Nothing Special   »   [go: up one dir, main page]

CN110756177B - 一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法和应用 - Google Patents

一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法和应用 Download PDF

Info

Publication number
CN110756177B
CN110756177B CN201911017133.9A CN201911017133A CN110756177B CN 110756177 B CN110756177 B CN 110756177B CN 201911017133 A CN201911017133 A CN 201911017133A CN 110756177 B CN110756177 B CN 110756177B
Authority
CN
China
Prior art keywords
resorcinol
silicon dioxide
formaldehyde
microspheres
nano silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911017133.9A
Other languages
English (en)
Other versions
CN110756177A (zh
Inventor
鹿文慧
祝德义
杨茂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qilu University of Technology
Original Assignee
Qilu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qilu University of Technology filed Critical Qilu University of Technology
Priority to CN201911017133.9A priority Critical patent/CN110756177B/zh
Publication of CN110756177A publication Critical patent/CN110756177A/zh
Application granted granted Critical
Publication of CN110756177B publication Critical patent/CN110756177B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/264Synthetic macromolecular compounds derived from different types of monomers, e.g. linear or branched copolymers, block copolymers, graft copolymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/103Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate comprising silica
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/281Treatment of water, waste water, or sewage by sorption using inorganic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/10Inorganic compounds
    • C02F2101/20Heavy metals or heavy metal compounds
    • C02F2101/22Chromium or chromium compounds, e.g. chromates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Silicon Compounds (AREA)

Abstract

本发明提供了一种功能化纳米二氧化硅/间苯二酚‑甲醛微球的制备方法和应用,所述的制备方法包括制备纳米二氧化硅/间苯二酚‑甲醛微球和纳米二氧化硅/间苯二酚‑甲醛微球表面功能化步骤;采用氨水作为催化剂。所述制备纳米二氧化硅/间苯二酚‑甲醛微球:将乙醇和水的混合溶液与浓氨水搅拌混匀后,依次加入TEOS,加入间苯二酚,加入甲醛溶液,搅拌反应,反应结束后老化;老化结束后,离心分离,清洗,干燥,得纳米二氧化硅/间苯二酚‑甲醛微球。经表面功能化处理,获得功能化纳米二氧化硅/间苯二酚‑甲醛微球。所得微球可有效吸附溶液中的六价铬。

Description

一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法和 应用
技术领域
本发明属于材料科学与工程技术领域,具体来说是一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备和在吸附、去除水体中六价铬的应用。
背景技术
六价铬因其强毒性、强致癌和致突变的作用以及对环境和人类健康的危害,世界各国对工业废水、饮用水等水体、皮革、纺织品、玩具中六价铬含量进行了限制要求。为满足各国法规规定,实现六价铬的有效去除,发展出电化学沉积、离子交换、膜分离、生物处理、光催化、溶剂萃取和吸附等方法,将六价铬转化为毒性相对较小的三价铬或是将六价铬尽可能完全的去除。采用适当的吸附剂合理有效的吸附六价铬,成本低廉、效果显著,是目前应用较多的去除方式。如何采用简单的合成步骤制备高吸附容量的吸附剂、提高吸附剂的去除效率是热点研究问题。
目前,常用于六价铬吸附的主要有活性炭、沸石、黏土、纳米材料、生物吸附剂等,其中,纳米二氧化硅具有水溶性好、热稳定性好、机械强度高等特点,且由于表面硅羟基(Si−OH)的存在,更易于固定有机或无机官能团。在用于水溶液中六价铬的去除方面,多采用表面修饰的方式制备二氧化硅改性材料,如修饰官能团、聚合物、生物材料、离子液体等。Wang等采用模板法制备介孔二氧化硅,并用1-(2-氨乙基)-3-氨丙基三甲氧基硅烷进行表面修饰。Chowdhury等采用微乳液法制备聚吡咯纳米粒子,并将其嫁接在修饰有二甲基二氯硅烷的二氧化硅表面。Chen等采用溶胶-凝胶法将季胺磷离子液体修饰在二氧化硅表面。
现有基于二氧化硅的复合材料具有以下缺陷:(1)制备过程复杂;(2)缺少有效官能团;(3)对六价铬的吸附容量低;(4)对六价铬的吸附选择性差。
发明内容
针对上述技术问题,本发明提供一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备及其应用,发明目的在于:通过简单的合成步骤,制备吸附容量高、选择性好的功能化材料,用于水溶液中六价铬的吸附和去除。
为实现上述目的,本发明采用的技术方案为:
一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法,所述的制备方法,以氨水作为催化剂,在乙醇-水溶液中,TEOS(正硅酸四乙酯)水解生成二氧化硅粒子,间苯二酚和甲醛聚合得到RF层,再经由APTES修饰后制备得到功能化纳米二氧化硅/间苯二酚-甲醛微球。
包括制备纳米二氧化硅/间苯二酚-甲醛微球和纳米二氧化硅/间苯二酚-甲醛微球表面功能化步骤。
所述制备纳米二氧化硅/间苯二酚-甲醛微球:将乙醇、水、浓氨水充分混匀后,先后加入TEOS、间苯二酚、甲醛溶液,搅拌反应,反应结束后将溶液倒入高压反应釜内继续老化。老化结束后,离心分离,将所得固体分别用无水乙醇、超纯水清洗,干燥后得纳米二氧化硅/间苯二酚-甲醛微球,即纳米SiO2@RF微球。
所述纳米二氧化硅/间苯二酚-甲醛微球的表面功能化:将纳米二氧化硅/间苯二酚-甲醛微球均匀分散于乙醇和水的混合溶液中,再加入浓氨水,混匀后,逐滴加入3-氨丙基三乙氧基硅烷(APTES)反应,反应结束后,离心分离,将所得固体分别用无水乙醇、超纯水清洗,干燥后即得功能化纳米SiO2@RF微球。
制备纳米二氧化硅/间苯二酚-甲醛微球:
向三口烧瓶中,加入30~40 mL乙醇和水的混合溶液、1~1.5 mL浓氨水;所述混合溶液,乙醇和水的体积比为2~4:1;所述浓氨水:质量百分浓度为25%~28%。
将三口烧瓶中的溶液在30~40 ℃下剧烈搅拌20~30 min,再加入1.2~1.5 mLTEOS,继续搅拌反应30~40 min,然后加入0.2~0.25 g间苯二酚,搅拌10~30 min后,加入280~350 µL甲醛水溶液,反应24~26 h;所述甲醛水溶液的质量百分浓度为37%~40%。
反应结束后,将三口烧瓶内的溶液倒入水热反应釜中,在100~102 ℃老化24~26h。
老化反应结束后,将溶液在7500~8500 rpm转速下离心10~15 min;收集离心后的固体;
将离心后固体先用无水乙醇清洗3~5次,再用超纯水清洗3~5次;
将固体在40~50 ℃条件下干燥10~14 h后,即得纳米SiO2@RF微球。
纳米二氧化硅/间苯二酚-甲醛微球的表面功能化:
(1)将70~80 mL无水乙醇和10~20 mL超纯水混合,得到混合溶液;
(2)将150~200 mg纳米SiO2@RF微球超声分散于步骤(1)制备的混合溶液中,再加入1.5~2 mL浓氨水;然后置于30~40 ℃水浴中剧烈搅拌20~30 min,再逐滴加入2~3 mLAPTES,反应10~12 h。所述浓氨水:质量百分浓度为25%~28%。
(3)反应结束后,将反应液倒入离心管中,将溶液在7500~8500 rpm转速下离心10~15 min,离心后固体先用无水乙醇清洗3~5次,再用超纯水清洗3~5次,40~50 ℃干燥10~14h后即得功能化纳米SiO2@RF微球。
一种功能化纳米二氧化硅/间苯二酚-甲醛微球的应用,所述纳米二氧化硅/间苯二酚-甲醛微球在六价铬吸附、去除中的应用。对六价铬的吸附,在吸附温度45℃,吸附容量达到180.21 mg g-1
本发明具有以下有益效果:
(1)合成过程简单、步骤少;本发明制备功能化纳米二氧化硅/间苯二酚-甲醛微球合成过程简单,采用一步法一锅合成纳米二氧化硅/间苯二酚-甲醛微球,再用APTES进行表面功能化,仅需两步即可制备得到功能化纳米二氧化硅/间苯二酚-甲醛微球;
(2)对六价铬的吸附容量高;吸附温度为25℃、35℃、45℃时,吸附容量随温度升高而增大,分别为143.84 mg g-1、149.40 mg g-1和180.21 mg g-1
(3)对六价铬的吸附选择性高;浓度为30 mg L-1的六价铬经材料吸附后,去除效率为99.93%,将浓度为30 mg L-1的六价铬与浓度为300 mg L-1的任一种其它常用阳离子或阴离子(Na+、K+、Mg2+、Ca2+、Cu2+、Fe2+、Pb2+、Co2+、Ni2+、Cr3+、Cl、NO3−、NO2−、CO32−、SO42−、PO43−)共混,经材料吸附后,去除效率为99.31%~99.92%,对六价铬的去除效率无影响。
(4)材料可重复使用;采用同一批材料进行吸附-解吸实验,材料重复使用5次后,对六价铬的去除效率仍高于85%。
附图说明
附图1为实施例1一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法过程示意图;
附图2为实施例2一种功能化纳米二氧化硅/间苯二酚-甲醛微球的扫描电镜和粒径分布图;
附图3为实施例3功能化纳米二氧化硅/间苯二酚-甲醛微球在不同温度下对六价铬的静态吸附曲线;
附图4为实施例4功能化纳米二氧化硅/间苯二酚-甲醛微球对六价铬与共存离子的竞争性吸附柱形图;
附图5 功能化纳米二氧化硅/间苯二酚-甲醛微球用于六价铬吸附的重复使用次数柱形图。
具体实施方式
下面结合附图和实施例对本发明做进一步的解释说明。
实施例1 一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法
a. 制备纳米二氧化硅/间苯二酚-甲醛微球
三口烧瓶中加入40 mL体积比为3:1的乙醇/水混合溶液、1.25 mL质量百分浓度为25%的浓氨水,30 ℃剧烈搅拌20 min,再加入1.4 mL TEOS,继续搅拌反应30 min,然后加入0.25 g间苯二酚,搅拌30 min后,加入350 µL甲醛水溶液,反应24 h;所述甲醛水溶液的质量百分浓度为37%。
反应结束后,将三口烧瓶内的溶液倒入水热反应釜中,100 ℃老化24 h。
老化反应结束后,将溶液在7500 rpm转速下离心10 min,收集离心后的固体;将离心后固体先用无水乙醇清洗3次,再用超纯水清洗3次;50℃干燥10 h后,即得纳米SiO2@RF微球。
b. 纳米二氧化硅/间苯二酚-甲醛微球的表面功能化
(1)将70 mL无水乙醇和10 mL超纯水混合,得到混合溶液;
(2)将200 mg纳米SiO2@RF微球超声分散于步骤(1)制备的混合溶液中,再加入2mL浓氨水;然后置于30 ℃水浴中剧烈搅拌30 min,再逐滴加入2 mL APTES,反应12 h。所述浓氨水:质量百分浓度为25%。
(3)反应结束后,将反应液倒入离心管中,将溶液在7500 rpm转速下离心10 min,离心后固体先用无水乙醇清洗3次,再用超纯水清洗3次,50 ℃干燥10 h后即得功能化纳米SiO2@RF微球。
上述一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法过程示意图如附图1所示。
制备得到的纳米SiO2@RF微球和功能化纳米SiO2@RF微球,如附图2所示,从扫描电镜图来看,为规则的球形形貌、表面粗糙。从粒径分布图来看,纳米SiO2@RF材料的平均粒径约为203 nm,APTES修饰后平均粒径约为211 nm,说明材料表面修饰成功。
实施例2 功能化纳米SiO2@RF微球对六价铬溶液在不同温度下的吸附效果实验
1、对六价铬溶液在25℃下的吸附效果实验:
准备浓度为30 mg L-1、50 mg L-1、100 mg L-1、150 mg L-1、200 mg L-1、250 mg L-1、300 mg L-1、350 mg L-1、400 mg L-1的六价铬溶液。
称取多份5 mg功能化纳米SiO2@RF微球,分别置于10 mL圆底离心管中,分别加入5mL准备好的浓度为30~400 mg L-1的梯度六价铬溶液,将溶液pH调为2.0,超声分散均匀。将离心管同时放置在温度为25°C的恒温气浴振荡器上,以150 rpm往复振荡吸附24 h。吸附反应结束后,将离心管在7500 rpm转速下离心10 min,取上层溶液,经磷酸酸化后,经1,5-二苯碳酰二肼(DPC)显色,然后用紫外可见分光光度计(UV-vis)检测溶液中剩余六价铬的浓度。
平行测定三次。
、对六价铬溶液在35℃下的吸附效果实验:
准备浓度为30 mg L-1、50 mg L-1、100 mg L-1、150 mg L-1、200 mg L-1、250 mg L-1、300 mg L-1、350 mg L-1、400 mg L-1的六价铬溶液。
称取多份5 mg功能化纳米SiO2@RF微球,分别置于10 mL圆底离心管中,分别加入5mL准备好的浓度为30~400 mg L-1的梯度六价铬溶液,将溶液pH调为2.0,超声分散均匀。将离心管同时放置在温度为35°C的恒温气浴振荡器上,以150 rpm往复振荡吸附24 h。吸附反应结束后,将离心管在7500 rpm转速下离心10 min,取上层溶液,经磷酸酸化后,经DPC显色,然后用UV-vis检测溶液中剩余六价铬的浓度。
平行测定三次。
、对六价铬溶液在45℃下的吸附效果实验:
准备浓度为30 mg L-1、50 mg L-1、100 mg L-1、150 mg L-1、200 mg L-1、250 mg L-1、300 mg L-1、350 mg L-1、400 mg L-1的六价铬溶液。
称取多份5 mg功能化纳米SiO2@RF微球,分别置于10 mL圆底离心管中,分别加入5mL准备好的浓度为30~400 mg L-1的梯度六价铬溶液,将溶液pH调为2.0,超声分散均匀。将离心管同时放置在温度为45°C的恒温气浴振荡器上,以150 rpm往复振荡吸附24 h。吸附反应结束后,将离心管在7500 rpm转速下离心10 min,取上层溶液,经磷酸酸化后,经DPC显色,然后用UV-vis检测溶液中剩余六价铬的浓度。
平行测定三次。
通过吸附前后溶液中六价铬的含量差值与材料用量的比值计算吸附容量。
以六价铬浓度为横坐标,吸附容量为纵坐标,绘制功能化纳米SiO2@RF微球对六价铬溶液在温度为25°C、35°C、45°C下的静态吸附曲线,结果如附图3所示。
从图中可以看出,在温度为25℃、35℃、45℃条件下,功能化纳米SiO2@RF微球对六价铬的吸附容量随着温度的升高而增大,随着浓度增大而增大。三个温度条件下,均具有较高的吸附容量,且在温度为45℃时,功能化纳米SiO2@RF微球对六价铬的吸附容量达到180.21 mg g-1
实施例3 功能化纳米SiO2@RF微球对六价铬的竞争吸附实验
选择含铬工业废水中可能存在的阳离子(Na+、K+、Mg2+、Ca2+、Cu2+、Fe2+、Pb2+、Co2+、Ni2+、Cr3+)和阴离子(Cl、NO3 、NO2 、CO3 2−、SO4 2−、PO4 3−),与六价铬进行竞争吸附实验。操作步骤为:
称取多份5 mg功能化纳米SiO2@RF微球,分别置于10 mL圆底离心管中,分别加入5mL浓度为30 mg L-1的六价铬溶液,将溶液pH调为2.0,超声分散均匀,再分别加入浓度为300mg·L-1的Na+、K+、Mg2+、Ca2+、Cu2+、Fe2+、Pb2+、Co2+、Ni2+、Cr3+、Cl、NO3 、NO2 、CO3 2−、SO4 2−、PO4 3−中的一种阳离子或阴离子的溶液。将离心管同时放置在温度为25°C的恒温气浴振荡器上,以150 rpm往复振荡吸附24 h。吸附反应结束后,将离心管在7500 rpm转速下离心10 min,取上层溶液经磷酸酸化后,经DPC显色后,用UV-vis检测溶液中剩余六价铬的浓度。
平行测定三次。
通过吸附前后溶液中六价铬的浓度差值与初始浓度的比值计算去除率(%)。以离子种类为横坐标,去除率为纵坐标,绘制竞争性吸附柱形图,结果如附图4所示。
溶液中只含六价铬、含六价铬和10倍浓度的单一竞争阳离子或阴离子时,对溶液中六价铬的吸附基本无影响,说明共存离子不会与六价铬竞争功能化纳米SiO2@RF微球表面的活性位点,可以有效避免其它离子的干扰。
实施例4 功能化纳米SiO2@RF微球对六价铬溶液的吸附-解吸实验
第一次吸附-解吸实验:
(1)功能化纳米SiO2@RF微球对六价铬溶液的吸附实验
称取多份50 mg功能化纳米SiO2@RF微球,分别置于50 mL圆底离心管中,分别加入50 mL浓度为30 mg L-1的六价铬溶液,将溶液pH调为2.0,超声分散均匀。将离心管同时放置在温度为25°C的恒温气浴振荡器上,以150 rpm往复振荡吸附12 h。吸附反应结束后,将离心管在7500 rpm转速下离心10 min,所得固体即为吸附有六价铬的功能化纳米SiO2@RF微球。
(2)吸附有六价铬的功能化纳米SiO2@RF微球的解吸实验
将上述所得吸附有六价铬的功能化纳米SiO2@RF微球,用50 mL超纯水超声清洗,再加入100 mL浓度为0.5 mol L-1的NaOH,超声分散、振荡解吸12 h后离心,所得固体用200mL超纯水清洗至pH为中性,后将材料置于50°C的真空干燥箱中干燥12 h,即完成解吸实验。
上述步骤即为第一次吸附-解吸实验。
功能化纳米SiO2@RF微球的重复使用实验
称取多份5 mg上述第一次吸附-解吸实验结束后所得功能化纳米SiO2@RF微球,分别置于10 mL圆底离心管中,分别加入5 mL浓度为30 mg L-1的六价铬溶液,将溶液pH调为2.0,超声分散均匀。将离心管同时放置在温度为25°C的恒温气浴振荡器上,以150 rpm往复振荡吸附24 h。吸附反应结束后,将离心管在7500 rpm转速下离心10 min,取上层溶液经磷酸酸化后,经DPC显色后,用UV-vis检测溶液中剩余六价铬的浓度。
平行测定五次。
通过吸附前后溶液中六价铬的浓度差值与初始浓度的比值计算去除率(%),计为第一次重复使用后所得去除率。
收集第二次吸附实验后离心所得吸附有六价铬的功能化纳米SiO2@RF微球,按照上述吸附有六价铬的功能化纳米SiO2@RF微球的解吸实验对材料进行解吸,即为完成第二次吸附-解吸实验。
称取5 mg上述第二次吸附-解吸实验结束后所得功能化纳米SiO2@RF微球置于10mL圆底离心管中,按照上述吸附实验操作,并计算去除率,计为第二次重复使用后所得去除率。
平行测定五次。
收集第三次吸附实验后离心所得吸附有六价铬的功能化纳米SiO2@RF微球,按照上述吸附有六价铬的功能化纳米SiO2@RF微球的解吸实验对材料进行解吸,即为完成第三次吸附-解吸实验。
以此类推。
功能化纳米SiO2@RF微球重复使用5次,即为同一批次功能化纳米SiO2@RF微球完成6次吸附实验、5次解吸实验。结果如附图5所示。
从附图5可知,制备所得功能化纳米SiO2@RF微球重复使用5次后,对浓度为30 mgL-1 的六价铬溶液的去除效率仍维持在85%以上,说明材料具有较好的重复利用性,在对六价铬的吸附中具有较高的稳定性。
除非另有说明,本发明中所采用的百分数均为重量百分数,本发明所述的比例,均为质量比例。
最后应说明的是:以上所述仅为本发明的优选实施例而已,并不用于限制本发明,尽管参照前述实施例对本发明进行了详细的说明,对于本领域的技术人员来说,其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (2)

1.一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法,其特征在于:所述的制备方法包括制备纳米二氧化硅/间苯二酚-甲醛微球和纳米二氧化硅/间苯二酚-甲醛微球表面功能化步骤;采用氨水作为催化剂;
所述制备纳米二氧化硅/间苯二酚-甲醛微球:将乙醇和水的混合溶液与浓氨水搅拌混匀后,然后依次加入TEOS,加入间苯二酚,加入甲醛溶液,搅拌反应,反应结束后将溶液倒入高压反应釜内老化;老化结束后,离心分离,将所得固体分别用无水乙醇、超纯水清洗,干燥,得纳米二氧化硅/间苯二酚-甲醛微球;
所述乙醇和水的混合溶液:乙醇和水的体积比为2~4:1;所述浓氨水:质量百分浓度为25%~28%;所述搅拌:在30~40℃下搅拌20~30min;
所述加入TEOS:加入TEOS后搅拌30~40min;所述加入间苯二酚:加入间苯二酚后搅拌10~30min;所述甲醛溶液的质量百分浓度为37%~40%;所述反应:反应时间为24~26h;
所述老化:老化温度为100~102℃,老化时间为24~26h;所述离心:将溶液在7500~8500rpm转速下离心10~15min;所述干燥:干燥温度为40~50℃,干燥时间为10~14h;
所述纳米二氧化硅/间苯二酚-甲醛微球表面功能化:将纳米二氧化硅/间苯二酚-甲醛微球均匀分散于乙醇和水的混合溶液中,再加入浓氨水,搅拌混匀,逐滴加入3-氨丙基三乙氧基硅烷反应,反应结束后,离心分离,将所得固体分别用无水乙醇、超纯水清洗,干燥,得功能化纳米二氧化硅/间苯二酚-甲醛微球;
所述乙醇和水的混合溶液:由无水乙醇和超纯水按照7~8:1~2 的体积比混合而成;所述加入浓氨水:浓氨水的质量百分浓度为25%~28%,浓氨水的加入量为:每100mg纳米二氧化硅/间苯二酚-甲醛微球加入1 mL浓氨水;
所述搅拌:在30~40℃水浴中搅拌20~30min;所述反应:反应时间为10~12h;所述离心:离心转速为7500~8500rpm,离心时间为10~15min;所述干燥:干燥温度为40~50℃,干燥时间为10~14h。
2.根据权利要求1所述的制备方法得到的一种功能化纳米二氧化硅/间苯二酚-甲醛微球的应用,其特征在于:所述功能化纳米二氧化硅/间苯二酚-甲醛微球用于吸附溶液中的六价铬。
CN201911017133.9A 2019-10-24 2019-10-24 一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法和应用 Active CN110756177B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911017133.9A CN110756177B (zh) 2019-10-24 2019-10-24 一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911017133.9A CN110756177B (zh) 2019-10-24 2019-10-24 一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法和应用

Publications (2)

Publication Number Publication Date
CN110756177A CN110756177A (zh) 2020-02-07
CN110756177B true CN110756177B (zh) 2022-08-30

Family

ID=69333370

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911017133.9A Active CN110756177B (zh) 2019-10-24 2019-10-24 一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法和应用

Country Status (1)

Country Link
CN (1) CN110756177B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111446440B (zh) * 2020-05-22 2022-07-05 扬州大学 一种氮掺杂碳包覆的中空中孔二氧化硅/钴纳米复合材料及其锂离子电池负极材料
CN112843248B (zh) * 2021-01-23 2022-07-22 复旦大学 适配体修饰的花粉状中空纳米硅球及其制备方法和应用
CN114134707A (zh) * 2021-12-29 2022-03-04 安徽竞秀纺织有限公司 一种抗菌纱线的制备工艺方法
CN115106070A (zh) * 2022-06-21 2022-09-27 南通裕弘分析仪器有限公司 一种不同粒径球形硅胶色谱填料的制备方法及应用
CN116590070A (zh) * 2023-05-06 2023-08-15 杭州电子科技大学 ZnO包覆SiO2复合纳米颗粒制法与润滑添加剂用途
CN117426400B (zh) * 2023-12-20 2024-03-29 中科生物技术(山东)有限公司 一种杀螨剂的增效助剂、制备方法及其应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039191A (zh) * 2017-05-09 2017-08-11 同济大学 一种氮功能化中空介孔碳纳米球的制备方法
CN108579684A (zh) * 2018-05-08 2018-09-28 李涛 一种改性球状多孔二氧化硅去除重金属污水及其有机污染物的方法
CN110048101A (zh) * 2019-04-03 2019-07-23 江苏科技大学 一种硅氧碳微球复合负极材料及其制备方法与应用
CN110078521A (zh) * 2019-05-13 2019-08-02 西北工业大学 一种亚微米级氮化硅中空微球及制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101354712B1 (ko) * 2011-10-12 2014-01-24 광주과학기술원 입상화 탄소 메조 기공 구조체의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107039191A (zh) * 2017-05-09 2017-08-11 同济大学 一种氮功能化中空介孔碳纳米球的制备方法
CN108579684A (zh) * 2018-05-08 2018-09-28 李涛 一种改性球状多孔二氧化硅去除重金属污水及其有机污染物的方法
CN110048101A (zh) * 2019-04-03 2019-07-23 江苏科技大学 一种硅氧碳微球复合负极材料及其制备方法与应用
CN110078521A (zh) * 2019-05-13 2019-08-02 西北工业大学 一种亚微米级氮化硅中空微球及制备方法

Also Published As

Publication number Publication date
CN110756177A (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
CN110756177B (zh) 一种功能化纳米二氧化硅/间苯二酚-甲醛微球的制备方法和应用
Wang et al. Highly efficient adsorption of Cr (VI) from aqueous solutions by amino-functionalized titanate nanotubes
Dinker et al. Recent advances in silica-based materials for the removal of hexavalent chromium: a review
Liu et al. Preparation and characterization of ammonium-functionalized silica nanoparticle as a new adsorbent to remove methyl orange from aqueous solution
Chen et al. Organosilica nanoparticles with an intrinsic secondary amine: an efficient and reusable adsorbent for dyes
Al-Amrani et al. A comprehensive review of anionic azo dyes adsorption on surface-functionalised silicas
Li et al. Different N-containing functional groups modified mesoporous adsorbents for Cr (VI) sequestration: Synthesis, characterization and comparison
Lv et al. Fabrication of Fe 3 O 4@ UiO-66-SO 3 H core–shell functional adsorbents for highly selective and efficient removal of organic dyes
CN102250347B (zh) 天然埃洛石纳米管为基体的螯合型离子交换树脂的制备方法
Zhang et al. Ordered SBA-15 mesoporous silica with high amino-functionalization for adsorption of heavy metal ions
CN107970878B (zh) 一种磷酸基团官能化中空介孔二氧化硅微球的制备方法
CN112408402B (zh) La活化的功能化树枝状介孔二氧化硅纳米球的制备方法及其应用
Adlnasab et al. Amine rich functionalized mesoporous silica for the effective removal of alizarin yellow and phenol red dyes from waste waters based on response surface methodology
Xie et al. Mechanically robust sodium alginate/cellulose nanofibers/polyethyleneimine composite aerogel for effective removal of hexavalent chromium and anionic dyes
Yang et al. Synthesis of amphiphilic silica with high exposure of surface groups and its utilization in efficient removal of organic dyes from aqueous solution
Li et al. Facile synthesis of amino-functional large-size mesoporous silica sphere and its application for Pb2+ removal
Tahmasebi et al. Performance evaluation of graphene oxide coated on cotton fibers in removal of humic acid from aquatic solutions
CN103933929A (zh) 一种吸附疏水性有机物的介孔氧化硅吸附剂及其制备方法和应用
Talavera-Pech et al. Effect of functionalization synthesis type of amino-MCM-41 mesoporous silica nanoparticles on its RB5 adsorption capacity and kinetics
Díaz-Flores et al. Synthesis of a chitosan-zeolite composite modified with La (III): characterization and its application in the removal of fluoride from aqueous systems
Lin et al. Iron-doped chitosan microsphere for As (III) adsorption in aqueous solution: Kinetic, isotherm and thermodynamic studies
Zhang et al. An imidazole functionalized porous organic polymer for the highly efficient extraction of uranium from aqueous solutions
Liu et al. Fabrication of methyl acrylate modified silica aerogel for capture of Cu 2+ from aqueous solutions
Zauška et al. PEI-Schiff base-modified mesoporous silica materials SBA-12, 15 and 16 for toxic metal ions capture (Co (II), Ni (II) and Cu (II)): Effect of morphology, post-synthetic modification and kinetic study
Kumarage et al. Electrospun amine-functionalized silica nanoparticles–cellulose acetate nanofiber membranes for effective removal of hardness and heavy metals (As (v), Cd (ii), Pb (ii)) in drinking water sources

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP03 Change of name, title or address

Address after: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Patentee after: Qilu University of Technology (Shandong Academy of Sciences)

Country or region after: China

Address before: 250353 University Road, Changqing District, Ji'nan, Shandong Province, No. 3501

Patentee before: Qilu University of Technology

Country or region before: China

CP03 Change of name, title or address