Nothing Special   »   [go: up one dir, main page]

CN110828379A - Manufacturing method of thin film transistor, thin film transistor and display panel - Google Patents

Manufacturing method of thin film transistor, thin film transistor and display panel Download PDF

Info

Publication number
CN110828379A
CN110828379A CN201910980595.4A CN201910980595A CN110828379A CN 110828379 A CN110828379 A CN 110828379A CN 201910980595 A CN201910980595 A CN 201910980595A CN 110828379 A CN110828379 A CN 110828379A
Authority
CN
China
Prior art keywords
layer
silicon wafer
low
gate
low temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910980595.4A
Other languages
Chinese (zh)
Inventor
张猛
周玮
闫岩
王文
郭海成
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen University
Original Assignee
Shenzhen University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen University filed Critical Shenzhen University
Priority to CN201910980595.4A priority Critical patent/CN110828379A/en
Publication of CN110828379A publication Critical patent/CN110828379A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/80Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs
    • H10D84/82Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components
    • H10D84/83Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers characterised by the integration of at least one component covered by groups H10D12/00 or H10D30/00, e.g. integration of IGFETs of only field-effect components of only insulated-gate FETs [IGFET]
    • H10D84/85Complementary IGFETs, e.g. CMOS
    • H10D84/859Complementary IGFETs, e.g. CMOS comprising both N-type and P-type wells, e.g. twin-tub
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D86/00Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates
    • H10D86/40Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs
    • H10D86/60Integrated devices formed in or on insulating or conducting substrates, e.g. formed in silicon-on-insulator [SOI] substrates or on stainless steel or glass substrates characterised by multiple TFTs wherein the TFTs are in active matrices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Abstract

本申请提供一种薄膜晶体管的制造方法、薄膜晶体管及显示面板,该制造方法包括准备硅片;在硅片上设置低温隔离层;在硅片上依次设置低温栅极介质层和栅极层;在硅片中设置源漏极层;在低温栅极介质层和栅极层上设置低温钝化层;在低温钝化层、栅极层和源漏极层上设置金属层,金属层连接栅极层和源漏极层。通过上述方式,能够降低制造成本,提高制造高分辨率显示中的薄膜晶体管的成功率。

Figure 201910980595

The present application provides a method for manufacturing a thin film transistor, a thin film transistor and a display panel, the manufacturing method includes preparing a silicon wafer; disposing a low temperature isolation layer on the silicon wafer; disposing a low temperature gate dielectric layer and a gate electrode layer on the silicon wafer in sequence; A source and drain layer is arranged in the silicon wafer; a low temperature passivation layer is arranged on the low temperature gate dielectric layer and the gate layer; a metal layer is arranged on the low temperature passivation layer, the gate layer and the source and drain layers, and the metal layer is connected to the gate electrode layer and source and drain layers. In the above manner, the manufacturing cost can be reduced, and the success rate of manufacturing thin film transistors in high-resolution displays can be improved.

Figure 201910980595

Description

一种薄膜晶体管的制造方法、薄膜晶体管及显示面板Manufacturing method of thin film transistor, thin film transistor and display panel

技术领域technical field

本发明涉及一种薄膜晶体管的制造方法、薄膜晶体管及显示面板。The invention relates to a manufacturing method of a thin film transistor, a thin film transistor and a display panel.

背景技术Background technique

目前,高分辨率平板显示器(FPDs)在现代信息交换和通信过程中发挥着重要作用。智能手机、电视和笔记本电脑的两种主流技术分别是有源矩阵液晶显示器(AMLCDs)和有源矩阵有机发光二极管(AMOLED)显示器。AMOLED和AMOLED显示器都需要一个含有源开关阵列的背板来控制像素的开关状态。这种矩阵通常由在大片玻璃基底上制作的薄膜晶体管构成。Currently, high-resolution flat panel displays (FPDs) play an important role in modern information exchange and communication processes. The two mainstream technologies for smartphones, TVs and laptops are Active Matrix Liquid Crystal Displays (AMLCDs) and Active Matrix Organic Light Emitting Diode (AMOLED) displays. Both AMOLED and AMOLED displays require a backplane containing an array of active switches to control the switching states of pixels. Such matrices typically consist of thin-film transistors fabricated on large glass substrates.

FPD的像素由每英寸的像素点(ppi)决定。对于高端智能手机来说,ppi通常大于300,例如,Apple iPhone的ppi为326,SONY Xperia Z5 Premium的ppi为806;对近眼领域而言,例如AR和VR,ppi大于500是必要的。为了防止木纹效应,OLED显示器的ppi要采用3000以上,例如,奈德光学公司的GOOVIS G1,3147ppi,像素大小=8.1μm×8.1μm,面板大小为0.6英寸。由于TFTs的电气特性差、不均匀性,所以要在一个像素点里使用更大的宽长比或更多的TFT去满足当前的要求或用于不均匀性的补偿。The pixels of an FPD are determined by pixels per inch (ppi). For high-end smartphones, ppi is usually greater than 300, for example, the ppi of Apple iPhone is 326, and the ppi of SONY Xperia Z5 Premium is 806; for near-eye fields, such as AR and VR, ppi greater than 500 is necessary. In order to prevent the wood grain effect, the ppi of the OLED display should be more than 3000, for example, GOOVIS G1 of Ned Optical Company, 3147ppi, pixel size=8.1μm×8.1μm, and the panel size is 0.6 inches. Due to poor electrical characteristics and non-uniformity of TFTs, a larger aspect ratio or more TFTs should be used in a pixel to meet current requirements or for non-uniformity compensation.

因此,以TFT背板制作ppi>800的屏幕极具挑战性。在近眼应用方面,这种面板是基于成熟的现代IC制造工艺-单晶硅晶圆加工制造的。其中涉及了一些高温过程,包括热氧化、掺杂扩散、激活掺杂剂的后退火等。这些工艺温度大多在9001000℃。而小尺寸和高温工艺使得硅片加工费用远比FDRTFT背板的制备昂贵。针对于现有技术,如何设计开发一种使用较低成本制作ppi>1000的FPD的制作工艺,是本领域技术人员亟待解决的技术问题。Therefore, it is very challenging to make a ppi>800 screen with a TFT backplane. For near-eye applications, the panels are based on a well-established modern IC manufacturing process - monocrystalline silicon wafer processing. A number of high temperature processes are involved, including thermal oxidation, dopant diffusion, post-annealing to activate dopants, etc. These process temperatures are mostly in the range of 9001000°C. The small size and high temperature process make the processing cost of the silicon wafer far more expensive than the preparation of the FDRTFT backplane. In view of the prior art, how to design and develop a manufacturing process for manufacturing an FPD with ppi>1000 at a lower cost is a technical problem to be solved urgently by those skilled in the art.

发明内容SUMMARY OF THE INVENTION

本发明所要解决的技术问题是克服上述现有技术的不足,提供一种薄膜晶体管的制造方法、薄膜晶体管及显示面板。The technical problem to be solved by the present invention is to overcome the above-mentioned deficiencies of the prior art, and to provide a method for manufacturing a thin film transistor, a thin film transistor and a display panel.

本发明解决上述技术问题采用的一个技术方案是:一种薄膜晶体管的制造方法,其中,所述制造方法包括:A technical solution adopted by the present invention to solve the above-mentioned technical problems is: a method for manufacturing a thin film transistor, wherein the manufacturing method includes:

准备硅片;prepare silicon wafers;

在所述硅片上设置低温隔离层;A low temperature isolation layer is arranged on the silicon wafer;

在所述硅片上依次设置低温栅极介质层和栅极层;A low-temperature gate dielectric layer and a gate layer are sequentially arranged on the silicon wafer;

在所述硅片中设置源漏极层;Disposing source and drain layers in the silicon wafer;

在所述低温栅极介质层和所述栅极层上设置低温钝化层;A low-temperature passivation layer is provided on the low-temperature gate dielectric layer and the gate layer;

在所述低温钝化层、所述栅极层和所述源漏极层上设置金属层,所述金属层连接所述栅极层和所述源漏极层。A metal layer is provided on the low-temperature passivation layer, the gate layer and the source and drain layers, and the metal layer connects the gate layer and the source and drain layers.

本发明解决上述技术问题采用的另一个技术方案是:提供一种薄膜晶体管,其中,所述薄膜晶体管包括:Another technical solution adopted by the present invention to solve the above technical problem is to provide a thin film transistor, wherein the thin film transistor comprises:

硅片和形成于所述硅片一侧的低温隔离层;a silicon wafer and a low temperature isolation layer formed on one side of the silicon wafer;

低温栅极介质层,形成于所述硅片靠近所述低温隔离层的一侧;a low temperature gate dielectric layer, formed on the side of the silicon wafer close to the low temperature isolation layer;

栅极层,形成于所述低温栅极介质层背离所述硅片的一侧;a gate layer, formed on the side of the low-temperature gate dielectric layer away from the silicon wafer;

源漏极层,形成于所述硅片中;source and drain layers, formed in the silicon wafer;

低温钝化层,形成于所述低温栅极介质层和所述栅极层上;a low-temperature passivation layer, formed on the low-temperature gate dielectric layer and the gate layer;

金属层,形成于所述低温钝化层、所述栅极层和所述源漏极层上,连接所述栅极层和所述源漏极层。A metal layer is formed on the low temperature passivation layer, the gate layer and the source and drain layers, and connects the gate layer and the source and drain layers.

本发明解决上述技术问题采用的又一个技术方案是:提供一种显示面板,其中,所述显示面板包括如上述的薄膜晶体管。Another technical solution adopted by the present invention to solve the above technical problem is to provide a display panel, wherein the display panel includes the above-mentioned thin film transistor.

与现有技术相比,本发明的有益效果是:本申请提供一种薄膜晶体管的制造方法、薄膜晶体管及显示面板,该制造方法包括准备硅片;在硅片上设置低温隔离层;在硅片上依次设置低温栅极介质层和栅极层;在硅片中设置源漏极层;在低温栅极介质层和栅极层上设置低温钝化层;在低温钝化层、栅极层和源漏极层上设置金属层,金属层连接栅极层和源漏极层。通过在低温状态下,在硅片上设置低温隔离层、低温栅极介质层、栅极层、源漏极层、低温钝化层和金属层,解决了现有技术中制造高分辨率的薄膜晶体管的成功率低、成本高的问题。Compared with the prior art, the beneficial effects of the present invention are: the present application provides a method for manufacturing a thin film transistor, a thin film transistor and a display panel, the manufacturing method includes preparing a silicon wafer; disposing a low temperature isolation layer on the silicon wafer; A low-temperature gate dielectric layer and a gate layer are arranged on the chip in sequence; a source and drain layer is arranged in the silicon wafer; a low-temperature passivation layer is arranged on the low-temperature gate dielectric layer and the gate layer; A metal layer is arranged on the source and drain layers, and the metal layer connects the gate layer and the source and drain layers. By arranging a low-temperature isolation layer, a low-temperature gate dielectric layer, a gate layer, a source-drain layer, a low-temperature passivation layer and a metal layer on the silicon wafer in a low-temperature state, it solves the problem of manufacturing high-resolution thin films in the prior art. The problem of low success rate and high cost of transistors.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,其中:In order to illustrate the technical solutions in the embodiments of the present invention more clearly, the following briefly introduces the accompanying drawings used in the description of the embodiments, wherein:

图1是本申请一种薄膜晶体管一实施例的结构示意图;FIG. 1 is a schematic structural diagram of an embodiment of a thin film transistor of the present application;

图2是本申请一种薄膜晶体管的制造方法一实施例的流程示意图;FIG. 2 is a schematic flowchart of an embodiment of a method for manufacturing a thin film transistor of the present application;

图3是本申请一种薄膜晶体管的制造方法另一实施例的流程示意图;3 is a schematic flowchart of another embodiment of a method for manufacturing a thin film transistor of the present application;

图4是本申请一种薄膜晶体管另一实施例的结构示意图;FIG. 4 is a schematic structural diagram of another embodiment of a thin film transistor of the present application;

图5是本申请一种薄膜晶体管的制造方法又一实施例的流程示意图;FIG. 5 is a schematic flowchart of another embodiment of a method for manufacturing a thin film transistor of the present application;

图6是本申请一种薄膜晶体管又一实施例的结构示意图;FIG. 6 is a schematic structural diagram of another embodiment of a thin film transistor of the present application;

图7是本申请一种薄膜晶体管的制造方法再一实施例的流程示意图;FIG. 7 is a schematic flowchart of still another embodiment of a method for manufacturing a thin film transistor of the present application;

图8是本申请一种薄膜晶体管再一实施例的结构示意图;8 is a schematic structural diagram of still another embodiment of a thin film transistor of the present application;

图9是本申请一种显示面板一实施例的结构示意图。FIG. 9 is a schematic structural diagram of an embodiment of a display panel of the present application.

具体实施方式Detailed ways

下面将结合附图以及具体实施方式,对本发明做进一步描述。较佳实施例中所引用的如“上”、“下”、“左”、“右”、“中间”及“一”等用语,仅为便于叙述的明了,而非用以限定本发明可实施的范围,其相对关系的改变或调整,在无实质变更技术内容下,当亦视为本发明可实施的范畴。The present invention will be further described below with reference to the accompanying drawings and specific embodiments. Terms such as "up", "down", "left", "right", "middle" and "one" quoted in the preferred embodiment are only for the convenience of description and clarity, and are not intended to limit the scope of the present invention. The scope of implementation, the change or adjustment of the relative relationship, and the technical content without substantial change, shall also be regarded as the scope of the present invention.

请参阅图1和图2,图1是本申请一种薄膜晶体管一实施例的结构示意图,图2是本申请一种薄膜晶体管的制造方法一实施例的流程示意图。Please refer to FIG. 1 and FIG. 2 , FIG. 1 is a schematic structural diagram of an embodiment of a thin film transistor of the present application, and FIG. 2 is a schematic flowchart of an embodiment of a manufacturing method of a thin film transistor of the present application.

该薄膜晶体管100包括硅片11、低温隔离层12、低温栅极介质层13、栅极层14、源漏极层15、低温钝化层16和金属层17。其中,低温隔离层12形成于硅片11的一侧;低温栅极介质层13,形成于硅片11靠近低温隔离层12的一侧;栅极层14,形成于低温栅极介质层13背离硅片11的一侧;源漏极层15,形成于硅片11中;低温钝化层16,形成于低温栅极介质层13和栅极层14上;金属层17,形成于低温钝化层16、栅极层14和源漏极层15上,连接栅极层14和源漏极层15。The thin film transistor 100 includes a silicon wafer 11 , a low temperature isolation layer 12 , a low temperature gate dielectric layer 13 , a gate layer 14 , a source and drain layer 15 , a low temperature passivation layer 16 and a metal layer 17 . Among them, the low temperature isolation layer 12 is formed on one side of the silicon wafer 11; the low temperature gate dielectric layer 13 is formed on the side of the silicon wafer 11 close to the low temperature isolation layer 12; the gate layer 14 is formed on the low temperature gate dielectric layer 13 away from One side of the silicon wafer 11; the source and drain layers 15 are formed in the silicon wafer 11; the low temperature passivation layer 16 is formed on the low temperature gate dielectric layer 13 and the gate layer 14; the metal layer 17 is formed on the low temperature passivation layer On the layer 16 , the gate layer 14 and the source and drain layers 15 , the gate layer 14 and the source and drain layers 15 are connected.

为制得图1所示的薄膜晶体管100,本实施例所揭示的方法具体可以包括以下步骤:In order to manufacture the thin film transistor 100 shown in FIG. 1 , the method disclosed in this embodiment may specifically include the following steps:

S11:准备硅片。S11: Prepare the silicon wafer.

本实施例中采用低温金属氧化物半导体(MOS,Metal-Oxide-Semiconductor)工艺,互补式金属氧化物半导体(CMOS,Complementary Metal Oxide Semiconductor)是成熟的现代集成电路工艺。In this embodiment, a low temperature Metal-Oxide-Semiconductor (MOS, Metal-Oxide-Semiconductor) process is used, and a Complementary Metal Oxide Semiconductor (CMOS, Complementary Metal Oxide Semiconductor) is a mature modern integrated circuit process.

CMOS工艺包括了NMOS(N-Metal-Oxide-Semiconductor,N型金属氧化物半导体)工艺和PMOS(positive channel Metal Oxide Semiconductor,P沟道MOS晶体管)工艺,一般来说电路设计可以用单独的NMOS工艺实现,或者是单独的PMOS工艺实现,也可以同时用NMOS和PMOS组合的工艺来实现,即CMOS工艺。CMOS process includes NMOS (N-Metal-Oxide-Semiconductor, N-type metal oxide semiconductor) process and PMOS (positive channel Metal Oxide Semiconductor, P-channel MOS transistor) process. Generally speaking, circuit design can use a separate NMOS process It can be realized by a separate PMOS process, or it can be realized by a combination of NMOS and PMOS processes at the same time, that is, a CMOS process.

CMOS工艺制程最高温度约9001000℃,而平板显示器(FPD,Flat-panel displays)薄膜晶体管(TFT,Thin-Film Transistor)工艺通常在大面积玻璃基板上制造,制程温度通常在600℃以下。TFT的电学特性虽然逊于单晶硅器件,但可应用于大面积低成本制造,高性能TFT基板可满足电视和手机应用需要,像素密度(pixel per inch,简称ppi)可高达800-2500。新型的增强现实(AR)/虚拟现实(VR)等近眼应用需要更高的像素密度以避免颗粒效应,高端近眼应用显示屏ppi超过3000,只能用硅工艺制作。The maximum temperature of the CMOS process is about 9001000°C, while the Flat-panel displays (FPD, Thin-Film Transistor) process is usually fabricated on a large-area glass substrate, and the process temperature is usually below 600°C. Although the electrical properties of TFTs are inferior to those of single-crystal silicon devices, they can be used in large-area and low-cost manufacturing. High-performance TFT substrates can meet the needs of TV and mobile phone applications. The pixel per inch (ppi) can be as high as 800-2500. Near-eye applications such as new augmented reality (AR)/virtual reality (VR) require higher pixel density to avoid particle effects, and high-end near-eye application displays with a ppi of more than 3000 can only be fabricated with silicon processes.

在本实施例中将硅片11作为基板,硅片11可以为硅晶圆,例如,IC级硅晶圆,PV级硅晶圆等等。本实施例中所揭示的制造方法可以在低温状态下进行,实现低温CMOS工艺、低温NMOS工艺和低温PMOS工艺,制造成本低,能够大面积制造。In this embodiment, the silicon wafer 11 is used as the substrate, and the silicon wafer 11 may be a silicon wafer, for example, an IC-level silicon wafer, a PV-level silicon wafer, and the like. The manufacturing method disclosed in this embodiment can be performed in a low temperature state, realizes a low temperature CMOS process, a low temperature NMOS process and a low temperature PMOS process, has low manufacturing cost, and can be manufactured in a large area.

S12:在硅片上设置低温隔离层。S12: A low temperature isolation layer is arranged on the silicon wafer.

在硅片11的一侧沉积低温隔离层材料,采用低温工艺对低温隔离层材料进行图形化等处理以形成低温隔离层12,低温隔离层12在硅片11上作为场氧化物以使器件彼此隔离。其中,低温隔离层12的材料可以为低介电常数材料,例如,SiO2(二氧化硅)、SiNx(氮化硅)等等。A low temperature isolation layer material is deposited on one side of the silicon wafer 11, and the low temperature isolation layer material is patterned by a low temperature process to form a low temperature isolation layer 12. The low temperature isolation layer 12 acts as a field oxide on the silicon wafer 11 to make the devices mutually isolation. Wherein, the material of the low temperature isolation layer 12 may be a low dielectric constant material, for example, SiO 2 (silicon dioxide), SiNx (silicon nitride) and the like.

S13:在硅片上依次设置低温栅极介质层和栅极层。S13: A low-temperature gate dielectric layer and a gate layer are sequentially arranged on the silicon wafer.

在硅片11上沉积低温栅极介质层材料,采用低温工艺得到低温栅极介质层13,其中,低温栅极介质层材料可以为栅氧材料,例如二氧化硅、氮化硅,高介电常数材料等等。A low temperature gate dielectric layer material is deposited on the silicon wafer 11, and a low temperature gate dielectric layer 13 is obtained by a low temperature process, wherein the low temperature gate dielectric layer material can be a gate oxide material, such as silicon dioxide, silicon nitride, high dielectric constant material, etc.

在低温栅极介质层13背离硅片11的一侧上沉积栅极材料,将栅极材料图形化得到栅极层14,其中,栅极材料为金属,例如Mo(钼)、Al(铝)、Cu(铜)、W(钨)等等。A gate material is deposited on the side of the low-temperature gate dielectric layer 13 away from the silicon wafer 11, and the gate material is patterned to obtain a gate layer 14, wherein the gate material is a metal, such as Mo (molybdenum), Al (aluminum) , Cu (copper), W (tungsten) and so on.

S14:在硅片中设置源漏极层。S14: Disposing source and drain layers in the silicon wafer.

在硅片11上形成源漏极层15时,根据低温CMOS工艺、低温NMOS工艺和低温PMOS工艺的不同,选择需要的离子并注入到硅片11中,形成源漏极层15,例如,可以选择P型离子、N型离子,或者是P型离子和N型离子的混合型离子。通过注入一种或者两种离子的离子掺杂工艺,在硅片11靠近低温栅极介质层13的一侧上形成源漏极层15,源漏极层15连接低温栅极介质层13。When forming the source-drain layer 15 on the silicon wafer 11, according to the difference of the low-temperature CMOS process, the low-temperature NMOS process and the low-temperature PMOS process, the required ions are selected and implanted into the silicon wafer 11 to form the source-drain layer 15. For example, it can be Select P-type ions, N-type ions, or a mixture of P-type ions and N-type ions. The source and drain layers 15 are formed on the side of the silicon wafer 11 close to the low temperature gate dielectric layer 13 through an ion doping process of implanting one or two ions, and the source and drain layers 15 are connected to the low temperature gate dielectric layer 13 .

S15:在低温栅极介质层和栅极层上设置低温钝化层。S15: A low-temperature passivation layer is provided on the low-temperature gate dielectric layer and the gate layer.

在低温栅极介质层13和栅极层14上沉积低温钝化层材料,并采用低温工艺进行固化处理得到低温钝化层16,低温钝化层材料可以为氮化硅和/或者二氧化硅,低温钝化层16能够对栅极层14进行保护,防止栅极层14被氧化,同时可以保护器件免受外界湿度等因素的影响。A low-temperature passivation layer material is deposited on the low-temperature gate dielectric layer 13 and the gate layer 14, and a low-temperature process is used for curing to obtain a low-temperature passivation layer 16. The low-temperature passivation layer material may be silicon nitride and/or silicon dioxide , the low temperature passivation layer 16 can protect the gate layer 14, prevent the gate layer 14 from being oxidized, and can protect the device from external humidity and other factors at the same time.

S16:在低温钝化层、栅极层和源漏极层上设置金属层,金属层连接栅极层和源漏极层。S16: A metal layer is provided on the low-temperature passivation layer, the gate layer and the source and drain layers, and the metal layer connects the gate layer and the source and drain layers.

在得到低温钝化层16后,在低温钝化层16、栅极层14和源漏极层15上沉积金属材料,并将金属材料图形化为金属层17,作为薄膜晶体管100的连接线和测试焊盘。After the low-temperature passivation layer 16 is obtained, a metal material is deposited on the low-temperature passivation layer 16 , the gate electrode layer 14 and the source and drain layers 15 , and the metal material is patterned into a metal layer 17 , which is used as the connection line and Test pads.

本申请提供一种薄膜晶体管的制造方法,该制造方法包括准备硅片;在硅片上设置低温隔离层;在硅片上依次设置低温栅极介质层和栅极层;在硅片中设置源漏极层;在低温栅极介质层和栅极层上设置低温钝化层;在低温钝化层、栅极层和源漏极层上设置金属层,金属层连接栅极层和源漏极层。通过在低温状态下,在硅片上设置低温隔离层、低温栅极介质层、栅极层、源漏极层、低温钝化层和金属层,能够降低制造成本,提高制造高分辨率显示中的薄膜晶体管的成功率。The present application provides a method for manufacturing a thin film transistor, which includes preparing a silicon wafer; disposing a low-temperature isolation layer on the silicon wafer; disposing a low-temperature gate dielectric layer and a gate layer on the silicon wafer in sequence; disposing a source in the silicon wafer drain layer; a low temperature passivation layer is arranged on the low temperature gate dielectric layer and the gate layer; a metal layer is arranged on the low temperature passivation layer, the gate layer and the source and drain layers, and the metal layer connects the gate layer and the source and drain Floor. By arranging a low-temperature isolation layer, a low-temperature gate dielectric layer, a gate layer, a source-drain layer, a low-temperature passivation layer and a metal layer on the silicon wafer in a low-temperature state, the manufacturing cost can be reduced and the process of manufacturing high-resolution displays can be improved. success rate of thin-film transistors.

在上述实施方式的基础上,本申请提出一种薄膜晶体管的另外三个实施例,本实施例所揭示的方法按照低温CMOS工艺、低温PMOS工艺和低温NMOS工艺三种工艺分别进行说明,本实施例中与上述相同的部分此处不做赘述。On the basis of the above-mentioned embodiments, the present application proposes another three embodiments of thin film transistors. The method disclosed in this embodiment is described according to three processes: low temperature CMOS process, low temperature PMOS process and low temperature NMOS process. In the example, the same part as the above will not be repeated here.

请一并参阅图3和图4,图3是本申请一种薄膜晶体管的制造方法另一实施例的流程示意图,图4是本申请一种薄膜晶体管另一实施例的结构示意图。在低温CMOS工艺中,薄膜晶体管200的制造方法具体可以包括以下步骤:Please refer to FIG. 3 and FIG. 4 together. FIG. 3 is a schematic flowchart of another embodiment of a method for manufacturing a thin film transistor of the present application, and FIG. 4 is a schematic structural diagram of another embodiment of a thin film transistor of the present application. In the low temperature CMOS process, the manufacturing method of the thin film transistor 200 may specifically include the following steps:

S21:准备P型硅片。S21: Prepare a P-type silicon wafer.

本实施例中为使用的硅片为P型硅片21,将P型硅片21作为基板。In this embodiment, the silicon wafer used is the P-type silicon wafer 21, and the P-type silicon wafer 21 is used as the substrate.

S22:在P型硅片上设置第一二氧化硅层。S22: Disposing a first silicon dioxide layer on the P-type silicon wafer.

在P型硅片21上生长一层二氧化硅薄膜作为第一二氧化硅层,第一二氧化硅层作为牺牲氧化层保护表面。此处的第一二氧化硅层可以通过LPCVD(Low pressure chemicalvapor deposition,低压化学气相沉积),PECVD(Plasma Enhanced Chemical VaporDeposition,等离子体增强化学的气相沉积法)等方式生成,例如在本实施例中采用425℃的LPCVD的方法,第一二氧化硅层的厚度为50nm。A silicon dioxide film is grown on the P-type silicon wafer 21 as a first silicon dioxide layer, and the first silicon dioxide layer is used as a sacrificial oxide layer to protect the surface. The first silicon dioxide layer here can be formed by LPCVD (Low pressure chemical vapor deposition), PECVD (Plasma Enhanced Chemical Vapor Deposition, plasma enhanced chemical vapor deposition), etc., for example, in this embodiment Using the method of LPCVD at 425° C., the thickness of the first silicon dioxide layer is 50 nm.

S23:在第一二氧化硅层上设置光刻胶并进行图形化处理,注入第一N型离子以在P型硅片和第一二氧化硅层之间形成N阱,除去光刻胶。S23: Disposing a photoresist on the first silicon dioxide layer and performing patterning treatment, implanting first N-type ions to form an N well between the P-type silicon wafer and the first silicon dioxide layer, and removing the photoresist.

在第一二氧化硅层背离P型硅片21的一侧上涂抹一层光刻胶(PR),用掩模版进行图形化处理,将N型离子注入以在P型硅片21靠近第一二氧化硅层的一侧形成N阱22(N-well)。其中,N阱22注入的N型离子可以为磷离子或砷离子,在本实施例中使用磷离子进行掺杂。由于基板使用的是P型硅片21,P型硅片21就是天然的P阱,除去光刻胶后,得到了具有N阱22和P阱的P型硅片21。A layer of photoresist (PR) is applied on the side of the first silicon dioxide layer away from the P-type silicon wafer 21, patterned with a mask, and N-type ions are implanted to make the P-type silicon wafer 21 close to the first An N-well 22 (N-well) is formed on one side of the silicon dioxide layer. The N-type ions implanted into the N well 22 may be phosphorus ions or arsenic ions, and phosphorus ions are used for doping in this embodiment. Since the substrate is a P-type silicon wafer 21, the P-type silicon wafer 21 is a natural P-well, and after removing the photoresist, a P-type silicon wafer 21 having an N-well 22 and a P-well is obtained.

S24:在第一二氧化硅层上设置光刻胶并进行图形化处理,注入第一P型离子以在P型硅片和第一二氧化硅层之间形成P场,除去光刻胶和第一二氧化硅层。S24: Disposing a photoresist on the first silicon dioxide layer and performing patterning treatment, implanting first P-type ions to form a P field between the P-type silicon wafer and the first silicon dioxide layer, removing the photoresist and first silicon dioxide layer.

在第一二氧化硅层上设置光刻胶并进行图形化处理,注入第一P型离子以在P型硅片21和第一二氧化硅层之间形成P场23,即使用光刻工艺定义P型离子注入范围,从而能够防止不同器件之间发生漏电。其中,至少一个P场23与N阱22相邻设置。得到P场23后,剥离光刻胶和作为牺牲氧化层的第一二氧化硅层。A photoresist is arranged on the first silicon dioxide layer and patterned, and first P-type ions are implanted to form a P field 23 between the P-type silicon wafer 21 and the first silicon dioxide layer, that is, a photolithography process is used. The range of P-type ion implantation is defined so that leakage between different devices can be prevented. Among them, at least one P field 23 is arranged adjacent to the N well 22 . After the P field 23 is obtained, the photoresist and the first silicon dioxide layer, which is a sacrificial oxide layer, are stripped.

S25:在P型硅片上沉积二氧化硅,对二氧化硅层进行图形化处理,得到第二二氧化硅层,对第二二氧化硅层图形化处理得到低温隔离层。S25 : depositing silicon dioxide on the P-type silicon wafer, patterning the silicon dioxide layer to obtain a second silicon dioxide layer, and patterning the second silicon dioxide layer to obtain a low-temperature isolation layer.

在P型硅片21靠近N阱22的一侧沉积二氧化硅,其中,沉积方式可以是低压化学气相沉积(LPCVD)、等离子体增强化学气相沉积(PECVD)或者溅射等工艺。在本实施例中,第二二氧化硅层的厚度大于或者等于500nm。Silicon dioxide is deposited on the side of the P-type silicon wafer 21 close to the N well 22, wherein the deposition method may be low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), or sputtering and other processes. In this embodiment, the thickness of the second silicon dioxide layer is greater than or equal to 500 nm.

对第二二氧化硅层进行图形化处理形成低温隔离层24,以暴露器件区域,低温隔离层24在P型硅片21上作为场氧化物以使器件彼此隔离。在本实施例中,低温隔离层24与P场23相邻设置。The second silicon dioxide layer is patterned to form a low temperature isolation layer 24 to expose the device area, and the low temperature isolation layer 24 acts as a field oxide on the P-type silicon wafer 21 to isolate the devices from each other. In this embodiment, the low temperature isolation layer 24 is disposed adjacent to the P field 23 .

S26:在P型硅片上依次设置低温栅极介质层和栅极层。S26: A low-temperature gate dielectric layer and a gate layer are sequentially arranged on the P-type silicon wafer.

S261:在P型硅片上沉积栅极介质,对栅极介质图形化以形成低温栅极介质层。S261 : depositing a gate dielectric on the P-type silicon wafer, and patterning the gate dielectric to form a low temperature gate dielectric layer.

S262:在低温栅极介质层上沉积栅极金属以形成栅极层。S262 : depositing gate metal on the low temperature gate dielectric layer to form a gate layer.

在本实施例中,步骤S26可以包括步骤S261~S262,下面一并进行说明:In this embodiment, step S26 may include steps S261 to S262, which will be described together below:

在P型硅片21上采用低温工艺沉积二氧化硅,得到低温栅极介质层25,其中,沉积的方式可以是低压化学气相沉积(LPCVD)、等离子体增强化学气相沉积(PECVD),或者原子层沉积(ALD,Atomic Layer Deposition)或溅射等等。在本实施例中,低温栅极介质层25的厚度为70nm,采用LPCVD方法,加热温度为425℃。Silicon dioxide is deposited on the P-type silicon wafer 21 using a low temperature process to obtain a low temperature gate dielectric layer 25, wherein the deposition method may be low pressure chemical vapor deposition (LPCVD), plasma enhanced chemical vapor deposition (PECVD), or atomic Layer deposition (ALD, Atomic Layer Deposition) or sputtering and so on. In this embodiment, the thickness of the low-temperature gate dielectric layer 25 is 70 nm, the LPCVD method is adopted, and the heating temperature is 425°C.

在低温栅极介质层25背离P型硅片21的一侧上沉积栅极材料金属钼,沉积的方式可以是溅射或者蒸镀,将金属钼图形化得到栅极层26。在本实施例中,栅极层26的厚度为200nm。栅极层26可以设置于相邻两低温隔离层24之间。The gate material metal molybdenum is deposited on the side of the low-temperature gate dielectric layer 25 away from the P-type silicon wafer 21 . The deposition method may be sputtering or evaporation, and the gate layer 26 is obtained by patterning the metal molybdenum. In this embodiment, the thickness of the gate layer 26 is 200 nm. The gate layer 26 may be disposed between two adjacent low temperature isolation layers 24 .

S27:在P型硅片中设置源漏极层。S27: Disposing source and drain layers in the P-type silicon wafer.

S271:对N阱注入第二P型离子以进行掺杂处理,得到第一源漏极层。S271 : implanting second P-type ions into the N well for doping treatment to obtain a first source and drain layer.

S272:对P型硅片注入N型离子以进行掺杂处理,得到第二源漏极层。S272 : implanting N-type ions into the P-type silicon wafer to perform doping treatment to obtain a second source and drain layer.

在本实施例中,步骤S27可以包括步骤S271~S272,下面一并进行说明:In this embodiment, step S27 may include steps S271-S272, which will be described together below:

在P型硅片21上形成源漏极层27时,需要分别对N阱22和P阱设置源漏极层27,即通过两次离子掺杂工艺,分别形成N阱22和P阱的源漏极层27。其中,离子掺杂可以是通过离子注入机或离子轰击的方式来实现的。When the source and drain layers 27 are formed on the P-type silicon wafer 21, the source and drain layers 27 need to be respectively provided for the N well 22 and the P well, that is, the sources of the N well 22 and the P well are respectively formed through two ion doping processes. Drain layer 27 . Among them, the ion doping can be realized by means of ion implanter or ion bombardment.

具体来说,对N阱22注入第二P型离子以进行掺杂处理,先通过设置光刻胶,将光刻胶图形化后暴露出PMOS器件的源漏(S/D)区域和NMOS器件的体接触区域,然后光刻胶作为掩模阻挡P型离子掺杂,掺杂。P型离子掺杂结束后,除去光刻胶,得到第一源漏极层271,其中第一源漏极层271设置于N阱22中,且设置于N阱22和低温栅极介质层25之间,第一源漏极层271还分布于栅极层26的两侧。Specifically, the second P-type ions are implanted into the N well 22 for doping treatment. First, by setting a photoresist, the photoresist is patterned and then the source and drain (S/D) regions of the PMOS device and the NMOS device are exposed. The body contact region is then doped with photoresist as a mask to block the P-type ion doping. After the P-type ion doping is completed, the photoresist is removed to obtain a first source-drain layer 271 , wherein the first source-drain layer 271 is disposed in the N-well 22 and disposed in the N-well 22 and the low-temperature gate dielectric layer 25 In between, the first source and drain layers 271 are also distributed on both sides of the gate layer 26 .

再一次设置光刻胶,对P型硅片21注入N型离子以进行掺杂处理,定义出NMOS器件的源漏(S/D)区域和PMOS器件的体接触区域,得到第二源漏极层272,其中第二源漏极层272形成于P型硅片21中,且设置于P型硅片21和低温栅极介质层25之间,第二源漏极层272还分布于栅极层26的两侧。Set the photoresist again, implant N-type ions into the P-type silicon wafer 21 for doping treatment, define the source-drain (S/D) region of the NMOS device and the body contact region of the PMOS device, and obtain the second source-drain region. Layer 272, wherein the second source and drain layers 272 are formed in the P-type silicon wafer 21 and disposed between the P-type silicon wafer 21 and the low temperature gate dielectric layer 25, and the second source and drain layers 272 are also distributed on the gate Both sides of layer 26 .

S28:在低温栅极介质层和栅极层上设置低温钝化层。S28: A low-temperature passivation layer is provided on the low-temperature gate dielectric layer and the gate layer.

S281:在低温隔离层、栅极层和低温栅极介质层上依次沉积氮化硅和氧化硅,对氮化硅和氧化硅进行快速热退火处理得到低温钝化层,其中加热温度小于或者等于600℃。S281 : sequentially depositing silicon nitride and silicon oxide on the low-temperature isolation layer, the gate layer and the low-temperature gate dielectric layer, and performing rapid thermal annealing on the silicon nitride and silicon oxide to obtain a low-temperature passivation layer, wherein the heating temperature is less than or equal to 600°C.

S282:对低温钝化层图形化处理得到接触孔,以裸露出栅极层、第一源漏极层和第二源漏极层。S282 : patterning the low temperature passivation layer to obtain contact holes to expose the gate electrode layer, the first source and drain layers and the second source and drain layers.

在本实施例中,步骤S28可以包括步骤S281~S282,下面一并进行说明:In this embodiment, step S28 may include steps S281 to S282, which will be described together below:

在低温隔离层24、低温栅极介质层25和栅极层26上依次沉积氮化硅和氧化硅作为低温钝化层材料,氮化硅层的目的是防止栅极层26的金属在随后的过程中被氧化,以及保护器件免受外界水汽等影响。On the low-temperature isolation layer 24, the low-temperature gate dielectric layer 25 and the gate layer 26, silicon nitride and silicon oxide are sequentially deposited as the low-temperature passivation layer material. It is oxidized during the process and protects the device from external moisture and other influences.

低温钝化层材料沉积后,对P型硅片21进行加热以激活低温钝化层材料,激活过程可以是在不超过600℃的温度下进行快速热退火,或者通过加热台退火。After the low temperature passivation layer material is deposited, the P-type silicon wafer 21 is heated to activate the low temperature passivation layer material, and the activation process may be rapid thermal annealing at a temperature not exceeding 600° C., or annealing through a heating stage.

在得到低温钝化层28后,在低温钝化层28上进行图形化处理形成接触孔和接触孔两侧的岛体,并且在接触孔裸露出栅极层26、第一源漏极层271和第二源漏极层272。After the low temperature passivation layer 28 is obtained, patterning is performed on the low temperature passivation layer 28 to form contact holes and islands on both sides of the contact holes, and the gate layer 26 and the first source and drain layers 271 are exposed in the contact holes. and the second source and drain layers 272 .

S29:在低温钝化层、栅极层和源漏极层上设置金属层,金属层连接栅极层和源漏极层。S29 : disposing a metal layer on the low temperature passivation layer, the gate layer and the source and drain layers, and the metal layer connects the gate layer and the source and drain layers.

S291:在低温钝化层和接触孔上沉积金属,对金属图形化处理。S291: depositing metal on the low-temperature passivation layer and the contact hole, and patterning the metal.

S292:对金属层进行合成气体退火处理。S292: Perform synthesis gas annealing treatment on the metal layer.

在本实施例中,步骤S29可以包括步骤S291~S292,下面一并进行说明:In this embodiment, step S29 may include steps S291 to S292, which will be described together below:

在低温钝化层28和接触孔中沉积金属层材料,将金属材料图形化形成金属层29,金属层29设置于低温钝化层28、栅极层26和源漏极层27上,且与两岛体中的低温栅极介质层25连接,并将金属层材料图形化为连接线和测试焊盘。其中,金属层材料可以为硅和铝的混合物,例如,金属层材料为铝和硅的混合物,硅(Si)在金属层材料中占有1%,金属层29的厚度为700nm。对金属层29采用合成气体(Forming gas)退火的方式进行图形化,能够改善铝与硅之间的接触。A metal layer material is deposited in the low temperature passivation layer 28 and the contact holes, and the metal material is patterned to form a metal layer 29. The metal layer 29 is disposed on the low temperature passivation layer 28, the gate layer 26 and the source and drain layers 27, and is connected with The low-temperature gate dielectric layers 25 in the two islands are connected, and the metal layer material is patterned into connecting lines and test pads. The metal layer material may be a mixture of silicon and aluminum, for example, the metal layer material is a mixture of aluminum and silicon, silicon (Si) accounts for 1% in the metal layer material, and the thickness of the metal layer 29 is 700 nm. Patterning the metal layer 29 by annealing with a forming gas can improve the contact between aluminum and silicon.

在上述实施方式的基础上,请一并参阅图5和图6,图5是本申请一种薄膜晶体管的制造方法又一实施例的流程示意图,图6是本申请一种薄膜晶体管又一实施例的结构示意图。在低温PMOS工艺中,薄膜晶体管300的制造方法具体可以包括以下步骤:On the basis of the above embodiments, please refer to FIG. 5 and FIG. 6 together. FIG. 5 is a schematic flowchart of another embodiment of a method for manufacturing a thin film transistor of the present application, and FIG. 6 is another implementation of a thin film transistor of the present application. Example structure diagram. In the low temperature PMOS process, the manufacturing method of the thin film transistor 300 may specifically include the following steps:

S31:准备N型硅片。S31: Prepare an N-type silicon wafer.

在低温PMOS工艺中,硅片31为N型硅片31,因此不需要形成N阱和P场。In the low temperature PMOS process, the silicon wafer 31 is an N-type silicon wafer 31, so it is not necessary to form an N well and a P field.

S32:在硅片上设置低温隔离层。S32: A low temperature isolation layer is arranged on the silicon wafer.

在N型硅片31上设置低温隔离层32,以定义有源器件。A low temperature isolation layer 32 is provided on the N-type silicon wafer 31 to define active devices.

S33:在硅片上设置体掺杂区,其中体掺杂区设置于硅片朝向低温隔离层的一侧。S33: Disposing a bulk doping region on the silicon wafer, wherein the bulk doping region is disposed on the side of the silicon wafer facing the low temperature isolation layer.

在低温PMOS工艺中,对体接触区进行N型掺杂,该步骤类似于上述实施例中低温CMOS工艺中NMOS的源漏(S/D)掺杂。在本实施例中,对N型硅片31进行图形化处理得到第一体掺杂区33,其中第一体掺杂区33设置于N型硅片31朝向低温隔离层32的一侧。In the low temperature PMOS process, N-type doping is performed on the body contact region, which is similar to the source-drain (S/D) doping of the NMOS in the low temperature CMOS process in the above embodiment. In this embodiment, the N-type silicon wafer 31 is patterned to obtain the first body doped region 33 , wherein the first body doped region 33 is disposed on the side of the N-type silicon wafer 31 facing the low temperature isolation layer 32 .

S34:对体掺杂区进行热退火处理,其中加热温度为600℃。S34: thermally annealing the bulk doped region, wherein the heating temperature is 600°C.

在形成体掺杂区33后,对N型硅片31进行热退火处理,其中热退火处理时的温度大于600℃。After the bulk doped region 33 is formed, the N-type silicon wafer 31 is subjected to thermal annealing treatment, wherein the temperature of the thermal annealing treatment is greater than 600°C.

S35:在硅片上依次设置低温栅极介质层和栅极层。S35: A low-temperature gate dielectric layer and a gate layer are sequentially arranged on the silicon wafer.

S351:在硅片和低温隔离层上设置低温栅极介质层。S351: Disposing a low temperature gate dielectric layer on the silicon wafer and the low temperature isolation layer.

S352:在低温栅极介质层上沉积栅极金属,对栅极金属进行干法刻蚀处理以图形化形成栅极层。S352 : depositing gate metal on the low-temperature gate dielectric layer, and performing dry etching processing on the gate metal to form a gate layer by patterning.

在本实施例中,步骤S35可以包括步骤S351~S352,下面一并进行说明:In this embodiment, step S35 may include steps S351-S352, which will be described together below:

在N型硅片31和低温隔离层32上设置低温栅极介质层34,与上述低温CMOS工艺中类似,在低温栅极介质层34上沉积栅极金属,对栅极金属图形化是将光刻胶图形转移到金属层38上,再进行干法刻蚀处理以图形化形成栅极层35。A low-temperature gate dielectric layer 34 is arranged on the N-type silicon wafer 31 and the low-temperature isolation layer 32. Similar to the above-mentioned low-temperature CMOS process, gate metal is deposited on the low-temperature gate dielectric layer 34. The resist pattern is transferred onto the metal layer 38 , and then dry etching is performed to pattern the gate layer 35 .

S36:在硅片中设置源漏极层。S36: Disposing source and drain layers in the silicon wafer.

对N型硅片31注入第三P型离子以进行掺杂处理,与上述低温CMOS工艺中的PMOS器件的源漏(S/D)掺杂过程类似,将源漏(S/D)区暴露于P型离子注入机或离子轰击,得到第三源漏极层36,其中第三源漏极层36形成于N型硅片31中,且设置于低温栅极介质层34和N型硅片31之间。The N-type silicon wafer 31 is implanted with third P-type ions for doping treatment, which is similar to the source-drain (S/D) doping process of the PMOS device in the above-mentioned low-temperature CMOS process, exposing the source-drain (S/D) region Using a P-type ion implanter or ion bombardment, a third source-drain layer 36 is obtained, wherein the third source-drain layer 36 is formed in the N-type silicon wafer 31 and disposed on the low-temperature gate dielectric layer 34 and the N-type silicon wafer between 31.

S37:在低温栅极介质层和栅极层上设置低温钝化层。S37: A low-temperature passivation layer is provided on the low-temperature gate dielectric layer and the gate layer.

在栅极层35和低温栅极介质层34上依次沉积氮化硅和氧化硅,得到低温钝化层37。Silicon nitride and silicon oxide are sequentially deposited on the gate layer 35 and the low temperature gate dielectric layer 34 to obtain a low temperature passivation layer 37 .

S38:在低温钝化层、栅极层和源漏极层上设置金属层,金属层连接栅极层和源漏极层。S38 : disposing a metal layer on the low-temperature passivation layer, the gate layer and the source and drain layers, and the metal layer connects the gate layer and the source and drain layers.

与上述低温CMOS工艺中类似,在低温钝化层37、栅极层35和源漏极层36上设置金属层材料,固化后得到金属层38。Similar to the above-mentioned low temperature CMOS process, a metal layer material is provided on the low temperature passivation layer 37 , the gate layer 35 and the source and drain layers 36 , and the metal layer 38 is obtained after curing.

在上述实施方式的基础上,请一并参阅图7和图8,图7是本申请一种薄膜晶体管的制造方法再一实施例的流程示意图,图8是本申请一种薄膜晶体管再一实施例的结构示意图。在低温NMOS工艺中,薄膜晶体管400的制造方法具体可以包括以下步骤:On the basis of the above-mentioned embodiments, please refer to FIG. 7 and FIG. 8 together. FIG. 7 is a schematic flowchart of another embodiment of a method for manufacturing a thin film transistor of the present application, and FIG. 8 is another implementation of a thin film transistor of the present application. Example structure diagram. In the low temperature NMOS process, the manufacturing method of the thin film transistor 400 may specifically include the following steps:

S41:准备P型硅片。S41: Prepare a P-type silicon wafer.

在低温NMOS工艺中,硅片41为P型硅片41。In the low temperature NMOS process, the silicon wafer 41 is a P-type silicon wafer 41 .

S42:在硅片上设置低温隔离层。S42: A low temperature isolation layer is arranged on the silicon wafer.

S43:在硅片上设置体掺杂区,其中体掺杂区设置于硅片朝向低温隔离层的一侧。S43: Disposing a bulk doping region on the silicon wafer, wherein the bulk doping region is disposed on the side of the silicon wafer facing the low temperature isolation layer.

与低温PMOS工艺不同,低温NMOS的体区域采用P型掺杂剂掺杂,即在P型硅片41上注入第四P型离子以进行体掺杂处理得到第二体掺杂区43,其中第二体掺杂区43设置于P型硅片41朝向低温隔离层42的一侧。Different from the low temperature PMOS process, the body region of the low temperature NMOS is doped with a P-type dopant, that is, a fourth P-type ion is implanted on the P-type silicon wafer 41 to perform bulk doping treatment to obtain the second body doping region 43 , wherein The second body doped region 43 is disposed on the side of the P-type silicon wafer 41 facing the low temperature isolation layer 42 .

S44:对体掺杂区进行热退火处理,其中加热温度大于600℃。S44: thermally annealing the bulk doped region, wherein the heating temperature is greater than 600°C.

S45:在硅片上依次设置低温栅极介质层和栅极层。S45: A low-temperature gate dielectric layer and a gate layer are sequentially arranged on the silicon wafer.

S451:在硅片和低温隔离层上设置低温栅极介质层。S451 : disposing a low temperature gate dielectric layer on the silicon wafer and the low temperature isolation layer.

S452:在低温栅极介质层上沉积栅极金属,对栅极金属进行干法刻蚀处理以图形化形成栅极层。S452 : depositing gate metal on the low-temperature gate dielectric layer, and performing dry etching processing on the gate metal to form a gate layer by patterning.

S46:在硅片中设置源漏极层。S46: Disposing source and drain layers in the silicon wafer.

与低温PMOS工艺不同,源漏极层46采用N型掺杂,即对P型硅片41进行图形化处理,得到第四源漏极层46,其中第四源漏极层46形成于P型硅片41中,且设置于低温栅极介质层44和P型硅片41之间。Different from the low temperature PMOS process, the source and drain layers 46 are N-type doped, that is, the P-type silicon wafer 41 is patterned to obtain the fourth source and drain layers 46, wherein the fourth source and drain layers 46 are formed in the P-type In the silicon wafer 41 , and disposed between the low temperature gate dielectric layer 44 and the P-type silicon wafer 41 .

S47:在低温栅极介质层和栅极层上设置低温钝化层。S47: A low-temperature passivation layer is provided on the low-temperature gate dielectric layer and the gate layer.

在栅极层45和低温栅极介质层44上依次沉积氮化硅和氧化硅,对氮化硅和氧化硅进行热退火处理,以激活N型掺杂剂,得到低温钝化层47。Silicon nitride and silicon oxide are sequentially deposited on the gate layer 45 and the low-temperature gate dielectric layer 44 , and thermal annealing is performed on the silicon nitride and the silicon oxide to activate the N-type dopant to obtain a low-temperature passivation layer 47 .

S48:在低温钝化层、栅极层和源漏极层上设置金属层,金属层连接栅极层和源漏极层。S48: A metal layer is provided on the low-temperature passivation layer, the gate layer and the source and drain layers, and the metal layer connects the gate layer and the source and drain layers.

与上述低温CMOS工艺中类似,在低温钝化层47、栅极层45和源漏极层46上设置金属材料,固化后得到金属层48。Similar to the above-mentioned low temperature CMOS process, a metal material is provided on the low temperature passivation layer 47 , the gate layer 45 and the source and drain layers 46 , and the metal layer 48 is obtained after curing.

本申请提供一种用于高分辨率显示器的低温金属氧化物半导体工艺,商业化的TFT背板能够处理PPI<1000的FPD,昂贵的硅芯片工艺能够处理具有PPI>1000的小尺寸FPDS,没有制造超高PPI显示器的成本效益高的FPD工业兼容工艺。本申请降低了硅基显示面板的制造成本,缩短了生产成本、加工时间,填补IC工艺与TFT面板技术之间的空白。The present application provides a low temperature metal oxide semiconductor process for high resolution displays, a commercial TFT backplane can handle FPD with PPI<1000, an expensive silicon chip process can handle small size FPDS with PPI>1000, no A cost-effective FPD industry compatible process for manufacturing ultra-high PPI displays. The present application reduces the manufacturing cost of the silicon-based display panel, shortens the production cost and processing time, and fills the gap between the IC process and the TFT panel technology.

本申请中所揭示的技术方案能够实现低温、低成本、工业兼容的硅MOSFET制作工艺,即低温CMOS工艺、低温PMOS工艺和低温NMOS工艺。通过这三种低温工艺,均能够低成本、大面积制造薄膜晶体管,继而制作高分辨率虚拟现实/增强现实设备包括微型OLED投影仪,使得基于硅的液晶显示器成为可能。The technical solutions disclosed in this application can realize low-temperature, low-cost, and industrial-compatible silicon MOSFET fabrication processes, ie, low-temperature CMOS process, low-temperature PMOS process, and low-temperature NMOS process. Through these three low-temperature processes, thin-film transistors can be produced at low cost and in large areas, and then high-resolution virtual reality/augmented reality devices including micro OLED projectors can be fabricated, making silicon-based liquid crystal displays possible.

本申请提供一种薄膜晶体管的制造方法,该制造方法包括准备硅片;在硅片上设置低温隔离层;在硅片上依次设置低温栅极介质层和栅极层;在硅片中设置源漏极层;在低温栅极介质层和栅极层上设置低温钝化层;在低温钝化层、栅极层和源漏极层上设置金属层,金属层连接栅极层和源漏极层。通过在低温状态下,在硅片上设置低温隔离层、低温栅极介质层、栅极层、源漏极层、低温钝化层和金属层,能够降低制造成本,提高制造高分辨率显示中的薄膜晶体管的成功率。The present application provides a method for manufacturing a thin film transistor, which includes preparing a silicon wafer; disposing a low-temperature isolation layer on the silicon wafer; disposing a low-temperature gate dielectric layer and a gate layer on the silicon wafer in sequence; disposing a source in the silicon wafer drain layer; a low temperature passivation layer is arranged on the low temperature gate dielectric layer and the gate layer; a metal layer is arranged on the low temperature passivation layer, the gate layer and the source and drain layers, and the metal layer connects the gate layer and the source and drain Floor. By arranging a low-temperature isolation layer, a low-temperature gate dielectric layer, a gate layer, a source-drain layer, a low-temperature passivation layer and a metal layer on the silicon wafer in a low-temperature state, the manufacturing cost can be reduced and the process of manufacturing high-resolution displays can be improved. success rate of thin-film transistors.

对应上述的方法,本申请提出一种薄膜晶体管,请参阅图1,图1是本申请一种薄膜晶体管一实施例的结构示意图。本申请所揭示的薄膜晶体管100包括硅片11、低温隔离层12、低温栅极介质层13、栅极层14、源漏极层15、低温钝化层16和金属层17。Corresponding to the above method, the present application proposes a thin film transistor. Please refer to FIG. 1 . FIG. 1 is a schematic structural diagram of an embodiment of a thin film transistor of the present application. The thin film transistor 100 disclosed in the present application includes a silicon wafer 11 , a low temperature isolation layer 12 , a low temperature gate dielectric layer 13 , a gate layer 14 , a source and drain layer 15 , a low temperature passivation layer 16 and a metal layer 17 .

具体来说,低温隔离层12形成于硅片11的一侧;低温栅极介质层13,形成于硅片11靠近低温隔离层12的一侧;栅极层14,形成于低温栅极介质层13背离硅片11的一侧;源漏极层15,形成于硅片11中;低温钝化层16,形成于低温栅极介质层13和栅极层14上;金属层17,形成于低温钝化层16、栅极层14和源漏极层15上,连接栅极层14和源漏极层15。Specifically, the low temperature isolation layer 12 is formed on one side of the silicon wafer 11; the low temperature gate dielectric layer 13 is formed on the side of the silicon wafer 11 close to the low temperature isolation layer 12; the gate layer 14 is formed on the low temperature gate dielectric layer 13 the side away from the silicon wafer 11; the source and drain layers 15 are formed in the silicon wafer 11; the low temperature passivation layer 16 is formed on the low temperature gate dielectric layer 13 and the gate layer 14; the metal layer 17 is formed on the low temperature On the passivation layer 16 , the gate layer 14 and the source and drain layers 15 , the gate layer 14 and the source and drain layers 15 are connected.

本申请提供一种薄膜晶体管100,能够降低制造成本,提高制造高分辨率显示中的薄膜晶体管的成功率。The present application provides a thin film transistor 100, which can reduce manufacturing costs and improve the success rate of manufacturing thin film transistors in high-resolution displays.

对应上述的薄膜晶体管100,本申请提出一种显示面板500,请参阅图9,图9是本申请一种显示面板一实施例的结构示意图。本申请所揭示的显示面板500包括薄膜晶体管51,薄膜晶体管51的具体实施方式由于上述类似,此处不做赘述。Corresponding to the above-mentioned thin film transistor 100 , the present application proposes a display panel 500 . Please refer to FIG. 9 , which is a schematic structural diagram of an embodiment of a display panel of the present application. The display panel 500 disclosed in the present application includes a thin film transistor 51 . The specific implementation of the thin film transistor 51 is similar to the above, and will not be repeated here.

本申请提供一种显示面板500,能够降低制造成本,提高制造高分辨率显示中的薄膜晶体管的成功率。The present application provides a display panel 500, which can reduce the manufacturing cost and improve the success rate of manufacturing thin film transistors in high-resolution displays.

以上所述,仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制,任何本领域技术人员,在不脱离本发明技术方案范围内,依据本发明的技术实质对以上实施例所作的任何简单修改、等同变化与修饰,均仍属于本发明技术方案的范围内。The above is only the preferred embodiment of the present invention, and does not limit the present invention in any form. Any person skilled in the art, without departing from the scope of the technical solution of the present invention, implements the above implementation according to the technical essence of the present invention. Any simple modifications, equivalent changes and modifications made in the examples still fall within the scope of the technical solutions of the present invention.

Claims (10)

1.一种薄膜晶体管的制造方法,其特征在于,所述制造方法包括:1. A method for manufacturing a thin film transistor, wherein the method comprises: 准备硅片;prepare silicon wafers; 在所述硅片上设置低温隔离层;A low temperature isolation layer is arranged on the silicon wafer; 在所述硅片上依次设置低温栅极介质层和栅极层;A low-temperature gate dielectric layer and a gate layer are sequentially arranged on the silicon wafer; 在所述硅片中设置源漏极层;Disposing source and drain layers in the silicon wafer; 在所述低温栅极介质层和所述栅极层上设置低温钝化层;A low-temperature passivation layer is provided on the low-temperature gate dielectric layer and the gate layer; 在所述低温钝化层、所述栅极层和所述源漏极层上设置金属层,所述金属层连接所述栅极层和所述源漏极层。A metal layer is provided on the low-temperature passivation layer, the gate layer and the source and drain layers, and the metal layer connects the gate layer and the source and drain layers. 2.根据权利要求1所述的方法,其特征在于,所述硅片为P型硅片,在所述硅片上设置低温隔离层的步骤之前包括:2 . The method according to claim 1 , wherein the silicon wafer is a P-type silicon wafer, and before the step of disposing a low temperature isolation layer on the silicon wafer, the method comprises: 3 . 在所述P型硅片上设置第一二氧化硅层;disposing a first silicon dioxide layer on the P-type silicon wafer; 在所述第一二氧化硅层上设置光刻胶并进行图形化处理,注入第一N型离子以在所述P型硅片和所述第一二氧化硅层之间形成N阱,除去所述光刻胶;Disposing photoresist on the first silicon dioxide layer and performing patterning treatment, implanting first N-type ions to form an N-well between the P-type silicon wafer and the first silicon dioxide layer, removing the photoresist; 在所述第一二氧化硅层上设置所述光刻胶并进行图形化处理,注入第一P型离子以在所述P型硅片和所述第一二氧化硅层之间形成P场,除去所述光刻胶和所述第一二氧化硅层;Disposing the photoresist on the first silicon dioxide layer and performing patterning treatment, and implanting first P-type ions to form a P field between the P-type silicon wafer and the first silicon dioxide layer , removing the photoresist and the first silicon dioxide layer; 在所述硅片上设置低温隔离层的步骤包括:The step of disposing a low temperature isolation layer on the silicon wafer includes: 在所述P型硅片上沉积二氧化硅,对所述二氧化硅层进行图形化处理,得到第二二氧化硅层,对所述第二二氧化硅层图形化处理得到所述低温隔离层。Deposition silicon dioxide on the P-type silicon wafer, patterning the silicon dioxide layer to obtain a second silicon dioxide layer, and patterning the second silicon dioxide layer to obtain the low temperature isolation Floor. 3.根据权利要求2所述的方法,其特征在于,在所述硅片上依次设置低温栅极介质层和栅极层的步骤包括:3. The method according to claim 2, wherein the step of sequentially disposing a low-temperature gate dielectric layer and a gate layer on the silicon wafer comprises: 在所述P型硅片上沉积栅极介质,对所述栅极介质图形化以形成所述低温栅极介质层;depositing a gate dielectric on the P-type silicon wafer, and patterning the gate dielectric to form the low temperature gate dielectric layer; 在所述低温栅极介质层上沉积栅极金属以形成所述栅极层;depositing gate metal on the low temperature gate dielectric layer to form the gate layer; 在所述硅片中设置源漏极层的步骤包括:The step of disposing the source and drain layers in the silicon wafer includes: 对所述N阱注入第二P型离子以进行掺杂处理,得到第一源漏极层;implanting second P-type ions into the N well for doping treatment to obtain a first source and drain layer; 对所述P型硅片注入N型离子以进行掺杂处理,得到第二源漏极层。N-type ions are implanted into the P-type silicon wafer for doping treatment to obtain a second source and drain layer. 4.根据权利要求3所述的方法,其特征在于,在所述低温栅极介质层和所述栅极层上设置低温钝化层的步骤包括:4. The method according to claim 3, wherein the step of disposing a low-temperature passivation layer on the low-temperature gate dielectric layer and the gate layer comprises: 在所述低温隔离层、所述栅极层和所述低温栅极介质层上依次沉积氮化硅和氧化硅,对所述氮化硅和所述氧化硅进行快速热退火处理得到所述低温钝化层,其中加热温度小于或者等于600℃;Silicon nitride and silicon oxide are sequentially deposited on the low temperature isolation layer, the gate layer and the low temperature gate dielectric layer, and the silicon nitride and the silicon oxide are subjected to rapid thermal annealing to obtain the low temperature Passivation layer, wherein the heating temperature is less than or equal to 600°C; 对所述低温钝化层图形化处理得到接触孔,以裸露出所述栅极层、所述第一源漏极层和所述第二源漏极层;patterning the low temperature passivation layer to obtain contact holes to expose the gate electrode layer, the first source and drain layers and the second source and drain layers; 在所述低温钝化层、所述栅极层和所述源漏极层上设置金属层,所述金属层连接所述栅极层和所述源漏极层的步骤包括:A metal layer is provided on the low temperature passivation layer, the gate layer and the source and drain layers, and the step of connecting the metal layer with the gate layer and the source and drain layers includes: 在所述低温钝化层和所述接触孔上沉积金属,对所述金属图形化处理;depositing metal on the low temperature passivation layer and the contact hole, and patterning the metal; 对所述金属层进行合成气体退火处理。A forming gas annealing process is performed on the metal layer. 5.根据权利要求1所述的方法,其特征在于,在所述硅片上依次设置低温栅极介质层和栅极层的步骤之前包括:5. The method according to claim 1, wherein before the step of sequentially disposing a low-temperature gate dielectric layer and a gate layer on the silicon wafer, it comprises: 在所述硅片上设置体掺杂区,其中所述体掺杂区设置于所述硅片朝向所述低温隔离层的一侧;Disposing a body doping region on the silicon wafer, wherein the body doping region is disposed on the side of the silicon wafer facing the low temperature isolation layer; 对所述体掺杂区进行热退火处理,其中加热温度大于600℃;thermally annealing the bulk doped region, wherein the heating temperature is greater than 600°C; 在所述硅片上依次设置低温栅极介质层和栅极层的步骤包括:The step of sequentially disposing a low-temperature gate dielectric layer and a gate layer on the silicon wafer includes: 在所述硅片和所述低温隔离层上设置所述低温栅极介质层;disposing the low temperature gate dielectric layer on the silicon wafer and the low temperature isolation layer; 在所述低温栅极介质层上沉积栅极金属,对所述栅极金属进行干法刻蚀处理以图形化形成所述栅极层;depositing gate metal on the low temperature gate dielectric layer, and performing dry etching on the gate metal to form the gate layer by patterning; 在所述低温栅极介质层和所述栅极层上设置低温钝化层的步骤包括:The step of disposing a low-temperature passivation layer on the low-temperature gate dielectric layer and the gate layer includes: 在所述栅极层和所述低温栅极介质层上依次沉积氮化硅和氧化硅,得到所述低温钝化层。Silicon nitride and silicon oxide are sequentially deposited on the gate layer and the low-temperature gate dielectric layer to obtain the low-temperature passivation layer. 6.根据权利要求5所述的方法,其特征在于,所述硅片为N型硅片,在所述硅片上设置体掺杂区,其中所述体掺杂区设置于所述硅片朝向所述低温隔离层的一侧的步骤包括:6 . The method according to claim 5 , wherein the silicon wafer is an N-type silicon wafer, and a body doped region is provided on the silicon wafer, wherein the body doped region is arranged on the silicon wafer. 7 . The step toward the side of the low temperature isolation layer includes: 对所述N型硅片进行图形化处理得到第一体掺杂区,其中所述第一体掺杂区设置于所述N型硅片朝向所述低温隔离层的一侧;performing a patterning process on the N-type silicon wafer to obtain a first body doping region, wherein the first body doping region is disposed on the side of the N-type silicon wafer facing the low temperature isolation layer; 在所述硅片和所述低温隔离层上设置所述低温栅极介质层的步骤包括:The step of disposing the low temperature gate dielectric layer on the silicon wafer and the low temperature isolation layer includes: 在所述N型硅片和所述低温隔离层上设置所述低温栅极介质层;Disposing the low temperature gate dielectric layer on the N-type silicon wafer and the low temperature isolation layer; 在所述硅片中设置源漏极层的步骤包括:The step of disposing the source and drain layers in the silicon wafer includes: 对所述N型硅片注入第三P型离子以进行掺杂处理,得到第三源漏极层,其中所述第三源漏极层形成于所述N型硅片中。The N-type silicon wafer is implanted with third P-type ions for doping treatment to obtain a third source-drain layer, wherein the third source-drain layer is formed in the N-type silicon wafer. 7.根据权利要求5所述的方法,其特征在于,所述硅片为P型硅片,在所述硅片上设置体掺杂区,其中所述体掺杂区设置于所述硅片朝向所述低温隔离层的一侧的步骤包括:7 . The method according to claim 5 , wherein the silicon wafer is a P-type silicon wafer, and a body doped region is provided on the silicon wafer, wherein the body doped region is provided on the silicon wafer. 8 . The step toward the side of the low temperature isolation layer includes: 在所述P型硅片上注入第四P型离子以进行体掺杂处理得到第二体掺杂区,其中所述第二体掺杂区设置于所述P型硅片朝向所述低温隔离层的一侧;A fourth P-type ion is implanted on the P-type silicon wafer to perform bulk doping treatment to obtain a second bulk doping region, wherein the second bulk doping region is disposed on the P-type silicon wafer and faces the low temperature isolation one side of the layer; 在所述硅片中设置源漏极层的步骤包括:The step of disposing the source and drain layers in the silicon wafer includes: 对所述P型硅片注入N型离子以进行掺杂处理得到第四源漏极层,其中所述第四源漏极层形成于所述硅片中。N-type ions are implanted into the P-type silicon wafer to perform doping treatment to obtain a fourth source and drain layer, wherein the fourth source and drain layer is formed in the silicon wafer. 8.根据权利要求7所述的方法,其特征在于,在所述低温栅极介质层和所述栅极层上设置低温钝化层的步骤包括:8. The method according to claim 7, wherein the step of disposing a low temperature passivation layer on the low temperature gate dielectric layer and the gate layer comprises: 在所述栅极层和所述低温栅极介质层上依次沉积氮化硅和氧化硅,对所述氮化硅和所述氧化硅进行热退火处理,得到所述低温钝化层。Silicon nitride and silicon oxide are sequentially deposited on the gate layer and the low-temperature gate dielectric layer, and thermal annealing is performed on the silicon nitride and the silicon oxide to obtain the low-temperature passivation layer. 9.一种薄膜晶体管,其特征在于,所述薄膜晶体管包括:9. A thin film transistor, wherein the thin film transistor comprises: 硅片和形成于所述硅片一侧的低温隔离层;a silicon wafer and a low temperature isolation layer formed on one side of the silicon wafer; 低温栅极介质层,形成于所述硅片靠近所述低温隔离层的一侧;a low temperature gate dielectric layer, formed on the side of the silicon wafer close to the low temperature isolation layer; 栅极层,形成于所述低温栅极介质层背离所述硅片的一侧;a gate layer, formed on the side of the low-temperature gate dielectric layer away from the silicon wafer; 源漏极层,形成于所述硅片中;source and drain layers, formed in the silicon wafer; 低温钝化层,形成于所述低温栅极介质层和所述栅极层上;a low-temperature passivation layer, formed on the low-temperature gate dielectric layer and the gate layer; 金属层,形成于所述低温钝化层、所述栅极层和所述源漏极层上,连接所述栅极层和所述源漏极层。A metal layer is formed on the low temperature passivation layer, the gate layer and the source and drain layers, and connects the gate layer and the source and drain layers. 10.一种显示面板,其特征在于,所述显示面板包括如上述权利要求9所述的薄膜晶体管。10. A display panel, wherein the display panel comprises the thin film transistor of claim 9.
CN201910980595.4A 2019-10-15 2019-10-15 Manufacturing method of thin film transistor, thin film transistor and display panel Pending CN110828379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910980595.4A CN110828379A (en) 2019-10-15 2019-10-15 Manufacturing method of thin film transistor, thin film transistor and display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910980595.4A CN110828379A (en) 2019-10-15 2019-10-15 Manufacturing method of thin film transistor, thin film transistor and display panel

Publications (1)

Publication Number Publication Date
CN110828379A true CN110828379A (en) 2020-02-21

Family

ID=69549522

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910980595.4A Pending CN110828379A (en) 2019-10-15 2019-10-15 Manufacturing method of thin film transistor, thin film transistor and display panel

Country Status (1)

Country Link
CN (1) CN110828379A (en)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0932117A2 (en) * 1998-01-22 1999-07-28 STMicroelectronics, Inc. Touchpad providing screen cursor/pointer movement control
CN1877851A (en) * 1999-09-30 2006-12-13 株式会社半导体能源研究所 Organic electroluminescent display device
US8298875B1 (en) * 2011-03-06 2012-10-30 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
CN103794630A (en) * 2012-10-31 2014-05-14 乐金显示有限公司 Method of fabricating organic electroluminescent device
CN104064583A (en) * 2014-05-29 2014-09-24 何东阳 AMOLED (Active Matrix/Organic Light Emitting Diode) display device with ultrahigh resolution ratio
US20150287813A1 (en) * 2010-04-23 2015-10-08 Semiconductor Energy Laboratory Co., Ltd. Method For Manufacturing Semiconductor Device
US20160027967A1 (en) * 2014-07-25 2016-01-28 Semiconductor Energy Laboratory Co., Ltd. Stacked Structure, Input/output Device, Information Processing Device, and Manufacturing Method of Stacked Structure
CN105893985A (en) * 2016-05-05 2016-08-24 京东方科技集团股份有限公司 Display device and manufacture method for same
CN106654071A (en) * 2017-03-09 2017-05-10 南京迈智芯微光电科技有限公司 Organic electroluminescence device manufacturing and encapsulating method
US20170263651A1 (en) * 2016-03-11 2017-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method the same
US20180277445A1 (en) * 2017-03-22 2018-09-27 International Business Machines Corporation Vertical transistor top epitaxy source/drain and contact structure
CN108962967A (en) * 2018-08-03 2018-12-07 京东方科技集团股份有限公司 Display panel and its manufacturing method, display device and display control method
CN111133499A (en) * 2017-04-13 2020-05-08 香港北大青鸟显示有限公司 LED-OLED hybrid self-emissive display

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0932117A2 (en) * 1998-01-22 1999-07-28 STMicroelectronics, Inc. Touchpad providing screen cursor/pointer movement control
CN1877851A (en) * 1999-09-30 2006-12-13 株式会社半导体能源研究所 Organic electroluminescent display device
US20150287813A1 (en) * 2010-04-23 2015-10-08 Semiconductor Energy Laboratory Co., Ltd. Method For Manufacturing Semiconductor Device
US8298875B1 (en) * 2011-03-06 2012-10-30 Monolithic 3D Inc. Method for fabrication of a semiconductor device and structure
CN103794630A (en) * 2012-10-31 2014-05-14 乐金显示有限公司 Method of fabricating organic electroluminescent device
CN104064583A (en) * 2014-05-29 2014-09-24 何东阳 AMOLED (Active Matrix/Organic Light Emitting Diode) display device with ultrahigh resolution ratio
US20160027967A1 (en) * 2014-07-25 2016-01-28 Semiconductor Energy Laboratory Co., Ltd. Stacked Structure, Input/output Device, Information Processing Device, and Manufacturing Method of Stacked Structure
US20170263651A1 (en) * 2016-03-11 2017-09-14 Semiconductor Energy Laboratory Co., Ltd. Semiconductor device, semiconductor wafer, module, electronic device, and manufacturing method the same
CN105893985A (en) * 2016-05-05 2016-08-24 京东方科技集团股份有限公司 Display device and manufacture method for same
CN106654071A (en) * 2017-03-09 2017-05-10 南京迈智芯微光电科技有限公司 Organic electroluminescence device manufacturing and encapsulating method
US20180277445A1 (en) * 2017-03-22 2018-09-27 International Business Machines Corporation Vertical transistor top epitaxy source/drain and contact structure
CN111133499A (en) * 2017-04-13 2020-05-08 香港北大青鸟显示有限公司 LED-OLED hybrid self-emissive display
CN108962967A (en) * 2018-08-03 2018-12-07 京东方科技集团股份有限公司 Display panel and its manufacturing method, display device and display control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
严国荣: "硅基液晶显示屏及其应用 ", 《电声技术》 *

Similar Documents

Publication Publication Date Title
US8183135B2 (en) Method for manufacturing thin film transistor having hydrogen feeding layer formed between a metal gate and a gate insulating film
KR101491567B1 (en) Display with thin film transistor devices having different electrical characteristics in pixel and driving regions and method for fabricating the same
US9716119B2 (en) Manufacturing method of dual gate TFT substrate and structure thereof
US6562671B2 (en) Semiconductor display device and manufacturing method thereof
CN107482066B (en) Thin film transistor, preparation method thereof, array substrate and display device
US10290663B2 (en) Manufacturing method of thin film transistor and manufacturing method of array substrate
WO2014134925A1 (en) Polysilicon thin-film transistor and preparation method therefor, and array substrate
WO2015096355A1 (en) Array substrate, manufacturing method therefor, and display device
CN103579115A (en) Complementary type thin film transistor, manufacturing method of complementary type thin film transistor, array substrate and display device
US9159773B2 (en) Thin film transistor and active matrix organic light emitting diode assembly
US10957606B2 (en) Manufacturing method of complementary metal oxide semiconductor transistor and manufacturing method of array substrate
US7704890B2 (en) Method for fabricating thin film transistor and pixel structure
CN101150092A (en) Method for manufacturing complementary metal oxide semiconductor thin film transistor
JP5188106B2 (en) Image display system including thin film transistor device and manufacturing method thereof
CN110828379A (en) Manufacturing method of thin film transistor, thin film transistor and display panel
US6887745B2 (en) Polysilicon thin film transistor and method of forming the same
JP4006993B2 (en) Thin film transistor manufacturing method, liquid crystal display device manufacturing method, electroluminescence display device manufacturing method
CN103123902A (en) Semiconductor layer structure, polysilicon thin film transistor, manufacturing method and display device
TWI785545B (en) Manufacturing Method of Transparent Thin Film Transistor with Simplified Process
US8030143B2 (en) Method of forming a display device by using separate masks in forming source and drain regions of MOS transistors
TWI325612B (en) Method for manufacturing complementary metal-oxide-semiconductor thin film transistor
US7064017B2 (en) Method of forming a CMOS transistor
CN101593732B (en) Display device, method for forming same, and electronic device including display device
KR20240157087A (en) Transistor devices having multilayer interlayer dielectric structures
US20060292836A1 (en) Manufacturing method of polysilicon

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200221