CN110829921A - An Iterative Feedback Tuning Control of Permanent Magnet Synchronous Motor and Its Optimization Method - Google Patents
An Iterative Feedback Tuning Control of Permanent Magnet Synchronous Motor and Its Optimization Method Download PDFInfo
- Publication number
- CN110829921A CN110829921A CN201911119936.5A CN201911119936A CN110829921A CN 110829921 A CN110829921 A CN 110829921A CN 201911119936 A CN201911119936 A CN 201911119936A CN 110829921 A CN110829921 A CN 110829921A
- Authority
- CN
- China
- Prior art keywords
- loop
- permanent magnet
- synchronous motor
- magnet synchronous
- algorithm
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000001360 synchronised effect Effects 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 25
- 238000005457 optimization Methods 0.000 title claims abstract description 13
- 238000004422 calculation algorithm Methods 0.000 claims abstract description 73
- 239000011159 matrix material Substances 0.000 claims description 23
- 239000013598 vector Substances 0.000 claims description 21
- 238000002474 experimental method Methods 0.000 claims description 12
- 238000005070 sampling Methods 0.000 claims description 12
- 230000004044 response Effects 0.000 claims description 11
- 230000004907 flux Effects 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 238000004088 simulation Methods 0.000 claims description 4
- 238000004364 calculation method Methods 0.000 claims description 3
- 230000005284 excitation Effects 0.000 claims description 3
- 238000013016 damping Methods 0.000 claims description 2
- 238000006073 displacement reaction Methods 0.000 claims description 2
- 238000004146 energy storage Methods 0.000 claims description 2
- 238000013178 mathematical model Methods 0.000 claims description 2
- 230000009466 transformation Effects 0.000 claims 1
- 238000013461 design Methods 0.000 abstract description 3
- 230000008859 change Effects 0.000 description 8
- 238000001514 detection method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 230000010355 oscillation Effects 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000002955 isolation Methods 0.000 description 2
- 230000002093 peripheral effect Effects 0.000 description 2
- 238000013528 artificial neural network Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010147 laser engraving Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/0003—Control strategies in general, e.g. linear type, e.g. P, PI, PID, using robust control
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/14—Estimation or adaptation of machine parameters, e.g. flux, current or voltage
- H02P21/18—Estimation of position or speed
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02P—CONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
- H02P21/00—Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
- H02P21/24—Vector control not involving the use of rotor position or rotor speed sensors
- H02P21/28—Stator flux based control
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Control Of Ac Motors In General (AREA)
Abstract
本发明公开了一种永磁同步电机迭代反馈整定控制及其优化方法,涉及伺服控制优化领域,该方法在永磁同步电机矢量控制系统“三闭环”的控制框架下,通过引入基于脉冲响应模型的闭环子空间辨识方法,设计位置环双循环迭代反馈整定PI控制器,并进一步进行双循环迭代反馈整定算法的收敛性及收敛速度分析,从而在有效的改善永磁同步电机伺服系统的定位性能及鲁棒性的基础上,满足了伺服系统快速性的需求。
The invention discloses an iterative feedback tuning control of a permanent magnet synchronous motor and an optimization method thereof, and relates to the field of servo control optimization. The closed-loop subspace identification method based on the proposed method, design the position loop double-loop iterative feedback tuning PI controller, and further analyze the convergence and convergence speed of the double-loop iterative feedback tuning algorithm, so as to effectively improve the positioning performance of the permanent magnet synchronous motor servo system. On the basis of and robustness, it satisfies the demand for the rapidity of the servo system.
Description
技术领域technical field
本发明涉及一种永磁同步电机迭代反馈整定控制及其优化方法,属于伺服 控制优化领域。The invention relates to an iterative feedback tuning control of a permanent magnet synchronous motor and an optimization method thereof, belonging to the field of servo control optimization.
背景技术Background technique
永磁同步电机是由永磁体励磁产生同步旋转磁场的同步电机,在数控设备、 工业机器人及激光雕刻等领域,永磁同步电机(Permanent magneticsynchronous machine,PMSM)以其高效率、优秀的动态性能及轻量化等特点,广泛应用于以 高速、精确跟踪定位为主要目标的位置伺服系统中。针对永磁同步电机位置伺 服系统典型的“三闭环”结构,近年来国内外学者在优化传统PID控制器的方案 上做了大量的工作。其中包括遗传算法、模糊控制和神经网络等方法都能够有 效的改善永磁同步电机伺服系统的定位性能及鲁棒性,但这些方法或难以满足 系统的快速性要求,或需要足够的建模精度,都在一定程度上制约了该方法下 永磁同步电机在工业中的实际应用。Permanent magnet synchronous motor is a synchronous motor that generates a synchronous rotating magnetic field by permanent magnet excitation. In the fields of numerical control equipment, industrial robots and laser engraving, permanent magnetic synchronous Lightweight and other characteristics, it is widely used in position servo systems with high-speed, accurate tracking and positioning as the main goal. Aiming at the typical "three closed-loop" structure of the permanent magnet synchronous motor position servo system, scholars at home and abroad have done a lot of work in optimizing the traditional PID controller scheme in recent years. Among them, methods such as genetic algorithm, fuzzy control and neural network can effectively improve the positioning performance and robustness of permanent magnet synchronous motor servo system, but these methods may be difficult to meet the rapidity requirements of the system, or require sufficient modeling accuracy , all restrict the practical application of permanent magnet synchronous motor in industry to a certain extent.
永磁同步电机本身所固有的非线性及不确定因素,使得难以对其进行精确 的数学建模,基于模型的方法通常对建模的精确度都具有较高的敏感性。在搜 索最小化性能准则函数对应的控制器参数时,传统IFT(Iterative Feedback Tuning,迭代反馈整定)算法通常通过类似于Gauss-Newton法之类的优化算法 进行参数寻优,该方法下每次迭代所需要的三次实验及其线性逼近的特点,从 根本上限制了算法的收敛速度,难以满足永磁同步电机位置环控制等精密行业 所需要的高速性特点。The inherent nonlinearity and uncertainties of PMSM make it difficult to carry out accurate mathematical modeling. Model-based methods usually have high sensitivity to the accuracy of modeling. When searching for the controller parameters corresponding to the minimized performance criterion function, the traditional IFT (Iterative Feedback Tuning) algorithm usually uses an optimization algorithm like the Gauss-Newton method for parameter optimization. The required three experiments and the characteristics of linear approximation fundamentally limit the convergence speed of the algorithm, and it is difficult to meet the high-speed characteristics required by precision industries such as permanent magnet synchronous motor position loop control.
发明内容SUMMARY OF THE INVENTION
针对传统IFT算法难以满足永磁同步电机位置环PI控制器参数优化的快速 性要求,本申请提出了一种永磁同步电机迭代反馈整定控制及其优化方法,其 综合了一种新的IFT框架,将双循环IFT算法推广应用于位置环PI控制器参数 的整定和控制性能优化,目的是提高永磁同步电机的快速、精确跟踪能力。Aiming at the difficulty of traditional IFT algorithm to meet the rapidity requirement of parameter optimization of PMSM position loop PI controller, this application proposes an iterative feedback tuning control and optimization method for PMSM, which integrates a new IFT framework , the double-cycle IFT algorithm is applied to the parameter setting and control performance optimization of the position loop PI controller, in order to improve the fast and accurate tracking ability of the permanent magnet synchronous motor.
本发明的技术方案如下:The technical scheme of the present invention is as follows:
一种永磁同步电机迭代反馈整定控制及其优化方法包括如下步骤:An iterative feedback tuning control of a permanent magnet synchronous motor and an optimization method thereof include the following steps:
第一步、构建永磁同步电机的运动学方程及矢量控制系统;The first step is to construct the kinematic equation and vector control system of the permanent magnet synchronous motor;
第二步、基于双循环迭代反馈整定算法设计永磁同步电机伺服系统位置环 PI控制器;The second step is to design the position loop PI controller of the permanent magnet synchronous motor servo system based on the double-loop iterative feedback tuning algorithm;
第三步、进行双循环迭代反馈整定算法的收敛性及收敛速度分析;The third step is to analyze the convergence and convergence speed of the double-loop iterative feedback tuning algorithm;
第四步、给出位置环的双循环迭代反馈整定控制方案的具体实施;The fourth step, the specific implementation of the dual-loop iterative feedback tuning control scheme of the position loop is given;
第一步、构建永磁同步电机的运动学方程及矢量控制系统:The first step is to construct the kinematic equation and vector control system of the permanent magnet synchronous motor:
忽略谐波、磁滞及涡流损耗的前提下,同步旋转坐标系d-q下的永磁同步 电机定子电压方程如式(1)所示:Under the premise of ignoring harmonics, hysteresis and eddy current losses, the permanent magnet synchronous motor stator voltage equation in the synchronous rotating coordinate system d-q is shown in equation (1):
式中ud、uq分别为定子电压矢量的d-q轴分量,id、iq分别为定子电流矢量的d-q 轴分量,R为定子电阻,ψd、ψq分别为定子磁链矢量的d-q轴分量,ωc是电角 速度;进一步得到定子磁链方程为:where ud and u q are the dq-axis components of the stator voltage vector, respectively, id and i q are the dq -axis components of the stator current vector, R is the stator resistance, and ψ d and ψ q are the dq of the stator flux vector, respectively. The shaft component, ω c is the electrical angular velocity; the stator flux linkage equation is further obtained as:
其中Ld、Lq分别为d-q轴电感分量,ψf代表永磁体磁链;式(2)代入式(1)中得 到定子电压方程为:where L d and L q are the dq-axis inductance components, respectively, and ψ f represents the permanent magnet flux linkage; Equation (2) is substituted into Equation (1) to obtain the stator voltage equation:
根据机电转化原理,电磁转矩T为磁场储能对机械角位移的偏导,则永磁 同步电机电磁转矩方程为:According to the principle of electromechanical conversion, the electromagnetic torque T is the partial derivation of the magnetic field energy storage to the mechanical angular displacement, then the electromagnetic torque equation of the permanent magnet synchronous motor is:
其中pn为永磁同步电机的极对数;进一步得到永磁同步电机的运动学方程为:where p n is the pole pair number of the permanent magnet synchronous motor; the kinematic equation of the permanent magnet synchronous motor is further obtained as:
其中ωm为永磁同步电机的机械角速度,J为转动惯量,B为阻尼系数,TL为负 载转矩;where ω m is the mechanical angular velocity of the permanent magnet synchronous motor, J is the moment of inertia, B is the damping coefficient, and T L is the load torque;
永磁同步电机的矢量控制系统为位置环、速度环和电流环构成的“三闭环” 结构,位置环的PI控制器依据矢量控制系统的输入输出数据及跟踪误差,运用 双循环迭代反馈整定算法进行参数整定;The vector control system of the permanent magnet synchronous motor is a "three closed-loop" structure composed of a position loop, a speed loop and a current loop. The PI controller of the position loop uses the double-loop iterative feedback tuning algorithm according to the input and output data and tracking error of the vector control system. Carry out parameter setting;
第二步、基于双循环迭代反馈整定算法设计永磁同步电机伺服系统位置环 PI控制器:The second step is to design the position loop PI controller of the permanent magnet synchronous motor servo system based on the double-loop iterative feedback tuning algorithm:
针对永磁同步电机的矢量控制系统位置环设计位置环的PI控制器,使用双 循环迭代反馈整定算法优化参数,位置环的PI控制器C(z-1,ρ)可以线性化为:The PI controller of the position loop is designed for the position loop of the vector control system of the permanent magnet synchronous motor, and the parameters are optimized by using the double-loop iterative feedback tuning algorithm. The PI controller C(z -1 ,ρ) of the position loop can be linearized as:
其中控制器参数ρ=[Kp,KI]T,控制器线性化系数Kp、KI为PI 控制器的比例及积分系数,Ts为采样时间;令S(z-1,ρ)=(P(z-1)C(z-1,ρ)+1)-1, T(z-1,ρ)=P(z-1)S(z-1,ρ),P(z-1)为永磁同步电机的位置环模型;若r为系统输入,v 为均值为零的白噪声,可以得到位置环的跟踪误差e为:where the controller parameter ρ=[K p ,K I ] T , the controller linearization coefficient K p , K I are the proportional and integral coefficients of the PI controller, and T s is the sampling time; let S(z -1 ,ρ)=(P(z -1 )C(z -1 ,ρ)+1) - 1 , T(z -1 ,ρ)=P(z -1 )S(z -1 ,ρ), P(z -1 ) is the position loop model of the permanent magnet synchronous motor; if r is the system input, v is For white noise with zero mean, the tracking error e of the position loop can be obtained as:
e=S(z-1)(1-P(z-1))r-S(z-1)v (7)e=S(z -1 )(1-P(z -1 ))rS(z -1 )v (7)
永磁同步电机的速度环数学模型可认为是一个典型的二阶系统,对于一个 有限时间输入线性定常系统而言,其初始状态下可表示为:The mathematical model of the speed loop of the PMSM can be considered as a typical second-order system. For a linear steady-state system with finite-time input, its initial state can be expressed as:
式(8)中u、y分别为输入输出,n为采样点个数,是由脉冲响应系数 hs(s=1,2,3…)组成的Toeplitz子空间矩阵,hi于闭环状态下加入单位脉冲激励获 得;In formula (8), u and y are the input and output respectively, n is the number of sampling points, is a Toeplitz subspace matrix composed of impulse response coefficients h s (s=1, 2, 3...), and h i is obtained by adding unit impulse excitation in a closed-loop state;
为了提高位置环的跟踪效果,不妨定义性能准则函数J(ρ)为:In order to improve the tracking effect of the position loop, it is advisable to define the performance criterion function J(ρ) as:
J(ρ)=eQeT (9)J(ρ)=eQe T (9)
N为采样点总数,e为位置环的跟踪误差矩阵;Ly为滤波器,通常为Ly=1,Q为 单位阵;通过双循环迭代反馈整定算法将性能准则函数J(ρ)最小化用于求取位 置环的PI控制器的最佳参数ρ*,从而获得最佳的控制效果,关于获取ρ*的迭代 方式,传统的迭代反馈整定IFT算法通常用Gauss–Newton算法计算下一次迭代 更新值:N is the total number of sampling points, e is the tracking error matrix of the position loop; Ly is the filter, usually Ly = 1, Q is the identity matrix; the performance criterion function J(ρ) is minimized by the double-loop iterative feedback tuning algorithm It is used to obtain the optimal parameter ρ * of the PI controller of the position loop, so as to obtain the best control effect. Regarding the iterative way to obtain ρ * , the traditional iterative feedback tuning IFT algorithm usually uses the Gauss–Newton algorithm to calculate the next iteration Update value:
其中γi>0表示步长;Ri为正定Hessian矩阵表示优化搜索方向,为J(ρ)关于控制器参数ρ的偏导数,Ri及通常由给与矢量控制系统的三次参考输入 来进行无偏估计;where γ i >0 represents the step size; R i is a positive definite Hessian matrix representing the optimization search direction, is the partial derivative of J(ρ) with respect to the controller parameter ρ, R i and Unbiased estimation is usually performed by three reference inputs given to the vector control system;
为了简化写作,将第i次迭代的Ci(z-1,ρ)、Si(z-1,ρ)及Ti(z-1,ρ)表示为Ci、Si和Ti,外加上P(z-1)其对应的Toeplitz矩阵为和若ρi+1=ρi+Δρi+1,即已知 第i次迭代时控制器参数为ρi,Δρi+1为ρi到最佳控制器参数ρ*的差值Δρi+1 *时, J(Δρi+1)的梯度为零,即:To simplify writing, denote Ci (z -1 ,ρ), Si (z -1 ,ρ) and Ti ( z -1 ,ρ ) for the ith iteration as C i , Si and Ti , Add P(z -1 ) and the corresponding Toeplitz matrix is and If ρ i+1 =ρ i +Δρ i+1 , that is, the controller parameter at the i-th iteration is known to be ρ i , and Δρ i+1 is the difference between ρ i and the optimal controller parameter ρ * Δρ i+ 1 * , the gradient of J(Δρ i+1 ) is zero, that is:
由式(7)可得,第i次迭代的误差ei与第i+1次迭代误差ei+1的关系为:From formula (7), the relationship between the error e i of the ith iteration and the error e i +1 of the i+1th iteration is:
其中,P是控制对象的离散函数,ej是第j次迭代下的跟踪误差矩阵,然后可以 得到:Among them, P is the discrete function of the control object, e j is the tracking error matrix under the jth iteration, and then we can get:
J(Δρi+1)=ei TQei-2ei TQf(Δρi+1)+fT(Δρi+1)Qf(Δρi+1) (13)J(Δρ i+1 )=e i T Qe i -2e i T Qf(Δρ i+1 )+f T (Δρ i+1 )Qf(Δρ i+1 ) (13)
其中:in:
第i+1次迭代下,αj为αj(z-1)对应的Toeplitz矩阵,为第j个参数Δρi+1,j、之 积之和:Under the i+1th iteration, α j is the Toeplitz matrix corresponding to α j (z -1 ), is the jth parameter Δρ i+1,j , The sum of the products:
J(Δρi+1)的梯度则可由式(11)得出:The gradient of J(Δρ i+1 ) can be obtained from equation (11):
为了得到J(Δρi+1)的梯度为零时的Δρi+1 *,使用简单迭代法再次定义一个迭代循环,迭代次数由k表示,将式(15)代入(16)得:In order to obtain Δρ i+1 * when the gradient of J(Δρ i+1 ) is zero, a simple iterative method is used to define an iterative loop again, the number of iterations is represented by k, and formula (15) is substituted into (16) to get:
其中:in:
若则得到:like then get:
式(19)代入式(17)并令之为零得到:Substituting equation (19) into equation (17) and setting it to zero yields:
由S(z-1,ρ)=(P(z-1)C(z-1,ρ)+1)-1得到并令:Obtained by S(z -1 ,ρ)=(P(z -1 )C(z -1 ,ρ)+1) -1 and order:
那么式(20)可以化为:Then formula (20) can be transformed into:
定义为:definition for:
可以进一步得到:You can further get:
接下来针对进行计算,跟踪矩阵求逆原理可得:Next for Carry out the calculation and follow the matrix inversion principle to obtain:
将式(25)代入式(23)可以得到:Substituting equation (25) into equation (23) can get:
接下来计算根据式(12)得到:Calculate next According to formula (12), we get:
又因为矩阵M存在的关系,进一步得到:And because the matrix M exists relationship, further get:
最终可以得到:In the end you can get:
在计算中需要通过一次脉冲响应实验来获取令r=0,u作为单位脉 冲输入,v为均值为零的白噪声,得到脉冲响应序列ζT和ζS来建立关于Si和Ti的 Toeplitz矩阵 In the calculation, it needs to be obtained through an impulse response experiment Let r=0, u as the unit pulse input, v as white noise with zero mean, get the impulse response sequence ζT and ζS to establish the Toeplitz matrix about Si and Ti
第三步、进行双循环迭代反馈整定算法的收敛性及收敛速度分析:The third step is to analyze the convergence and convergence speed of the double-loop iterative feedback tuning algorithm:
通常使用Gauss–Newton算法计算下一次迭代更新值:The Gauss–Newton algorithm is usually used to calculate the update value for the next iteration:
其中Ri为一个矩阵,γi是一个标量,当且0<γi≤1时,ρi通常线性收敛,这种情况下存在:where R i is a matrix and γ i is a scalar, when And 0<γ i ≤ 1, ρ i usually converges linearly, in this case:
||ρi+1-ρ*||≤||ρi-ρ*|| (31)||ρ i+1 -ρ * ||≤||ρ i -ρ * || (31)
已知梯度是:known gradient Yes:
式(32)减去(17)得到:Subtract (17) from equation (32) to get:
由式(21)做出定义,已知是由求得的,则式(33)可 以进一步得到: Defined by equation (21), it is known that By can be obtained, then formula (33) can be further obtained:
符合且0<γi≤1的收敛条件,因此双循环迭代反馈整定算法是收 敛的,进一步考虑算法的收敛速度,根据式(22)内循环且时,第一次 迭代下若很小的时候,有下式:meets the And the convergence condition of 0<γ i ≤ 1, so the double-loop iterative feedback tuning algorithm is convergent, further considering the convergence speed of the algorithm, according to the inner loop of equation (22) and , the first iteration if When I was very young, there was the following formula:
其中0<β<1;where 0<β<1;
定理2:假设内循环迭代次数为m,||ρi-ρ*||较小时,算法m阶收敛,Theorem 2: Assuming that the number of iterations of the inner loop is m, when ||ρ i -ρ * || is small, the algorithm converges to order m,
证明:通过式(35)且可以得到:Proof: By formula (35) and You can get:
且则最终可以得到:and You can finally get:
||Δρi+1-ρ*||≤βm||ρi-Δρ*|| (37)||Δρ i+1 -ρ * ||≤β m ||ρ i -Δρ * || (37)
定理2表明双循环迭代算法是m阶收敛的,因而比传统的IFT算法具有更快 的收敛速度;
第四步、给出位置环的双循环迭代反馈整定控制方案的具体实施:The fourth step is to give the specific implementation of the double-loop iterative feedback tuning control scheme of the position loop:
永磁同步电机伺服系统位置环的双循环迭代反馈整定轨迹跟踪控制方法具 体方案如下:The specific scheme of the dual-loop iterative feedback tuning trajectory tracking control method for the position loop of the permanent magnet synchronous motor servo system is as follows:
1)针对永磁同步电机伺服系统,设定位置信号为r=30°,电机空载运行,工作 过程中受到均值为零的白噪声v的影响,采样时间T=1×10-4s,仿真中为了进一 步减少超调,e将从第50个采样点开始进行统计;1) For the permanent magnet synchronous motor servo system, set the position signal to r=30°, the motor runs without load, and is affected by the white noise v with a mean value of zero during the working process, the sampling time T=1×10 -4 s, In order to further reduce overshoot in the simulation, e will be counted from the 50th sampling point;
2)给定初始控制器参数ρ1,根据式(7)建立准则函数J(ρi),令外循环迭代系数 i=1;2) Given the initial controller parameter ρ 1 , establish the criterion function J(ρ i ) according to formula (7), and set the outer loop iteration coefficient i=1;
3)进行内部循环获取:3) Perform inner loop acquisition:
步1:通过脉冲响应实验获得Toeplitz矩阵 Step 1: Obtain Toeplitz Matrix by Impulse Response Experiment
步2:给定ei和ρi,设内循环系数k=1,令 Step 2: Given e i and ρ i , set the inner loop coefficient k=1, let
步3:通过式(20)、(21)、(26)和(29)进行k次迭代,获得即 Step 3: Perform k iterations through equations (20), (21), (26) and (29) to obtain which is
4)计算ρi+1=ρi+Δρi+1 *;4) Calculate ρ i+1 =ρ i +Δρ i+1 * ;
5)得到ρi+1后,根据准则函数进一步计算J(ρi+1),若满足控制需求则转步6,否 则转步3;5) After obtaining ρ i+1 , further calculate J(ρ i+1 ) according to the criterion function, if the control requirement is met, go to
6)结束。6) End.
本发明的有益技术效果是:The beneficial technical effects of the present invention are:
以PMSM这类在工业中广泛应用的工业设备为研究对象,优化控制器参数 以实现精确的位置控制并且进一步提高系统定位的快速性,本申请综合了一种 新的IFT框架,即将双循环IFT算法引入基于脉冲响应模型的闭环子空间辨识 方法,用最小化准则函数梯度求取最佳步长,改变了传统IFT算法每次迭代都 需要多次实验,收敛速度普遍较慢的局限性;双循环IFT算法能够实现运行过 程中的在线调优,满足了其在不同控制输入环境下的鲁棒性,使得优化后的 PMSM进一步推广至医疗机器人、高精度数控设备等实际工程对象。Taking the industrial equipment such as PMSM which is widely used in the industry as the research object, the controller parameters are optimized to achieve precise position control and further improve the rapidity of system positioning. The algorithm introduces the closed-loop subspace identification method based on the impulse response model, and uses the gradient of the minimization criterion function to find the optimal step size, which changes the limitation that the traditional IFT algorithm needs multiple experiments for each iteration and the convergence speed is generally slow; The cyclic IFT algorithm can realize online tuning during the operation process, and satisfies its robustness under different control input environments, so that the optimized PMSM can be further extended to practical engineering objects such as medical robots and high-precision numerical control equipment.
附图说明Description of drawings
图1是本申请公开的永磁同步电机的矢量控制系统的结构图。FIG. 1 is a structural diagram of a vector control system of a permanent magnet synchronous motor disclosed in the present application.
图2是本申请公开的双循环IFT算法进行参数整定下的“三闭环”控制结 构图。Fig. 2 is a "three closed-loop" control structure diagram under the parameter setting of the double-cycle IFT algorithm disclosed in the present application.
图3是本申请公开的双循环IFT算法的脉冲响应实验的示意图。FIG. 3 is a schematic diagram of an impulse response experiment of the dual-cycle IFT algorithm disclosed in the present application.
图4是分别在传统IFT算法及双循环IFT算法下,Kp从20开始迭代时J(ρ) 的变化情况曲线图。FIG. 4 is a graph showing the change of J(ρ) when K p starts to iterate from 20 under the traditional IFT algorithm and the double-loop IFT algorithm, respectively.
图5是分别在传统IFT算法及双循环IFT算法下,Kp从不同起点开始迭代 时J(ρ)的变化情况曲线图。FIG. 5 is a graph showing the change of J(ρ) when K p starts to iterate from different starting points under the traditional IFT algorithm and the double-loop IFT algorithm, respectively.
图6是本申请中的二维情况下KI、Kp及准则函数J(ρ)的变化情况曲线图。FIG. 6 is a graph showing the changes of K I , K p and the criterion function J(ρ) in the two-dimensional case of the present application.
图7是本申请中的不同算法下永磁同步电机的位置跟踪情况曲线图及其振 荡处放大图。Fig. 7 is the graph of the position tracking situation of the permanent magnet synchronous motor under different algorithms in the present application and the enlarged view of the oscillation place.
图8是本申请中的不同算法下永磁同步电机的转速变化情况曲线图及其振 荡处放大图。Fig. 8 is the graph of the rotational speed variation of the permanent magnet synchronous motor under different algorithms in the present application and an enlarged view of the oscillation place.
图9是本申请中的不同算法下定子电流矢量id、iq变化情况曲线图。 FIG . 9 is a graph showing the variation of stator current vectors id and i q under different algorithms in the present application.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式做进一步说明。The specific embodiments of the present invention will be further described below with reference to the accompanying drawings.
结合图1-图9所示,在本申请中,为了将该系统具体实现,建立一套由安川 永磁同步电机、功率电路模块、控制电路模块所搭建的电机实验平台,通过采 集电机的实时位置和速度传递给控制电路模块,便可以实现闭环反馈控制,能 够体现永磁同步电机控制策略有效性。As shown in Fig. 1-Fig. 9, in this application, in order to realize the system concretely, a set of motor experiment platform built by Yaskawa permanent magnet synchronous motor, power circuit module and control circuit module is established, and the real-time data of the motor is collected by collecting the real-time data of the motor. The position and speed are transmitted to the control circuit module, and the closed-loop feedback control can be realized, which can reflect the effectiveness of the control strategy of the permanent magnet synchronous motor.
功率电路模块由整流电路、逆变桥以及隔离驱动电路组成。整流电路包括 整流桥模块GBJ3510、继电器和启动电阻构成的上电保护电路组成,逆变桥采 用6只IGBT和续流二极管并联构成三相全桥逆变电路将直流电变为等效的三相 正弦交流电。PC923作为上桥臂驱动芯片,PC929作为对应的下桥臂驱动芯片共 同组成了隔离驱动电路。The power circuit module consists of a rectifier circuit, an inverter bridge and an isolated drive circuit. The rectifier circuit consists of a power-on protection circuit composed of a rectifier bridge module GBJ3510, a relay and a starting resistor. The inverter bridge uses 6 IGBTs and freewheeling diodes in parallel to form a three-phase full-bridge inverter circuit to convert the direct current into an equivalent three-phase sine alternating current. PC923 as the upper bridge arm driver chip and PC929 as the corresponding lower bridge arm driver chip together form the isolation drive circuit.
控制电路模块是以DSP:TMS320F28335为核心控制芯片搭建的,具体包含 有外围接口电路、电流检测电路、直流母线电压检测电路和转速检测电路,本 申请中的上述电路是本领域现有的常规电路,因此本申请对其电路原理不作详 细介绍。TMS320F28335是具有高速浮点运算能力的处理芯片,其丰富的外设 资源对于伺服系统控制是非常方便的。电流检测电路以电流互感器和仪用放大 器INA199组成,一方面能够实现电流环控制必须采集电动机电流,另一方面可 以根据采集到的三相电流来确定某些故障发生的原因。直流母线电压检测电路 则采用线性光祸隔离芯片HCNR201作为核心,来获取精确的直流母线电压值。 转速检测电路使用2500线的增量式光电编码器对电机的转速进行测定,送入 DSP中。The control circuit module is built with DSP:TMS320F28335 as the core control chip, and specifically includes a peripheral interface circuit, a current detection circuit, a DC bus voltage detection circuit and a rotational speed detection circuit. The above circuits in this application are conventional circuits in the field. , so this application does not describe its circuit principle in detail. TMS320F28335 is a processing chip with high-speed floating-point computing capability, and its rich peripheral resources are very convenient for servo system control. The current detection circuit is composed of a current transformer and an instrument amplifier INA199. On the one hand, the motor current must be collected to realize the current loop control, and on the other hand, the cause of some faults can be determined according to the collected three-phase current. The DC bus voltage detection circuit uses the linear optical isolation chip HCNR201 as the core to obtain the accurate DC bus voltage value. The rotational speed detection circuit uses the incremental photoelectric encoder of 2500 lines to measure the rotational speed of the motor and send it to the DSP.
基于双循环迭代反馈整定算法,设定位置信号r=30°,电机空载运行,工作 过程中受到均值为零的白噪声v的影响,采样时间T=1×10-4s,为了比较传统IFT 算法及双循环IFT算法的性能,本申请先行设置一组仿真实验进行验证,该示 例的系统仿真参数如下表1所示:Based on the double-loop iterative feedback tuning algorithm, the position signal r=30° is set, the motor runs without load, and is affected by the white noise v with zero mean value during the working process. The sampling time is T=1×10 -4 s. In order to compare the traditional The performance of the IFT algorithm and the double-loop IFT algorithm is verified by setting up a set of simulation experiments in advance in this application. The system simulation parameters of this example are shown in Table 1 below:
表1Table 1
首先实验中取ρ=[Kp 100],反馈控制器C(z-1,ρ)为:First, take ρ=[K p 100] in the experiment, and the feedback controller C(z -1 ,ρ) is:
永磁同步电机系统运行时,取脉冲响应实验中取前N个采样点,N=200。 在只具有一个局部最优的稳定范围内中,分别使用传统IFT算法和双循环IFT算 法,令Kp从20开始迭代,其J(ρ)关于Kp的关系如图4所示,具体的,双循环IFT 算法下Kp的变化情况曲线分为两段,包括曲线1和曲线2。可以看出,传统IFT 算法从起始点Kp1=20线性逼近收敛区间,而双循环IFT算法下Kp则可以直接求 取最优的步长,将迭代次数减小到3次以内,但对速度环的辨识所带来的误差及 出于计算复杂度的考虑对采样点N大小的限制也让双循环IFT算法求取最优解 时存在一定的偏差。接下来设立多组对照实验,每组实验Kp分别从25、30、35 及40开始迭代,两种不同算法下其变化趋势如图5所示,可以看出在一维空间下, 双循环IFT算法相对于传统IFT算法具有更高的迭代效率。取ρ=[Kp KI],Kp、 KI分别为比例增益及积分增益,根据传统PID参数整定方法Ziegler-Nichols法确 立ρ0=[42.75 419],反馈控制器C(z-1,ρ)为:When the permanent magnet synchronous motor system is running, take the first N sampling points in the impulse response experiment, N=200. In the stable range with only one local optimum, the traditional IFT algorithm and the double-loop IFT algorithm are used respectively, and K p is iterated from 20. The relationship between J(ρ) and K p is shown in Figure 4. The specific , the curve of the change of K p under the double-cycle IFT algorithm is divided into two sections, including
经过20次迭代后,KI、Kp及准则函数J(ρ)变化情况如图6所示,双循环 算法一般在迭代3次之内可以到达一个局部最优,相比于传统IFT算法线性逼 近的方式,双循环算法下的KI、Kp及准则函数J(ρ)具有更高的迭代效率。另一 方面双循环算法也存在一些局限性,除了对速度环的辨识所带来的误差外,所 具有的多个局部最优也可能导致两种算法收敛到一个不同的最优点ρ*。如图7 所示,其示出了该情况下不同算法下永磁同步电机的位置跟踪情况曲线图及其 振荡处放大图,具体的,曲线3是给定轨迹的跟踪情况曲线,曲线4是ZN算 法的跟踪情况曲线,曲线5是双循序IFT算法的跟踪情况曲线,曲线6是传统 IFT算法的跟踪情况曲线。图8示出了永磁同步电机的转速变化情况曲线图及 其振荡处放大图,具体的,曲线7是传统IFT算法的转速变化情况曲线,曲线 8是双循序IFT算法的转速变化情况曲线,曲线9是ZN算法的转速变化情况 曲线。图9示出了定子电流矢量id、iq变化情况曲线图。After 20 iterations, the changes of K I , K p and the criterion function J(ρ) are shown in Figure 6. The double-loop algorithm can generally reach a local optimum within 3 iterations, which is linear compared to the traditional IFT algorithm. The method of approximation, K I , K p and criterion function J(ρ) under the double-loop algorithm have higher iterative efficiency. On the other hand, the double-loop algorithm also has some limitations. In addition to the error caused by the identification of the velocity loop, the multiple local optima may also cause the two algorithms to converge to a different optimal point ρ * . As shown in Figure 7, it shows the position tracking situation curve of the permanent magnet synchronous motor under different algorithms and its oscillating position magnification. Specifically, the
以上所述的仅是本申请的优选实施方式,本发明不限于以上实施例。可以 理解,本领域技术人员在不脱离本发明的精神和构思的前提下直接导出或联想 到的其他改进和变化,均应认为包含在本发明的保护范围之内。The above descriptions are only preferred embodiments of the present application, and the present invention is not limited to the above embodiments. It can be understood that other improvements and changes directly derived or thought of by those skilled in the art without departing from the spirit and concept of the present invention should all be considered to be included within the protection scope of the present invention.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911119936.5A CN110829921B (en) | 2019-11-15 | 2019-11-15 | Iterative feedback setting control and optimization method for permanent magnet synchronous motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911119936.5A CN110829921B (en) | 2019-11-15 | 2019-11-15 | Iterative feedback setting control and optimization method for permanent magnet synchronous motor |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110829921A true CN110829921A (en) | 2020-02-21 |
CN110829921B CN110829921B (en) | 2021-02-19 |
Family
ID=69555814
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911119936.5A Active CN110829921B (en) | 2019-11-15 | 2019-11-15 | Iterative feedback setting control and optimization method for permanent magnet synchronous motor |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110829921B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113087030A (en) * | 2021-03-02 | 2021-07-09 | 天津大学 | Water resource double-circulation feedback control system and method |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102710212A (en) * | 2012-06-11 | 2012-10-03 | 桂林电子科技大学 | Improved iterative learning control method and control system for permanent magnet linear synchronous motor |
CN109039173A (en) * | 2018-08-09 | 2018-12-18 | 沈阳工业大学 | A kind of PMLSM iterative learning control method and system based on hybridization particle group optimizing |
CN109202883A (en) * | 2017-06-29 | 2019-01-15 | 沈阳新松机器人自动化股份有限公司 | A kind of position control method of self-balance robot |
-
2019
- 2019-11-15 CN CN201911119936.5A patent/CN110829921B/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102710212A (en) * | 2012-06-11 | 2012-10-03 | 桂林电子科技大学 | Improved iterative learning control method and control system for permanent magnet linear synchronous motor |
CN109202883A (en) * | 2017-06-29 | 2019-01-15 | 沈阳新松机器人自动化股份有限公司 | A kind of position control method of self-balance robot |
CN109039173A (en) * | 2018-08-09 | 2018-12-18 | 沈阳工业大学 | A kind of PMLSM iterative learning control method and system based on hybridization particle group optimizing |
Non-Patent Citations (2)
Title |
---|
YUANLONG XIE等: ""Robust Cascade Path-Tracking Control of Networked Industrial Robot Using Constrained Iterative Feedback Tuning"", 《IEEE ACCESS》 * |
陶洪峰等: "" 气动人工肌肉关节的迭代反馈整定控制及优化"", 《信息与控制》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113087030A (en) * | 2021-03-02 | 2021-07-09 | 天津大学 | Water resource double-circulation feedback control system and method |
CN113087030B (en) * | 2021-03-02 | 2022-08-02 | 天津大学 | Water resource double-circulation feedback control system and method |
Also Published As
Publication number | Publication date |
---|---|
CN110829921B (en) | 2021-02-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102208891B (en) | Method for controlling PMSM (permanent magnet synchronous motor) servo system based on friction and disturbance compensation | |
CN101989827B (en) | Method for automatically adjusting speed loop control parameters of alternating-current servo system based on inertia identification | |
CN108092567B (en) | A speed control system and method for a permanent magnet synchronous motor | |
CN103401500B (en) | A kind of high accuracy permanent magnetic synchronous motor AC servo systems speed ripple suppressing method based on repetitive controller | |
CN107132759A (en) | A kind of linear electric motors driving FTS is based on ESO sliding formworks and improves repetitive control | |
CN110707981A (en) | Permanent magnet synchronous motor speed controller based on novel extended state observer | |
CN108964545A (en) | A kind of synchronous motor neural network contragradience Discrete Control Method based on command filtering | |
CN104734595A (en) | Identification method for rotary inertia of permanent magnet synchronous motor based on model reference self-adaption | |
CN118117932A (en) | Permanent magnet servo system mechanical parameter identification method, servo system and control method | |
US20240291409A1 (en) | Nonlinear predictive position control method suitable for biaxial permanent magnet servo system | |
Zhang et al. | Parameter identification of permanent magnet synchronous motor based on extended Kalman filter and gradient correction | |
CN110829921B (en) | Iterative feedback setting control and optimization method for permanent magnet synchronous motor | |
CN114527710B (en) | Friction compensation-based feed direct torque control method, apparatus and storage medium | |
CN111130411A (en) | Device and method for improving synchronous control precision of double-shaft direct-drive platform servo system | |
CN108448983B (en) | A Method of Suppressing Nonlinear Interference of Servo System at Very Low Speed | |
CN105915145A (en) | Device and method of controlling permanent magnet linear synchronous motor | |
Wai | Hybrid control for speed sensorless induction motor drive | |
CN110378057B (en) | A built-in permanent magnet synchronous motor anti-interference controller and its design method | |
CN116079741B (en) | Self-adaptive control method for motor-driven single-link mechanical arm | |
CN109143869B (en) | A Synchronous Control System of Recurrent Wavelet Neural Network Compensator for H-shaped Platform | |
CN116638544A (en) | A Cooperative Control Method of Joint Modules Based on Hyperlocal Model | |
Yang | A neural network model reference adaptive system for speed estimation of sensorless induction motor | |
CN115001335A (en) | Bearing-free flux switching motor rotor suspension control method based on neural network | |
CN112821829A (en) | Permanent magnet synchronous motor robust position control method considering current amplitude limiting | |
CN114744939B (en) | An online compensation method and device for the dead zone voltage of the current loop of a permanent magnet synchronous motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20210602 Address after: Room 1301a, 13th floor, Wanda Plaza West building, 188 Shihu West Road, Suzhou, Jiangsu 215000 Patentee after: Suzhou Suli Energy Technology Co.,Ltd. Address before: No. 1800 road 214122 Jiangsu Lihu Binhu District City of Wuxi Province Patentee before: Jiangnan University |
|
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240527 Address after: No. 8 Changyao Road, Yaoguan Town, Changzhou Economic Development Zone, Changzhou City, Jiangsu Province, 213000 Patentee after: Suli Energy Equipment (Jiangsu) Co.,Ltd. Country or region after: China Address before: Room 1301a, 13th floor, Wanda Plaza West building, 188 Shihu West Road, Suzhou, Jiangsu 215000 Patentee before: Suzhou Suli Energy Technology Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |