtual digital animal to receive; 为用户生成智能虚拟数字动物程序实例。Generate intelligent virtual digital animal program instances for users. 6.根据权利要求4所述的方法,其特征在于,所述的更新智能虚拟数字动物的可学习能力模型,包括:6. The method according to claim 4, wherein said updating the learnable ability model of the intelligent virtual digital animal comprises: 校验可学习能力模型副本的数据完整性;Verify the data integrity of the copy of the learnable capability model; 解除可学习能力模型写锁定;Unlock the learnable capability model write lock; 根据上传的可学习能力模型副本,更新智能虚拟数字动物的可学习能力模型。Update the learnable ability model of the intelligent virtual digital animal according to the uploaded copy of the learnable ability model. 7.根据权利要求4所述的方法,其特征在于,所述可学习能力模型,由可学习能力模型结构定义、模型参数、和模型参数完整性校验值组成;通过训练学习得到一组参数集合,即模型参数,对于每一组稳定的模型参数,生成完整性校验值。7. The method according to claim 4, wherein the learnable capability model is composed of a learnable capability model structure definition, model parameters, and model parameter integrity check values; a set of parameters is obtained through training and learning The set, that is, the model parameters, generates an integrity check value for each set of stable model parameters. 8.一种实现权利要求1所述方法的动物机器人,其特征在于,包括物理机体和计算系统;所述计算系统从云服务器端下载智能虚拟数字动物的可学习能力模型副本,通过与用户进行场景交互实现对可学习能力模型的个性化训练,并将训练完成的可学习能力模型副本上传至云服务器端,以使得云服务器端能够根据上传的可学习能力模型副本更新智能虚拟数字动物的可学习能力模型;所述的动物机器人是按照云服务器端的智能虚拟数字动物实例的结构体信息制造的动物机器人,是对智能虚拟数字动物实例的物理映射,实现虚拟数字世界向物理世界的延伸;所述物理机体包含对智能虚拟数字动物的属性、行为的物理呈现。8. An animal robot realizing the method of claim 1, comprising a physical body and a computing system; the computing system downloads a copy of the learnable ability model of an intelligent virtual digital animal from the cloud server, and communicates with the user Scene interaction realizes personalized training of the learnable ability model, and uploads a copy of the trained learnable ability model to the cloud server, so that the cloud server can update the ability of the intelligent virtual digital animal according to the uploaded copy of the learnable ability model. learning ability model; the animal robot is an animal robot manufactured according to the structure information of the intelligent virtual digital animal instance on the cloud server side, and is a physical mapping of the intelligent virtual digital animal instance, realizing the extension of the virtual digital world to the physical world; The physical body includes the physical presentation of the attributes and behaviors of intelligent virtual digital animals. 9.根据权利要求8所述的动物机器人,其特征在于,所述物理机体包括颜色、纹理、可编程控制的机械手、机械臂、视觉传感器;所述计算系统包括实例管理代理模块、可学习能力模型副本模块、NPU模块、控制逻辑集成电路、存储模块。9. The animal robot according to claim 8, wherein the physical body includes color, texture, programmable manipulator, mechanical arm, and visual sensor; the computing system includes an instance management agent module, a learnable ability Model copy module, NPU module, control logic integrated circuit, storage module. 10.根据权利要求9所述的动物机器人,其特征在于,所述实例管理代理模块通过网络跟云服务器端的实例管理模块通信,负责向云托管平台提交身份认证请求、下载可学习能力模型、校验下载的可学习能力模型、安装可学习能力模型为动物机器人实物的本地模型副本、调度训练更新可学习能力模型副本的程序、上传训练更新后的可学习能力模型副本到云端;所述NPU模块是智能计算专用处理器,用于加速神经网络推理和训练性能,所述控制逻辑集成电路是实现对动物机器人可编程控制的处理器,所述存储模块为可学习能力模型副本、训练数据、程序运行提供快速存储功能。10. The animal robot according to claim 9, wherein the instance management agent module communicates with the instance management module on the cloud server side through the network, and is responsible for submitting an identity authentication request, downloading a learnable ability model, and verifying the ability to the cloud hosting platform. Download the learnable ability model, install the learnable ability model as a local model copy of the animal robot, schedule the program for training and update the learnable ability model copy, and upload the updated learnable ability model copy to the cloud; the NPU module It is a special processor for intelligent computing, which is used to accelerate the performance of neural network reasoning and training. The control logic integrated circuit is a processor that realizes programmable control of animal robots. The storage module is a copy of the learnable ability model, training data, program Run provides fast storage capabilities. 11.一种实现权利要求4所述方法的云服务器,其特征在于,设置有智能虚拟数字动物程序对象实例云托管平台;11. A cloud server realizing the method according to claim 4, characterized in that, it is provided with an intelligent virtual digital animal program object instance cloud hosting platform; 所述智能虚拟数字动物程序对象实例云托管平台生成智能虚拟数字动物实例,根据动物机器人实物的请求,向所述动物机器人实物发送可学习能力模型副本;所述动物机器人实物是按照云服务器端的智能虚拟数字动物实例制造的动物机器人;The intelligent virtual digital animal program object instance cloud hosting platform generates an intelligent virtual digital animal instance, and sends a copy of the learnable ability model to the animal robot according to the request of the animal robot; Animal robots manufactured by virtual digital animal instances; 所述智能虚拟数字动物程序对象实例云托管平台接收动物机器人实物上传的训练完成的可学习能力模型副本,并更新智能虚拟数字动物的可学习能力模型;所述训练完成的可学习能力模型副本,是用户通过与动物机器人实物进行场景交互并进行个性化训练完成的可学习能力模型副本;The intelligent virtual digital animal program object instance cloud hosting platform receives the copy of the trained learnable ability model uploaded by the animal robot, and updates the learnable ability model of the intelligent virtual digital animal; the trained copy of the learnable ability model, It is a copy of the learnable ability model completed by the user through scene interaction with the animal robot and personalized training; 所述的云服务器包括实例管理模块、虚拟数字动物类型模块和智能虚拟动物实例模块;The cloud server includes an instance management module, a virtual digital animal type module and an intelligent virtual animal instance module; 所述实例管理模块管理智能虚拟数字动物实例的全生命周期、实例的可学习能力模型管理,并负责通过网络与运行在动物机器人实物中的实例管理代理模块进行交互通信;The instance management module manages the entire life cycle of the intelligent virtual digital animal instance, manages the learnable ability model of the instance, and is responsible for interactive communication with the instance management agent module running in the animal robot object through the network; 所述虚拟数字动物类型模块包含不同动物类别类型,定义了不同动物类别的数据结构体,包括动物属性、动物行为、动物的可学习能力模型的框架;The virtual digital animal type module includes different types of animal types, and defines data structures of different animal types, including animal attributes, animal behaviors, and the framework of animal learnable ability models; 所述智能虚拟动物实例模块是智能虚拟数字动物类型的具体实例化,包含可学习能力模型、属性列表、行为列表。The intelligent virtual animal instance module is a concrete instantiation of the type of intelligent virtual digital animal, including a learnable ability model, an attribute list, and a behavior list. 12.一种实现智能虚拟数字动物的可学习能力模型个性化的训练学习系统,其特征在于,包括权利要求8~10中任一权利要求所述的动物机器人,以及权利要求11所述的云服务器。12. A training and learning system that realizes the individualization of the learnable ability model of an intelligent virtual digital animal, characterized in that it includes the animal robot according to any one of claims 8 to 10, and the cloud robot according to claim 11. server.
CN201911086750.4A 2019-11-08 2019-11-08 A training and learning method and system for realizing the individualization of the learnable ability model of intelligent virtual digital animals Active CN110866588B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911086750.4A CN110866588B (en) 2019-11-08 2019-11-08 A training and learning method and system for realizing the individualization of the learnable ability model of intelligent virtual digital animals

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911086750.4A CN110866588B (en) 2019-11-08 2019-11-08 A training and learning method and system for realizing the individualization of the learnable ability model of intelligent virtual digital animals

Publications (2)

Publication Number Publication Date
CN110866588A CN110866588A (en) 2020-03-06
CN110866588B true CN110866588B (en) 2023-05-02

Family

ID=69653228

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911086750.4A Active CN110866588B (en) 2019-11-08 2019-11-08 A training and learning method and system for realizing the individualization of the learnable ability model of intelligent virtual digital animals

Country Status (1)

Country Link
CN (1) CN110866588B (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111461694B (en) * 2020-03-17 2023-07-18 上海大学 A dish identification and pricing system and method based on a multi-level learning model
WO2022021421A1 (en) * 2020-07-31 2022-02-03 Oppo广东移动通信有限公司 Model management method, system and apparatus, communication device, and storage medium
CN112214748A (en) * 2020-10-30 2021-01-12 支付宝(杭州)信息技术有限公司 Identity recognition system, method and device
CN112668687B (en) * 2020-12-01 2022-08-26 达闼机器人股份有限公司 Cloud robot system, cloud server, robot control module and robot
CN112494956A (en) * 2020-12-15 2021-03-16 四川长虹电器股份有限公司 Simulation method and simulation system for converting articles into pets
CN113435126B (en) * 2021-07-07 2024-02-02 魏天骐 Knowledge sharing processing method, intelligent robot device, knowledge sharing system and task learning system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174332A (en) * 2007-10-29 2008-05-07 张建中 Method, device and system for interactively combining real-time scene in real world with virtual reality scene
CA2941250A1 (en) * 2014-03-19 2015-09-24 Neurala, Inc. Methods and apparatus for autonomous robotic control
CN108897848A (en) * 2018-06-28 2018-11-27 北京百度网讯科技有限公司 Robot interactive approach, device and equipment
WO2019057019A1 (en) * 2017-09-20 2019-03-28 阿里巴巴集团控股有限公司 Robot interaction method and device
CN110298212A (en) * 2018-03-21 2019-10-01 腾讯科技(深圳)有限公司 Model training method, Emotion identification method, expression display methods and relevant device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090090305A1 (en) * 2007-10-03 2009-04-09 National University Of Singapore System for humans and pets to interact remotely
DE202017106132U1 (en) * 2016-10-10 2017-11-13 Google Llc Neural networks for selecting actions to be performed by a robot agent
KR102502228B1 (en) * 2016-11-10 2023-02-20 워너 브로스. 엔터테인먼트 인크. Social robots with environmental control features
CN107139179B (en) * 2017-05-26 2020-05-29 西安电子科技大学 A kind of intelligent service robot and working method
US11803764B2 (en) * 2017-09-29 2023-10-31 Sony Interactive Entertainment Inc. Mobile and autonomous personal companion based on an artificial intelligence (AI) model for a user
CN109656529B (en) * 2018-10-31 2021-05-25 北京大学 An online customization method and system for client-side deep learning
CN110378463B (en) * 2019-07-15 2021-05-14 北京智能工场科技有限公司 Artificial intelligence model standardization training platform and automatic system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101174332A (en) * 2007-10-29 2008-05-07 张建中 Method, device and system for interactively combining real-time scene in real world with virtual reality scene
CA2941250A1 (en) * 2014-03-19 2015-09-24 Neurala, Inc. Methods and apparatus for autonomous robotic control
WO2019057019A1 (en) * 2017-09-20 2019-03-28 阿里巴巴集团控股有限公司 Robot interaction method and device
CN110298212A (en) * 2018-03-21 2019-10-01 腾讯科技(深圳)有限公司 Model training method, Emotion identification method, expression display methods and relevant device
CN108897848A (en) * 2018-06-28 2018-11-27 北京百度网讯科技有限公司 Robot interactive approach, device and equipment

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Siau K等.Building trust in artificial intelligence, machine learning, and robotics.《Cutter business technology journal》.2018,第31卷(第2期),第47-53页. *
王功利.基于HoloLens的虚拟交互宠物猫的设计与研究.《数字技术与应用》.2018,第36卷(第6期),第172-174页. *

Also Published As

Publication number Publication date
CN110866588A (en) 2020-03-06

Similar Documents

Publication Publication Date Title
CN110866588B (en) A training and learning method and system for realizing the individualization of the learnable ability model of intelligent virtual digital animals
Frenkel et al. Bottom-up and top-down approaches for the design of neuromorphic processing systems: Tradeoffs and synergies between natural and artificial intelligence
JP7264376B2 (en) How to generate a general-purpose trained model
CN104685516B (en) Apparatus and method for realizing the renewal based on event in spiking neuron network
WO2013181637A2 (en) Neural network learning and collaboration apparatus and methods
CN111973996B (en) Game resource release method and device
Felbrich et al. Autonomous robotic additive manufacturing through distributed model‐free deep reinforcement learning in computational design environments
CN114861826B (en) Large-scale reinforcement learning training framework system based on distributed design
CN113538162A (en) Planting strategy generation method and device, electronic equipment and storage medium
Buchlovsky et al. TF-Replicator: Distributed machine learning for researchers
CN117635897B (en) Three-dimensional object posture complement method, device, equipment, storage medium and product
CN105936047A (en) Brain imitation robot controlling and studying system
CN115797517A (en) Data processing method, device, equipment and medium of virtual model
Ramachandruni et al. Attentive task-net: Self supervised task-attention network for imitation learning using video demonstration
Zhou Deep learning‐driven distributed communication systems for cluster online educational platform considering human–computer interaction
CN118860156A (en) A VR interaction method and device based on metaverse virtual reality technology
CN116663610B (en) Scheduling network training method, task scheduling method and related equipment
Pax et al. A cloud based simulation service for 3d crowd simulations
Song et al. Types, locations, and scales from cluttered natural video and actions
CN113476833A (en) Game action recognition method and device, electronic equipment and storage medium
Zins Neuromorphic Computing Applications in Robotics
Wu et al. Evolving neuromorphic systems on the ethereum smart contract platform
KR102738196B1 (en) Method and apparatus for applying visual effect on video
US20240062497A1 (en) Method and system for generating virtual content
KR102589253B1 (en) Method, server and computer program for providing artificial intelligence-based content processing service

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant