Nothing Special   »   [go: up one dir, main page]

CN110785974B - 用户终端以及无线通信方法 - Google Patents

用户终端以及无线通信方法 Download PDF

Info

Publication number
CN110785974B
CN110785974B CN201780092443.XA CN201780092443A CN110785974B CN 110785974 B CN110785974 B CN 110785974B CN 201780092443 A CN201780092443 A CN 201780092443A CN 110785974 B CN110785974 B CN 110785974B
Authority
CN
China
Prior art keywords
sequence
signal
index
cell
candidate set
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201780092443.XA
Other languages
English (en)
Other versions
CN110785974A (zh
Inventor
松村祐辉
武田一树
永田聪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Docomo Inc
Original Assignee
NTT Docomo Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Docomo Inc filed Critical NTT Docomo Inc
Publication of CN110785974A publication Critical patent/CN110785974A/zh
Application granted granted Critical
Publication of CN110785974B publication Critical patent/CN110785974B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/16Code allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1671Details of the supervisory signal the supervisory signal being transmitted together with control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/1607Details of the supervisory signal
    • H04L1/1692Physical properties of the supervisory signal, e.g. acknowledgement by energy bursts
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1861Physical mapping arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • H04L27/26136Pilot sequence conveying additional information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Input Circuits Of Receivers And Coupling Of Receivers And Audio Equipment (AREA)

Abstract

在未来的无线通信系统中,适当地发送UL信号。本发明的一方式涉及的用户终端的特征在于,具有:发送单元,发送根据基准序列且利用与上行控制信息的值进行了关联的循环移位而获得的序列;以及控制单元,基于从无线基站通知的参数,对包含与所述上行控制信息的多个候选值分别进行了关联的多个循环移位的集合、以及所述基准序列的决定进行控制。

Description

用户终端以及无线通信方法
技术领域
本发明涉及下一代移动通信系统中的用户终端以及无线通信方法。
背景技术
在UMTS(通用移动通讯系统(Universal Mobile Telecommunications System))网络中,以进一步的高数据速率、低延迟等为目的,长期演进(LTE:Long Term Evolution)被规范化(非专利文献1)。此外,以相对于LTE(还称为LTE Rel.8或9)的进一步的宽带域化及高速化为目的,LTE-A(也称为LTE-Advanced、LTE Rel.10、11或12)被规范化,还讨论LTE的后续系统(例如,还称为FRA(未来无线接入(Future Radio Access))、5G(第五代移动通信系统(5th generation mobile communication system))、5G+(plus)、NR(New Radio)、NX(新无线接入(New radio access))、FX(下一代无线接入(Future generation radioaccess))、LTE Rel.13、14或15后等)。
在现有的LTE系统(例如,LTE Rel.8~13)中,利用1ms的子帧(还称为传输时间间隔(TTI:发送时间间隔(Transmission Time Interval))等),进行下行链路(DL:Downlink)和/或上行链路(UL:Uplink)的通信。该子帧是被信道编码后的1个数据分组的发送时间单位,成为调度、链路自适应、重发控制(HARQ:混合自动重发请求-确认(Hybrid AutomaticRepeat reQuest))等的处理单位。
此外,在现有的LTE系统(例如,LTE Rel.8~13)中,用户终端(UE:UserEquipment)利用UL控制信道(例如,物理上行链路控制信道(PUCCH:Physical UplinkControl Channel))和/或UL数据信道(例如,物理上行链路共享信道(PUSCH:PhysicalUplink Shared Channel))发送上行控制信息(上行链路控制信息(UCI:Uplink ControlInformation))。该UL控制信道的结构(格式)也可以被称为PUCCH格式等。
UCI包括调度请求(SR:Scheduling Request)、对于DL数据(DL数据信道(物理下行链路共享信道(PDSCH:Physical Downlink Shared Channel)))的重发控制信息(也被称为混合自动重发请求-确认(HARQ-ACK:Hybrid Automatic Repeat reQuest-Acknowledge)、ACK/NACK(否认(Negative ACK))等)、信道状态信息(CSI:Channel State Information)中的至少一个。
现有技术文献
非专利文献
非专利文献1:3GPP TS 36.300 V8.12.0“Evolved Universal TerrestrialRadio Access(E-UTRA)and Evolved Universal Terrestrial Radio Access Network(E-UTRAN);Overall description;Stage 2(Release 8)”,2010年4月
发明内容
发明要解决的课题
期待未来的无线通信系统(例如,5G、NR)实现各种无线通信服务,以满足各种不同的要求条件(例如,超高速、大容量、超低延迟等)。
例如,在NR中,正在讨论提供被称为eMBB(增强移动宽带(enhanced Mobile BroadBand))、mMTC(大规模机器类通信(massive Machine Type Communication))、URLLC(超可靠低延迟通信(Ultra Reliable and Low Latency Communications))等的无线通信服务。
此外,在LTE/NR中,正在讨论利用各种UL信号的结构(UL控制信道格式)。在这样的未来的无线通信系统中,若应用现有的LTE系统(LTE Rel.13以前)中的UL信号的发送方法,则有可能发生覆盖范围和/或吞吐量等的劣化。
本发明鉴于这一点而完成,其目的之一在,提供在未来的无线通信系统中,能够适当地发送UL信号的用户终端以及无线通信方法。
用于解决课题的手段
本发明的一方式涉及的用户终端的特征在于,具有:发送单元,发送根据基准序列且利用与上行控制信息的值进行了关联的循环移位而获得的序列;以及控制单元,基于从无线基站通知的参数,对包含与所述上行控制信息的多个候选值分别进行了关联的多个循环移位的集合、以及所述基准序列的决定进行控制。
发明效果
根据本发明,在未来的无线通信系统中,能够适当地发送UL信号。
附图说明
图1A以及图1B是表示基于序列的PUCCH的一例的图。
图2A~图2D是表示用于基于序列的PUCCH的发送信号生成处理的一例的图。
图3是表示CS候选集合的一例的图。
图4A以及图4B是表示第一实施方式涉及的序列的决定方法的一例的图。
图5A以及图5B是表示第二实施方式涉及的序列的决定方法的一例的图。
图6是表示发送1比特的基于序列的PUCCH的CS候选集合的一例的图。
图7A以及图7B是表示发送2比特的基于序列的PUCCH的CS候选集合的一例的图。
图8是表示本发明的一实施方式涉及的无线通信系统的概略结构的一例的图。
图9是表示本发明的一实施方式涉及的无线基站的整体结构的一例的图。
图10是表示本发明的一实施方式涉及的无线基站的功能结构的一例的图。
图11是表示本发明的一实施方式涉及的用户终端的整体结构的一例的图。
图12是表示本发明的一实施方式涉及的用户终端的功能结构的一例的图。
图13是表示本发明的一实施方式涉及的无线基站以及用户终端的硬件结构的一例的图。
具体实施方式
正在讨论在未来的无线通信系统(例如,LTE Rel.14、15以后、5G、NR等)中,引入多个参数集而非单一的参数集。
另外,参数集可以意味着用于表征某RAT(无线接入技术:Radio AccessTechnology)中的信号的设计、RAT的设计等的通信参数的集合,也可以是子载波间隔(SCS:SubCarrier-Spacing)、码元长度、循环前缀长度、子帧长度等与频率方向和/或时间方向有关的参数。
此外,正在讨论在未来的无线通信系统中,随着多个参数集的支持等,引入与现有的LTE系统(LTE Rel.13以前)相同和/或不同的时间单位(例如,还称为子帧、时隙、迷你时隙、子时隙、发送时间间隔(TTI:Transmission Time Interval)、短TTI(sTTI)、无线帧等)。
另外,TTI也可以表示用于对发送接收数据的传输块、码块、和/或码字等进行发送接收的时间单位。在给定了TTI时,实际上数据的传输块、码块和/或码字被映射的时间区间(码元数量)可以比该TTI短。
例如,在TTI包含规定数量的码元(例如,14个码元)的情况下,发送接收数据的传输块、码块、和/或码字等也可以在其中的从1个到规定数量的码元区间中被发送接收。在对发送接收数据的传输块、码块、和/或码字进行发送接收的码元数量比TTI内的码元数量小的情况下,能够向在TTI内不映射数据的码元映射参考信号、控制信号等。
子帧也可以与用户终端(例如,用户设备(UE:User Equipment))利用的(和/或被设定的)参数集无关地,设为具有规定的时间长度(例如,1ms)的时间单位。
另一方面,时隙可以是基于UE所利用的参数集的时间单位。例如,在子载波间隔为15kHz或者30kHz的情况下,每1时隙的码元数量可以是7或者14个码元。在子载波间隔为60kHz以上的情况下,每1时隙的码元数量可以是14个码元。此外,时隙中也可以包含多个迷你(子)时隙。
正在讨论在这样的未来的无线通信系统中,支持比现有的LTE系统(例如,LTERel.8~13)的PUCCH(物理上行链路控制信道)格式短的期间(short duration)的UL控制信道(以下,也称为短PUCCH)和/或比该短期间长的期间(long duration)的UL控制信道(以下,也称为长PUCCH)。
短PUCCH(short PUCCH、缩短PUCCH(shortened PUCCH))具有某SCS中的规定数量的码元(例如,1、2、或3个码元)。在该短PUCCH中,上行控制信息(上行链路控制信息(UCI:Uplink Control Information))和参考信号(RS:Reference Signal)被时分复用(TDM:Time Division Multiplexing),也可以被频分复用(FDM:Frequency DivisionMultiplexing)。RS例如可以是在UCI的解调中利用的解调用参考信号(DMRS:DeModulationReference Signal)。
短PUCCH的各码元的SCS可以与数据信道用的码元(以下,也称为数据码元)的SCS相同,也可以更高。数据信道例如可以是下行数据信道(物理下行链路共享信道(PDSCH:Physical Downlink Shared Channel))、上行数据信道(物理上行链路共享信道(PUSCH:Physical Uplink Shared Channel))等。
以下,简单的“PUCCH”的标记也可以替换为“短PUCCH”或者“短期间的PUCCH(PUCCHin short duration)”。
PUCCH在时隙内可以与UL数据信道(以下,也称为PUSCH)被TDM和/或FDM。此外,PUCCH在时隙内也可以与DL数据信道(以下,也称为PDSCH)以及/或者DL控制信道(以下,也称为物理下行链路控制信道(PDCCH:Physical Downlink Control Channel)被进行TDM和/FDM。
作为短PUCCH的发送方式,正在讨论基于DMRS的PUCCH(基于DMRS的发送(DMRS-based transmisson)或DMRS-based PUCCH)和基于序列的PUCCH(基于序列的发送(sequence-based transmission)或sequence-based PUCCH),所述基于DMRS的PUCCH通过发送将DMRS与UCI进行了FDM和/或TDM后的UL信号而通知UCI,所述基于序列的PUCCH通过发送不利用DMRS而利用与UCI的值进行了关联的码资源的UL信号而通知UCI。
基于DMRS的PUCCH由于发送包含用于UCI的解调的RS的PUCCH,因此也可以被称为相干发送(Coherent Transmission)、相干设计等。基于序列的PUCCH由于通过不包含用于UCI的解调的RS的PUCCH来通知UCI,因此也可以被称为非相干发送(Non-coherentTransmission)、非相干设计等。
用于基于序列的PUCCH的码资源是能够码分复用(CDM:Code DivisionMultiplexing)的资源,可以是基准序列、循环移位量(相位旋转量)、OCC(OrthogonalCover Code)中的至少一个。循环移位也可以替换为相位旋转。
就与用于基于序列的PUCCH的时间资源、频率资源、以及码资源中的至少任意一个有关的信息而言,从NW(网络,例如基站、gNodeB),可以通过高层信令(例如,无线资源控制(RRC:Radio Resource Control)信令、媒体访问控制(MAC:Medium Access Control)信令、广播信息(主信息块(MIB:Master Information Block)、系统信息块(SIB:SystemInformation Block)等))、物理层信令(例如,DCI)或者它们的组合,向UE通知。
基准序列可以是CAZAC(恒定振幅零自相关(Constant Amplitude Zero Auto-Correlation))序列(例如,Zadoff-chu序列),也可以是在3GPP TS 36.211§5.5.1.2(特别地,Table 5.5.1.2-1、Table 5.5.1.2-2)等中所提供那样的以CAZAC序列为基准的序列(CG-CAZAC(计算机生成CAZAC(computer generated CAZAC))序列)。
对基于序列的PUCCH使用循环移位而发送2比特的UCI的情况进行说明。将被分配给1个UE的循环移位量(相位旋转量)的多个候选称为CS候选集合(循环移位候选集合、循环移位量模式、相位旋转量候选集合、相位旋转量模式)。
基准序列的序列长度由子载波数量M和PRB(物理资源块(Physical ResourceBlock))数量决定。如图1A所示,在使用1个PRB的带域而进行基于序列的PUCCH的情况下,基准序列的序列长度为12(=12×1)。此时,如图1B所示,定义具有2π/12(即,π/6)的相位间隔的12个相位旋转量α011。使1个基准序列利用相位旋转量α011分别进行相位旋转(循环移位)而得到的12个序列相互正交(互相关成为0)。另外,相位旋转量α011基于子载波数量M、PRB数量、基准序列的序列长度中的至少一个而定义即可。循环移位候选集合也可以包含从该相位旋转量α011中选择的2个以上的相位旋转量。
基于序列的PUCCH通知包含ACK/NACK(A/N)、CSI、SR中的至少任意一个的控制信息。另外,可以将表示A/N和/或CSI以及有SR(Positive SR)的UCI称为包含SR的UCI,也可用将表示A/N和/或CSI以及无SR(Negative SR)的UCI称为不包含SR的UCI。在以下的说明中,将表示A/N和/或CSI的控制信息称为UCI,将表示有SR或无SR的控制信息称为有无SR。
例如,在UCI为1比特的情况下,UCI的值0、1可以分别对应于“NACK”、“ACK”。例如,在UCI为2比特的情况下,UCI的值00、01、11、10可以分别对应于“NACK-NACK”、“NACK-ACK”、“ACK-ACK”、“ACK-NACK”。
例如,如图1B所示,在UCI为2比特的情况下,UE利用2比特的UCI的值的四个候选中的、与要发送的值对应的相位旋转量来进行基准序列的相位旋转,并利用被提供的时间/频率资源发送已相位旋转后的信号。时间/频率资源是时间资源(例如,子帧、时隙、码元等)和/或频率资源(例如,载波频率、信道带域、CC(分量载波)、PRB等)。
图2是表示用于基于序列的PUCCH的发送信号生成处理的一例的图。发送信号生成处理使用所选择的相位旋转量α,使序列长度M的基准序列X0-XM-1进行相位旋转(循环移位),将被相位旋转的基准序列输入至OFDM(正交频分复用(Orthogonal FrequencyDivision Multiplexing))发送机或者DFT-S-OFDM(离散傅立叶变换-扩频-正交频分复用(Discrete Fourier Transform-Spread-Orthogonal Frequency DivisionMultiplexing))发送机。UE发送来自OFDM发送机或者DFT-S-OFDM发送机的输出信号。
UCI的信息候选0-3分别与相位旋转量α03进行关联,在作为UCI通知信息0的情况下,如图2A所示,UE使用与信息0进行了关联的相位旋转量α0来使基准序列X0-XM-1进行相位旋转。同样地,在作为UCI通知信息1-3的情况下,分别如图2B、2C以及2D所示,UE使用与信息1-3进行了关联的相位旋转量α1、α2以及α3来使基准序列X0-XM-1进行相位旋转。
接下来,对通过基于序列的PUCCH而通知的UCI的解码进行说明。这里,说明通过相位旋转量的选择而通知UCI的情况下的接收判定操作,但在通过其他种类的资源(例如,基准序列、时间/频率资源)或者多个种类的资源的组合的选择而通知UCI的情况下也是同样的。
NW可以从接收到的信号中使用最大似然检测(MLD:Maximum LikelihoodDetection,或者也可以称为相关检测)来判定UCI。具体而言,网络可以生成被分配给用户终端的各相位旋转量的复制品(相位旋转量复制品)(例如,在UCI有效载荷长度为2比特的情况下,生成4个模式的相位旋转量复制品),并使用基准序列和相位旋转量复制品来与用户终端同样地生成发送信号波形。此外,网络也可以对全部相位旋转量复制品计算所得到的发送信号波形和从用户终端接收到的接收信号波形的相关,并估计为发送了相关最高的相位旋转量复制品。
更具体而言,网络也可以对尺寸为M的DFT后的接收信号序列(M个复数序列)的各元素乘以对发送信号的基准序列施加了相位旋转量复制品的相位旋转而得到的发送信号序列(M个复数序列)的复共轭,并设想为发送了所得到的M个序列的总计的绝对值(或者,绝对值的平方)成为最大的相位旋转量复制品。
或者,网络也可以生成相当于相位旋转量的最大分配数量(1个PRB的话是12个)的发送信号复制品,通过与上述MLD同样的操作,估计与接收信号的相关最高的相位旋转量。在估计出分配的相位旋转量以外的相位旋转量的情况下,也可以估计为发送了在所分配的相位旋转量中与估计的相位旋转量最接近的相位旋转量。
基站例如通过对接收到的基于序列的PUCCH进行MLD,判定UCI值以及有无SR。
在LTE中,小区ID数量为504,从30个序列中,按照小区ID,选择与PUCCH或PUSCH进行关联的参考信号(例如,DMRS)。在NR中,正在讨论小区ID的数量大致增加为1000个(大致2倍)。随着小区ID的增加,优选增加在基于序列的PUCCH中利用的序列的数量。
在LTE中,在小于6个PRB的参考信号中利用的基准序列(base sequene)数量为30。在NR中,难以将基准序列与小区ID的增加相应地增加为2倍。由于Zadoff-Chu序列的序列数量为序列长度以下的最大质数-1,例如,由于与5个PRB(60个子载波)对应的序列长度60的Zadoff-Chu序列的序列数量为58,因此不能使序列数量成为60。此外,在与1~5个PRB各自对应的序列长度中,难以寻找CGS(computer generated sequene)。
如此,如何设定在上行链路中利用的大量的序列,这一点成为问题。因此,本发明的发明人们讨论对上行链路设定序列的方法,完成本发明。
该方法能够应用于利用通过基准序列的循环移位而获得的序列的信号。例如,该方法可以应用于在基于序列的PUCCH中利用的序列,也可以应用于在与PUCCH或PUSCH关联的参考信号(例如,DMRS)中利用的序列。
以下,参照附图详细说明本发明涉及的实施方式。各实施方式涉及的无线通信方法可以分别单独被应用,也可以被组合应用。
(无线通信方法)
<第一实施方式>
在第一实施方式中,UE基于从NW通知的序列索引(编号)i,决定在基于序列的PUCCH中利用的基准序列以及CS候选集合。序列索引i可以经由高层信令被设定给UE。
UE可以基于序列索引i,决定表示基准序列的的基准序列索引j、以及表示CS候选集合的CS候选集合索引Y。
在基于序列的PUCCH的时间/频率资源为1个码元/1个PRB(12个子载波)的情况下,由于基准序列长度为12,因此全部CS候选数量为12。
在此,在UCI有效载荷长度为2比特的情况下,如图3所示,对各UE分配的CS候选数量(UCI值候选数量)R为4。若将对各UE分配的4个CS候选设为CS候选集合,则可使用的CS候选集合数量S(全部CS候选数量/1个UE的CS候选数量R)为3。
在此,通过M个基准序列和S个CS候选集合的组合,从而可使用序列数量(被CDM的序列的最大数量)N为M×S。在基准序列数量M为30,且CS候选集合数量S为3的情况下,可使用序列数量N为90。NW将90个序列之一分配给UE,从而能够在相同时间/频率资源(码元/PRB)中来自多个UE的基于序列的PUCCH被进行CDM。
UE也可以基于参数m与CS候选集合数量S,决定CS候选集合索引Y。就m而言,可以基于小区ID(小区标识符、小区索引)由UE来决定,也可以通过高层信令来通知。例如,m可以是Mod(小区ID,S)。在此,Mod(a,b)表示a除以b的余数(modul,a除以B的余数)。
UE也可以基于序列索引i所属的范围,决定CS候选集合决定方法。利用基准序列数量M与CS候选集合数量S,序列索引i可取的值可以为0~S×M-1。此时,序列索引i的范围可被分为包含M个序列索引的S个部分范围,可以定义与各部分范围对应的CS候选集合决定方法。各CS候选集合决定方法可以通过利用m与CS候选集合数量S的式来表示。
若将表示各部分范围的部分范围索引p设为0~S-1,则与部分范围索引p对应的部分范围是p×M~(p+1)×M-1,与该部分范围对应的CS候选集合决定方法可以是Y=Mod(m+p,S)。在此,也可以利用比M小的值而代替基准序列数量M,也可以利用比S小的值来代替CS候选集合数量S。
例如,在可使用序列数量N为90的情况下,UE可以设想为序列索引i为0~89中的其中一个。在序列索引i包含在0~29中的情况下,CS候选集合决定方法为Y=Mod(m,S),在序列索引i包含在30~59中的情况下,CS候选集合决定方法为Y=Mod(m+1,S),在序列索引i包含在60~89中的情况下,CS候选集合决定方法为Y=Mod(m+2,S)。
UE也可以基于序列索引i与基准序列数量M,决定基准序列索引j。例如,基准序列索引j是Mod(i,M)。
在参数m基于小区ID的情况下,UE基于小区ID决定CS候选集合,从而能够防止在相互相邻的2个小区中利用相同的CS候选集合。从而能够将两个小区的序列的互相关抑制为较低,能够防止基于序列的PUCCH的通信质量的劣化。
图4是表示在基准序列数量M为30,UCI有效载荷长度为2比特,1个码元中的连续的10个PRB的各PRB中配置基于序列的PUCCH的情况下的、序列的决定方法。
如图4A所示,NW通过将对UE分配的序列索引的范围设定为0~29(将可使用序列数量N设定为30),能够将序列间的互相关抑制为较低,能够防止基于序列的PUCCH的通信质量的劣化。当CS候选集合索引基于小区ID的情况下,能够抑制在邻近的小区间CS候选集合一致的概率(将使用相同CS候选集合的小区之间的距离隔开),能够将小区间的序列的互相关抑制为较低。在该情况下,通过将小区内的CS候选集合限定为1个,能够隔开CS候选之间的距离(相位),即使在频率选择性严格的情况下也能够将小区内的序列的互相关抑制为较低。
在图4A中,由于小区ID为3,因此m为0,所有的PRB中的CS候选集合索引Y为0。此时的基准序列索引j等于序列索引i。
如图4B所示,NW通过将对UE分配的序列索引的范围设定为0~89(可使用序列数量N为90),能够对一个小区设定多个CS候选集合,能够增加UE的复用数量。
在图4B中,针对各PRB,基于所通知的序列索引所属的范围,决定CS候选集合。从而,产生在相同小区内利用不同的CS候选集合的情况。基准序列索引j是序列索引i除以基准序列数量M的余数。
如此,NW能够根据状况,灵活设定序列索引i。
UE可以基于小区ID、RPB索引(PRB编号)、码元索引(码元编号)以及波束索引中的至少一个,决定参数m。PRB索引可以是基于序列的PUCCH的频率资源中的最小PRB索引、最大PRB索引。码元索引可以是表示基于序列的PUCCH的时间资源的码元索引。波束索引可以是表示在基于序列的PUCCH的发送中利用的波束的索引。
也可以利用表示其他频率资源(带域、分量载波等)的信息,以此来代替PRB索引。也可以利用表示其他时间资源(子帧、时隙、迷你时隙等)的信息来替代码元索引。
参数m可以基于小区ID、PRB索引、以及码元索引的组合来求出。例如参数m可以由Mod(小区ID+PRB索引+码元索引,N)来求出。
基准序列索引j和/或CS候选集合索引Y可以基于规定的跳跃模式来跳跃。
在UCI有效载荷长度为1比特的情况下,被分配给各UE的CS候选数量为2。由于所有CS候选数量为12,因此可使用的CS候选集合数量S为6。
基准序列数量M可以经由高层信令被设定给UE。
例如,在基于序列的PUCCH的带宽(PUCCH PRB数量)为1~5个PRB的情况下,可以设定30或60作为基准序列数量M。在没有通过高层信令通知表示基准序列数量M的通知的情况下,UE可以设想为基准序列数量M为30。在基于序列的PUCCH的带宽为6个PRB以上的情况下,UE也可以设想为基准序列数量M是60。
UE可以基于由NW设定的PUCCH PRB数量或序列长度,决定基准序列数量M。
例如,在PUCCH PRB数量为1~5个PRB的情况下,UE可以设想为基准序列数量M是30,在除此之外的情况下,可以设想为基准序列数量M是60。例如,UE可以在PUCCH PRB数量为1~2个PRB的情况下,设想为基准序列数量M是30,在除此之外的情况下,设想为基准序列数量M是基准序列长度以下的最大质数-1。具体来说,UE在PUCCH PRB数量为1~2个PRB的情况下,设想为基准序列是LTE的CGS,在除此之外的情况下,设想为基准序列是Zadoff-Chu序列。
NW也可以与UE同样地,根据所通知的序列索引i,决定基准序列索引j以及CS候选集合索引Y。根据该操作,NW能够确定基准序列以及CS候选集合,并接收基于序列的PUCCH。
根据以上的第一实施方式,通过NW对UE设定基准序列与CS候选集合的大量的组合之一,能够降低在小区内和/或小区间序列重复的概略。
<第二实施方式>
在第二实施方式中,可使用序列数量N经由高层信令和/或广播信息被设定给UE。可使用序列数量N能够替换为基准序列与CS候选集合的组合中的、可使用的组合的数量。
例如,可使用序列数量N可以基于基准序列数量M。例如,作为N,可以被NW指定M、2M、3M中的其中一个。NW可以向UE通知表示N的信息,也可以向UE通知表示N/M的信息。
若将对M乘以的乘数t设为1~S,则可使用序列数量N可以是t×M。
UE也可以基于小区ID、PRB索引、码元索引、波束索引中的至少一个,决定0~N-1的范围的序列索引i。
例如,就序列索引i而言,可以通过Mod(小区ID,N)来求出,也可以通过Mod(PRB索引,N)来求出,也可以通过Mod(码元索引,N)来求出。
此外,序列索引i可以基于小区ID、PRB索引、码元索引这三者的组合而求出。例如,就序列索引i而言,可以通过Mod(小区ID+PRB索引+码元索引,N)来求出。
UE也可以基于小区ID,决定CS候选集合索引Y。例如,CS候选集合索引Y可以是Mod(小区ID,S)。
UE也可以基于小区ID、PRB索引、码元索引、波束索引中的至少任一个,决定CS候选集合索引Y。例如,CS候选集合索引Y可以是Mod(小区ID+PRB索引+码元索引,S)。
UE也可以基于序列索引i与基准序列数量M,决定基准序列索引j。例如,基准序列索引j是Mod(i,M)。
NW通过将可使用序列数量M设定为规定值以下(例如,N为M),能够将序列间的互相关抑制为较低,能够防止基于序列的PUCCH的通信质量的劣化。此外,NW通过将可使用序列数量N设定为大于规定值(例如,N为3M),能够增加UE的复用数量。
如此,NW能够根据状况灵活地设定可使用序列数量N。
基准序列索引j和/或CS候选集合索引Y也可以基于规定的跳跃模式进行跳跃。
图5示出了当基准序列数量M为30、UCI有效载荷长度为2比特、可使用序列数量N为30、以及在码元索引为13的码元中对连续的10个PRB的各PRB配置基于序列的PUCCH的情况下的、序列的决定方法。在此,序列索引i可以通过Mod(小区ID+PRB索引+码元索引,N)来决定,CS候选集合索引Y可以通过Mod(小区ID,S)来决定。
图5A表示小区ID为3的小区,图5B表示小区ID为5的小区。由此,这些小区之间,CS候选集合索引Y不同。此外,在这些小区之间,即使是在PRB索引和码元索引相同PRB之间,序列索引i也不同。此时的基准序列索引j等于序列索引i。
如果在可使用序列数量N为90的情况下,序列索引i的范围成为0~89,因此产生在相同小区内利用不同的CS候选集合的情况。
NW也可以与UE同样地,基于所通知的可使用序列数量N、以及小区ID和/或基于序列的PUCCH的资源,决定基准序列索引j以及CS候选集合索引Y。通过该操作,NW能够确定基准序列以及CS候选集合,接收基于序列的PUCCH。
根据以上的第二实施方式,通过由UE决定序列索引i,与第一实施方式相比,能够削减NW进行的通知的信息量。
<第三实施方式>
在第三实施方式中,CS候选集合索引从NW经由高层信令被设定给UE。
UE可以被分别设定CS候选集合索引Y以及基准序列索引j。例如,CS候选集合索引Y的范围是0~S-1,基准序列索引j的范围是0~M-1。
NW可以限制对UE通知的CS候选集合索引Y的范围。例如,通过由NW限制CS候选集合索引Y的范围,能够将序列间的互相关抑制为较低,能够防止基于序列的PUCCH的通信质量的劣化。例如,通过NW不限制CS候选集合索引Y的范围,能够增加UE的复用数量。
如此,NW能够根据状况,对UE灵活设定CS候选集合。
例如,在CS候选集合#1、#2、#3可使用的情况下,通过NW将对应的小区中的CS候选集合限定为#1,能够将在该小区中被使用的序列与在周边小区中被使用的序列的互相关抑制为较低。
NW进行CS候选集合的分配处理。例如,期望在某小区中将CS候选集合限制为#1,在邻近的小区中将CS候选集合限制为#2,在其他的邻近的小区中将CS候选集合限制为#3。因此,多个NW需要共享各小区使用的CS候选集合索引。
根据第三实施方式,由于NW对UE分配CS候选集合索引Y与基准序列索引j,因此,对于规范的影响小。
<第四实施方式>
在第四实施方式中,表示CS候选集合的细节。
在此,表示对于1个码元/1个PRB的基于序列的PUCCH的CS候选集合。
在基于序列的PUCCH通知UCI的1比特的情况下,各CS候选集合包含2个CS候选,CS候选集合数量S为6。在各CS候选集合中,CS候选间的距离(相位差)最大。
例如,如图6所示,CS候选集合#0包含α0、α6,CS候选集合#1包含α1、α7,CS候选集合#2包含α2、α8,CS候选集合#3包含α3、α9,CS候选集合#4包含α4、α10,CS候选集合#5包含α5、α11。各CS候选集合内的2个CS候选分别对应UCI值0、1。各CS候选集合内的CS(相位旋转量)候选的间隔为π。
如此,通过CS候选集合具有相隔6个间隔的两个CS候选,从而两个子载波间隔的值固定,而与CS候选无关。NW能够利用该值作为参考信号(例如,DMRS)。
在基于序列的PUCCH通知UCI的2比特的情况下,或者基于序列的PUCCH将1比特的UCI与有无SR进行合并而通知2比特的情况下,各CS候选集合包含4个CS候选,CS候选集合数量S为3。在各CS候选集合中,CS候选之间的距离(相位差)最远。将这样的CS候选集合称为第一CS候选集合。即,第一CS候选集合中,以等间隔的方式提供多个CS候选。
例如,如图7A所示,CS候选集合#0包含α0、α3、α6、α9,CS候选集合#1包含α1、α4、α7、α10,CS候选集合#2包含α2、α5、α8、α11。各CS候选集合内的4个CS候选分别对应UCI值00、01、11、10。各CS候选集合内的CS(相位旋转量)候选的间隔为π/2。
如此,通过CS候选集合具有相隔3个间隔的4个CS候选,从而4个子载波间隔的值为固定,而与CS候选无关。NW能够利用该值作为参考信号(例如,DMRS)。在该情况下,NW可以利用DMRS进行信道估计,也可以利用DMRS对UCI进行解调。
在基于序列的PUCCH将1比特的UCI与有无SR进行合并而通知2比特的情况下,各CS候选集合包含4个CS候选,CS候选集合数量S为3。在各CS候选集合中,与不同UCI值对应的CS候选之间的距离(相位差)最远,与有无SR对应的CS候选相邻。将这样的CS候选集合称为第二CS候选集合。即,第二CS候选集合中,以不等间隔的方式提供多个CS候选。
例如,如图7B所示,CS候选集合#0包含α0、α1、α6、α7,CS候选集合#1包含α2、α3、α8、α9,CS候选集合#2包含α4、α5、α10、α11。各CS候选集合内的4个CS候选分别对应UCI值0以及无SR、UCI值0以及有SR、UCI值1以及无SR、UCI值1以及有SR。与不同的UCI对应的CS(相位旋转量)候选的间隔为π,与有无SR对应的CS候选的间隔为π/6。
考虑到对UCI的错误率的要求比对有无SR的错误率的要求高。根据第二CS候选集合,和与有无SR对应的两个CS候选的间隔相比,与不同的UCI值对应的两个CS候选的间隔大,因此在频率选择性严格(信道的延迟扩展(delay spread)大)的环境中,与第一CS候选集合相比,能够减小UCI的错误率。
在基于序列的PUCCH对UCI与有无SR进行通知的情况下(例如,当通知1比特的UCI以及有无SR的情况下),NW也可以经由高层信令对UE设定第一CS候选集合或第二CS候选集合。UE可以利用被设定的CS候选集合来发送基于序列的PUCCH。
根据以上的第四实施方式,能够利用与UCI有效载荷长度和/或UCI所需的错误率对应的CS候选集合。
<第五实施方式>
在第五实施方式中,表示用于基于序列的PUCCH以外的序列的决定方法。例如,UE也可以决定用于与PUCCH或PUSCH关联的参考信号(例如,DMRS)的序列。
UE可以与第一实施方式同样地,决定序列索引i、基准序列索引j以及CS候选集合索引Y中的至少任一个。另外,UE也可以与第二或第三实施方式同样地,决定序列索引i、基准序列索引j以及CS候选集合索引Y中的至少任一个。
在第一~第四实施方式中,UE为了基于序列的PUCCH而利用被决定的CS候选中的、与UCI值进行了关联的CS候选。在第五实施方式中,UE决定在用于基于序列的PUCCH以外的序列中所利用的CS候选,并利用所决定的CS候选来进行基准序列的循环移位。以下,针对用于决定CS候选的、第一CS候选决定方法以及第二CS候选决定方法进行说明。
在第一CS候选决定方法中,UE也可以经由高层信令被设定CS候选。
例如,可以从NW向UE通知用于表示CS候选之一的CS候选索引Z。在图7A的情况下,CS候选索引Z是0~11之一。此外,可也以通知CS候选集合索引Y、以及用于指定CS候选集合内的CS候选的信息。例如,在CS候选集合内的CS候选数量R为4的情况下,用于指定CS候选的信息可以是0~3之一。
根据该第一CS候选决定方法,NW通过对UE分配CS候选,能够根据状况,灵活地对UE设定CS候选。
在第二CS候选决定方法中,UE可以基于小区ID、PRB索引、码元索引、以及波束索引中的至少任一个,决定CS候选索引Z。PRB索引可以是在序列的发送中利用的频率资源中的最小的PRB索引、最大的PRB索引。码元索引可以是用于表示在序列的发送中利用的时间资源的码元索引。波束索引可以是用于表示在序列的发送中利用的波束的索引。
例如,利用CS候选集合数量S与CS候选数量R,可以通过Y+S×Mod(小区ID+码元索引+PRB索引、R)来决定CS候选索引Z。
根据该第二CS候选决定方法,UE决定CS候选,从而能够削减来自NW的通知的信息量。在CS候选基于小区ID的情况下,能够抑制CS候选在邻近的小区间一致的概率。
(无线通信系统)
以下,说明本发明的一实施方式所涉及的无线通信系统的结构。在该无线通信系统中,利用本发明的上述各实施方式涉及的无线通信方法的任一个或它们的组合进行通信。
图8是表示本发明的一实施方式涉及的无线通信系统的概略结构的一例的图。在无线通信系统1中,能够应用将以LTE系统的系统带宽(例如,20MHz)为1个单位的多个基本频率块(分量载波)作为一体的载波聚合(CA)和/或双重连接(DC)。
另外,无线通信系统1也可以被称为LTE(长期演进:Long Term Evolution)、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER 3G、IMT-Advanced、4G(第四代移动通信系统)、5G(第五代移动通信系统)、NR(新无线(New Radio))、FRA(未来无线接入(FutureRadio Access))、New-RAT(无线接入技术(Radio Access Technology))等,也可以被称为实现这些的系统。
无线通信系统1具备形成覆盖范围比较宽的宏小区C1的无线基站11、以及在宏小区C1内配置且形成比宏小区C1小的小型小区C2的无线基站12(12a~12c)。此外,在宏小区C1以及各小型小区C2中,配置有用户终端20。各小区以及用户终端20的配置、数量等不限于图示的内容。
用户终端20能够连接到无线基站11以及无线基站12双方。设想用户终端20通过CA或者DC同时使用宏小区C1和小型小区C2。此外,用户终端20能够利用多个小区(CC)(例如,5个以下的CC、6个以上的CC)来应用CA或者DC。
用户终端20和无线基站11之间,在相对低的频带(例如,2GHz)中能够利用带宽窄的载波(也被称为现有载波、传统载波(Legacy carrier)等)进行通信。另一方面,在用户终端20和无线基站12之间,可以在相对高的频带(例如,3.5GHz、5GHz等)中利用带宽宽的载波,也可以利用和与无线基站11之间的载波相同的载波。另外,各无线基站利用的频带的结构并不限于此。
在无线基站11和无线基站12之间(或者,2个无线基站12间),能够设为进行有线连接(例如,基于CPRI(通用公共无线接口(Common Public Radio Interface))的光纤、X2接口等)或者无线连接的结构。
无线基站11以及各无线基站12分别连接到上位站装置30,经由上位站装置30连接到核心网络40。另外,上位站装置30例如包括接入网关装置、无线网络控制器(RNC)、移动性管理实体(MME)等,但并不限于此。此外,各无线基站12也可以经由无线基站11连接到上位站装置30。
另外,无线基站11是具有相对宽的覆盖范围的无线基站,也可以被称为宏基站、汇聚节点、eNB(eNodeB)、发送接收点等。此外,无线基站12是具有局部的覆盖范围的无线基站,也可以被称为小型基站、微型基站、微微基站、毫微微基站、HeNB(归属(Home)eNodeB)、RRH(远程无线头(Remote Radio Head))、发送接收点等。以下,当不区分无线基站11以及12的情况下,统称为无线基站10。
各用户终端20是支持LTE、LTE-A等各种通信方式的终端,不仅包含移动通信终端(移动台),还可以包含固定通信终端(固定台)。
在无线通信系统1中,作为无线接入方式,对下行链路应用正交频分多址接入(OFDMA:Orthogonal Frequency Division Multiple Access),对上行链路应用单载波频分多址接入(SC-FDMA:Single Carrier Frequency Division Multiple Access)和/或OFDMA。
OFDMA是将频带分割为多个窄的频带(子载波),对各子载波映射数据而进行通信的多载波传输方式。SC-FDMA是将系统带宽对每个终端分割为由一个或连续的资源块的带域,多个终端利用相互不同的带域,从而降低终端间的干扰的单载波传输方式。另外,上行以及下行的无线接入方式并不限于这些的组合,也可以利用其他的无线接入方式。
在无线通信系统1中,作为下行链路的信道,使用在各用户终端20中共享的下行共享信道(物理下行链路共享信道(PDSCH:Physical Downlink Shared Channel))、广播信道(物理广播信道(PBCH:Physical Broadcast Channel))、下行L1/L2控制信道等。通过PDSCH传输用户数据、高层控制信息、SIB(系统信息块(System Information Block))等。此外,通过PBCH传输MIB(主信息块(Master Information Block))。
下行L1/L2控制信道包括PDCCH(物理下行链路控制信道(Physical DownlinkControl Channel))、EPDCCH(扩展物理下行链路控制信道(Enhanced Physical DownlinkControl Channel))、PCFICH(物理控制格式指示信道(Physical Control FormatIndicator Channel))、PHICH(物理混合ARQ指示信道(Physical Hybrid-ARQ IndicatorChannel))等。通过PDCCH而传输包含PDSCH和/或PUSCH的调度信的下行控制信息(DCI:下行链路控制信息(Downlink Control Information))等。
另外,通过DCI也可以通知调度信息。例如,对DL数据接收进行调度的DCI可以被称为DL分配,对UL数据发送进行调度的DCI被称为UL许可。
通过PCFICH而传输用于PDCCH的OFDM码元数量。通过PHICH,传输对于PUSCH的HARQ(混合自动重发请求:Hybrid Automatic Repeat reQuest)的送达确认信息(例如,也可以称为重发控制信息、HARQ-ACK、ACK/NACK等)。EPDCCH与PDSCH(下行共享数据信道)频分复用,与PDCCH同样地被用于DCI等的传输。
在无线通信系统1中,作为上行链路的信道,使用在各用户终端20中共享的上行共享信道(PUSCH:物理上行链路共享信道(Physical Uplink Shared Channel))、上行控制信道(PUCCH:物理上行链路控制信道(Physical Uplink Control Channel))、随机接入信道(物理随机接入信道(PRACH:Physical Random Access Channel))等。通过PUSCH而传输用户数据、高层控制信息等。此外,通过PUCCH,传输下行链路的无线质量信息(CQI:信道质量指示符(Channel Quality Indicator))、送达确认信息、调度请求(SR:SchedulingRequest)等。通过PRACH,传输用于与小区建立连接的随机接入前导码。
在无线通信系统1中,作为下行参考信号,传输小区特定参考信号(CRS:Cell-specific Reference Signal)、信道状态信息参考信号(CSI-RS:Channel StateInformation-Reference Signal)、解调用参考信号(DMRS:DeModulation ReferenceSignal)、定位参考信号(PRS:Positioning Reference Signal)等。此外,在无线通信系统1中,作为上行参考信号,传输测量用参考信号(SRS:探测参考信号(Sounding ReferenceSignal))、解调用参考信号(DMRS)等。另外,DMRS可以被称为用户终端特定参考信号(UE-specific Reference Signal)。此外,被传输的参考信号并不限于此。
(无线基站)
图9是表示本发明的一实施方式涉及的无线基站的整体结构的一例的图。无线基站10具备多个发送接收天线101、放大器单元102、发送接收单元103、基带信号处理单元104、呼叫处理单元105以及传输路径接口106。另外,发送接收天线101、放大器单元102、发送接收单元103被构成为分别包括一个以上即可。
就通过下行链路从无线基站10发送给用户终端20的用户数据而言,从上位站装置30经由传输路径接口106输入到基带信号处理单元104。
在基带信号处理单元104中,关于用户数据,进行PDCP(分组数据汇聚协议(PacketData Convergence Protocol))层的处理、用户数据的分割/耦合、RLC(无线链路控制(Radio Link Control))重发控制等RLC层的发送处理、MAC(媒体访问控制(Medium AccessControl))重发控制(例如,HARQ的发送处理)、调度、传输格式选择、信道编码、快速傅里叶逆变换(IFFT:Inverse Fast Fourier Transform)处理、预编码处理等发送处理,并转发给发送接收单元103。此外,关于下行控制信号,也进行信道编码、快速傅里叶逆变换等发送处理,并转发给发送接收单元103。
发送接收单元103将从基带信号处理单元104按每个天线进行预编码而被输出的基带信号变换为无线频带,并将其发送。在发送接收单元103中进行了频率变换的无线频率信号通过放大器单元102而被放大,并从发送接收天线101发送。发送接收单元103能够由基于本发明涉及的技术领域中的共同认识而说明的发射器/接收器、发送接收电路或发送接收装置构成。另外,发送接收单元103可以作为一体的发送接收单元来构成,也可以由发送单元以及接收单元构成。
另一方面,关于上行信号,在发送接收天线101中接收到的无线频率信号在放大器单元102中被放大。发送接收单元103接收在放大器单元102中进行了放大的上行信号。发送接收单元103将接收信号频率变换为基带信号,并输出到基带信号处理单元104。
在基带信号处理单元104中,对在被输入的上行信号中包含的用户数据进行快速傅里叶变换(FFT:Fast Fourier Transform)处理、离散傅里叶逆变换(IDFT:InverseDiscrete Fourier Transform)处理、纠错解码、MAC重发控制的接收处理、RLC层以及PDCP层的接收处理,并经由传输路径接口106转发给上位站装置30。呼叫处理单元105进行通信信道的呼叫处理(设定、释放等)、无线基站10的状态管理、无线资源的管理等。
传输路径接口106经由规定的接口与上位站装置30发送接收信号。此外,传输路径接口106可以经由基站间接口(例如,基于CPRI(通用公共无线接口(Common Public RadioInterface))的光纤、X2接口),与其他无线基站10对信号进行发送接收(回程信令)。
此外,发送接收单元103可以接收根据基准序列利用与上行控制信息(UCI)的值进行了关联的循环移位而获得的序列(例如,基于序列的PUCCH)。
此外,发送接收单元103可以向用户终端20发送在用于基于序列的PUCCH的基准序列和/或CS候选集合的决定中利用的参数(例如,序列索引、可使用序列数量、小区ID、表示基于序列的PUCCH的频率资源的信息、表示基于序列的PUCCH的时间资源的信息中的至少任一个)。
图10是表示本发明的一实施方式涉及的无线基站的功能结构的一例的图。另外,在本例中,主要示出了本实施方式中的特征部分的功能块,设无线基站10还具有无线通信所需的其他的功能块。
基带信号处理单元104至少具备控制单元(调度器)301、发送信号生成单元302、映射单元303、接收信号处理单元304和测量单元305。另外,这些结构只要包含在无线基站10中即可,其一部分或全部结构也可以不包含在基带信号处理单元104中。
控制单元(调度器)301实施无线基站10整体的控制。控制单元301能够由基于本发明涉及的技术领域中的共同认识来说明的控制器、控制电路或控制装置构成。
控制单元301例如对由发送信号生成单元302进行的信号的生成、由映射单元303进行的信号的分配等进行控制。此外,控制单元301对由接收信号处理单元304进行的信号的接收处理、由测量单元305进行的信号的测量等进行控制。
控制单元301对系统信息、下行数据信号(例如,通过PDSCH发送的信号)、下行控制信号(例如,通过PDCCH和/或EPDCCH发送的信号。送达确认信息等)的调度(例如,资源分配)进行控制。此外,控制单元301基于判定了对于上行数据信号的重发控制的需要与否的结果等,对下行控制信号、下行数据信号等的生成进行控制。此外,控制单元301进行同步信号(例如,主同步信号(PSS:Primary Synchronization Signal)/副同步信号(SSS:SecondarySynchronization Signal))、下行参考信号(例如,CRS、CSI-RS、DMRS)等的调度的控制。
控制单元301对上行数据信号(例如,通过PUSCH发送的信号)、上行控制信号(例如,通过PUCCH和/或PUSCH发送的信号。送达确认信息等)、随机接入前导码(例如,通过PRACH发送的信号)、上行参考信号等的调度进行控制。
发送信号生成单元302基于来自控制单元301的指令,生成下行信号(下行控制信号、下行数据信号、下行参考信号等),并将其输出到映射单元303。发送信号生成单元302能够由基于本发明涉及的技术领域中的共同认识而说明的信号生成器、信号生成电路或者信号生成装置构成。
发送信号生成单元302例如基于来自控制单元301的指令,生成用于通知下行信号的分配信息的DL分配和/或用于通知上行信号的分配信息的UL许可。DL分配以及UL许可都是DCI,遵照DCI格式。此外,对下行数据信号,按照基于来自各用户终端20的信道状态信息(CSI:Channel State Information)等来决定的编码率、调制方案等,进行编码处理、调制处理。
映射单元303基于来自控制单元301的指令,将在发送信号生成单元302中生成的下行信号映射到规定的无线资源,并将其输出到发送接收单元103。映射单元303能够由基于本发明涉及的技术领域中的共同认识而说明的映射器、映射电路或者映射装置构成。
接收信号处理单元304对从发送接收单元103输入的接收信号进行接收处理(例如,解映射、解调、解码等)。在此,接收信号例如是从用户终端20发送的上行信号(上行控制信号、上行数据信号、上行参考信号等)。接收信号处理单元304能够由基于本发明涉及的技术领域中的共同认识而说明的信号处理器、信号处理电路或信号处理装置构成。
接收信号处理单元304将通过接收处理而被解码的信息输出到控制单元301。例如,在接收了包含HARQ-ACK的PUCCH的情况下,将HARQ-ACK输出到控制单元301。此外,接收信号处理单元304将接收信号和/或接收处理后的信号输出到测量单元305。
测量单元305实施与接收到的信号有关的测量。测量单元305能够由基于本发明涉及的技术领域中的共同认识而说明的测量器、测量电路或测量装置构成。
例如,测量单元305可以基于接收到的信号,进行无线资源管理(RRM:RadioResource Management)测量、信道状态信息(CSI:Channel State Information)测量等。测量单元305也可以测量接收功率(例如,参考信号接收功率(RSRP:Reference SignalReceived Power))、接收质量(例如,参考信号接收质量(RSRQ:Reference SignalReceived Quality)、信号与干扰加噪声之比(SINR:Signal to Interference plus NoiseRatio))、信号强度(例如,接收信号强度指示符(RSSI:Received Signal StrengthIndicator))、传播路径信息(例如,CSI)等。测量结果可以被输出到控制单元301。
此外,控制单元301可以分配用于基于序列的PUCCH的无线资源。此外,控制单元301也可以分配用于基于序列的PUCCH的序列索引。
(用户终端)
图11是表示本发明的一实施方式所涉及的用户终端的整体结构的一例的图。用户终端20具备多个发送接收天线201、放大器单元202、发送接收单元203、基带信号处理单元204以及应用单元205。另外,发送接收天线201、放大器单元202、发送接收单元203可以被构成为分别包含一个以上即可。
通过发送接收天线201接收到的无线频率信号在放大器单元202中被放大。发送接收单元203接收在放大器单元202中被放大了的下行信号。发送接收单元203将接收信号频率变换为基带信号而输出到基带信号处理单元204。发送接收单元203能够由基于本发明涉及的技术领域中的共同认识说明的发射器/接收器、发送接收电路或发送接收装置构成。另外,发送接收单元203可以构成为一体的发送接收单元,也可以由发送单元以及接收单元构成。
基带信号处理单元204对被输入的基带信号进行FFT处理、纠错解码、重发控制的接收处理等。下行链路的用户数据被转发给应用单元205。应用单元205进行与比物理层以及MAC层更高的层有关的处理等。此外,也可以是下行链路的数据中,广播信息也被转发到应用单元205。
另一方面,就上行链路的用户数据而言,从应用单元205被输入到基带信号处理单元204。在基带信号处理单元204中,进行重发控制的发送处理(例如,HARQ的发送处理)、信道编码、预编码、离散傅里叶变换(DFT:Discrete Fourier Transform)处理、IFFT处理等而被转发给发送接收单元203。发送接收单元203将从基带信号处理单元204输出的基带信号变换为无线频带而发送。发送接收单元203中被频率变换后的无线频率信号被放大器单元202放大并从发送接收天线201发送。
此外,发送接收单元203也可以发送根据基准序列利用与上行控制信息(UCI)的值进行了关联的循环移位而获得的序列(例如,基于序列的PUCCH)。
此外,发送接收单元203也可以从无线基站10接收在用于基于序列的PUCCH的基准序列和/或CS候选集合的决定中利用的参数。
图12是表示本发明的一实施方式所涉及的用户终端的功能结构的一例的图。另外,在本例中,主要示出了本实施方式中的特征部分的功能块,设用户终端20还具有无线通信所需的其他功能块。
用户终端20具有的基带信号处理单元204至少包括控制单元401、发送信号生成单元402、映射单元403、接收信号处理单元404以及测量单元405。另外,这些结构只要包含在用户终端20中即可,其一部分或全部结构也可以不包含在基带信号处理单元204中。
控制单元401实施用户终端20整体的控制。控制单元401能够由基于本发明涉及的技术领域中的共同认识而说明的控制器、控制电路或控制装置构成。
控制单元401例如对由发送信号生成单元402进行的信号的生成、由映射单元403进行的信号的分配等进行控制。此外,控制单元401对由接收信号处理单元404进行的信号的接收处理、由测量单元405进行的信号的测量等进行控制。
控制单元401从接收信号处理单元404取得从无线基站10发送的下行控制信号和下行数据信号。控制单元401基于判定了对于下行控制信号和/或下行数据信号的重发控制的需要与否的结果等,对上行控制信号和/或上行数据信号的生成进行控制。
控制单元401在从接收信号处理单元404取得了从无线基站10通知的各种信息的情况下,也可以基于该信息,更新在控制中利用的参数。
发送信号生成单元402基于来自控制单元401的指令,生成上行信号(上行控制信号、上行数据信号、上行参考信号等),并将其输出给映射单元403。发送信号生成单元402能够由基于本发明涉及的技术领域中的共同认识来说明的信号生成器、信号生成电路或信号生成装置构成。
发送信号生成单元402例如基于来自控制单元401的指令,生成与送达确认信息、信道状态信息(CSI)等有关的上行控制信号。此外,发送信号生成单元402基于来自控制单元401的指令,生成上行数据信号。例如,发送信号生成单元402在从无线基站10通知的下行控制信号中包含有UL许可的情况下,被控制单元401指示生成上行数据信号。
映射单元403基于来自控制单元401的指令,将在发送信号生成单元402中生成的上行信号映射到无线资源而输出到发送接收单元203。映射单元403能够由基于本发明涉及的技术领域中的共同认识而说明的映射器、映射电路或者映射装置构成。
接收信号处理单元404对从发送接收单元203输入的接收信号进行接收处理(例如,解映射、解调、解码等)。在此,接收信号例如是从无线基站10发送的下行信号(下行控制信号、下行数据信号、下行参考信号等)。接收信号处理单元404能够由基于本发明涉及的技术领域中的共同认识而说明的信号处理器、信号处理电路或信号处理装置构成。此外,接收信号处理单元404能够构成本发明涉及的接收单元。
接收信号处理单元404将通过接收处理被解码的信息输出到控制单元401。接收信号处理单元404例如将广播信息、系统信息、RRC信令、DCI等输出到控制单元401。此外,接收信号处理单元404将接收信号和/或接收处理后的信号输出到测量单元405。
测量单元405实施与接收到的信号有关的测量。测量单元405能够由基于本发明涉及的技术领域中的共同认识而说明的测量器、测量电路或测量装置构成。
例如,测量单元405可以基于接收到的信号,进行RRM测量、CSI测量等。测量单元405可以测量接收功率(例如,RSRP)、接收质量(例如,RSRQ、SINR)、信号强度(例如,RSSI)、传播路径信息(例如,CSI)等。测量结果可以被输出到控制单元401。
此外,控制单元401基于从无线基站通知的参数,对包含与上行控制信息(UCI)的多个候选值分别进行了关联的多个循环移位的集合(例如,CS候选集合)、以及基准序列的决定进行控制。
此外,参数(例如,序列索引)可采用的值的数量(例如,可使用序列数量N)可以是基准序列的数量(例如,基准序列数量M)的倍数。此外,控制单元401可以利用与包含参数的范围(例如,部分范围)进行了关联的决定方法(例如,CS候选集合决定方法),决定集合。
此外,控制单元401也可以基于参数以及小区标识符,决定集合。
此外,参数可以是基准序列与集合的可利用的组合的数量(例如,可使用序列数量),且基准序列的数量的倍数。
此外,控制单元401基于小区标识符、对序列分配的频率资源(例如,PRB索引)、以及对序列分配的时间资源(例如,码元索引)中的至少任一个以及参数,对基准序列与集合的决定进行控制。
(硬件结构)
另外,上述实施方式的说明中使用的框图表示功能单位的块。这些功能块(结构单元)通过硬件和/或软件的任意的组合而实现。此外,对各功能块的实现方法并不特别限定。即,就各功能块而言,可以利用物理上和/或逻辑上结合的1个装置实现,也可以将物理上和/或逻辑上分开的2个以上的装置直接地和/或间接地(例如,利用有线和/或无线而)连接,利用这些多个装置实现。
例如,在本发明的一实施方式中的无线基站、用户终端等可以作为进行本发明的无线通信方法的处理的计算机来发挥功能。图13是表示本发明的一实施方式所涉及的无线基站以及用户终端的硬件结构的一例的图。上述无线基站10以及用户终端20在物理上可以作为包括处理器1001、存储器1002、储存器1003、通信装置1004、输入装置1005、输出装置1006、总线1007等的计算机装置而被构成。
另外,在以下的说明中,“装置”这个术语,能够替换为电路、设备、单元等。无线基站10以及用户终端20的硬件结构可以构成为将图示的各装置包含一个或多个,也可以构成为不包含一部分装置。
例如,处理器1001只图示了一个,但也可以有多个处理器。此外,处理可以由1个处理器执行,处理也可以同时地、逐次地、或者利用其他方法而由1个以上的处理器执行。另外,处理器1001也可以由1个以上芯片实现。
无线基站10以及用户终端20中的各功能,例如通过在处理器1001、存储器1002等硬件上读入规定的软件(程序),由处理器1001进行运算,并通过控制经由通信装置1004的通信,或者通过控制存储器1002以及储存器1003中的数据的读取和/或写入而实现。
处理器1001例如使操作系统得以操作从而控制计算机整体。处理器1001可以由包括与外围装置的接口、控制装置、运算装置、寄存器等的中央处理装置(中央处理单元(CPU:Central Processing Unit))构成。例如,上述基带信号处理单元104(204)、呼叫处理单元105等,也可以通过处理器1001实现。
此外,处理器1001将程序(程序代码)、软件模块、数据等从储存器1003和/或通信装置1004读取到存储器1002,基于它们执行各种处理。作为程序,使用使计算机执行在上述实施方式中说明的操作中的至少一部分的程序。例如,用户终端20的控制单元401可以通过在存储器1002中存储且在处理器1001中操作的控制程序来实现,关于其他的功能块也可以同样地实现。
存储器1002是计算机可读取的记录介质,例如可以由ROM(只读存储器(Read OnlyMemory))、EPROM(可擦除可编程ROM(Erasable Programmable ROM))、EEPROM(电EPROM(Electrically EPROM))、RAM(随机存取存储器(Random Access Memory))、其他适当的存储介质中的至少一个构成。存储器1002也可以被称为寄存器、高速缓存、主存储器(主存储装置)等。存储器1002能够保存可为了实施本发明的一实施方式涉及的无线通信方法而执行的程序(程序代码)、软件模块等。
储存器1003是计算机可读取的记录介质,例如可以由柔性盘、软(Floopy)(注册商标)盘、光磁盘(例如,紧凑盘(CD-ROM(Compact Disc ROM)等)、数字通用盘、蓝光(Blu-ray)(注册商标)盘)、可移动盘、硬盘驱动器、智能卡、闪存设备(例如,卡、棒、键驱动)、磁条、数据库、服务器、其他适当的存储介质中的至少一个构成。储存器1003也可以被称为辅助存储装置。
通信装置1004是用于经由有线和/或无线网络进行计算机间的通信的硬件(发送接收设备),例如也被称为网络设备、网络控制器、网卡、通信模块等。通信装置1004例如为了实现频分双工(FDD:Frequency Division Duplex)和/或时分双工(TDD:Time DivisionDuplex),也可以包含高频开关、双工器、滤波器、频率合成器等而构成。例如,上述的发送接收天线101(201)、放大器单元102(202)、发送接收单元103(203)以及传输路径接口106等,也可以在通信装置1004中实现。
输入装置1005是受理来自外部的输入的输入设备(例如,键盘、鼠标、麦克风、开关、按键、传感器等)。输出装置1006是实施向外部的输出的输出设备(例如,显示器、扬声器、LED(发光二极管(Light Emitting Diode))灯等)。另外,输入装置1005以及输出装置1006也可以是成为一体的结构(例如,触摸面板)。
此外,处理器1001、存储器1002等各装置通过用于进行信息通信的总线1007连接。总线1007可以由一个总线构成,按装置间,也可以由不同的总线构成。
此外,无线基站10以及用户终端20可以包括微处理器、数字信号处理器(DSP:Digital Signal Processor)、ASIC(专用集成电路(Application Specific IntegratedCircuit))、PLD(可编程逻辑器件(Programmable Logic Device))以及FPGA(现场可编程门阵列(Field Programmable Gate Array))等硬件而构成,也可以利用该硬件实现各功能块的一部分或全部。例如,处理器1001可以利用这些硬件中的至少一个来实现。
(变形例)
另外,关于在本说明书中说明的用语和/或本说明书的理解所需的用语,可以置换为具有相同或者相似的含义的用语。例如,信道和/或码元也可以是信号(信令)。此外,信号也可以是消息。参考信号也能够简称为RS(参考信号(Reference Signal)),并且根据应用的标准,也可以被称为导频(Pilot)、导频信号等。此外,分量载波(CC:Component Carrier)也可以被称为小区、频率载波、载波频率等。
此外,无线帧也可以在时域中由一个或者多个期间(帧)构成。构成无线帧的该一个或者多个各期间(帧)也可以被称为子帧。进一步,子帧也可以在时域中由一个或者多个时隙构成。子帧可以是不依赖于参数集的固定的时间长度(例如,1ms)。
进而,时隙在时域中可以由一个或多个码元(正交频分复用(OFDM:OrthogonalFrequency Division Multiplexing)码元、单载波频分多址接入(SC-FDMA:SingleCarrier Frequency Division Multiple Access)码元等)构成。此外,时隙可以是基于参数集的时间单位。此外,时隙也可以包含多个迷你时隙。各迷你时隙在时域中也可以由一个或多个码元构成。此外,迷你时隙可以被称为子时隙。
无线帧、子帧、时隙、迷你时隙以及码元全都表示传输信号时的时间单位。无线帧、子帧、时隙、迷你时隙以及码元也可以使用与各自对应的其他称呼。例如,1个子帧也可以被称为发送时间间隔(TTI:Transmission Time Interval),多个连续的子帧也可以被称为TTI,1个时隙或1个迷你时隙也可以被称为TTI。即,子帧和/或TTI可以是现有的LTE中的子帧(1ms),也可以是比1ms短的期间(例如,1-13个码元),也可以是比1ms长的期间。另外,表示TTI的单位可以被称为时隙、迷你时隙等而非子帧。
这里,TTI例如是指无线通信中的调度的最小时间单位。例如,在LTE系统中,无线基站对各用户终端进行以TTI为单位分配无线资源(在各用户终端中能够使用的频率带宽、发送功率等)的调度。另外,TTI的定义不限于此。
TTI可以是被信道编码的数据分组(传输块)、码块、和/或码字的发送时间单位,也可以成为调度、链路自适应等的处理单位。另外,在给定了TTI时,实际映射传输块、码块、和/或码字的时间区间(例如,码元数量)也可以比该TTI短。
另外,在1个时隙或1个迷你时隙被称为TTI的情况下,1个以上的TTI(即,一个以上的时隙或一个以上的迷你时隙)可以成为调度的最小时间单位。此外,构成该调度的最小时间单位的时隙数量(迷你时隙数量)也可以受控制。
具有1ms的时间长度的TTI可以称为通常TTI(LTE Rel.8-12中的TTI)、标准TTI、长TTI、通常子帧、标准子帧、或者长子帧等。比通常TTI短的TTI可以称为缩短TTI、短TTI、部分TTI(partial或fractional TTI)、缩短子帧、短子帧、迷你时隙或子时隙等。
另外,长TTI(例如,通常TTI、子帧等)可以替换为具有超过1ms的时间长度的TTI,短TTI(例如,缩短TTI等)也可以替换为具有小于长TTI的TTI长度且1ms以上的TTI长度的TTI。
资源块(RB:Resource Block)是时域以及频域的资源分配单位,在频域中,也可以包含一个或者多个连续的副载波(子载波(subcarrier))。此外,RB在时域中可以包含一个或者多个码元,也可以是1个时隙、1个迷你时隙、1个子帧或者1个TTI的长度。1个TTI、1个子帧也可以分别由一个或者多个资源块构成。另外,一个或多个RB可以称为物理资源块(PRB:Physical RB)、子载波组(SCG:Sub-Carrier Group)、资源元素组(REG:Resource ElementGroup)、PRB对、RB对等。
此外,资源块也可以由一个或者多个资源元素(RE:Resource Element)构成。例如,1个RE也可以是1个子载波以及1个码元的无线资源区域。
另外,上述无线帧、子帧、时隙、迷你时隙以及码元等的结构仅为例示。例如,针对无线帧中包含的子帧的数量、每子帧或每无线帧的时隙的数量、时隙内包含的迷你时隙的数量、时隙或迷你时隙中包含的码元以及RB的数量、RB中包含的子载波的数量、以及TTI内的码元数量、码元长度、循环前缀(CP:Cyclic Prefix)长度等结构,能够进行各种变更。
此外,在本说明书说明的信息、参数等,可以由绝对值来表示,也可以由相对于规定的值的相对值来表示,也可以由对应的其他信息来表示。例如,无线资源也可以是通过规定的索引来指示的。
在本说明书中用于参数等的名称在任何一点上都不具备限定意义。例如,各种信道(PUCCH(物理上行链路控制信道(Physical Uplink Control Channel))、PDCCH(物理下行链路控制信道(Physical Downlink Control Channel))等)以及信息元素能够由所有适当的名称来识别,所以对这些各种信道以及信息元素分配的各种名称,在任何一点上都不具备限定意义。
在本说明书中说明的信息、信号等可以使用各种不同的技术中的任意一种来表示。例如,在上述的整个说明中可提及的数据、指令、命令、信息、信号、比特、码元以及码片等也可以由电压、电流、电磁波、磁场或者磁性粒子、光场或者光子、或者它们的任意的组合来表示。
此外,信息、信号等可以从上层输出到下层和/或从下层输出到上层。信息、信号等也可以经由多个网络节点而被输入输出。
被输入输出的信息、信号等可以保存在特定的场所(例如,存储器),也可以由管理表格管理。被输入输出的信息、信号等也可以被改写、更新或者追加。被输出的信息、信号等也可以被删除。被输入的信息、信号等也可以被发送给其他装置。
信息的通知并不限定于在本说明书中说明的方式/实施方式,也可以通过其他的方法来进行。例如,信息的通知可以通过物理层信令(例如,下行控制信息(下行链路控制信息(DCI:Downlink Control Information))、上行控制信息(上行链路控制信息(UCI:Uplink Control Information)))、高层信令(例如,RRC(无线资源控制(Radio ResourceControl))信令、广播信息(主信息块(MIB:Master Information Block)、系统信息块(SIB:System Information Block)等)、MAC(媒体访问控制(Medium Access Control))信令)、其他的信号或者它们的组合来实施。
另外,物理层信令也可以被称为L1/L2(层1/层2(Layer 1/Layer 2))控制信息(L1/L2控制信号)、L1控制信息(L1控制信号)等。此外,RRC信令也可以被称为RRC消息,例如,也可以是RRC连接设置(RRCConnectionSetup)消息、RRC连接重构(RRCConnectionReconfiguration)消息等。此外,MAC信令例如也可以利用MAC控制元素(MAC CE(Control Element))而被通知。
此外,规定的信息的通知(例如,“是X”的通知)并不限定于显式地进行,也可以隐式地(例如,通过不进行该规定的信息的通知或通过其他信息的通知而)进行。
判定可以通过由1比特表示的值(0或1)来进行,也可以通过由真(true)或者假(false)表示的真假值(boolean)来进行,也可以通过数值的比较(例如,与规定的值的比较)来进行。
软件不管是被称为软件、固件、中间件、微代码、硬件描述语言,还是被称为其他名称,都应广泛地解释为表示指令、指令集、代码、代码段、程序代码、程序、子程序、软件模块、应用、软件应用、软件包、例程、子例程、对象、可执行文件、执行线程、过程、功能等。
此外,软件、指令、信息等可以经由传输介质来发送接收。例如,在软件使用有线技术(同轴电缆、光缆、双绞线以及数字订户线(DSL:Digital Subscriber Line)等)和/或无线技术(红外线、微波等)而从网站、服务器或者其他远程源发送的情况下,这些有线技术和/或无线技术包含在传输介质的定义内。
在本说明书中使用的“系统”以及“网络”等用语,可以互换使用。
在本说明书中,“基站(BS:Base Station)”、“无线基站”、“eNB”、“gNB”、“小区”、“扇区”、“小区组”、“载波”以及“分量载波”等用语可以互换使用。基站也有被称为固定站(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小型小区等用语的情况。
基站能够容纳1个或者多个(例如,3个)小区(也被称为扇区)。在基站容纳多个小区的情况下,基站的覆盖范围区域整体能够划分为多个更小的区域,并且每个更小的区域也能够通过基站子系统(例如,室内用的小型基站(远程无线头(RRH:Remote RadioHead)))来提供通信服务。“小区”或者“扇区”等用语,是指在其覆盖范围中进行通信服务的基站和/或基站子系统的覆盖范围区域的一部分或者全部。
在本说明书中,“移动台(MS:Mobile Station)”、“用户终端(user terminal)”、“用户装置(UE:User Equipment)”以及“终端”等用语,可以互换地使用。基站也有被称为固定站(fixed station)、NodeB、eNodeB(eNB)、接入点(access point)、发送点、接收点、毫微微小区、小型小区等用语的情况。
移动台有时也被本领域技术人员称为订户站、移动单元、订户单元、无线单元、远程单元、移动设备、无线设备,无线通信设备、远程设备、移动订户站、接入终端、移动终端、无线终端、远程终端、手持设备、用户代理、移动客户端、客户端或者一些其他适当的用语。
此外,本说明书中的无线基站也可以替换为用户终端。例如,对于将无线基站以及用户终端间的通信置换为多个用户终端间(设备对设备(D2D:Device-to-Device))的通信的结构,也可以应用本发明的各方式/实施方式。在该情况下,可以设为用户终端20具有上述无线基站10具有的功能的结构。此外,“上行”或“下行”等词,也可以替换为“侧”。例如,上行信道也可以替换为侧信道。
同样地,本说明书中的用户终端也可以替换为无线基站。在该情况下,可以设为无线基站10具有上述用户终端20具有的功能的结构。
在本说明书中,设为由基站进行的特定操作有时根据情况由其上位节点(uppernode)进行。在包含具有基站的一个或者多个网络节点(network nodes)的网络中,为了与终端的通信而进行的各种操作显然可以由基站、基站以外的1个以上的网络节点(例如,考虑MME(移动性管理实体(Mobility Management Entity))、S-GW(服务网关(Serving-Gateway))等,但并不限定于此)或者它们的组合来进行。
在本说明书中说明的各方式/实施方式可以单独使用,也可以组合使用,也可以伴随着执行而切换使用。此外,在本说明书中说明的各方式/实施方式的处理过程、时序、流程图等,只要不矛盾,则可以调换顺序。例如,关于在本说明书中说明的方法,按照例示的顺序提示各种步骤的元素,并不限定于所提示的特定的顺序。
在本说明书中说明的各方式/实施方式可以应用于LTE(长期演进(Long TermEvolution))、LTE-A(LTE-Advanced)、LTE-B(LTE-Beyond)、SUPER3G、IMT-Advanced、4G(第4代移动通信系统(4th generation mobile communication system))、5G(第5代移动通信系统(5th generation mobile communication system))、FRA(未来无线接入(FutureRadio Access))、New-RAT(无线接入技术(Radio Access Technology))、NR(新无线(NewRadio))、NX(新无线接入(New radio access))、FX(下一代无线接入(Future generationradio access))、GSM(注册商标)(全球移动通信系统(Global System for Mobilecommunications))、CDMA2000、UMB(超移动宽带(Ultra Mobile Broadband))、IEEE 802.11(Wi-Fi(注册商标))、IEEE 802.16(WiMAX(注册商标))、IEEE 802.20、UWB(超宽带(Ultra-WideBand))、Bluetooth(注册商标)以及利用其他恰当的无线通信方法的系统和/或基于它们而被增强的下一代系统。
在本说明书中使用的所谓“基于”的记载,除非另行明确描述,否则不表示“仅基于”。换言之,所谓“基于”的记载,表示“仅基于”和“至少基于”双方。
对在本说明书中使用的使用了“第一”、“第二”等称呼的元素的任何参照,都不对这些元素的数量或者顺序进行全面限定。可以在本说明书中使用这些称呼作为区分2个以上的元素间的便利的方法。因此,第一以及第二元素的参照并不意味着只可以采用2个元素或者第一元素必须以某种形式位于第二元素之前。
在本说明书中使用的所谓“判断(决定)(determining)”这样的用语,有时包含多种多样的操作。“判断(决定)”例如可以将计算(calculating)、算出(computing)、处理(processing)、导出(deriving)、调查(investigating)、搜索(looking up)(例如,在表格、数据库或者其他数据结构中的搜索)、确认(ascertaining)等视为进行“判断(决定)”等。此外,“判断(决定)”可以将接收(receiving)(例如,接收信息)、发送(transmitting)(例如,发送信息)、输入(input)、输出(output)、接入(accessing)(例如,接入存储器中的数据)等视为进行“判断(决定)”。此外,“判断(决定)”可以将解决(resolving)、选择(selecting)、选定(choosing)、建立(establishing)、比较(comparing)等视为进行“判断(决定)”。即,“判断(决定)”可以将若干操作视为进行“判断(决定)”。
在本说明书中使用的“被连接(connected)”、“被耦合(coupled)”等用语、或者它们所有的变形,意味着2个或其以上的元素间的直接或者间接的所有连接或者耦合,并且能够包含被相互“连接”或者“耦合”的2个元素间存在1个或其以上的中间元素的情况。元素间的耦合或者连接可以是物理上的,也可以是逻辑上的,或者也可以是它们的组合。例如,“连接”也可以替换为“接入”。
在本说明书中2个元素连接的情况下,能够考虑通过使用1个或其以上的电线、电缆和/或印刷电气连接而被相互“连接”或者“耦合”,并且作为若干非限定性且非包容性的例子,通过使用具有无线频域、微波区域以及/或者光(可见以及不可见两者)区域的波长的电磁能量等而被相互“连接”或者“耦合”。
在本说明书中,“A与B不同”这样的用语也可以表示A与B相互不同。“隔开”、“结合”等用语也可以同样被解释。
在本说明书或者权利要求书中使用“包含(including)”、“含有(comprising)”以及它们的变形的情况下,这些用语与用语“具备”同样地,意为包含在内。进一步,在本说明书或者权利要求书中使用的用语“或者(or)”,并不意味着逻辑异或。
以上,详细说明了本发明,但对于本领域技术人员而言,本发明显然并不限定于在本说明书中说明的实施方式。本发明能够作为修正以及变更方式来实施,而不脱离由权利要求书的记载所确定的本发明的宗旨以及范围。因此,本说明书的记载以例示说明为目的,对本发明不具有任何限制性的含义。

Claims (3)

1.一种终端,其特征在于,具有:
控制单元,基于上行控制信息的值、上行控制信道的码元索引、以及小区ID来决定循环移位,基于通过将由高层信令通知的编号除以整数值30而获得的余数或者通过将所述小区ID除以整数值30而获得的余数来决定基准序列,并对所述基准序列应用所述循环移位,由此而生成序列;以及
发送单元,在所述上行控制信道中,发送所述序列。
2.一种终端的无线通信方法,其特征在于,具有:
基于上行控制信息的值、上行控制信道的码元索引、以及小区ID来决定循环移位,基于通过将由高层信令通知的编号除以整数值30而获得的余数或者通过将所述小区ID除以整数值30而获得的余数来决定基准序列,并对所述基准序列应用所述循环移位,由此而生成序列的步骤;以及
在所述上行控制信道中,发送所述序列的步骤。
3.一种具有终端与基站的系统,其特征在于,
所述终端具有:
控制单元,基于上行控制信息的值、上行控制信道的码元索引、以及小区ID来决定循环移位,基于通过将由高层信令通知的编号除以整数值30而获得的余数或者通过将所述小区ID除以整数值30而获得的余数来决定基准序列,并对所述基准序列应用所述循环移位,由此而生成序列;以及
发送单元,在所述上行控制信道中,发送所述序列,
所述基站在所述上行控制信道中接收所述序列。
CN201780092443.XA 2017-06-23 2017-06-23 用户终端以及无线通信方法 Active CN110785974B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/023298 WO2018235299A1 (ja) 2017-06-23 2017-06-23 ユーザ端末及び無線通信方法

Publications (2)

Publication Number Publication Date
CN110785974A CN110785974A (zh) 2020-02-11
CN110785974B true CN110785974B (zh) 2023-08-01

Family

ID=64736008

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201780092443.XA Active CN110785974B (zh) 2017-06-23 2017-06-23 用户终端以及无线通信方法

Country Status (10)

Country Link
US (1) US11343049B2 (zh)
EP (1) EP3644566A4 (zh)
JP (1) JPWO2018235299A1 (zh)
CN (1) CN110785974B (zh)
AU (1) AU2017420053B2 (zh)
BR (1) BR112019027494A2 (zh)
MX (1) MX2019015092A (zh)
PE (1) PE20200509A1 (zh)
SA (1) SA519410881B1 (zh)
WO (1) WO2018235299A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110731114B (zh) * 2017-05-31 2023-10-31 株式会社Ntt都科摩 用户终端以及无线通信方法
CN112332957B (zh) * 2017-06-16 2022-04-22 华为技术有限公司 一种传输信息的方法和装置
CA3074966A1 (en) * 2017-09-08 2019-03-14 Ntt Docomo, Inc. User terminal and radio communication method
US11356987B2 (en) * 2017-09-30 2022-06-07 Samsung Electronics Co., Ltd. Method and equipment for transmitting uplink control information and setting uplink time advance
US11985017B2 (en) * 2018-10-28 2024-05-14 Indian Institute Of Technology Hyderabad (Iith) Method and system for generating a transmit waveform for reference sequences
CN115136639A (zh) * 2020-02-20 2022-09-30 株式会社Ntt都科摩 终端、无线通信方法以及基站

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233710A (zh) * 2005-06-14 2008-07-30 株式会社Ntt都科摩 发送装置、接收装置、移动通信系统及同步信道发送方法
CN101978717A (zh) * 2008-03-25 2011-02-16 高通股份有限公司 专用基准信号的发送和接收
CN102362473A (zh) * 2009-03-22 2012-02-22 Lg电子株式会社 用于在无线通信系统中发送基准信号的方法和装置
CN103312447A (zh) * 2012-03-16 2013-09-18 中兴通讯股份有限公司 物理上行控制信道解调参考信号的发送方法及装置
WO2017099524A1 (ko) * 2015-12-10 2017-06-15 엘지전자(주) 짧은 전송 시간 간격을 지원하는 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 지원하는 장치
CN110945934A (zh) * 2017-05-31 2020-03-31 株式会社Ntt都科摩 无线基站以及无线通信方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8699426B2 (en) * 2008-03-26 2014-04-15 Qualcomm Incorporated Method and apparatus for resource allocation in wireless communication systems
TR201802276T4 (tr) * 2008-03-31 2018-03-21 Ericsson Telefon Ab L M Bir LTE sistemde PUSCH'da CSI iletmeye yönelik usul ve aygıt.
JP2012527154A (ja) * 2009-05-21 2012-11-01 エルジー エレクトロニクス インコーポレイティド 多重アンテナシステムにおける参照信号送信方法及び装置
CN101997659B (zh) * 2009-08-25 2012-12-26 电信科学技术研究院 配置上行控制资源以及上行控制信息的传输方法及装置
JP5087061B2 (ja) * 2009-10-30 2012-11-28 シャープ株式会社 無線通信システム、基地局装置、移動局装置および無線通信方法
KR101814394B1 (ko) * 2010-01-17 2018-01-03 엘지전자 주식회사 무선 통신 시스템에서 제어 정보의 전송 방법 및 장치
JP2012005075A (ja) * 2010-06-21 2012-01-05 Ntt Docomo Inc 移動端末装置及び無線通信方法
JP5466656B2 (ja) * 2011-02-14 2014-04-09 株式会社Nttドコモ 無線通信システム、無線基地局、ユーザ端末及び通信制御方法
CN103858368B (zh) * 2011-08-16 2017-04-12 Lg电子株式会社 在无线通信系统中发射上行基准信号的方法和设备
JP5162699B1 (ja) * 2011-10-04 2013-03-13 シャープ株式会社 移動局装置、基地局装置、無線通信方法、無線通信システムおよび集積回路
KR101589563B1 (ko) * 2011-11-17 2016-01-28 엘지전자 주식회사 상향링크 신호 수신 방법 및 기지국과, 상향링크 신호 전송 방법 및 사용자기기
CN104137450B (zh) * 2012-02-20 2017-12-12 Lg 电子株式会社 无线通信系统中传送上行链路信号的方法和设备
CN104704758B (zh) * 2012-08-06 2018-08-28 株式会社Kt 传输接收点的控制信息传输方法
CN107432007A (zh) * 2015-03-27 2017-12-01 华为技术有限公司 用户设备、网络设备和确定物理上行控制信道资源的方法
JP7078554B2 (ja) * 2017-02-02 2022-05-31 株式会社Nttドコモ 端末及び無線通信方法
CN110731114B (zh) * 2017-05-31 2023-10-31 株式会社Ntt都科摩 用户终端以及无线通信方法
CA3074966A1 (en) * 2017-09-08 2019-03-14 Ntt Docomo, Inc. User terminal and radio communication method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101233710A (zh) * 2005-06-14 2008-07-30 株式会社Ntt都科摩 发送装置、接收装置、移动通信系统及同步信道发送方法
CN101978717A (zh) * 2008-03-25 2011-02-16 高通股份有限公司 专用基准信号的发送和接收
CN102362473A (zh) * 2009-03-22 2012-02-22 Lg电子株式会社 用于在无线通信系统中发送基准信号的方法和装置
CN103312447A (zh) * 2012-03-16 2013-09-18 中兴通讯股份有限公司 物理上行控制信道解调参考信号的发送方法及装置
WO2017099524A1 (ko) * 2015-12-10 2017-06-15 엘지전자(주) 짧은 전송 시간 간격을 지원하는 무선 통신 시스템에서 상향링크 신호를 전송하기 위한 방법 및 이를 지원하는 장치
CN110945934A (zh) * 2017-05-31 2020-03-31 株式会社Ntt都科摩 无线基站以及无线通信方法

Also Published As

Publication number Publication date
SA519410881B1 (ar) 2023-12-21
JPWO2018235299A1 (ja) 2020-04-23
AU2017420053A1 (en) 2020-01-23
WO2018235299A1 (ja) 2018-12-27
US11343049B2 (en) 2022-05-24
PE20200509A1 (es) 2020-03-05
MX2019015092A (es) 2020-02-17
US20200127795A1 (en) 2020-04-23
EP3644566A4 (en) 2021-01-27
BR112019027494A2 (pt) 2020-07-07
EP3644566A1 (en) 2020-04-29
CN110785974A (zh) 2020-02-11
AU2017420053B2 (en) 2022-10-13

Similar Documents

Publication Publication Date Title
CN109997394B (zh) 终端、系统以及无线通信方法
CN110832923B (zh) 用户终端以及无线通信方法
CN110583069B (zh) 终端、基站、系统以及无线通信方法
CN110945934B (zh) 无线基站以及无线通信方法
CN110249684B (zh) 终端、系统以及无线通信方法
JP7078554B2 (ja) 端末及び無線通信方法
CN110431816B (zh) 终端、基站以及系统
CN111052640B (zh) 终端、无线通信方法、基站以及系统
CN110785974B (zh) 用户终端以及无线通信方法
CN110870230B (zh) 用户终端以及无线通信方法
CN110731114B (zh) 用户终端以及无线通信方法
JPWO2018135608A1 (ja) ユーザ端末及び無線通信方法
CN111345086B (zh) 用户终端以及无线通信方法
CN111316608B (zh) 用户终端以及无线通信方法
CN111567005B (zh) 终端、无线通信方法、基站以及系统
JP7210676B2 (ja) 端末、無線通信方法及びシステム

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant