Nothing Special   »   [go: up one dir, main page]

CN110777157A - CYP450 Gene Catalyzing the C-28 Oxidation of Arsinol and Its Encoded Product and Application - Google Patents

CYP450 Gene Catalyzing the C-28 Oxidation of Arsinol and Its Encoded Product and Application Download PDF

Info

Publication number
CN110777157A
CN110777157A CN201910957806.2A CN201910957806A CN110777157A CN 110777157 A CN110777157 A CN 110777157A CN 201910957806 A CN201910957806 A CN 201910957806A CN 110777157 A CN110777157 A CN 110777157A
Authority
CN
China
Prior art keywords
nucleotide sequence
gene
seq
oxidation
sequence
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910957806.2A
Other languages
Chinese (zh)
Other versions
CN110777157B (en
Inventor
徐晖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University of Traditional Chinese Medicine
Original Assignee
Guangzhou University of Traditional Chinese Medicine
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University of Traditional Chinese Medicine filed Critical Guangzhou University of Traditional Chinese Medicine
Priority to CN201910957806.2A priority Critical patent/CN110777157B/en
Publication of CN110777157A publication Critical patent/CN110777157A/en
Application granted granted Critical
Publication of CN110777157B publication Critical patent/CN110777157B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0071Oxidoreductases (1.) acting on paired donors with incorporation of molecular oxygen (1.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y114/00Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14)
    • C12Y114/14Oxidoreductases acting on paired donors, with incorporation or reduction of molecular oxygen (1.14) with reduced flavin or flavoprotein as one donor, and incorporation of one atom of oxygen (1.14.14)

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Mycology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

本发明公开了催化香树脂醇C‑28位氧化的CYP450基因IaAO2,编码一种催化香树脂醇C‑28位氧化的蛋白,在工程菌株中诱导表达能够催化α‑香树脂醇与β‑香树脂醇分别氧化为熊果酸和齐墩果酸。其核苷酸序列如SEQ ID No.1所示;氨基酸序列如SEQ ID No.2所示。本发明还公开了其表达载体,宿主菌,在制备三萜类化合物、制备催化五环三萜C‑28位氧化化合物、制备催化五环三萜α‑香树脂醇和β‑香树脂醇氧化化合物中的应用。本发明还公开了基于基因IaAO2的序列特征进行同源基因改造的方法及其获得的新基因tIaAO1。本发明提供的IaAO2基因,与同源基因相比具有更短的核苷酸序列,可以通过利用该基因构建转基因生物,合成具有重要经济价值的五环三萜类化合物,具有很好的应用前景。

The invention discloses a CYP450 gene IaAO2 that catalyzes the C-28 oxidation of balsam, encodes a protein that catalyzes the C-28 oxidation of balsam, and induces expression in engineering strains that can catalyze α-arosinol and β-aromatic Resin alcohols were oxidized to ursolic acid and oleanolic acid, respectively. Its nucleotide sequence is shown in SEQ ID No.1; its amino acid sequence is shown in SEQ ID No.2. The invention also discloses its expression vector and host bacteria, which are used for preparing triterpenoid compounds, preparing catalytic pentacyclic triterpene C-28 oxidation compounds, and preparing catalytic pentacyclic triterpenes α-arosinol and β-arosinol oxidation compounds applications in . The invention also discloses a method for homologous gene modification based on the sequence characteristics of the gene IaAO2 and the obtained new gene tIaAO1. The IaAO2 gene provided by the invention has a shorter nucleotide sequence compared with the homologous gene, can construct transgenic organisms by utilizing this gene, synthesize pentacyclic triterpenoids with important economic value, and has good application prospects .

Description

催化香树脂醇C-28位氧化的CYP450基因及其编码产物与应用CYP450 Gene Catalyzing the C-28 Oxidation of Arsinol and Its Encoded Product and Application

技术领域technical field

本发明涉及催化香树脂醇C-28位氧化的基因及其编码产物与应用,属于药用植物基因工程领域,特别涉及催化香树脂醇C-28位氧化的CYP450基因及其编码产物与应用。The invention relates to a gene that catalyzes the oxidation of C-28 position of arasinol, its encoded product and application, and belongs to the field of genetic engineering of medicinal plants, in particular to a CYP450 gene that catalyzes the C-28 oxidation of balsinol, its encoded product and application.

背景技术Background technique

细胞色素P450单加氧酶(CYP450)是一类在自然界中广泛存在,具有氧化功能的亚铁血红素蛋白酶家族,参与微生物、动物、植物体内各种代谢反应。在植物中,CYP450在萜类、黄酮类、生物碱类、植物激素等多种物质的生物合成中都发挥重要的生理功能。在三萜皂苷的生物合成途径下游,CYP450起着对三萜骨架的修饰作用,丰富了结构多样性,是植物体内含有种类繁多的三萜类化合物的因素之一。因此,CYP450的鉴定是揭示三萜生物合成机制的关键。Cytochrome P450 monooxygenase (CYP450) is a family of heme proteases with oxidative functions that are widely present in nature and participate in various metabolic reactions in microorganisms, animals and plants. In plants, CYP450 plays important physiological functions in the biosynthesis of terpenoids, flavonoids, alkaloids, plant hormones and other substances. In the downstream biosynthetic pathway of triterpenoid saponins, CYP450 plays a role in modifying the triterpenoid skeleton, enriching the structural diversity, and is one of the factors that plants contain a wide variety of triterpenoids. Therefore, the identification of CYP450 is the key to reveal the mechanism of triterpenoid biosynthesis.

岗梅(Ilex asprella)是一种岭南特色的中药材,其主要有效成分为三萜及三萜皂苷,而且大部分为熊果烷型(α-香树脂醇衍生物),少数为齐墩果烷型(β-香树脂醇衍生物)。三萜类化合物虽然在植物中广泛存在,但人们对其具体的生物合成途径了解还不十分全面,三萜化合物的生物合成过程可大致分为前体形成、骨架构建以及骨架修饰三个环节。Gangmei (Ilex asprella) is a traditional Chinese medicinal material with Lingnan characteristics. Its main active ingredients are triterpenes and triterpenoid saponins, and most of them are arbutane (α-aromatic resin alcohol derivatives), and a few are olean seeds. Alkyl (β-aromatic resin alcohol derivatives). Although triterpenoids exist widely in plants, their specific biosynthetic pathways are not fully understood. The biosynthetic process of triterpenoids can be roughly divided into three steps: precursor formation, skeleton construction and skeleton modification.

三萜类化合物的生物合成起始于萜类共同的前体物IPP(isopentenylpyrophosphate)和DMAPP(dimethylallyl diphosphate),它们经过一系列的酶催化反应可以生成2,3-氧化鲨烯(2,3-oxidosqualene)。2,3-氧化鲨烯在不同的2,3-氧化鲨烯环化酶OSCs的环化作用下,如羽扇豆醇合酶(lupeol synthase)、达玛烯二醇合酶(dammarenediolsynthase)、香树脂合酶(amyrin synthase)等,生成不同类型的三萜骨架。三萜骨架再经过CYP450的氧化、糖基转移酶UGT糖基化等后修饰过程,最终形成种类众多的三萜皂苷。The biosynthesis of triterpenoids starts from the common terpenoid precursors IPP (isopentenylpyrophosphate) and DMAPP (dimethylallyl diphosphate), which undergo a series of enzymatic reactions to generate 2,3-oxysqualene (2,3- oxidosqualene). 2,3-oxysqualene is cyclized by different 2,3-oxysqualene cyclase OSCs, such as lupeol synthase, dammarenediol Resin synthase (amyrin synthase), etc., generate different types of triterpenoid backbones. The triterpene backbone undergoes post-modification processes such as CYP450 oxidation, glycosyltransferase UGT glycosylation, etc., and finally forms a wide variety of triterpenoid saponins.

虽然,目前已鉴定的三萜骨架氧化修饰相关的CYP450数目较多,但尚未有任何报道公开过能够催化香树脂醇C-28位氧化的天然短序列细胞色素P450酶基因编码的蛋白。Although a large number of CYP450 related to the oxidative modification of triterpene backbone have been identified so far, no report has disclosed the protein encoded by the natural short-sequence cytochrome P450 enzyme gene that can catalyze the C-28 oxidation of aryl alcohol.

发明内容SUMMARY OF THE INVENTION

为了克服现有技术的不足,本发明的目的是提供一种催化香树脂醇C-28位氧化的特殊细胞色素P450基因IaAO2,其编码的蛋白在酿酒酵母工程菌株中经诱导表达能够催化α-香树脂醇(α-amyrin)与β-香树脂醇(β-amyrin)分别氧化为熊果酸和齐墩果酸,与同源基因相比其具有更短的核苷酸序列。In order to overcome the deficiencies of the prior art, the object of the present invention is to provide a special cytochrome P450 gene IaAO2 that catalyzes the C-28 oxidation of balsamic resin, and the protein encoded by it can catalyze α- α-amyrin and β-amyrin are oxidized to ursolic acid and oleanolic acid, respectively, which have shorter nucleotide sequences compared with the homologous genes.

本发明的另一个目的是提供上述催化香树脂醇C-28位氧化的特殊细胞色素P450基因IaAO2编码的蛋白质及其应用。Another object of the present invention is to provide the above-mentioned protein encoded by the special cytochrome P450 gene IaAO2, which catalyzes the oxidation of the C-28 position of aryl alcohol, and its application.

本发明的另一目的是提供一种同源基因5’-端截短的基因改造方法及其得到的基因tIaAO1。Another object of the present invention is to provide a genetic modification method for truncating the 5'-end of a homologous gene and the gene tIaAO1 obtained therefrom.

为了达到上述目的,本发明采用以下技术方案:In order to achieve the above object, the present invention adopts the following technical solutions:

本发明提供的催化香树脂醇C-28位氧化的CYP450基因IaAO2,核苷酸序列如下1)-5)任一种所示:The CYP450 gene IaAO2 that catalyzes the C-28 oxidation of balsamic resin provided by the invention, the nucleotide sequence is shown in any one of the following 1)-5):

1)如SEQ ID No.1所示的核苷酸序列;或1) The nucleotide sequence shown in SEQ ID No. 1; or

2)编码SEQ ID No.2所示氨基酸序列的核苷酸序列;或2) A nucleotide sequence encoding the amino acid sequence shown in SEQ ID No. 2; or

3)与SEQ ID No.1的互补序列能够进行杂交的核苷酸序列,该核苷酸序列所编码的蛋白质仍具有催化香树脂醇C-28位氧化的功能;或3) a nucleotide sequence capable of hybridizing with the complementary sequence of SEQ ID No. 1, and the protein encoded by the nucleotide sequence still has the function of catalyzing the oxidation of balsamic resin at the C-28 position; or

4)与SEQ ID No.1所示的核苷酸序列至少具有75%或以上同源性的核苷酸序列;或4) A nucleotide sequence having at least 75% or more homology with the nucleotide sequence shown in SEQ ID No. 1; or

5)在SEQ ID No.1所示的核苷酸序列的基础上进行一个或多个碱基的缺失、取代或插入的核苷酸序列变体,且该核苷酸序列变体所编码的蛋白仍具有催化香树脂醇C-28位氧化的功能或活性。5) A nucleotide sequence variant in which one or more bases are deleted, substituted or inserted on the basis of the nucleotide sequence shown in SEQ ID No. 1, and the nucleotide sequence variant encoded The protein still has the function or activity of catalyzing the C-28 oxidation of balsamic resin.

本发明提供一种催化香树脂醇C-28位氧化的蛋白,氨基酸序列为1)或2)任一种所示:The present invention provides a protein that catalyzes the oxidation of balsamic resin at the C-28 position, and the amino acid sequence is shown in either 1) or 2):

1)如SEQ ID No.2所示的氨基酸残基序列;或1) the amino acid residue sequence shown in SEQ ID No.2; or

2)将SEQ ID No.2所示的氨基酸序列通过一个或多个氨基酸残基的替换、缺失或/和插入而衍生得到的仍具有催化香树脂醇C-28位氧化的功能或活性的蛋白变体。2) A protein with the function or activity of catalyzing the C-28 oxidation of balsamyl alcohol derived from the amino acid sequence shown in SEQ ID No.2 by replacement, deletion or/and insertion of one or more amino acid residues Variants.

本发明提供一种用于扩增催化香树脂醇C-28位氧化的CYP450基因IaAO2的特异性引物,所述特异性引物的上游引物序列如SEQ ID No.3所示;下游引物序列如SEQ ID No.4所示。The present invention provides a specific primer for amplifying CYP450 gene IaAO2 that catalyzes the C-28 oxidation of balsamic resin. The upstream primer sequence of the specific primer is shown in SEQ ID No. 3; the downstream primer sequence is shown in SEQ ID No. 3. ID No.4.

本发明提供含有如上所述的核苷酸序列的表达载体。The present invention provides expression vectors containing the nucleotide sequences described above.

进一步地,所述表达载体包括但不限于pET,pESC,pYES-DEST;所述表达载体由SEQID No.1所示的核苷酸序列,通过但不限于DNA连接酶或同源重组方式插入载体。Further, the expression vector includes but is not limited to pET, pESC, pYES-DEST; the expression vector is inserted into the vector by but not limited to the nucleotide sequence shown in SEQID No.1 by DNA ligase or homologous recombination .

本发明提供含有如上所述的核苷酸序列的宿主菌。The present invention provides host bacteria containing the nucleotide sequences described above.

进一步地,该宿主菌的制备方法如下:Further, the preparation method of this host bacteria is as follows:

将SEQ ID No.1基因克隆到真核表达载体,构建带有IaAO2基因的重组表达载体;将重组表达载体转入能够生产α-香树脂醇与β-香树脂醇的工程菌获得重组酵母。The SEQ ID No.1 gene was cloned into a eukaryotic expression vector, and a recombinant expression vector with the IaAO2 gene was constructed; the recombinant expression vector was transferred into the engineering bacteria capable of producing α-arosinol and β-arosinol to obtain recombinant yeast.

更进一步地,所使用的真核表达载体包括但不限于pESC,pYES-DEST;真核表达载体为pESC-TRP。Further, the eukaryotic expression vector used includes but is not limited to pESC, pYES-DEST; the eukaryotic expression vector is pESC-TRP.

更进一步地,SEQ ID No.1基因为克隆到真核表达载体pESC-TRP的限制性内切酶BamH I和Xho I位点间。Furthermore, the gene of SEQ ID No. 1 is cloned into the eukaryotic expression vector pESC-TRP between the restriction endonucleases BamH I and Xho I sites.

更进一步地,所使用的工程菌株包括但不限于Saccharomyces cerevisiae;工程菌株为酿酒酵母工程菌株WAT11tfAX。Further, the used engineering strain includes but is not limited to Saccharomyces cerevisiae; the engineering strain is Saccharomyces cerevisiae engineering strain WAT11tfAX.

本发明提供如上所述的核苷酸序列在制备三萜类化合物中的应用。The present invention provides the use of the above-mentioned nucleotide sequence in the preparation of triterpenoids.

本发明提供如上所述的核苷酸序列在制备催化五环三萜C-28位氧化化合物中的应用。The present invention provides the application of the above-mentioned nucleotide sequence in the preparation of a compound that catalyzes the oxidation of pentacyclic triterpenes at C-28 position.

本发明提供如上所述的核苷酸序列在制备催化五环三萜α-香树脂醇和β-香树脂醇氧化化合物中的应用。The present invention provides the application of the above-mentioned nucleotide sequence in the preparation of catalyzing pentacyclic triterpenes α-arosinol and β-arosinol oxidation compounds.

本发明提供基于如上所述的核苷酸序列特征,进行同源基因5’-端截短的基因改造方法。The present invention provides a genetic modification method for truncation of the 5'-end of a homologous gene based on the above-mentioned nucleotide sequence characteristics.

进一步地,所述的基因改造方法为在序列比对基础上,通过但不限于DNA限制性内切酶或PCR,获得5’-端截短的新基因。Further, the genetic modification method is to obtain a new gene with a truncated 5'-end by, but not limited to, DNA restriction endonuclease or PCR on the basis of sequence alignment.

本发明提供通过同源基因5’-端截短的基因改造方法得到的基因tIaAO1;The present invention provides the gene tIaAO1 obtained by the genetic modification method of homologous gene 5'-end truncation;

tIaAO1基因核苷酸序列如SEQ ID No.5所示;其氨基酸序列如SEQ ID No.6所示;The nucleotide sequence of the tIaAO1 gene is shown in SEQ ID No.5; its amino acid sequence is shown in SEQ ID No.6;

特异性引物序列为:上游引物tIaAO1F如SEQ ID No.7所示;下游引物tIaAO1R如SEQ ID No.8所示。The specific primer sequences are: the upstream primer tIaAO1F is shown in SEQ ID No.7; the downstream primer tIaAO1R is shown in SEQ ID No.8.

进一步地,新基因tIaAO1的制备方法如下:Further, the preparation method of the new gene tIaAO1 is as follows:

将目标基因与SEQ ID No.1基因进行序列比对,确定重叠序列;设计特异性引物,进行PCR扩增获得5’-端截短的新基因。Sequence alignment of the target gene and SEQ ID No. 1 gene was carried out to determine the overlapping sequence; specific primers were designed, and PCR amplification was performed to obtain a new gene with a truncated 5'-end.

更进一步地,通过但不限于PCR扩增、限制性内切酶酶切、人工合成方法,获得5’-端截短的新基因。Further, by but not limited to PCR amplification, restriction endonuclease digestion, and artificial synthesis methods, a new gene with a 5'-end truncated is obtained.

与现有技术相比,本发明具有以下有益效果:Compared with the prior art, the present invention has the following beneficial effects:

本发明提供了一个能够催化香树脂醇C-28位氧化的CYP450基因,该基因为首次从岗梅中克隆得到,编码的蛋白能够催化五环三萜α-香树脂醇和β-香树脂醇分别氧化为熊果酸和齐墩果酸。其与目前已鉴定的植物中催化香树脂醇C-28位氧化的的同源CYP450基因相比,具有更短的核苷酸序列。The invention provides a CYP450 gene capable of catalyzing the C-28 oxidation of balsamic resin. The gene is cloned from Gangmei for the first time. Oxidized to ursolic acid and oleanolic acid. Compared with the homologous CYP450 gene that catalyzes the C-28 oxidation of balsamic resin in plants, it has a shorter nucleotide sequence.

本发明还得到了带有CYP450基因重组表达载体的酿酒酵母工程菌株,分析结果表明,其所诱导表达的蛋白能够将底物α-香树脂醇和β-香树脂醇分别氧化为熊果酸和齐墩果酸。The invention also obtains a Saccharomyces cerevisiae engineering strain with a CYP450 gene recombinant expression vector, and the analysis results show that the induced expression protein can oxidize the substrates α-arosinol and β-arosinol into ursolic acid and Leanolic acid.

附图说明Description of drawings

图1为香树脂醇结构式及原子编号;Fig. 1 is balsamic resin alcohol structural formula and atomic number;

图2为重组酵母代谢产物GC-MS分析;图中:Figure 2 shows the GC-MS analysis of recombinant yeast metabolites; in the figure:

A为重组酵母代谢产物总离子流图;A is the total ion chromatogram of recombinant yeast metabolites;

B为齐墩果酸、熊果酸标准品和重组酵母代谢产物Peak 3、Peak 4质谱图。B is the mass spectrum of oleanolic acid, ursolic acid standard and recombinant yeast metabolites Peak 3 and Peak 4.

具体实施方式Detailed ways

本发明公开一种催化香树脂醇C-28位氧化的CYP450基因及其编码产物与应用。该基因为首次从岗梅中克隆得到,编码的蛋白能够催化五环三萜α-香树脂醇和β-香树脂醇分别氧化为熊果酸和齐墩果酸。The invention discloses a CYP450 gene that catalyzes the C-28 oxidation of balsamic resin, its encoded product and its application. The gene was cloned from Plum for the first time, and the encoded protein can catalyze the oxidation of pentacyclic triterpenes α-arosinol and β-arosinol to ursolic acid and oleanolic acid, respectively.

本发明涉及在岗梅转录组数据筛选参与岗梅三萜类化合物代谢途径相关的CYP450基因。克隆基因并利用在酿酒酵母体内进行异源表达的方法对该基因的编码蛋白进行功能活性分析,涉及岗梅主要活性成分三萜类化合物生物合成途径中CYP450基因及其编码产物与应用。The invention relates to the screening of CYP450 genes involved in the metabolic pathway of triterpenoids in gangmei from the transcriptome data of gangmei. Cloning a gene and using the method of heterologous expression in Saccharomyces cerevisiae to analyze the functional activity of the encoded protein of the gene, involving the CYP450 gene and its encoded product and application in the biosynthetic pathway of triterpenoids, the main active component of Radix Plum.

本实验室前期克隆并鉴定了一个多功能香树脂合酶基因IaAS1,并获得了一株能够稳定高产α-香树脂醇(α-amyrin)和β-香树脂醇(β-amyrin)的酵母工程菌WAT11tfAX,本发明涉及的是一个能够催化五环三萜α-香树脂醇和β-香树脂醇分别生成熊果酸和齐墩果酸的关键细胞色素P450酶基因,将其命名为IaAO2。在本发明被公布之前,尚未有任何报道公开过本专利申请中涉及的IaAO2基因及其编码的氨基酸序列。与目前已鉴定的植物中催化香树脂醇C-28位氧化的同源CYP450基因如拟南芥中的CYP716A1、CYP716A2,葡萄中的CYP716A15、CYP716A17,罗勒中的CYP716A75等相比,IaAO2基因具有更短的核苷酸序列,是一个催化香树脂醇C-28位氧化的特殊CYP450基因。Our laboratory cloned and identified a multifunctional balsam resin synthase gene IaAS1 in the early stage, and obtained a yeast engineering strain capable of stabilizing high-yield α-amyrin and β-amyrin Bacterium WAT11tfAX, the present invention relates to a key cytochrome P450 enzyme gene that can catalyze pentacyclic triterpenes α-amyrinol and β-amyrinol to generate ursolic acid and oleanolic acid respectively, and is named IaAO2. Before the disclosure of the present invention, there has not been any report that disclosed the IaAO2 gene and its encoded amino acid sequence involved in this patent application. Compared with the currently identified homologous CYP450 genes that catalyze the C-28 oxidation of balsamic resin in plants, such as CYP716A1 and CYP716A2 in Arabidopsis, CYP716A15 and CYP716A17 in grapes, and CYP716A75 in basil, IaAO2 gene has more The short nucleotide sequence is a specific CYP450 gene that catalyzes the oxidation of balsamic resin at the C-28 position.

α-香树脂醇、β-香树脂醇、熊果酸和齐墩果酸的结构式及原子编号如图1所示。The structural formulas and atomic numbers of α-amyrin, β-amsinol, ursolic acid and oleanolic acid are shown in Figure 1.

本发明所提供的IaAO2基因具有SEQ ID No.1所示的核苷酸序列,由1239个碱基组成,所述基因编码的蛋白质具有SEQ ID No.2的氨基酸残基序列,由412个氨基酸残基组成。The IaAO2 gene provided by the present invention has the nucleotide sequence shown in SEQ ID No. 1, which consists of 1239 bases, and the protein encoded by the gene has the amino acid residue sequence of SEQ ID No. 2, which consists of 412 amino acids. residue composition.

本发明提供的一种与催化香树脂醇C-28位氧化的特殊细胞色素P450基因:IaAO2,它是下列核苷酸序列之一:A kind of special cytochrome P450 gene provided by the invention and catalyzing the C-28 oxidation of balsamic resin alcohol: IaAO2, it is one of the following nucleotide sequences:

1)序列表SEQ ID No.1中的DNA序列;1) the DNA sequence in SEQ ID No.1 of the sequence listing;

2)与序列表SEQ ID No.1中限定的DNA序列具有一个或几个碱基突变,且编码相同功能蛋白质的DNA序列。2) A DNA sequence having one or several base mutations with the DNA sequence defined in SEQ ID No. 1 of the Sequence Listing and encoding the same functional protein.

本发明提供的由上述基因IaAO2编码的蛋白质,具有序列表SEQ ID No.2中的氨基酸残基序列或将SEQ ID No.2的氨基酸残基序列经过一个或几个氨基酸残基的取代且具有SEQ ID No.2的氨基酸残基序列相同活性的由SEQ ID No.2衍生的蛋白质。The protein encoded by the above-mentioned gene IaAO2 provided by the present invention has the amino acid residue sequence in SEQ ID No. 2 of the sequence table or the amino acid residue sequence of SEQ ID No. 2 is substituted by one or several amino acid residues and has A protein derived from SEQ ID No. 2 having the same activity as the amino acid residue sequence of SEQ ID No. 2.

含有本发明基因IaAO2的表达载体宿主菌和使用该基因在生产三萜类化合物中的应用也在本发明的保护范围之内。The expression vector host bacteria containing the gene IaAO2 of the present invention and the application of the gene in the production of triterpenoids also fall within the protection scope of the present invention.

将SEQ ID No.1基因克隆到真核表达载体pESC-TRP的限制性内切酶BamH I和XhoI位点间,构建带有IaAO2基因的重组表达载体pESC-TRP-IaAO2;将重组表达载体转入能够生产α-香树脂醇与β-香树脂醇的酿酒酵母工程菌株WAT11tfAX(WAT11,trp1::PGAP1-SctHMGR1-TCYC1,ura3::PGAP1-ScERG20-TCYC1,leu2::PGAP1-SeACSL641P-TCYC1,his3::PTEF1-IaAS1-TCYC1)获得重组酵母,用半乳糖诱导蛋白表达。重组酵母培养后收集菌体,提取其代谢产物,硅烷化后用GC-MS进行检测。GC-MS分析结果表明,IaAO2蛋白能够将底物α-香树脂醇和β-香树脂醇分别氧化为熊果酸和齐墩果酸。The gene of SEQ ID No.1 was cloned into the restriction endonuclease BamH I and XhoI sites of the eukaryotic expression vector pESC-TRP, and the recombinant expression vector pESC-TRP-IaAO2 with the IaAO2 gene was constructed; Saccharomyces cerevisiae engineered strains WAT11tfAX (WAT11, trp1::PGAP1-SctHMGR1-TCYC1, ura3::PGAP1-ScERG20-TCYC1, leu2::PGAP1-SeACSL641P-TCYC1, his3::PTEF1-IaAS1-TCYC1) to obtain recombinant yeast and induce protein expression with galactose. After the recombinant yeast was cultured, the bacterial cells were collected, and their metabolites were extracted and detected by GC-MS after silanization. The results of GC-MS analysis showed that the IaAO2 protein could oxidize the substrates α-arosinol and β-arosinol to ursolic acid and oleanolic acid, respectively.

研究结果表明,本发明涉及的具有细胞色素P450基因特征结构域的基因IaAO2与岗梅三萜类化合物生物合成密切相关,在重组酵母细胞内发现该基因编码的蛋白具有五环三萜香树脂醇C-28位氧化功能。The research results show that the gene IaAO2 with the characteristic structural domain of the cytochrome P450 gene involved in the present invention is closely related to the biosynthesis of the triterpenoids of fenugreek. C-28 oxidation function.

本发明提供的IaAO2基因,与同源基因相比具有更短的核苷酸序列,可以通过利用该基因构建转基因生物,合成具有重要经济价值的五环三萜类化合物,具有很好的应用前景。The IaAO2 gene provided by the invention has a shorter nucleotide sequence compared with the homologous gene, and can construct a transgenic organism by utilizing the gene to synthesize pentacyclic triterpenoids with important economic value, and has a good application prospect .

本发明还包括将基于IaAO2基因序列特征,进行同源基因5’-端截短改造方法。The present invention also includes a method for truncating the 5'-end of the homologous gene based on the sequence characteristics of the IaAO2 gene.

现结合附图与具体实施例对本发明作进一步详细说明,但本发明并不仅限于以下的实施例。The present invention will now be described in further detail with reference to the accompanying drawings and specific embodiments, but the present invention is not limited to the following embodiments.

实施例1岗梅IaAO2基因的克隆The cloning of embodiment 1 Gangmei IaAO2 gene

用植物RNA提取试剂盒(Magen)提取岗梅嫩叶总RNA,用反转录试剂盒(全式金)反转录得到cDNA,根据转录组数据设计特异性的引物,以cDNA为模板进行PCR扩增,琼脂糖凝胶电泳表明约在1200bp处出现特异片段,用琼脂糖凝胶回收试剂盒(Magen)回收目标片段,克隆至pEASY载体(全式金)中,鉴定阳性克隆并进行测序验证,用于重组表达载体的构建。Extract the total RNA from the young leaves of Prunus chinensis with a plant RNA extraction kit (Magen), and reverse-transcribe the cDNA with a reverse transcription kit (Full Gold), design specific primers according to the transcriptome data, and perform PCR with the cDNA as a template Amplification, agarose gel electrophoresis showed that a specific fragment appeared at about 1200bp, the target fragment was recovered by agarose gel recovery kit (Magen), cloned into pEASY vector (full gold), and positive clones were identified and verified by sequencing , for the construction of recombinant expression vectors.

1、酵母表达载体的构建1. Construction of yeast expression vector

通过设计带有BamH I和Xho I酶切位点的引物,利用PCR的方法,将克隆到的IaAO2基因插入到酵母表达载体pESC-TRP(Stratagene)的BamH I和Xho I酶切位点之间,获得重组质粒pESC-TRP-IaAO2,并进行测序验证。By designing primers with BamH I and Xho I restriction sites, the cloned IaAO2 gene was inserted between the BamH I and Xho I restriction sites of the yeast expression vector pESC-TRP (Stratagene) by PCR. , the recombinant plasmid pESC-TRP-IaAO2 was obtained and verified by sequencing.

IaAO2基因核苷酸序列如SEQ ID No.1所示;其编码的氨基酸序列如SEQ ID No.2所示。The nucleotide sequence of the IaAO2 gene is shown in SEQ ID No.1; the encoded amino acid sequence is shown in SEQ ID No.2.

特异性引物序列为:上游引物IaAO2F如SEQ ID No.3所示;下游引物IaAO2R如SEQID No.4所示。The specific primer sequences are: the upstream primer IaAO2F is shown in SEQ ID No.3; the downstream primer IaAO2R is shown in SEQ ID No.4.

2、诱导表达2. Induced expression

用醋酸锂转化法将重组质粒pESC-TRP-IaAO2转化至酿酒酵母WAT11tfAX(WAT11,trp1::PGAP1-SctHMGR1-TCYC1,ura3::PGAP1-ScERG20-TCYC1,leu2::PGAP1-Se ACSL641P-TCYC1,his3::PTEF1-IaAS1-TCYC1)中,获得重组酵母。将阳性重组子接种于15mL SC-T液体培养基(含葡萄糖)中,30℃,225rpm培养36h后,换为SC-T无糖培养基继续培养4h,之后吸取一定量的酵母菌液转移至100mL SC-T液体培养基中(含半乳糖),使起始菌液的OD600值为0.1,进行诱导培养,用半乳糖诱导蛋白表达。The recombinant plasmid pESC-TRP-IaAO2 was transformed into Saccharomyces cerevisiae WAT11tfAX (WAT11, trp1::PGAP1-SctHMGR1-TCYC1, ura3::PGAP1-ScERG20-TCYC1, leu2::PGAP1-Se ACSL641P-TCYC1, his3 ::PTEF1-IaAS1-TCYC1), recombinant yeast were obtained. The positive recombinants were inoculated into 15mL SC-T liquid medium (containing glucose), incubated at 30°C and 225rpm for 36h, then replaced with SC-T sugar-free medium for 4h, and then a certain amount of yeast was transferred to the In 100 mL of SC-T liquid medium (containing galactose), the OD600 value of the initial bacterial solution was 0.1, and the induction culture was carried out, and the protein expression was induced with galactose.

实施例2同源基因IaAO1及5’-端截短的新基因tIaAO1Example 2 Homologous gene IaAO1 and 5'-terminal truncated new gene tIaAO1

本实验室前期从药用植物岗梅中克隆并鉴定了另一个香树脂醇C-28位氧化酶基因IaAO1,并构建了一个酿酒酵母表达载体pESC-TRP-IaAO1。比较IaAO2与同源基因IaAO1的序列,后者比前者在5’-端多出了一段核苷酸片段。根据IaAO2、IaAO1的重叠序列,设计特异性的引物,以pESC-TRP-IaAO1为模板进行PCR扩增,琼脂糖凝胶电泳表明约在1200bp处出现特异片段,用琼脂糖凝胶回收试剂盒(Magen)回收目标片段,克隆至pEASY载体(全式金)中,鉴定阳性克隆并进行测序验证,用于重组表达载体的构建。In our laboratory, another balsinol C-28 oxidase gene IaAO1 was cloned and identified from the medicinal plant Gangmei, and a Saccharomyces cerevisiae expression vector pESC-TRP-IaAO1 was constructed. Comparing the sequences of IaAO2 and the homologous gene IaAO1, the latter has an extra nucleotide fragment at the 5'-end than the former. According to the overlapping sequences of IaAO2 and IaAO1, specific primers were designed, and pESC-TRP-IaAO1 was used as a template for PCR amplification. Agarose gel electrophoresis showed that a specific fragment appeared at about 1200bp, and agarose gel recovery kit ( Magen) recovered the target fragment, cloned it into the pEASY vector (full gold), identified positive clones and performed sequencing verification for the construction of recombinant expression vectors.

1、DNA序列比对1. DNA sequence alignment

比较IaAO2与同源基因IaAO1的序列,确认部分序列重叠,此外IaAO1 5’-端多出了一段198bp的核苷酸片段。Comparing the sequences of IaAO2 and the homologous gene IaAO1, it was confirmed that the partial sequences overlapped. In addition, there was an extra nucleotide fragment of 198 bp at the 5'-end of IaAO1.

2、酵母表达载体的构建2. Construction of yeast expression vector

根据两个基因重叠的序列,设计带有BamH I和Xho I酶切位点的引物,利用PCR的方法,将克隆到的截短基因tIaAO1基因插入到酵母表达载体pESC-TRP(Stratagene)的BamHI和Xho I酶切位点之间,获得重组质粒pESC-TRP-tIaAO1,并进行测序验证。According to the overlapping sequences of the two genes, primers with BamH I and Xho I restriction sites were designed, and the cloned truncated gene tIaAO1 gene was inserted into the BamHI of the yeast expression vector pESC-TRP (Stratagene) by PCR. The recombinant plasmid pESC-TRP-tIaAO1 was obtained and verified by sequencing.

tIaAO1基因核苷酸序列如SEQ ID No.5所示;其氨基酸序列如SEQ ID No.6所示。The nucleotide sequence of tIaAO1 gene is shown in SEQ ID No.5; its amino acid sequence is shown in SEQ ID No.6.

特异性引物序列为:上游引物tIaAO1F如SEQ ID No.7所示;下游引物tIaAO1R如SEQ ID No.8所示。The specific primer sequences are: the upstream primer tIaAO1F is shown in SEQ ID No.7; the downstream primer tIaAO1R is shown in SEQ ID No.8.

3、诱导表达3. Induced expression

用醋酸锂转化法将重组质粒pESC-TRP-tIaAO1转化至酿酒酵母WAT11tfAX(WAT11,trp1::PGAP1-SctHMGR1-TCYC1,ura3::PGAP1-ScERG20-TCYC1,leu2::PGAP1-Se ACSL641P-TCYC1,his3::PTEF1-IaAS1-TCYC1)中,获得重组酵母。将阳性重组子接种于15mL SC-T液体培养基(含葡萄糖)中,30℃,225rpm培养36h后,换为SC-T无糖培养基继续培养4h,之后吸取一定量的酵母菌液转移至100mL SC-T液体培养基中(含半乳糖),使起始菌液的OD600值为0.1,进行诱导培养,用半乳糖诱导蛋白表达。The recombinant plasmid pESC-TRP-tIaAO1 was transformed into Saccharomyces cerevisiae WAT11tfAX (WAT11, trp1::PGAP1-SctHMGR1-TCYC1, ura3::PGAP1-ScERG20-TCYC1, leu2::PGAP1-Se ACSL641P-TCYC1, his3 ::PTEF1-IaAS1-TCYC1), recombinant yeast were obtained. The positive recombinants were inoculated into 15mL SC-T liquid medium (containing glucose), incubated at 30°C and 225rpm for 36h, then replaced with SC-T sugar-free medium for 4h, and then a certain amount of yeast was transferred to the In 100 mL of SC-T liquid medium (containing galactose), the OD600 value of the initial bacterial solution was 0.1, and the induction culture was carried out, and the protein expression was induced with galactose.

以下为效果验证试验例内容。The following is the content of the effect verification test example.

试验例1Test Example 1 IaAO2基因的真核表达及功能分析Eukaryotic expression and functional analysis of IaAO2 gene

IaAO2蛋白的功能鉴定:Functional identification of IaAO2 protein:

收集培养7天的酵母菌体,加入提取液(40%KOH:无水乙醇=1:1),加热回流提取代谢产物,提取液用等体积的正己烷萃取3次,分取正己烷层,挥干,残渣经BSTFA硅烷化试剂衍生化后用GC-MS进行检测。Collect the yeast cells that have been cultured for 7 days, add the extract (40% KOH: anhydrous ethanol = 1:1), heat and reflux to extract the metabolites, extract the extract three times with an equal volume of n-hexane, and separate the n-hexane layer, It was evaporated to dryness, and the residue was derivatized with BSTFA silylation reagent and detected by GC-MS.

GC-MS仪器为7890B-5977B(Agilent),气相条件为进样口温度为250℃;进样量1μL,不分流;色谱柱为HP-5MS(30m×0.25mm×0.25μm,Agilent,USA);柱温箱升温程序150℃起始,保持1min,以10℃/min升至300℃,保持20min;载气为He,柱流量0.7mL/min。质谱条件:EI离子源,电子能量70eV,离子扫描范围50-600m/z,四极杆温度150℃,离子源温度230℃,GC-MS连接口温度280℃,化合物检索的谱库为NIST14.L。The GC-MS instrument was 7890B-5977B (Agilent), and the gas phase conditions were that the inlet temperature was 250 °C; the injection volume was 1 μL, splitless; the chromatographic column was HP-5MS (30m×0.25mm×0.25μm, Agilent, USA) ; The heating program of the column oven starts at 150 °C, maintains for 1 min, rises to 300 °C at 10 °C/min, and holds for 20 min; the carrier gas is He, and the column flow rate is 0.7 mL/min. Mass spectrometry conditions: EI ion source, electron energy 70 eV, ion scanning range 50-600 m/z, quadrupole temperature 150 °C, ion source temperature 230 °C, GC-MS interface temperature 280 °C, and the compound search library was NIST14. L.

GC-MS分析结果见图2,分析结果表明,转化有pESC-TRP空载的酵母菌体代谢产物,在保留时间为13.8min时出现α-amyrin的色谱峰(Peak 1);转化有IaAO2基因的重组酵母代谢产物中,除了在保留时间为13.8min时出现底物α-amyrin的色谱峰(Peak 1)外,在保留时间为15.7min、16.2min、17.0min和17.3min出现了四个新的色谱峰Peak 2、Peak 3、Peak 4和Peak 5,通过谱库检索,四个新的化合物初步确认分别为熊果醇(匹配度94%)、齐墩果酸(匹配度93%)、熊果酸(匹配度95%)和熊果醛(匹配度99%),且Peak 3和Peak 4的保留时间分别与齐墩果酸和熊果酸标准品的保留时间基本一致,质谱离子碎片也与标准品一致。可以判定IaAO2基因是一个三萜C-28位氧化酶基因,其编码的蛋白能够将底物α-amyrin和β-amyrin分别氧化为熊果酸和齐墩果酸。The GC-MS analysis results are shown in Figure 2. The analysis results show that the metabolites of yeast cells transformed with pESC-TRP empty load have a chromatographic peak of α-amyrin (Peak 1) when the retention time is 13.8min; Among the recombinant yeast metabolites, in addition to the chromatographic peak of the substrate α-amyrin (Peak 1) at the retention time of 13.8min, four new peaks appeared at the retention times of 15.7min, 16.2min, 17.0min and 17.3min. The chromatographic peaks Peak 2, Peak 3, Peak 4 and Peak 5 of , through spectral library search, four new compounds were preliminarily confirmed to be arbutol (94% matching degree), oleanolic acid (93% matching degree), Ursolic acid (95% matching degree) and ursolic aldehyde (99% matching degree), and the retention times of Peak 3 and Peak 4 are basically the same as those of oleanolic acid and ursolic acid standards, respectively. Mass spectrometry ion fragmentation Also consistent with the standard. It can be determined that the IaAO2 gene is a triterpene C-28 oxidase gene, and its encoded protein can oxidize the substrates α-amyrin and β-amyrin to ursolic acid and oleanolic acid, respectively.

试验例2Test Example 2 5’-端截短获得的tIaAO1基因的真核表达及功能分析Eukaryotic expression and functional analysis of tIaAO1 gene obtained by 5'-terminal truncation

5’-端截短获得的tIaAO1蛋白的功能鉴定:Functional identification of tIaAO1 protein obtained by 5'-terminal truncation:

收集酵母菌体,加入提取液(40%KOH:无水乙醇=1:1),加热回流提取代谢产物,提取液用等体积的正己烷萃取3次,分取正己烷层,挥干,残渣经BSTFA硅烷化试剂衍生化后用GC-MS进行分析。Collect the yeast cells, add the extract (40% KOH: anhydrous ethanol = 1:1), heat and reflux to extract the metabolites, extract the extract three times with an equal volume of n-hexane, separate the n-hexane layer, evaporate to dryness, and the residue Analysis was performed by GC-MS after derivatization with BSTFA silylating reagent.

GC-MS仪器为7890B-5977B(Agilent),气相条件为进样口温度为250℃;进样量1μL,不分流;色谱柱为HP-5MS(30m×0.25mm×0.25μm,Agilent,USA);柱温箱升温程序150℃起始,保持1min,以10℃/min升至300℃,保持20min;载气为He,柱流量0.7mL/min。质谱条件:EI离子源,电子能量70eV,四极杆温度150℃,离子源温度230℃,GC-MS连接口温度280℃,化合物检索的谱库为NIST14.L,SIM模式检测,具体定性定量离子如下表1。The GC-MS instrument was 7890B-5977B (Agilent), and the gas phase conditions were that the inlet temperature was 250 °C; the injection volume was 1 μL, splitless; the chromatographic column was HP-5MS (30m×0.25mm×0.25μm, Agilent, USA) ; The heating program of the column oven starts at 150 °C, maintains for 1 min, rises to 300 °C at 10 °C/min, and holds for 20 min; the carrier gas is He, and the column flow rate is 0.7 mL/min. Mass spectrometry conditions: EI ion source, electron energy 70 eV, quadrupole temperature 150 °C, ion source temperature 230 °C, GC-MS connection port temperature 280 °C, the compound search library is NIST14.L, SIM mode detection, specific qualitative and quantitative The ions are listed in Table 1 below.

表1 GC-MS检测相关定性定量离子Table 1 Qualitative and quantitative ions detected by GC-MS

化合物compound 定量离子(m/z)Quantitative ion (m/z) 定性离子(m/z)Qualitative ion (m/z) β-香树酯醇β-Aryl Resinol 218.2218.2 189.2,203.2189.2, 203.2 α-香树酯醇Alpha-aromatic resin alcohol 218.2218.2 189.2,203.2189.2, 203.2 齐墩果酸Oleanolic acid 203.2203.2 189.2,320.2189.2, 320.2 熊果酸Ursolic acid 203.2203.2 189.2,320.2189.2, 320.2

采用Agilent MassHunter Quantitative Analysis定量软件计算混合标品和酵母提取物中α-香树酯醇、β-香树酯醇、熊果酸和齐墩果酸的含量,结果见下表2,显示转化了IaAO1或tIaAO1基因的酿酒酵母均生成了熊果酸和齐墩果酸,说明了基于IaAO2序列截短的tIaAO1基因保留了原有的功能。Agilent MassHunter Quantitative Analysis quantitative software was used to calculate the contents of α-aromaticresinol, β-aromaticresinol, ursolic acid and oleanolic acid in the mixed standard and yeast extract. The results are shown in Table 2 below, showing that the transformed Saccharomyces cerevisiae with either IaAO1 or tIaAO1 gene produced ursolic acid and oleanolic acid, indicating that the truncated tIaAO1 gene based on the IaAO2 sequence retained the original function.

表2转基因酿酒酵母的含量变化(μg/L)Table 2 Changes in the content of transgenic Saccharomyces cerevisiae (μg/L)

菌株strain α-香树酯醇Alpha-aromatic resin alcohol β-香树酯醇β-Aryl Resinol 熊果酸Ursolic acid 齐墩果酸Oleanolic acid WAT11tfAX/pESC-TRP-IaAO1WAT11tfAX/pESC-TRP-IaAO1 129.76129.76 24.7224.72 15.9715.97 731.70731.70 WAT11tfAX/pESC-TRP-tIaAO1WAT11tfAX/pESC-TRP-tIaAO1 272.85272.85 45.6345.63 23.2123.21 421.16421.16

本发明并不局限于上述实施方式,如果对本发明的各种改动或变型不脱离本发明的精神和范围,倘若这些改动和变型属于本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变动。The present invention is not limited to the above-mentioned embodiments. If various changes or modifications of the present invention do not depart from the spirit and scope of the present invention, if these changes and modifications belong to the claims of the present invention and the equivalent technical scope, the present invention also It is intended to include these changes and variations.

序列表sequence listing

<110> 广州中医药大学<110> Guangzhou University of Traditional Chinese Medicine

<120> 催化香树脂醇C-28位氧化的CYP450基因及其编码产物与应用<120> CYP450 Gene Catalyzing the C-28 Oxidation of Arsinol and Its Encoded Product and Application

<160> 8<160> 8

<170> SIPOSequenceListing 1.0<170> SIPOSequenceListing 1.0

<210> 2<210> 2

<211> 1239<211> 1239

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 2<400> 2

atggccaaat actcttcgca agtattcaga acatctctcc tcggcgagca ggccgcagtt 60atggccaaat actcttcgca agtattcaga acatctctcc tcggcgagca ggccgcagtt 60

ttctgcggcg ctgcagggaa caagtttttg ttttcgaacg agaataagct tgtgcaggcc 120ttctgcggcg ctgcagggaa caagttttttg ttttcgaacg agaataagct tgtgcaggcc 120

tggtggccca gctccgtcaa caaggttttc ccatcctcaa cacaaacctc ttcaaaagaa 180tggtggccca gctccgtcaa caaggttttc ccatcctcaa cacaaacctc ttcaaaagaa 180

gaagccatca aaatgagaaa aatgctcccc aatttcttca aacccgaagc tctgcaacga 240gaagccatca aaatgagaaa aatgctcccc aatttcttca aacccgaagc tctgcaacga 240

tatattggca tgatggacgt tattgccaat cgacacttcg cctcaagttg ggaaaacaat 300tatattggca tgatggacgt tattgccaat cgacacttcg cctcaagttg ggaaaacaat 300

gaccaagtcg tagtattccc cctgtccaag cgattcacct tctggctcgc ctgtcgggtc 360gaccaagtcg tagtattccc cctgtccaag cgattcacct tctggctcgc ctgtcgggtc 360

ttcgtgagca tagaagatcc taaccacgtc gccaaattcg cagacccttt cgacctcttg 420ttcgtgagca tagaagatcc taaccacgtc gccaaattcg cagacccttt cgacctcttg 420

gcttccgggc ttatatcaat cccgatagac ttgcctggaa caccgtttca ccgtgcaatc 480gcttccgggc ttatatcaat cccgatagac ttgcctggaa caccgtttca ccgtgcaatc 480

aaggcctcga acttcatcag gaaagaactt gtgaggatta ttaagcagag aaaggtcgat 540aaggcctcga acttcatcag gaaagaactt gtgaggatta ttaagcagag aaaggtcgat 540

ttggccgagg gcaaggcgtc gccgacgcaa gatatattgt cacacatgct tctgacaagc 600ttggccgagg gcaaggcgtc gccgacgcaa gatatattgt cacacatgct tctgacaagc 600

gacgagaacg gcaagttcat ggctgaattg gatattgctg ataagatttt ggggttattg 660gacgagaacg gcaagttcat ggctgaattg gatattgctg ataagatttt ggggttattg 660

atcggaggcc atgacactgc aagctctgcg tgctgtttca ttgtcaagta tcttgccgag 720atcggaggcc atgacactgc aagctctgcg tgctgtttca ttgtcaagta tcttgccgag 720

ttgccagaag tgtacgaggg agtctacaag gaacaaatgg aaattgccaa ttccaaagct 780ttgccagaag tgtacgaggg agtctacaag gaacaaatgg aaattgccaa ttccaaagct 780

ccgggtgaat tattgaattg ggaggatata cagaaaatga aatattcatg gaatgtggcc 840ccgggtgaat tattgaattg ggaggatata cagaaaatga aatattcatg gaatgtggcc 840

tgcgaagtgt tgagacttgc accaccgctc caaggagctt tcagagaagc actcactgat 900tgcgaagtgt tgagacttgc accaccgctc caaggagctt tcagagaagc actcactgat 900

ttcatgtata atggtttctc aattcccaag ggttggaaga tttattggag tgcaaactca 960ttcatgtata atggtttctc aattcccaag ggttggaaga tttattggag tgcaaactca 960

acacatagaa atcccgagtt cttccccgag ccactaaagt ttgatccatc aagattcgag 1020acacatagaa atcccgagtt cttccccgag ccactaaagt ttgatccatc aagattcgag 1020

ggaagtggac ctgctccgta tacatttgtt ccgttcggtg gaggacctag gatgtgtccc 1080ggaagtggac ctgctccgta tacatttgtt ccgttcggtg gaggacctag gatgtgtccc 1080

ggaaaagagt atgctcgact ggaaatactt gttttcatgc accacctcgt gaaaaggttc 1140ggaaaagagt atgctcgact ggaaatactt gttttcatgc accacctcgt gaaaaggttc 1140

aggtgggaga agctgattcc cgatgagaag atcgttgtta acccaatgcc catcccagag 1200aggtgggaga agctgattcc cgatgagaag atcgttgtta acccaatgcc catcccagag 1200

aagggacttc ctgttcgcct ctatcctcac aaagcttaa 1239aagggacttc ctgttcgcct ctatcctcac aaagcttaa 1239

<210> 2<210> 2

<211> 412<211> 412

<212> PRT<212> PRT

<213> 天然序列(Natural Sequence)<213> Natural Sequence

<400> 2<400> 2

Met Ala Lys Tyr Ser Ser Gln Val Phe Arg Thr Ser Leu Leu Gly GluMet Ala Lys Tyr Ser Ser Gln Val Phe Arg Thr Ser Leu Leu Gly Glu

1 5 10 151 5 10 15

Gln Ala Ala Val Phe Cys Gly Ala Ala Gly Asn Lys Phe Leu Phe SerGln Ala Ala Val Phe Cys Gly Ala Ala Gly Asn Lys Phe Leu Phe Ser

20 25 30 20 25 30

Asn Glu Asn Lys Leu Val Gln Ala Trp Trp Pro Ser Ser Val Asn LysAsn Glu Asn Lys Leu Val Gln Ala Trp Trp Pro Ser Ser Val Asn Lys

35 40 45 35 40 45

Val Phe Pro Ser Ser Thr Gln Thr Ser Ser Lys Glu Glu Ala Ile LysVal Phe Pro Ser Ser Thr Gln Thr Ser Ser Lys Glu Glu Ala Ile Lys

50 55 60 50 55 60

Met Arg Lys Met Leu Pro Asn Phe Phe Lys Pro Glu Ala Leu Gln ArgMet Arg Lys Met Leu Pro Asn Phe Phe Lys Pro Glu Ala Leu Gln Arg

65 70 75 8065 70 75 80

Tyr Ile Gly Met Met Asp Val Ile Ala Asn Arg His Phe Ala Ser SerTyr Ile Gly Met Met Asp Val Ile Ala Asn Arg His Phe Ala Ser Ser

85 90 95 85 90 95

Trp Glu Asn Asn Asp Gln Val Val Val Phe Pro Leu Ser Lys Arg PheTrp Glu Asn Asn Asp Gln Val Val Val Phe Pro Leu Ser Lys Arg Phe

100 105 110 100 105 110

Thr Phe Trp Leu Ala Cys Arg Val Phe Val Ser Ile Glu Asp Pro AsnThr Phe Trp Leu Ala Cys Arg Val Phe Val Ser Ile Glu Asp Pro Asn

115 120 125 115 120 125

His Val Ala Lys Phe Ala Asp Pro Phe Asp Leu Leu Ala Ser Gly LeuHis Val Ala Lys Phe Ala Asp Pro Phe Asp Leu Leu Ala Ser Gly Leu

130 135 140 130 135 140

Ile Ser Ile Pro Ile Asp Leu Pro Gly Thr Pro Phe His Arg Ala IleIle Ser Ile Pro Ile Asp Leu Pro Gly Thr Pro Phe His Arg Ala Ile

145 150 155 160145 150 155 160

Lys Ala Ser Asn Phe Ile Arg Lys Glu Leu Val Arg Ile Ile Lys GlnLys Ala Ser Asn Phe Ile Arg Lys Glu Leu Val Arg Ile Ile Lys Gln

165 170 175 165 170 175

Arg Lys Val Asp Leu Ala Glu Gly Lys Ala Ser Pro Thr Gln Asp IleArg Lys Val Asp Leu Ala Glu Gly Lys Ala Ser Pro Thr Gln Asp Ile

180 185 190 180 185 190

Leu Ser His Met Leu Leu Thr Ser Asp Glu Asn Gly Lys Phe Met AlaLeu Ser His Met Leu Leu Thr Ser Asp Glu Asn Gly Lys Phe Met Ala

195 200 205 195 200 205

Glu Leu Asp Ile Ala Asp Lys Ile Leu Gly Leu Leu Ile Gly Gly HisGlu Leu Asp Ile Ala Asp Lys Ile Leu Gly Leu Leu Ile Gly Gly His

210 215 220 210 215 220

Asp Thr Ala Ser Ser Ala Cys Cys Phe Ile Val Lys Tyr Leu Ala GluAsp Thr Ala Ser Ser Ala Cys Cys Phe Ile Val Lys Tyr Leu Ala Glu

225 230 235 240225 230 235 240

Leu Pro Glu Val Tyr Glu Gly Val Tyr Lys Glu Gln Met Glu Ile AlaLeu Pro Glu Val Tyr Glu Gly Val Tyr Lys Glu Gln Met Glu Ile Ala

245 250 255 245 250 255

Asn Ser Lys Ala Pro Gly Glu Leu Leu Asn Trp Glu Asp Ile Gln LysAsn Ser Lys Ala Pro Gly Glu Leu Leu Asn Trp Glu Asp Ile Gln Lys

260 265 270 260 265 270

Met Lys Tyr Ser Trp Asn Val Ala Cys Glu Val Leu Arg Leu Ala ProMet Lys Tyr Ser Trp Asn Val Ala Cys Glu Val Leu Arg Leu Ala Pro

275 280 285 275 280 285

Pro Leu Gln Gly Ala Phe Arg Glu Ala Leu Thr Asp Phe Met Tyr AsnPro Leu Gln Gly Ala Phe Arg Glu Ala Leu Thr Asp Phe Met Tyr Asn

290 295 300 290 295 300

Gly Phe Ser Ile Pro Lys Gly Trp Lys Ile Tyr Trp Ser Ala Asn SerGly Phe Ser Ile Pro Lys Gly Trp Lys Ile Tyr Trp Ser Ala Asn Ser

305 310 315 320305 310 315 320

Thr His Arg Asn Pro Glu Phe Phe Pro Glu Pro Leu Lys Phe Asp ProThr His Arg Asn Pro Glu Phe Phe Pro Glu Pro Leu Lys Phe Asp Pro

325 330 335 325 330 335

Ser Arg Phe Glu Gly Ser Gly Pro Ala Pro Tyr Thr Phe Val Pro PheSer Arg Phe Glu Gly Ser Gly Pro Ala Pro Tyr Thr Phe Val Pro Phe

340 345 350 340 345 350

Gly Gly Gly Pro Arg Met Cys Pro Gly Lys Glu Tyr Ala Arg Leu GluGly Gly Gly Pro Arg Met Cys Pro Gly Lys Glu Tyr Ala Arg Leu Glu

355 360 365 355 360 365

Ile Leu Val Phe Met His His Leu Val Lys Arg Phe Arg Trp Glu LysIle Leu Val Phe Met His His Leu Val Lys Arg Phe Arg Trp Glu Lys

370 375 380 370 375 380

Leu Ile Pro Asp Glu Lys Ile Val Val Asn Pro Met Pro Ile Pro GluLeu Ile Pro Asp Glu Lys Ile Val Val Asn Pro Met Pro Ile Pro Glu

385 390 395 400385 390 395 400

Lys Gly Leu Pro Val Arg Leu Tyr Pro His Lys AlaLys Gly Leu Pro Val Arg Leu Tyr Pro His Lys Ala

405 410 405 410

<210> 3<210> 3

<211> 38<211> 38

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 3<400> 3

aaaaaacccc ggatccatgg ccaaatactc ttcgcaag 38aaaaaacccc ggatccatgg ccaaatactc ttcgcaag 38

<210> 4<210> 4

<211> 59<211> 59

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 4<400> 4

accaagctta ctcgagttaa tgatgatgat gatgatgagc tttgtgagga tagaggcga 59accaagctta ctcgagttaa tgatgatgat gatgatgagc tttgtgagga tagaggcga 59

<210> 5<210> 5

<211> 1245<211> 1245

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 5<400> 5

atggccaagt actcgtccac cgtcttcaag acatctctcc tcggagaaca agcggccgtc 60atggccaagt actcgtccac cgtcttcaag acatctctcc tcggagaaca agcggccgtc 60

ttctgcggct caggcggtaa caagttcttg ttctccaatg agaacaagct tgttcaggca 120ttctgcggct caggcggtaa caagttcttg ttctccaatg agaacaagct tgttcaggca 120

tggtggccta actctgtaaa caaagtgttc ccttcttcgc aacaaacttc ttcaaaagaa 180tggtggccta actctgtaaa caaagtgttc ccttcttcgc aacaaacttc ttcaaaagaa 180

gaggccatca agatgagaaa aatgctacca aatttcctaa aacccgaagc tttacaacga 240gaggccatca agatgagaaa aatgctacca aatttcctaa aacccgaagc tttacaacga 240

tacattggga taatggatca tatcgctcaa cgtcactttg tttcagcttg ggaaaacaaa 300tacattggga taatggatca tatcgctcaa cgtcactttg tttcagcttg ggaaaacaaa 300

gacgaagtcg tggtgttccc tcttgccaaa aactacactt tctggctcgc ggctcgcttg 360gacgaagtcg tggtgttccc tcttgccaaa aactacactt tctggctcgc ggctcgcttg 360

tttgtaagtg tcgaggaccc aatccatgtt gctaagcttg gagacccatt cgccgtcttg 420tttgtaagtg tcgaggaccc aatccatgtt gctaagcttg gagacccatt cgccgtcttg 420

gcttctgggc ttatatctat ccccatagac ttgcctggaa ctccgtttaa ccgtgcaatc 480gcttctgggc ttatatctat ccccatagac ttgcctggaa ctccgtttaa ccgtgcaatc 480

aaggcctcca acttcatcag aaaagagctt gtttctatca tcaagcaaag aaagattgat 540aaggcctcca acttcatcag aaaagagctt gtttctatca tcaagcaaag aaagattgat 540

ttggcagagg gaaaggcatc gccaacacaa gatattatgt cacatatgtt attgacgagc 600ttggcagagg gaaaggcatc gccaacacaa gatattatgt cacatatgtt attgacgagc 600

gatgagaatg gcaagttcat gactgagttg gatgtagctg ataagatttt gggtttgttg 660gatgagaatg gcaagttcat gactgagttg gatgtagctg ataagatttt gggtttgttg 660

attggtggcc atgacactgc tagctctgcc tgcactttcg tcgtcaagtt tcttgctgaa 720attggtggcc atgacactgc tagctctgcc tgcactttcg tcgtcaagtt tcttgctgaa 720

ctgcctgaag tctacgaggg tgtctacaag gagcaaatcg aaatcgcgaa ctcgaaagct 780ctgcctgaag tctacgaggg tgtctacaag gagcaaatcg aaatcgcgaa ctcgaaagct 780

ccaggtgaac tgttgaattg ggatgacatt caaaagatga ggtattcatg gaacgtagca 840ccaggtgaac tgttgaattg ggatgacatt caaaagatga ggtattcatg gaacgtagca 840

tgtgaagttc taagacttgc tccacccctc cagggagctt tcagagaagc cctagttgat 900tgtgaagttc taagacttgc tccacccctc cagggagctt tcagagaagc cctagttgat 900

ttcatgtata atggtttctc tattccaaaa gggtggaaga tatattggag cgcaaactca 960ttcatgtata atggtttctc tattccaaaa gggtggaaga tatattggag cgcaaactca 960

acacatagaa atcctgaaaa ttttcccgag cccttaaaat ttgatccctc gagatttgat 1020acacatagaa atcctgaaaa ttttcccgag cccttaaaat ttgatccctc gagatttgat 1020

gggaatggac ctgctcctta cacatttgtg cctttcggtg gaggacctag gatgtgtccc 1080gggaatggac ctgctcctta cacatttgtg cctttcggtg gaggacctag gatgtgtccc 1080

ggaaaagagt atgctagatt ggaaatactt gttttcatgc accatattgt gaaaaggttc 1140ggaaaagagt atgctagatt ggaaatactt gttttcatgc accatattgt gaaaaggttc 1140

aggtgggaga aagtgattcc ggatgagaag attgttgttg atcccatgcc tatcccagcc 1200aggtgggaga aagtgattcc ggatgagaag attgttgttg atcccatgcc tatcccagcc 1200

aagggacttc cagttcgtct ctatccgcac aaagcagcag cttaa 1245aagggacttc cagttcgtct ctatccgcac aaagcagcag cttaa 1245

<210> 6<210> 6

<211> 415<211> 415

<212> PRT<212> PRT

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 6<400> 6

Met Ala Lys Tyr Ser Ser Thr Val Phe Lys Thr Ser Leu Leu Gly GluMet Ala Lys Tyr Ser Ser Thr Val Phe Lys Thr Ser Leu Leu Gly Glu

1 5 10 151 5 10 15

Gln Ala Ala Val Phe Cys Gly Ser Gly Gly Asn Lys Phe Leu Phe SerGln Ala Ala Val Phe Cys Gly Ser Gly Gly Asn Lys Phe Leu Phe Ser

20 25 30 20 25 30

Asn Glu Asn Lys Leu Val Gln Ala Trp Trp Pro Asn Ser Val Asn LysAsn Glu Asn Lys Leu Val Gln Ala Trp Trp Pro Asn Ser Val Asn Lys

35 40 45 35 40 45

Val Phe Pro Ser Ser Gln Gln Thr Ser Ser Lys Glu Glu Ala Ile LysVal Phe Pro Ser Ser Gln Gln Thr Ser Ser Lys Glu Glu Ala Ile Lys

50 55 60 50 55 60

Met Arg Lys Met Leu Pro Asn Phe Leu Lys Pro Glu Ala Leu Gln ArgMet Arg Lys Met Leu Pro Asn Phe Leu Lys Pro Glu Ala Leu Gln Arg

65 70 75 8065 70 75 80

Tyr Ile Gly Ile Met Asp His Ile Ala Gln Arg His Phe Val Ser AlaTyr Ile Gly Ile Met Asp His Ile Ala Gln Arg His Phe Val Ser Ala

85 90 95 85 90 95

Trp Glu Asn Lys Asp Glu Val Val Val Phe Pro Leu Ala Lys Asn TyrTrp Glu Asn Lys Asp Glu Val Val Val Phe Pro Leu Ala Lys Asn Tyr

100 105 110 100 105 110

Thr Phe Trp Leu Ala Ala Arg Leu Phe Val Ser Val Glu Asp Pro IleThr Phe Trp Leu Ala Ala Arg Leu Phe Val Ser Val Glu Asp Pro Ile

115 120 125 115 120 125

His Val Ala Lys Leu Gly Asp Pro Phe Ala Val Leu Ala Ser Gly LeuHis Val Ala Lys Leu Gly Asp Pro Phe Ala Val Leu Ala Ser Gly Leu

130 135 140 130 135 140

Ile Ser Ile Pro Ile Asp Leu Pro Gly Thr Pro Phe Asn Arg Ala IleIle Ser Ile Pro Ile Asp Leu Pro Gly Thr Pro Phe Asn Arg Ala Ile

145 150 155 160145 150 155 160

Lys Ala Ser Asn Phe Ile Arg Lys Glu Leu Val Ser Ile Ile Lys GlnLys Ala Ser Asn Phe Ile Arg Lys Glu Leu Val Ser Ile Ile Lys Gln

165 170 175 165 170 175

Arg Lys Ile Asp Leu Ala Glu Gly Lys Ala Ser Pro Thr Gln Asp IleArg Lys Ile Asp Leu Ala Glu Gly Lys Ala Ser Pro Thr Gln Asp Ile

180 185 190 180 185 190

Met Ser His Met Leu Leu Thr Ser Asp Glu Asn Gly Lys Phe Met ThrMet Ser His Met Leu Leu Thr Ser Asp Glu Asn Gly Lys Phe Met Thr

195 200 205 195 200 205

Glu Leu Asp Val Ala Asp Lys Ile Leu Gly Leu Leu Ile Gly Gly HisGlu Leu Asp Val Ala Asp Lys Ile Leu Gly Leu Leu Ile Gly Gly His

210 215 220 210 215 220

Asp Thr Ala Ser Ser Ala Cys Thr Phe Val Val Lys Phe Leu Ala GluAsp Thr Ala Ser Ser Ala Cys Thr Phe Val Val Lys Phe Leu Ala Glu

225 230 235 240225 230 235 240

Leu Pro Glu Val Tyr Glu Gly Val Tyr Lys Glu Gln Ile Glu Ile AlaLeu Pro Glu Val Tyr Glu Gly Val Tyr Lys Glu Gln Ile Glu Ile Ala

245 250 255 245 250 255

Asn Ser Lys Ala Pro Gly Glu Leu Leu Asn Trp Asp Asp Ile Gln LysAsn Ser Lys Ala Pro Gly Glu Leu Leu Asn Trp Asp Asp Ile Gln Lys

260 265 270 260 265 270

Met Arg Tyr Ser Trp Asn Val Ala Cys Glu Val Leu Arg Leu Ala ProMet Arg Tyr Ser Trp Asn Val Ala Cys Glu Val Leu Arg Leu Ala Pro

275 280 285 275 280 285

Pro Leu Gln Gly Ala Phe Arg Glu Ala Leu Val Asp Phe Met Tyr AsnPro Leu Gln Gly Ala Phe Arg Glu Ala Leu Val Asp Phe Met Tyr Asn

290 295 300 290 295 300

Gly Phe Ser Ile Pro Lys Gly Trp Lys Ile Tyr Trp Ser Ala Asn SerGly Phe Ser Ile Pro Lys Gly Trp Lys Ile Tyr Trp Ser Ala Asn Ser

305 310 315 320305 310 315 320

Thr His Arg Asn Pro Glu Asn Phe Pro Glu Pro Leu Lys Phe Asp ProThr His Arg Asn Pro Glu Asn Phe Pro Glu Pro Leu Lys Phe Asp Pro

325 330 335 325 330 335

Ser Arg Phe Asp Gly Asn Gly Pro Ala Pro Tyr Thr Phe Val Pro PheSer Arg Phe Asp Gly Asn Gly Pro Ala Pro Tyr Thr Phe Val Pro Phe

340 345 350 340 345 350

Gly Gly Gly Pro Arg Met Cys Pro Gly Lys Glu Tyr Ala Arg Leu GluGly Gly Gly Pro Arg Met Cys Pro Gly Lys Glu Tyr Ala Arg Leu Glu

355 360 365 355 360 365

Ile Leu Val Phe Met His His Ile Val Lys Arg Phe Arg Trp Glu LysIle Leu Val Phe Met His His Ile Val Lys Arg Phe Arg Trp Glu Lys

370 375 380 370 375 380

Val Ile Pro Asp Glu Lys Ile Val Val Asp Pro Met Pro Ile Pro AlaVal Ile Pro Asp Glu Lys Ile Val Val Asp Pro Met Pro Ile Pro Ala

385 390 395 400385 390 395 400

Lys Gly Leu Pro Val Arg Leu Tyr Pro His Lys Ala Ala Ala GluLys Gly Leu Pro Val Arg Leu Tyr Pro His Lys Ala Ala Ala Glu

405 410 415 405 410 415

<210> 7<210> 7

<211> 49<211> 49

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 7<400> 7

cgtcaaggag aaaaaaaccc cggatccatg gccaagtact cgtccaccg 49cgtcaaggag aaaaaaaccc cggatccatg gccaagtact cgtccaccg 49

<210> 8<210> 8

<211> 70<211> 70

<212> DNA<212> DNA

<213> 人工序列(Artificial Sequence)<213> Artificial Sequence

<400> 8<400> 8

tagccgcggt accaagctta ctcgaggtta atgatgatga tgatgatgag ctgctgcttt 60tagccgcggt accaagctta ctcgaggtta atgatgatga tgatgatgag ctgctgcttt 60

gtgcggatag 70gtgcggatag 70

Claims (10)

1.催化香树脂醇C-28位氧化的CYP450基因IaAO2,其特征在于:核苷酸序列如下1)-5)任一种所示:1. CYP450 gene IaAO2 of catalyzing balsamic resin alcohol C-28 oxidation, it is characterized in that: nucleotide sequence is shown in any one of following 1)-5): 1)如SEQ ID No.1所示的核苷酸序列;或1) The nucleotide sequence shown in SEQ ID No. 1; or 2)编码SEQ ID No.2所示氨基酸序列的核苷酸序列;或2) A nucleotide sequence encoding the amino acid sequence shown in SEQ ID No. 2; or 3)与SEQ ID No.1的互补序列能够进行杂交的核苷酸序列,该核苷酸序列所编码的蛋白质仍具有催化香树脂醇C-28位氧化的功能;或3) a nucleotide sequence capable of hybridizing with the complementary sequence of SEQ ID No. 1, and the protein encoded by the nucleotide sequence still has the function of catalyzing the oxidation of balsamic resin at the C-28 position; or 4)与SEQ ID No.1所示的核苷酸序列至少具有75%或以上同源性的核苷酸序列;或4) A nucleotide sequence having at least 75% or more homology with the nucleotide sequence shown in SEQ ID No. 1; or 5)在SEQ ID No.1所示的核苷酸序列的基础上进行一个或多个碱基的缺失、取代或插入的核苷酸序列变体,且该核苷酸序列变体所编码的蛋白仍具有催化香树脂醇C-28位氧化的功能或活性。5) A nucleotide sequence variant in which one or more bases are deleted, substituted or inserted on the basis of the nucleotide sequence shown in SEQ ID No. 1, and the nucleotide sequence variant encoded The protein still has the function or activity of catalyzing the C-28 oxidation of balsamic resin. 2.一种催化香树脂醇C-28位氧化的蛋白,其特征在于:氨基酸序列为1)或2)任一种所示:2. a protein that catalyzes the C-28 oxidation of balsamic resin, characterized in that: amino acid sequence is shown in any one of 1) or 2): 1)如SEQ ID No.2所示的氨基酸残基序列;或1) the amino acid residue sequence shown in SEQ ID No.2; or 2)将SEQ ID No.2所示的氨基酸序列通过一个或多个氨基酸残基的替换、缺失或/和插入而衍生得到的仍具有催化香树脂醇C-28位氧化的功能或活性的蛋白变体。2) A protein with the function or activity of catalyzing the C-28 oxidation of balsamyl alcohol derived from the amino acid sequence shown in SEQ ID No.2 by replacement, deletion or/and insertion of one or more amino acid residues Variants. 3.一种用于扩增催化香树脂醇C-28位氧化的CYP450基因IaAO2的特异性引物,其特征在于:所述特异性引物的上游引物序列IaAO2F如SEQ ID No.3所示;下游引物序列IaAO2R如SEQ ID No.4所示。3. a specific primer for the CYP450 gene IaAO2 of the C-28 oxidation of catalyzed balsamic resin, is characterized in that: the upstream primer sequence IaAO2F of the specific primer is as shown in SEQ ID No.3; downstream The primer sequence IaAO2R is shown in SEQ ID No.4. 4.含有权利要求1所述的核苷酸序列的表达载体。4. An expression vector comprising the nucleotide sequence of claim 1. 5.含有权利要求1所述的核苷酸序列的宿主菌。5. A host bacterium comprising the nucleotide sequence of claim 1. 6.权利要求1所述的核苷酸序列在制备三萜类化合物中的应用。6. The application of the nucleotide sequence of claim 1 in the preparation of triterpenoids. 7.权利要求1所述的核苷酸序列在制备催化五环三萜C-28位氧化的化合物中的应用。7. The application of the nucleotide sequence of claim 1 in the preparation of a compound that catalyzes the oxidation of pentacyclic triterpenes at C-28 position. 8.权利要求1所述的核苷酸序列在制备催化五环三萜α-香树脂醇和β-香树脂醇氧化的化合物中的应用。8. The application of the nucleotide sequence according to claim 1 in the preparation of compounds that catalyze the oxidation of pentacyclic triterpenes α-arosinol and β-arosinol. 9.基于权利要求1所述的核苷酸序列特征,进行同源基因5’-端截短的基因改造方法,所述基因改造方法为在序列比对基础上,通过但不限于DNA限制性内切酶或PCR,获得5’-端截短的新基因。9. Based on the nucleotide sequence feature according to claim 1, carry out the genetic modification method of homologous gene 5 '-end truncation, and described genetic modification method is based on sequence comparison, by but not limited to DNA restriction Endonuclease or PCR to obtain new genes with 5'-end truncated. 10.通过同源基因5’-端截短的基因改造方法得到的基因tIaAO1,其特征在于:10. The gene tIaAO1 obtained by the genetic modification method of homologous gene 5'-end truncated, is characterized in that: tIaAO1基因核苷酸序列如SEQ ID No.5所示;其编码氨基酸序列如SEQ ID No.6所示;The nucleotide sequence of the tIaAO1 gene is shown in SEQ ID No.5; the encoded amino acid sequence is shown in SEQ ID No.6; 其特异性引物序列为:上游引物tIaAO1F如SEQ ID No.7所示;下游引物tIaAO1R如SEQID No.8所示。The specific primer sequences are: the upstream primer tIaAO1F is shown in SEQ ID No.7; the downstream primer tIaAO1R is shown in SEQ ID No.8.
CN201910957806.2A 2019-10-10 2019-10-10 CYP450 gene for catalyzing oxidation of amyrin C-28 site, coded product and application thereof Active CN110777157B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910957806.2A CN110777157B (en) 2019-10-10 2019-10-10 CYP450 gene for catalyzing oxidation of amyrin C-28 site, coded product and application thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910957806.2A CN110777157B (en) 2019-10-10 2019-10-10 CYP450 gene for catalyzing oxidation of amyrin C-28 site, coded product and application thereof

Publications (2)

Publication Number Publication Date
CN110777157A true CN110777157A (en) 2020-02-11
CN110777157B CN110777157B (en) 2023-07-04

Family

ID=69384935

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910957806.2A Active CN110777157B (en) 2019-10-10 2019-10-10 CYP450 gene for catalyzing oxidation of amyrin C-28 site, coded product and application thereof

Country Status (1)

Country Link
CN (1) CN110777157B (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113265381A (en) * 2021-04-20 2021-08-17 首都医科大学 Separated CYP450 protein, coding gene thereof and application thereof
CN113755478A (en) * 2020-06-02 2021-12-07 东北林业大学 A method of altering the activity or function of 2,3-oxysqualene cyclase
CN115353547A (en) * 2022-05-19 2022-11-18 首都医科大学 Oleanoyl-Leu-Asp-Val, synthesis, activity and application thereof
CN115927218A (en) * 2022-07-29 2023-04-07 中国中医科学院中药研究所 CYP450 enzyme protein for catalyzing hydroxylation at 21-position of beta-resinol, coding gene and application
CN115927280A (en) * 2022-07-29 2023-04-07 中国中医科学院中药研究所 Horse Chestnut 2,3-Oxysqualene Cyclase and Its Encoding Gene and Application
CN116121091A (en) * 2022-10-19 2023-05-16 江南大学 A kind of Saccharomyces cerevisiae engineering strain and its application of high-yielding ursolic acid or oleanolic acid
CN116218799A (en) * 2023-01-12 2023-06-06 中国中医科学院中药研究所 CYP450 enzyme protein, coding gene and application of catalyzing the 16α hydroxylation of β-amyresinol
CN116515872A (en) * 2022-09-30 2023-08-01 云南农业大学 A Cyclocarya triterpene synthase CpalOSC2 gene and its application in the preparation of β-amyresinol
CN116732060A (en) * 2023-05-25 2023-09-12 四川农业大学 CYP716C oxidase gene, vector, microsomal protein and application in Camptotheca acuminata
CN117625569A (en) * 2024-01-26 2024-03-01 东北林业大学 RrCYP450 protein and encoding genes and applications
CN118126997A (en) * 2024-05-07 2024-06-04 广州中医药大学(广州中医药研究院) Multifunctional triterpene cyclase and application thereof in preparation of triterpene compounds
CN118325880A (en) * 2024-04-18 2024-07-12 南京农业大学 Prunella vulgaris cytochrome oxidase CYP protein and its encoding gene and application

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040470A2 (en) * 1997-03-07 1998-09-17 Novartis Ag Cytochrome p450 monooxygenases
WO2006044508A1 (en) * 2004-10-15 2006-04-27 Plant Bioscience Limited Enzymes involved in triterpene synthesis
CN102433347A (en) * 2011-11-03 2012-05-02 中国科学院武汉植物园 Lupeol C28 oxidase gene and its obtaining method and use
CN102676549A (en) * 2012-01-09 2012-09-19 中国中医科学院中药研究所 CYP450 (Cytochrome P450) gene participating in tanshinone biosynthesis and coded product as well as application thereof
CN106566815A (en) * 2016-11-04 2017-04-19 北京理工大学 Saccharomyces cerevisiae engineered strain used for producing glycyrrhetinic acid and precursor thereof and construction method of saccharomyces cerevisiae engineered strain

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998040470A2 (en) * 1997-03-07 1998-09-17 Novartis Ag Cytochrome p450 monooxygenases
WO2006044508A1 (en) * 2004-10-15 2006-04-27 Plant Bioscience Limited Enzymes involved in triterpene synthesis
CN102433347A (en) * 2011-11-03 2012-05-02 中国科学院武汉植物园 Lupeol C28 oxidase gene and its obtaining method and use
CN102676549A (en) * 2012-01-09 2012-09-19 中国中医科学院中药研究所 CYP450 (Cytochrome P450) gene participating in tanshinone biosynthesis and coded product as well as application thereof
CN106566815A (en) * 2016-11-04 2017-04-19 北京理工大学 Saccharomyces cerevisiae engineered strain used for producing glycyrrhetinic acid and precursor thereof and construction method of saccharomyces cerevisiae engineered strain

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
QIN,J.: "ACCESSION NO:MH370828,Ilex pubescens clone IpAO1 multifunctional C-28 oxidase (AO1) mRNA, complete cds", 《GENBANK》 *
WENTAO SUN ET AL.: "Novel trends for producing plant triterpenoids in yeast", 《CRITICAL REVIEWS IN BIOTECHNOLOGY》 *
刘景会 等: "截短型人乳头瘤病毒58型L1蛋白在昆虫细胞中的表达", 《中国生物制品学杂志》 *
徐洁森 等: "植物细胞色素P450在三萜皂苷生物合成中的功能研究进展", 《中草药》 *
罗秀秀: "岗梅三萜皂苷生物合成相关CYPs基因的挖掘与功能研究", 《中国优秀硕士学位论文全文数据库 农业科技辑》 *
郑夏生 等: "岗梅转录组及其乌索烷型三萜皂苷生物合成相关酶基因的发掘", 《世界科学技术-中医药现代化》 *
郑夏生: "岗梅转录组及三萜皂苷生物合成相关酶基因的挖掘", 《中国博士学位论文全文数据库 医药卫生科技辑》 *
陈媛媛 等: "毛冬青三萜C-28位氧化修饰相关CYP450 基因的发掘和功能鉴定", 《中国药科大学学报》 *

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113755478B (en) * 2020-06-02 2023-05-26 东北林业大学 Method for changing activity or function of 2, 3-oxidation squalene cyclase
CN113755478A (en) * 2020-06-02 2021-12-07 东北林业大学 A method of altering the activity or function of 2,3-oxysqualene cyclase
CN113265381B (en) * 2021-04-20 2022-07-08 首都医科大学 Separated CYP450 protein, coding gene thereof and application thereof
CN113265381A (en) * 2021-04-20 2021-08-17 首都医科大学 Separated CYP450 protein, coding gene thereof and application thereof
CN115353547A (en) * 2022-05-19 2022-11-18 首都医科大学 Oleanoyl-Leu-Asp-Val, synthesis, activity and application thereof
CN115927218B (en) * 2022-07-29 2023-08-08 中国中医科学院中药研究所 CYP450 enzyme protein for catalyzing beta-amyrin 21-position hydroxylation, coding gene and application thereof
CN115927280A (en) * 2022-07-29 2023-04-07 中国中医科学院中药研究所 Horse Chestnut 2,3-Oxysqualene Cyclase and Its Encoding Gene and Application
CN115927218A (en) * 2022-07-29 2023-04-07 中国中医科学院中药研究所 CYP450 enzyme protein for catalyzing hydroxylation at 21-position of beta-resinol, coding gene and application
CN115927280B (en) * 2022-07-29 2023-08-15 中国中医科学院中药研究所 Horse Chestnut 2,3-Oxysqualene Cyclase and Its Encoding Gene and Application
CN116515872A (en) * 2022-09-30 2023-08-01 云南农业大学 A Cyclocarya triterpene synthase CpalOSC2 gene and its application in the preparation of β-amyresinol
CN116515872B (en) * 2022-09-30 2024-07-09 云南农业大学 Cyclocarya paliurus Liu San terpene synthase CpalOSC gene and application thereof in preparation of beta-amyrin
CN116121091B (en) * 2022-10-19 2024-03-08 江南大学 An engineering strain of Saccharomyces cerevisiae with high yield of ursolic acid or oleanolic acid and its application
CN116121091A (en) * 2022-10-19 2023-05-16 江南大学 A kind of Saccharomyces cerevisiae engineering strain and its application of high-yielding ursolic acid or oleanolic acid
CN116218799A (en) * 2023-01-12 2023-06-06 中国中医科学院中药研究所 CYP450 enzyme protein, coding gene and application of catalyzing the 16α hydroxylation of β-amyresinol
CN116732060A (en) * 2023-05-25 2023-09-12 四川农业大学 CYP716C oxidase gene, vector, microsomal protein and application in Camptotheca acuminata
CN116732060B (en) * 2023-05-25 2024-05-03 四川农业大学 CYP716C oxidase gene, vector, microsomal protein and application in Camptotheca acuminata
CN117625569B (en) * 2024-01-26 2024-05-10 东北林业大学 RrCYP450 protein and its encoding gene and application
CN117625569A (en) * 2024-01-26 2024-03-01 东北林业大学 RrCYP450 protein and encoding genes and applications
CN118325880A (en) * 2024-04-18 2024-07-12 南京农业大学 Prunella vulgaris cytochrome oxidase CYP protein and its encoding gene and application
CN118126997A (en) * 2024-05-07 2024-06-04 广州中医药大学(广州中医药研究院) Multifunctional triterpene cyclase and application thereof in preparation of triterpene compounds
CN118126997B (en) * 2024-05-07 2024-08-16 广州中医药大学(广州中医药研究院) Multifunctional triterpene cyclase and application thereof in preparation of triterpene compounds

Also Published As

Publication number Publication date
CN110777157B (en) 2023-07-04

Similar Documents

Publication Publication Date Title
CN110777157A (en) CYP450 Gene Catalyzing the C-28 Oxidation of Arsinol and Its Encoded Product and Application
CN102676549B (en) CYP450 (Cytochrome P450) gene participating in tanshinone biosynthesis and coded product as well as application thereof
CN103695441B (en) A CYP450 gene involved in tanshinone biosynthesis and its encoded product and application
CN106566815B (en) A kind of Saccharomyces cerevisiae engineered bacteria producing glycyrrhetinic acid or its precursor and its construction method
JP2021520806A (en) Methods for increasing the production of oxidose squalene, triterpenes, and / or triterpenoids, and host cells for that purpose.
Huang et al. Production of dammarane-type sapogenins in rice by expressing the dammarenediol-II synthase gene from Panax ginseng CA Mey
CN111235046A (en) Recombinant yarrowia lipolytica for heterologous synthesis of α -santalene and construction method thereof
Zhou et al. Cytochrome P450 catalyses the 29-carboxyl group formation of celastrol
Tang et al. Ginsenosides accumulation and related genes expression in different underground parts of Panax notoginseng during maturation stage
CN116218799A (en) CYP450 enzyme protein, coding gene and application of catalyzing the 16α hydroxylation of β-amyresinol
CN110511879A (en) Construction of Saccharomyces cerevisiae engineering bacteria and preparation method of betulinic acid
CN117844793A (en) Application of oxidation squalene cyclization gene NiOSC2 in biosynthesis
Li et al. Cytochrome P450 monooxygenase/cytochrome P450 reductase bi-enzymatic system isolated from Ilex asprella for regio-specific oxidation of pentacyclic triterpenoids
CN112852763A (en) Application of Pn3-32-i5 protein and coding gene thereof in production of notoginsenoside R1
CN117568323A (en) Aquilaria sinensis sesquiterpene synthase and encoding gene and application thereof
Xiao-Chao et al. Identification of a cytochrome P450 from Tripterygium hypoglaucum (Levl.) Hutch that catalyzes polpunonic acid formation in celastrol biosynthesis
Liu et al. Identification of squalene epoxidase in triterpenes biosynthesis in Poria cocos by molecular docking and CRISPR-Cas9 gene editing
CN114807075B (en) Glycosyltransferase PpUGT73E5 and its application in the synthesis of Chonglou saponin
Li et al. Cloning and functional characterization of the β-amyrin synthase gene from Bupleurum chinense
Li et al. Cloning and expression analysis of a squalene epoxidase gene from Ginkgo biloba
CN107903227B (en) Succinic anhydride compound, gene and protein related thereto, and preparation method thereof
CN117604006B (en) A rubber tree Hedycaryol synthase gene and its use
Liu et al. Functional validation of squalene epoxidase in triterpenes biosynthesis in Poria cocos by molecular docking and CRISPR-Cas9 gene editing
CN114480322B (en) Oat glycosyltransferase AsUGT73E5 and its application in the synthesis of steroidal saponins
CN114480323B (en) Oat glycosyltransferase AsUGT73E1 and its application in the synthesis of steroidal saponins

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant