CN110516867B - 一种基于主成分分析的集成学习负荷预测方法 - Google Patents
一种基于主成分分析的集成学习负荷预测方法 Download PDFInfo
- Publication number
- CN110516867B CN110516867B CN201910774928.8A CN201910774928A CN110516867B CN 110516867 B CN110516867 B CN 110516867B CN 201910774928 A CN201910774928 A CN 201910774928A CN 110516867 B CN110516867 B CN 110516867B
- Authority
- CN
- China
- Prior art keywords
- matrix
- prediction
- vector
- load
- principal component
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000513 principal component analysis Methods 0.000 title claims abstract description 18
- 238000000034 method Methods 0.000 title claims abstract description 15
- 238000005457 optimization Methods 0.000 claims abstract description 15
- 230000009467 reduction Effects 0.000 claims abstract description 10
- 239000011159 matrix material Substances 0.000 claims description 67
- 239000013598 vector Substances 0.000 claims description 33
- 238000012847 principal component analysis method Methods 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 3
- 230000008901 benefit Effects 0.000 abstract description 5
- 238000012417 linear regression Methods 0.000 abstract description 3
- 238000009826 distribution Methods 0.000 abstract description 2
- 230000004044 response Effects 0.000 abstract description 2
- 238000004458 analytical method Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000005611 electricity Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/21—Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
- G06F18/213—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
- G06F18/2135—Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06N—COMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N20/00—Machine learning
- G06N20/20—Ensemble learning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06Q—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
- G06Q50/06—Energy or water supply
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J3/00—Circuit arrangements for AC mains or AC distribution networks
Landscapes
- Engineering & Computer Science (AREA)
- Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- Economics (AREA)
- General Physics & Mathematics (AREA)
- Strategic Management (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Data Mining & Analysis (AREA)
- Human Resources & Organizations (AREA)
- Evolutionary Computation (AREA)
- Software Systems (AREA)
- General Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- General Business, Economics & Management (AREA)
- Tourism & Hospitality (AREA)
- Marketing (AREA)
- Operations Research (AREA)
- Public Health (AREA)
- Game Theory and Decision Science (AREA)
- Evolutionary Biology (AREA)
- Quality & Reliability (AREA)
- Development Economics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Power Engineering (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Entrepreneurship & Innovation (AREA)
- Water Supply & Treatment (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Medical Informatics (AREA)
- Bioinformatics & Computational Biology (AREA)
- Computing Systems (AREA)
- Mathematical Physics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明涉及一种基于主成分分析的集成学习负荷预测方法,属于电力系统需求侧响应领域。本发明的集成学习负荷预测将N个不同预测模型的输出结果通过算法分配权重,最后再组合到一起,通过基于主成分分析的集成学习将各预测模型的比例分配优化问题降维后再作线性回归得到各个模型的权重。该方法能够集成各种预测方案的优点,提高负荷预测的整体准确度。
Description
技术领域
本发明涉及一种基于主成分分析的集成学习负荷预测方法,属于电力系统需求侧响应领域。
背景技术
负荷预测是根据历史的运行特性、增容决策、自然条件与社会影响等诸多因数,在满足一定精度要求的条件下,确定未来某特定时刻的负荷数据,其中负荷是指电力功率或用电量。电力负荷预测是电力部门的重要工作之一,准确的负荷预测,可以经济合理地安排电网内部发电机组的启停,保持电网运行的安全稳定性,减少不必要的旋转储备容量,合理安排机组检修计划,保障社会的正常生产和生活,有效地降低发电成本,提高经济效益和社会效益。在开放的电力市场环境下,售电公司对于用户的负荷预测同样变得重要,可以准确预知用户情况,以更好的在现货市场中竞价获取利润,或像用户推送针对性的增值服务。用户对于自身负荷的准确预测,有利于安排生产,提高能源管理水平。
负荷预测的核心问题是预测的技术方法,或者说是预测数学模型。由于负荷预测是根据电力负荷的过去和现在推测它的未来数值,所以负荷预测所研究的对象是随机事件,各种预测方法和模型都具有一定的不准确性。如果能够集成各种预测方案的优点,就能提高负荷预测的整体准确度。因此,需要提出一种集成型的负荷预测方法,提高整体的负荷预测精度。
发明内容
本发明的目的是提出一种基于主成分分析的集成学习负荷预测方法。集成学习负荷预测实际上就是把N个不同预测模型的输出结果通过算法分配权重,最后再组合到一起,所谓基于主成分分析(PCA)的集成学习预测方法就是通过PCA降维后再作线性回归得到各个模型的权重。
本发明提出的基于主成分分析的集成学习负荷预测方法,包括以下步骤:
S1:确认预测优化问题:
记来自第i个模型的预测输出是yi,此处yi是一个长度为T的一维向量,T是预测的时间范围长度,向量中的第t个元素即为在时刻t的模型预测的负荷值,再记在相同时间尺度下的真实负荷为y,显然y也是一个长度为T的一维向量,向量中的第t个元素y(t)即为在时刻t的真实负荷值,需要找到N个系数ωi,其中i=1,2,…,N,使得由这些系数ωi与yi的进行加权得到集成学习模型的预测值即:
使得:
如何获得这些系数呢?可以通过直接求解以上优化问题得到答案,但是当需要集成的方法数量N过大时,会造成计算代价巨大,仔细分析其实不难发现,由于现在的预测模型精度都比较高,不会存在偏差特别大的情况,因此它们的预测结果通常呈现强烈的线性相关性,即现在有N个向量,但它们大概率张不成一个N维空间,这时候需要通过PCA主成分分析的方法来对模型输出集进行降维,然后再利用降维后得到的向量去解优化问题,所述进行如下步骤;
S2:求取优化系数:
通过主成分分析的方法来对模型输出集进行降维,然后再利用降维后得到的向量去解优化问题;
将N个预测模型的预测输出作为行排列成矩阵形式,就得到了矩阵A:
A=[y1 y2 ... yN]T
A是一个N×T的矩阵,首先对于A的每一行,计算其均值,得到长度为N的均值向量μ,其中μi是第i行的均值,根据均值向量将A零均值化,得到行均值为0的A矩阵,具体如下:
Aij=Aij-μi i=1,2...,N;j=1,2,...,T
计算零均值化后的矩阵A的相关系数矩阵C:
主成分分析的目的在于,找到一个矩阵P,使得原矩阵对P做基变换后,得到的新矩阵:
B=PA
B的协方差矩阵D为对角矩阵,即B的各行之间相关性趋于0;
由于:
此时目标在于找到矩阵P,使得PCPT是一个对角矩阵,且对角元从大到小自上而下排列,其中,P的前k行即为需要寻找的基,用P的前k行×A即得到从N维降至k维后的矩阵;
由于C矩阵是N维实对称矩阵,因此必有N个互相正交的单位特征向量,设这N个特征向量为e1,e2,...,eN,对应的特征值为λ1,λ2,...,λN,将特征向量按照特征值的大小顺序按列组成矩阵E,则对C有如下结论:
ET=P,取出ET中的前k行构成矩阵Q,其中k可以通过如下不等式确定:
使得它们与真实负荷向量y之间满足:
确定ω1,ω2,...,ωk的目标是使得||ε||最小,即:
minf(ω)=(yT-XTω)T(yT-XTω)
其中,ω=[ω1,ω2,...,ωk]T;
ω=(XXT)-1Xy
求得ω=[ω1,ω2,...,ωk]T后,最终的集成学习负荷预测结果即为:
本发明的有益效果是:
本发明的集成学习负荷预测将N个不同预测模型的输出结果通过算法分配权重,最后再组合到一起,通过基于主成分分析的集成学习将各预测模型的比例分配优化问题降维后再作线性回归得到各个模型的权重。该方法能够集成各种预测方案的优点,提高负荷预测的整体准确度。
具体实施方式
实施例1:
本发明提出的基于主成分分析的集成学习负荷预测方法,包括以下步骤:
S1:确认预测优化问题:
记来自第i个模型的预测输出是yi,此处yi是一个长度为T的一维向量,T是预测的时间范围长度,向量中的第t个元素即为在时刻t的模型预测的负荷值,再记在相同时间尺度下的真实负荷为y,显然y也是一个长度为T的一维向量,向量中的第t个元素y(t)即为在时刻t的真实负荷值,需要找到N个系数ωi,其中i=1,2,…,N,使得由这些系数ωi与yi的进行加权得到集成学习模型的预测值 尽可能接近真实值y,即:
使得:
如何获得这些系数呢?可以通过直接求解以上优化问题得到答案,但是当需要集成的方法数量N过大时,会造成计算代价巨大,仔细分析其实不难发现,由于现在的预测模型精度都比较高,不会存在偏差特别大的情况,因此它们的预测结果通常呈现强烈的线性相关性,即现在有N个向量,但它们大概率张不成一个N维空间,这时候需要通过PCA主成分分析的方法来对模型输出集进行降维,然后再利用降维后得到的向量去解优化问题,所述进行如下步骤;
S2:求取优化系数:
通过主成分分析的方法来对模型输出集进行降维,然后再利用降维后得到的向量去解优化问题;
将N个预测模型的预测输出作为行排列成矩阵形式,就得到了矩阵A:
A=[y1 y2 ... yN]T
A是一个N×T的矩阵,首先对于A的每一行,计算其均值,得到长度为N的均值向量μ,其中μi是第i行的均值,根据均值向量将A零均值化,得到行均值为0的A矩阵,具体如下:
Aij=Aij-μi i=1,2...,N;j=1,2,...,T
计算零均值化后的矩阵A的相关系数矩阵C:
主成分分析的目的在于,找到一个矩阵P,使得原矩阵对P做基变换后,得到的新矩阵:
B=PA
B的协方差矩阵D为对角矩阵,这意味着B的各行之间相关性趋于0;
由于:
此时目标在于找到矩阵P,使得PCPT是一个对角矩阵,且对角元从大到小自上而下排列,其中,P的前k行即为需要寻找的基,用P的前k行×A即得到从N维降至k维后的矩阵;
由于C矩阵是N维实对称矩阵,因此必有N个互相正交的单位特征向量,设这N个特征向量为e1,e2,...,eN,对应的特征值为λ1,λ2,...,λN,将特征向量按照特征值的大小顺序按列组成矩阵E,则对C有如下结论:
实际上ET就是寻找的矩阵P,即ET=P,取出ET中的前k行构成矩阵Q,其中k可以通过如下不等式确定:
使得它们与真实负荷向量y之间满足:
确定ω1,ω2,...,ωk的目标是使得||ε||最小,即:
minf(ω)=(yT-XTω)T(yT-XTω)
其中,ω=[ω1,ω2,...,ωk]T;
ω=(XXT)-1Xy
求得ω=[ω1,ω2,...,ωk]T后,最终的集成学习负荷预测结果即为:
显然,本发明的上述实施例仅仅是为清楚地说明本发明所作的举例,而并非是对本发明的实施方式的限定。对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。这里无需也无法对所有的实施方式予以穷举。凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明权利要求的保护范围之内。
Claims (1)
1.一种基于主成分分析的集成学习负荷预测方法,其特征在于,包括以下步骤:
S1:确认预测优化问题:
记来自第i个模型的预测输出是yi,此处yi是一个长度为T的一维向量,T是预测的时间范围长度,向量中的第t个元素即为在时刻t的模型预测的负荷值,再记在相同时间尺度下的真实负荷为y,y是一个长度为T的一维向量,向量中的第t个元素y(t)即为在时刻t的真实负荷值,需要找到N个系数ωi,其中i=1,2,…,N,使得由系数ωi与yi进行加权得到集成学习模型的预测值即:
使得:
S2:求取优化系数:
通过主成分分析的方法来对模型输出集进行降维,然后再利用降维后得到的向量去解优化问题;
将N个预测模型的预测输出作为行排列成矩阵形式,就得到了矩阵A:
A=[y1 y2 ... yN]T
A是一个N×T的矩阵,首先对于A的每一行,计算其均值,得到长度为N的均值向量μ,其中μi是第i行的均值,根据均值向量将A零均值化,得到行均值为0的A矩阵,具体如下:
Aij=Aij-μi i=1,2...,N;j=1,2,...,T
计算零均值化后的矩阵A的相关系数矩阵C:
主成分分析的目的在于,找到一个矩阵P,使得原矩阵对P做基变换后,得到的新矩阵:
B=PA
B的协方差矩阵D为对角矩阵,即B的各行之间相关性趋于0;
由于:
此时目标在于找到矩阵P,使得PCPT是一个对角矩阵,且对角元从大到小自上而下排列,其中,P的前k行即为需要寻找的基,用P的前k行×A即得到从N维降至k维后的矩阵;
由于C矩阵是N维实对称矩阵,因此必有N个互相正交的单位特征向量,设这N个特征向量为e1,e2,...,eN,对应的特征值为λ1,λ2,...,λN,将特征向量按照特征值的大小顺序按列组成矩阵E,则对C有如下结论:
ET=P,取出ET中的前k行构成矩阵Q,其中k可以通过如下不等式确定:
现在集成学习问题即转化为,寻找k个系数ω1,ω2,...,ωk;
使得它们与真实负荷向量y之间满足:
确定ω1,ω2,...,ωk的目标是使得||ε||最小,即:
min f(ω)=(yT-XTω)T(yT-XTω)
其中,ω=[ω1,ω2,...,ωk]T;
ω=(XXT)-1Xy
求得ω=[ω1,ω2,...,ωk]T后,最终的集成学习负荷预测结果即为:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910774928.8A CN110516867B (zh) | 2019-08-21 | 2019-08-21 | 一种基于主成分分析的集成学习负荷预测方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910774928.8A CN110516867B (zh) | 2019-08-21 | 2019-08-21 | 一种基于主成分分析的集成学习负荷预测方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110516867A CN110516867A (zh) | 2019-11-29 |
CN110516867B true CN110516867B (zh) | 2022-02-11 |
Family
ID=68626894
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910774928.8A Active CN110516867B (zh) | 2019-08-21 | 2019-08-21 | 一种基于主成分分析的集成学习负荷预测方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110516867B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113032519A (zh) * | 2021-01-22 | 2021-06-25 | 中国平安人寿保险股份有限公司 | 一种句子相似度判断方法、装置、计算机设备及存储介质 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102073922A (zh) * | 2010-12-10 | 2011-05-25 | 沈阳工业大学 | 基于影响因素筛选的短期负荷预测方法 |
CN102231144A (zh) * | 2011-06-03 | 2011-11-02 | 中国电力科学研究院 | 一种基于Boosting算法的配电网理论线损预测方法 |
AU2012225502A1 (en) * | 2011-03-07 | 2014-01-16 | Callida Energy Llc | Systems and methods for optimizing energy and resource management for building systems |
CN105894113A (zh) * | 2016-03-31 | 2016-08-24 | 中国石油天然气股份有限公司规划总院 | 一种天然气短期需求预测方法 |
CN108022001A (zh) * | 2017-09-20 | 2018-05-11 | 河海大学 | 基于pca和分位数回归森林的短期负荷概率密度预测方法 |
CN109767037A (zh) * | 2018-12-28 | 2019-05-17 | 国网湖北省电力有限公司随州供电公司 | 一种夏季日最大负荷的预测方法 |
-
2019
- 2019-08-21 CN CN201910774928.8A patent/CN110516867B/zh active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102073922A (zh) * | 2010-12-10 | 2011-05-25 | 沈阳工业大学 | 基于影响因素筛选的短期负荷预测方法 |
AU2012225502A1 (en) * | 2011-03-07 | 2014-01-16 | Callida Energy Llc | Systems and methods for optimizing energy and resource management for building systems |
CN102231144A (zh) * | 2011-06-03 | 2011-11-02 | 中国电力科学研究院 | 一种基于Boosting算法的配电网理论线损预测方法 |
CN105894113A (zh) * | 2016-03-31 | 2016-08-24 | 中国石油天然气股份有限公司规划总院 | 一种天然气短期需求预测方法 |
CN108022001A (zh) * | 2017-09-20 | 2018-05-11 | 河海大学 | 基于pca和分位数回归森林的短期负荷概率密度预测方法 |
CN109767037A (zh) * | 2018-12-28 | 2019-05-17 | 国网湖北省电力有限公司随州供电公司 | 一种夏季日最大负荷的预测方法 |
Non-Patent Citations (2)
Title |
---|
一种新的基于PCA的集成学习方法;王顶;《吉林电力》;20100331;第34卷(第2期);全文 * |
基于改进主成分分析的短期负荷预测方法;程其云;《电网技术》;20050228;第29卷(第3期);全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110516867A (zh) | 2019-11-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ghadimi et al. | PSO based fuzzy stochastic long-term model for deployment of distributed energy resources in distribution systems with several objectives | |
Liang et al. | Robust transmission expansion planning based on adaptive uncertainty set optimization under high-penetration wind power generation | |
CN110163429B (zh) | 一种基于相似日优化筛选的短期负荷预测方法 | |
US7162461B2 (en) | Hybrid neural network generation system and method | |
CN111199016A (zh) | 一种基于DTW的改进K-means的日负荷曲线聚类方法 | |
Kebriaei et al. | Short-term load forecasting with a new nonsymmetric penalty function | |
Mamun et al. | Artificial neural networks applied to long-term electricity demand forecasting | |
CN107506868A (zh) | 一种短时电力负荷预测的方法及装置 | |
Raghavendra et al. | Artificial humming bird with data science enabled stability prediction model for smart grids | |
Dong | A data-driven long-term dynamic rating estimating method for power transformers | |
Bukenberger et al. | Approximate latent factor algorithm for scenario selection and weighting in transmission expansion planning | |
Augusto et al. | Optimized capacitor placement considering load and network variability | |
CN110516867B (zh) | 一种基于主成分分析的集成学习负荷预测方法 | |
CN113989073B (zh) | 一种基于大数据挖掘的光伏高占比配网电压时空多维评估方法 | |
Sun et al. | Application of time series based SVM model on next-day electricity price forecasting under deregulated power market | |
CN111275485A (zh) | 基于大数据分析的电网客户等级划分方法、系统、计算机设备及存储介质 | |
CN115204663A (zh) | 一种综合内外运行因素的能源供应链风险评价方法及装置 | |
US20230402846A1 (en) | Data analysis system and method | |
CN113298296B (zh) | 一种自下而上的输电变电站日前负荷概率预测方法 | |
CN113657722B (zh) | 基于群居蜘蛛优化算法的发电厂节能调度方法 | |
Jin et al. | Comprehensive evaluation of impacts of connecting distributed generation to the distribution network | |
Paul et al. | Planning for resilient power distribution systems using risk-based quantification and Q-learning | |
Dakir et al. | On the number of representative days for sizing microgrids with an industrial load profile | |
CN111612419A (zh) | 电力申报数据的处理方法、装置和计算机设备 | |
CN118630747B (zh) | 电力负荷预测方法、装置、设备及介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |