CN110684375B - 一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法 - Google Patents
一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法 Download PDFInfo
- Publication number
- CN110684375B CN110684375B CN201911057594.9A CN201911057594A CN110684375B CN 110684375 B CN110684375 B CN 110684375B CN 201911057594 A CN201911057594 A CN 201911057594A CN 110684375 B CN110684375 B CN 110684375B
- Authority
- CN
- China
- Prior art keywords
- carbon black
- pyrolytic carbon
- pyrolytic
- cbp
- stirring
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C1/00—Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
- C09C1/44—Carbon
- C09C1/48—Carbon black
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/02—Ingredients treated with inorganic substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09C—TREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
- C09C3/00—Treatment in general of inorganic materials, other than fibrous fillers, to enhance their pigmenting or filling properties
- C09C3/06—Treatment with inorganic compounds
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/50—Improvements relating to the production of bulk chemicals
- Y02P20/54—Improvements relating to the production of bulk chemicals using solvents, e.g. supercritical solvents or ionic liquids
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
本发明公开了一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法,属于材料制备技术领域。本发明所用方法为利用超临界流体低粘度高扩散性与接近液体密度的特性,以超临界二氧化碳充当分散介质,在搅拌中利用超临界流体充足的动能将碳纳米管分散并使其沉积穿插到热解炭黑表面。本方法所制得的表面负载碳纳米管热解炭黑较未经处理的热解炭黑,可以一定程度上提高硫化胶的模量、拉伸强度和硬度,以及增加硫化胶拉伸断裂时需要的能量,提升硫化胶的拉伸性能。
Description
技术领域
本发明涉及热解炭黑材料制备技术领域,尤其涉及一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法。
背景技术
随着现代汽车工业的迅猛发展,人们对橡胶制品特别是轮胎的消耗量越来越大,我国每年废轮胎的产生量达两亿多条,致使大量的废旧轮胎对环境造成严重的污染。橡胶工业的原料主要是石油,而且废旧橡胶是一种高热值的燃料,发热量一般为31397J/kg,废旧轮胎的发热量高达33494J/kg。目前存在的回收利用手段一定程度上满足了生活、生产需要,其中废旧轮胎的热解则提供了一条附加值高且环境友好的路线。热解(又称裂解、热裂解)是指在缺氧或惰性气体氛围中,利用高温使固体废物中的有机成分发生热降解,逸出挥发性产物并形成固体焦炭的一种化学反应。废轮胎经过热解可回收有机液体、再生炭黑、钢丝以及可燃气体,可燃废气回收后可作为能源使用,热解炭黑(CBp)和热解油为废轮胎热解的主要产物。
轮胎热解炭黑的各项属性皆与普通商业炭黑有诸多不同。轮胎不同部位橡胶所用炭黑型号不一,加之热解过程中会有各种杂质和碳质沉积在热解炭黑表面,因此热解炭黑粒径一般为50~1000nm,呈现双峰或者三峰分布。同时在热解过程中,高温下热解炭黑表面活性点失活,橡胶内金属盐等灰分沉积在热解炭黑表面,热解中产生的碳质堵塞热解炭黑表面孔洞而造成热解炭黑结构度降低。以上种种热解炭黑性质都限制了热解炭黑的回收再利用,因此对热解炭黑进行有效改性以增强热解炭黑的回收利用价值具有重要意义。
超临界流体(supercritical fluid)是温度、压力高于其临界状态的流体。温度与压力都在临界点之上的物质状态归之为超临界流体。超临界流体具有很多优异特性:近乎于零的表面张力、接近于气体的黏度和扩散系数以及接近液体的密度和溶剂化能力。超临界流体的诸多优异特性使其具有很多方面的应用,如超临界萃取、超临界发泡、超临界干燥、超临界反应以及超临界流体沉积。
碳纳米管是一种具有特殊结构(径向尺寸为纳米量级,轴向尺寸为微米量级,管子两端基本上都封口)的一维量子材料。碳纳米管主要由呈六边形排列的碳原子构成数层到数十层的同轴圆管。层与层之间保持固定的距离,约0.34nm,直径一般为2~20nm。利用碳纳米管的性质可以制作出很多性能优异的复合材料。例如用碳纳米管材料增强的塑料力学性能优良、导电性好、耐腐蚀、屏蔽无线电波。使用水泥做基体的碳纳米管复合材料耐冲击性好、防静电、耐磨损、稳定性高,不易对环境造成影响。碳纳米管增强陶瓷复合材料强度高,抗冲击性能好。
目前,将碳纳米管负载到热解炭黑表面的方法较少,且改性的效果较差,碳纳米管多无法负载到热解炭黑表面。因此本发明创造性的采用超临界流体沉积法将碳纳米管负载到热解炭黑表面,以对热解炭黑进行表面改性,从而有效的增强热解炭黑的应用性能。
发明内容
本发明的目的在于提供一种利用超临界流体沉积法将碳纳米管负载到热解炭黑表面的热解炭黑改性方法去解决碳纳米管/热解炭黑复合材料的制备问题,并将制得的复合材料应用于补强橡胶的性能。
为了实现上述发明目的,本发明提供了一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法,所述改性方法的制备步骤如下:
(1)称取碳纳米管和热解炭黑,将碳纳米管和热解炭黑按照顺序分别倒入反应釜中;
(2)将反应釜的釜盖拧紧后置于加热搅拌控制仪的加热腔中;
(3)将温度升至设定温度后,充入CO2至设定气压,之后设定搅拌参数,开启搅拌;
(4)搅拌结束后,静置5min,泄压开釜获得碳纳米管/热解炭黑复合材料。
优选地,所述步骤(1)中称取的所述碳纳米管和所述热解炭黑的质量比为1:25。
优选地,所述步骤(3)中所述设定温度为50℃。
优选地,所述步骤(3)中所述设定气压为8.5MPa。
优选地,所述步骤(3)中所述设定搅拌参数为540r/min,搅拌15min,之后降至270r/min,搅拌15min,最后降至90r/min,搅拌10min。
此外,本发明还提供了一种碳纳米管/热解炭黑复合材料,所述复合材料由所述改性方法制得。
除此之外,本发明还提供了一种碳纳米管/热解炭黑复合材料的应用,所述改性方法制得的所述碳纳米管/热解炭黑复合材料应用于橡胶的性能补强。
本发明的有益效果是:
1.本发明所提供的将碳纳米管负载到热解炭黑表面的热解炭黑改性方法的制备步骤简单,且制备出的材料应用于橡胶性能补强后使橡胶在拉伸应力应变,物理机械性能,平均粒径,储能模量等方面均有所提升。
2.在本专利中,本专利通过利用超临界状态下的低粘度、高扩散性以及搅拌下具有的较高动能进行碳纳米管分散,将碳纳米管负载到热解炭黑表面的空隙中穿插沉积,最终形成碳纳米管包裹热解炭黑的表面修饰杂化粒子,相较于普通方法制备的复合材料,利用本发明方法所制备的复合材料碳纳米管被均匀的负载到热解炭黑的表面,材料具有固定的杂化结构且性能更加的优异。
附图说明
图1为CBp/CNT/SF与CBp、CBp/CNT对比的拉伸应力应变曲线。
图2为CBp/CNT/SF与CBp、CBp/CNT对比的拉伸应力应变曲线的积分面积。
图3为CBp/CNT/SF与CBp、CBp/CNT的平均粒径对比。
图4为CBp/CNT/SF与CBp、CBp/CNT对比的储能模量的应变扫描曲线。
图5为CBp/CNT/SF与CBp、CBp/CNT的表观形貌扫描电镜照片。
具体实施方式
为能清楚说明本方案的技术特点,下面通过具体实施方式,对本方案进行阐述。
实施例1
称取0.1g CNT(碳纳米管)与2.5g CBp(热解炭黑),将CNT与CBp按顺序分别倒入反应釜中,将反应釜釜盖拧紧后置于加热搅拌控制仪加热腔中,将温度升至50℃后充入CO2至8.5MPa,开启搅拌,搅拌速率设为540r/min,搅拌15min后降至270r/min,继续搅拌15min后再降至90r/min,10min后关闭搅拌,静置5min,泄压开釜取料获得CBp/CNT/SF(SF:Supercritical Fluid,超临界流体)。
下面通过具体的实验比较本发明CBp/CNT/SF与单纯CBp以及简单机械制造制备的CBp/CNT在物理性能上的差异。
1.实验配方
采用一套天然橡胶基本配方进行炭黑应用性能对比,具体配方参见表1
表1实验配方
对照组1为单纯的热解炭黑,对照组2为简单机械震荡制备的CBp/CNT(按一定比例放入密封袋中进行摇晃震荡模拟密炼机机械共混过程),CBp与CNT质量比与实施例1相同为25:1。
2.试验样品制备
采用60ml哈普转矩流变仪RM-200C进行密炼:密炼室温度60℃,辊速60r/min,加入生胶1分30秒后加入1/2补强填料与氧化锌、硬脂酸。3分钟时加入剩下的1/2补强填料与硫化体系,4分30秒排胶。在双辊筒开炼机上1.5mm下片。(对照组1,对照组2,实施例1的炼胶工艺相同,只有使用的填料不同。)
3.实验方法
1、力学性能测试
拉伸强度、拉断伸长率和拉伸应力采用电子拉力机按GB/T528-2009标准进行测试。
2、动态光散射(DLS)测试
采用激光粒度分析仪对三种炭黑进行粒径测试。
3、动态力学性能测试
采用橡胶加工分析仪RPA2000进行应变扫描测试。试样为5g圆片型试样,应变扫描:频率1Hz,温度60℃,应变范围0-100%。
5、扫描电子显微镜
测试试样为3种固体粉末。
将未经任何处理的CBp、经过超临界流体处理过后获得的CBp/CNT/SF,以及经过简单机械震荡共混(按一定比例放入密封袋中进行摇晃震荡模拟密炼机机械共混过程)获得的CBp/CNT用扫描电子显微镜观察粒子表面形貌。
4.实验结果
4.1物理性能机械性能
如图1和2所示,实施例1的拉伸应力应变高于对照组1,证明使用本发明CBp/CNT/SF补强的橡胶在拉伸应力应变方面高于单纯CBp补强的橡胶;相较于对照组2,尽管实施例1在拉伸应力应变方面低于对照组2,但是从图2可以看出使用本发明CBp/CNT/SF补强的橡胶断裂所需的能力是最高的,因此,从能量角度来看,使用本发明CBp/CNT/SF补强的橡胶拉伸能力最好。
表2硫化胶的物理机械性能
从表2可以看出,使用本发明CBp/CNT/SF补强的橡胶相较于单纯CBp补强的橡胶增加了拉伸强度,硬度,硫化胶的模量,并且拉断伸长率基本不变;相较于简单机械震荡制备的CBp/CNT补强的橡胶,在拉伸强度,硬度等方法基本相同,但使用本发明CBp/CNT/SF补强的橡胶在拉断伸长率上优于简单机械制备的CBp/CNT。
4.2平均粒径对比
通过图2可以看出,对照组1和对组2的平均粒径基本相同,而实施例1的平均粒径则明显大于二者,说明本发明的超临界CO2沉积法可以使一定量的CNT沉积在CBp表面。其次,DLS测试制样会经过一个超声分散的处理过程,因此CBp表面沉积的CNT与CBp的结合力具有一定的强度,二者不会被超声震荡破坏、分离。
4.3储能模量对比
通过图3可以看出,在应变增加的过程中,对照组2和实施例1的储能模量下降值远大于对照组1而且二者相近,说明本发明CBp/CNT/SF补强的橡胶在刚性上优于单纯的CBp补强的橡胶,而与简单机械制备的CBp/CNT补强的橡胶基本相同。
4.4扫描电镜观察粒子形貌
通过图4可以看出,对照组2的表面基本没有CNT附着,而实施例1的表面缠结沉积了相当多的一层CNT,证明超临界流体处理可以将CNT分散后穿插沉积到CBp表面,并且成功对CBp进行表面改性。
综上所述,通过本发明方法制备的CBp/CNT/SF,CNT被成功的穿插沉积到CBp表面,并且成功实现对CBp表面的改性,而且CNT表面改性的CBp/CNT/SF在力学性能上明显优于未改性的CBp。
Claims (4)
1.一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法,其特征在于,所述改性方法的制备步骤如下:
(1)称取碳纳米管和热解炭黑,将碳纳米管和热解炭黑按照顺序分别倒入反应釜中;
(2)将反应釜的釜盖拧紧后置于加热搅拌控制仪的加热腔中;
(3)将温度升至50℃后,充入CO2至气压为8.5MPa,之后设定搅拌参数为540r/min,搅拌15min,之后降至270r/min,搅拌15min,最后降至90r/min,搅拌10min;
(4)搅拌结束后,静置5min,泄压开釜获得碳纳米管/热解炭黑复合材料。
2.根据权利要求1所述的改性方法,其特征在于,所述步骤(1)中称取的所述碳纳米管和所述热解炭黑的质量比为1:25。
3.一种碳纳米管/热解炭黑复合材料,其特征在于,所述复合材料由权利要求1所述改性方法制得。
4.一种碳纳米管/热解炭黑复合材料的应用,其特征在于,由权利要求1所述改性方法制得的碳纳米管/热解炭黑复合材料应用于橡胶的性能补强。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911057594.9A CN110684375B (zh) | 2019-11-01 | 2019-11-01 | 一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911057594.9A CN110684375B (zh) | 2019-11-01 | 2019-11-01 | 一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110684375A CN110684375A (zh) | 2020-01-14 |
CN110684375B true CN110684375B (zh) | 2020-11-17 |
Family
ID=69115210
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911057594.9A Expired - Fee Related CN110684375B (zh) | 2019-11-01 | 2019-11-01 | 一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110684375B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113416435A (zh) * | 2021-06-04 | 2021-09-21 | 北京克林泰尔环保科技有限公司 | 一种应用于废旧轮胎炭黑造粒方法 |
CN115584060A (zh) * | 2021-07-05 | 2023-01-10 | 北京石墨烯研究院有限公司 | 碳纳米管负载白炭黑及其制备方法 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2969603B1 (fr) * | 2010-12-22 | 2012-12-28 | IFP Energies Nouvelles | Procede de transformation de biomasse lignocellulosique ou de cellulose par des acides solides de lewis non zeolithique stables a base d'etain ou d'antimoine seul ou en melange |
CN107010978B (zh) * | 2017-03-24 | 2020-04-03 | 西北工业大学 | 一种碳纳米管增强热解碳材料的制备方法 |
CN107383419A (zh) * | 2017-08-28 | 2017-11-24 | 中创奕龙科技股份有限公司 | 一种碳纳米管与裂解炭黑复合材料制备方法 |
CN108047495B (zh) * | 2017-12-06 | 2020-03-10 | 山东大展纳米材料有限公司 | 一种碳纳米管和炭黑超强复合填料的原位制备方法 |
-
2019
- 2019-11-01 CN CN201911057594.9A patent/CN110684375B/zh not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN110684375A (zh) | 2020-01-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Jiang et al. | Converting waste lignin into nano-biochar as a renewable substitute of carbon black for reinforcing styrene-butadiene rubber | |
Wen et al. | Thermal and flammability properties of polypropylene/carbon black nanocomposites | |
Ma et al. | Synergistic effect of carbon nanotube and clay for improving the flame retardancy of ABS resin | |
Duan et al. | High-performance graphene reinforced epoxy nanocomposites using benzyl glycidyl ether as a dispersant and surface modifier | |
Tan et al. | Using low-rank coal slime as an eco-friendly replacement for carbon black filler in styrene butadiene rubber | |
Li et al. | The improved thermal oxidative stability of silicone rubber by using iron oxide and carbon nanotubes as thermal resistant additives | |
Zheng et al. | Enhanced covalent interface, crosslinked network and gas barrier property of functionalized graphene oxide/styrene-butadiene rubber composites triggered by thiol-ene click reaction | |
Wang et al. | Mechanical properties of natural rubber nanocomposites filled with thermally treated attapulgite | |
Xue et al. | Hyperelastic characteristics of graphene natural rubber composites and reinforcement and toughening mechanisms at multi-scale | |
CN110684375B (zh) | 一种将碳纳米管负载到热解炭黑表面的热解炭黑改性方法 | |
Li et al. | Characterization of high‐performance exfoliated natural rubber/organoclay nanocomposites | |
Zhang et al. | Thermal stability and decomposition kinetics of styrene-butadiene rubber nanocomposites filled with different particle sized kaolinites | |
Zhang et al. | In‐situ modification of nanodiamonds by mercapto‐terminated silane agent for enhancing the mechanical interfacial properties of nitrile butadiene rubber nanocomposites | |
Saeb et al. | A comparative study on curing characteristics and thermomechanical properties of elastomeric nanocomposites: The effects of eggshell and calcium carbonate nanofillers | |
Sethulekshmi et al. | Multifunctional role of tannic acid in improving the mechanical, thermal and antimicrobial properties of natural rubber-molybdenum disulfide nanocomposites | |
Ashok et al. | Investigating the biodegradability and physical properties of starch derived bioplastic films reinforced with nanosilica | |
Fu et al. | Research on Payne effect of natural rubber reinforced by graft‐modified silica | |
Wang et al. | Good dispersion of hydrophilic nanoscale calcium carbonate particles in nitrile butadiene rubber matrix | |
Dhanasekar et al. | Effects of nanosilica on the mechanical properties and swelling resistance of EPDM/NBR nanocomposites | |
Qing-xiu et al. | Combined effect of nano-clay and nano-carbon black on properties of NR nanocomposites | |
Tong et al. | Mechanical and tribological performance of acrylonitrile‐butadiene rubber/carbon black/cryptocrystalline graphite composites | |
JP2024504244A (ja) | グラフェン複合材料およびその製造方法 | |
Zhang et al. | Influence of kaolinite particle size on cross-link density, microstructure and mechanical properties of latex blending styrene butadiene rubber composites | |
Sushmitha et al. | Influence of organoclay dispersion on air retention and fatigue resistance of tyre inner liner compound | |
Han et al. | The impact of synergistic interaction between CBp and GO during the mixing process on metal friction and wear |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20201117 Termination date: 20211101 |