CN110266622A - An Orthogonal Multi-Carrier M-element Chaotic Phase Modulation Spread Spectrum Underwater Acoustic Communication Method - Google Patents
An Orthogonal Multi-Carrier M-element Chaotic Phase Modulation Spread Spectrum Underwater Acoustic Communication Method Download PDFInfo
- Publication number
- CN110266622A CN110266622A CN201810201338.1A CN201810201338A CN110266622A CN 110266622 A CN110266622 A CN 110266622A CN 201810201338 A CN201810201338 A CN 201810201338A CN 110266622 A CN110266622 A CN 110266622A
- Authority
- CN
- China
- Prior art keywords
- spread spectrum
- phase modulation
- signal
- chaotic
- time
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001228 spectrum Methods 0.000 title claims abstract description 89
- 230000000739 chaotic effect Effects 0.000 title claims abstract description 61
- 238000004891 communication Methods 0.000 title claims abstract description 39
- 238000000034 method Methods 0.000 title claims abstract description 39
- 238000013507 mapping Methods 0.000 claims abstract description 28
- 241001417495 Serranidae Species 0.000 claims abstract description 19
- 230000007480 spreading Effects 0.000 claims description 44
- 230000008569 process Effects 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 8
- 230000001360 synchronised effect Effects 0.000 claims description 6
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 230000009466 transformation Effects 0.000 claims description 4
- 238000000605 extraction Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 238000013139 quantization Methods 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 230000011218 segmentation Effects 0.000 claims description 3
- 230000000694 effects Effects 0.000 claims description 2
- 230000006872 improvement Effects 0.000 description 7
- 238000005516 engineering process Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 239000013256 coordination polymer Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B1/00—Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
- H04B1/69—Spread spectrum techniques
- H04B1/707—Spread spectrum techniques using direct sequence modulation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/001—Modulated-carrier systems using chaotic signals
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/20—Modulator circuits; Transmitter circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/18—Phase-modulated carrier systems, i.e. using phase-shift keying
- H04L27/22—Demodulator circuits; Receiver circuits
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2626—Arrangements specific to the transmitter only
- H04L27/2627—Modulators
- H04L27/2628—Inverse Fourier transform modulators, e.g. inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2649—Demodulators
- H04L27/265—Fourier transform demodulators, e.g. fast Fourier transform [FFT] or discrete Fourier transform [DFT] demodulators
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/32—Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2656—Frame synchronisation, e.g. packet synchronisation, time division duplex [TDD] switching point detection or subframe synchronisation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2647—Arrangements specific to the receiver only
- H04L27/2655—Synchronisation arrangements
- H04L27/2657—Carrier synchronisation
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Physics & Mathematics (AREA)
- Discrete Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Synchronisation In Digital Transmission Systems (AREA)
- Digital Transmission Methods That Use Modulated Carrier Waves (AREA)
Abstract
本发明公开了一种正交多载波M元混沌调相扩频水声通信方法,所述方法包括:步骤1)发射端将信源发出的输入信息序列划分为K组长度为a+2的信息序列,分别送入K个分组器中,每个分组器分别对前a位进行M元混沌调相扩频映射,得到一个混沌调相扩频码,对后2位进行QPSK调制后再利用得到的混沌调相扩频码进行扩频调制得到基带信号,然后将K组基带信号分别映射到OFDM符号的子载波上进行OFDM调制,得到待发射的数字信号并进行发射;步骤2)接收端采用OFDM符号中一段混沌调相扩频信号作为导频信号,对接收的数字信号进行时频二维搜索完成时频同步;然后进行OFDM解调得到K组基带信号,分别输入K个组合器完成解扩和QPSK解调,得到二进制序列。
The invention discloses an orthogonal multi-carrier M-element chaotic phase-modulation spread-spectrum underwater acoustic communication method. The method includes: Step 1) The transmitting end divides the input information sequence sent by the information source into K groups with a length of a+2 The information sequence is sent to K groupers respectively, and each grouper performs M-element chaotic phase modulation spread spectrum mapping on the first a bit to obtain a chaotic phase modulation spread spectrum code, and performs QPSK modulation on the last two bits before using The obtained chaotic phase modulation spread spectrum code is subjected to spread spectrum modulation to obtain baseband signals, and then K groups of baseband signals are respectively mapped to subcarriers of OFDM symbols for OFDM modulation to obtain digital signals to be transmitted and transmit them; Step 2) Receiver Using a section of chaotic phase-modulation spread-spectrum signal in OFDM symbol as pilot signal, time-frequency two-dimensional search is performed on the received digital signal to complete time-frequency synchronization; then OFDM demodulation is performed to obtain K groups of baseband signals, which are respectively input into K combiners to complete Despread and QPSK demodulate to get the binary sequence.
Description
技术领域technical field
本发明涉及水声通信技术领域,具体涉及一种正交多载波M元混沌调相扩频水声通信方法。The invention relates to the technical field of underwater acoustic communication, in particular to an orthogonal multi-carrier M-element chaotic phase-modulation spread-spectrum underwater acoustic communication method.
背景技术Background technique
水声信道是一个带宽有限、多途干扰复杂、背景噪声严重的时变、空变和频变的信道,信道的复杂性严重限制了水声通信的通信性能。扩频通信由于扩频增益的存在,具有良好的抗噪声和抗多径干扰特性,被广泛应用于远程水声通信领域。然而由于受到水声信道带宽的限制,扩频通信通信速率较低,往往只能满足每秒几十个比特甚至几个比特的传输速率,因此实用性受到较大限制。The underwater acoustic channel is a time-varying, space-varying and frequency-varying channel with limited bandwidth, complex multi-path interference, and serious background noise. The complexity of the channel severely limits the communication performance of underwater acoustic communication. Due to the existence of spread spectrum gain, spread spectrum communication has good anti-noise and anti-multipath interference characteristics, and is widely used in the field of long-distance underwater acoustic communication. However, due to the limitation of the bandwidth of the underwater acoustic channel, the communication rate of spread spectrum communication is low, and often can only meet the transmission rate of tens of bits or even a few bits per second, so the practicability is greatly limited.
利用组合扩频通信方式,数据率得以进一步提高,然而相互叠加的扩频码之间难以保证完全正交,因此存在通道间相互干扰,降低了系统的误码率性能;利用双正交通道的循环移位键控扩频通信方式,将信息调制在码元相位上,利用码元相位的大小表示信息,一方面进一步提高了带宽利用率,另一方面通过正交通道解决了通道间干扰的问题;利用正交多载波扩频(Orthogonal Multi-carrier Spread Spectrum,OMCSS)方式,将扩频后的信号同时调制在多个正交子载波上,并结合循环移位键控和M元扩频调制,进一步提高了通信速率。然而上述时域扩频方案对于扩频通信效率提升有限,且在信道结构复杂的水声条件下,通信性能受到限制。此外上述传统的扩频调制采用的伪随机(Pseudo-Noise,PN)序列具有明显的周期性和二值性等特征,一旦信号被截获,码片速率和码周期等相应特征容易被敌方提取和利用,导致信息泄露,不具有保密特性。Using the combined spread spectrum communication method, the data rate can be further improved. However, it is difficult to guarantee complete orthogonality between the superimposed spread spectrum codes, so there is mutual interference between channels, which reduces the bit error rate performance of the system; The cyclic shift keying spread spectrum communication method modulates the information on the symbol phase, and uses the size of the symbol phase to represent the information. On the one hand, the bandwidth utilization rate is further improved, and on the other hand, the problem of inter-channel interference is solved through the orthogonal channel. Problem: Using the Orthogonal Multi-carrier Spread Spectrum (OMCSS) method, the spread signal is simultaneously modulated on multiple orthogonal subcarriers, combined with cyclic shift keying and M-ary spread spectrum Modulation further increases the communication rate. However, the above time-domain spread spectrum scheme has limited improvement in the efficiency of spread spectrum communication, and the communication performance is limited under the underwater acoustic conditions with complex channel structures. In addition, the pseudo-random (Pseudo-Noise, PN) sequence used in the traditional spread spectrum modulation has obvious periodicity and binary characteristics. Once the signal is intercepted, the corresponding characteristics such as chip rate and code period are easy to be extracted by the enemy. And use, leading to information leakage, does not have the characteristics of confidentiality.
发明内容Contents of the invention
本发明的目的在于,为解决上述现有技术的不足,进一步提高水声扩频通信的通信速率,同时提高扩频信号的保密性能,提供一种可靠性高、保密性好、通信效率高的水声通信方法。The purpose of the present invention is to solve the above-mentioned deficiencies in the prior art, further improve the communication rate of underwater acoustic spread spectrum communication, improve the secrecy performance of spread spectrum signals at the same time, and provide a kind of communication system with high reliability, good confidentiality and high communication efficiency. Underwater Acoustic Communication Methods.
为达到上述目的,本发明提供了一种正交多载波M元混沌调相扩频水声通信方法,所述方法包含:In order to achieve the above object, the present invention provides a method for orthogonal multi-carrier M-element chaotic phase-modulation spread-spectrum underwater acoustic communication, said method comprising:
步骤1)发射端将信源发出的输入信息序列按照每(a+2)bit一组进行顺序串并转换,得到K组长度为a+2的信息序列,并将其分别送入K个分组器中,每个分组器分别对前a位进行M元混沌调相扩频映射,得到一个混沌调相扩频码,对后2位进行QPSK调制后再利用得到的混沌调相扩频码进行扩频调制得到基带信号,然后将K组基带信号分别映射到OFDM符号的子载波上进行OFDM调制,得到待发射的数字信号,最后将待发射的数字信号转换为水声信号并进行发射;Step 1) The transmitting end converts the input information sequence sent by the source into serial-to-parallel conversion according to each (a+2) bit group, and obtains K groups of information sequences with a length of a+2, and sends them into K groups respectively In the device, each grouper performs M-element chaotic phase modulation spread spectrum mapping on the first a bit respectively to obtain a chaotic phase modulation spread spectrum code, performs QPSK modulation on the last two bits, and then uses the obtained chaotic phase modulation spread spectrum code to perform Spread spectrum modulation to obtain baseband signals, and then map K groups of baseband signals to subcarriers of OFDM symbols for OFDM modulation to obtain digital signals to be transmitted, and finally convert digital signals to be transmitted into underwater acoustic signals and transmit them;
步骤2)接收端将收到的水声信号转换为数字信号,采用OFDM符号中一段混沌调相扩频信号作为导频信号,利用混沌调相扩频码的扩频增益,对数字信号进行时频二维搜索完成时频同步;然后对完成时频同步后的信号进行OFDM解调得到K组基带信号,分别输入K个组合器完成解扩和QPSK解调,得到二进制序列。Step 2) The receiving end converts the received underwater acoustic signal into a digital signal, adopts a section of chaotic phase-modulation spread spectrum signal in the OFDM symbol as the pilot signal, and uses the spreading gain of the chaotic phase-modulation spread spectrum code to time-shift the digital signal. Frequency two-dimensional search completes time-frequency synchronization; then performs OFDM demodulation on the signals after time-frequency synchronization to obtain K groups of baseband signals, which are respectively input into K combiners to complete despreading and QPSK demodulation to obtain binary sequences.
作为上述方法的一种改进,所述步骤1)具体包括:As an improvement of the above method, the step 1) specifically includes:
步骤1-1)利用Quadratic映射得到原始混沌序列,由此生成M个用于调制信息序列的扩频码和一个用于时频同步的导频序列,扩频长度分别为N和D;将生成的M个扩频码组成一个混沌调相扩频序列集{c1,c2,...,cM};Step 1-1) Use Quadratic mapping to obtain the original chaotic sequence, thereby generating M spreading codes for modulating the information sequence and a pilot sequence for time-frequency synchronization, and the spreading lengths are N and D respectively; the generated The M spread spectrum codes form a chaotic phase modulation spread spectrum sequence set {c 1 ,c 2 ,...,c M };
步骤1-2)发射端将信源发出的输入信息序列按照每(a+2)bit一组进行顺序串并转换,得到K组长度为a+2的信息序列,并将其分别送入K个分组器中;Step 1-2) The transmitting end converts the input information sequence sent by the source into serial-to-parallel conversion according to each group of (a+2) bits, and obtains K groups of information sequences with a length of a+2, and sends them to K in a grouper;
步骤1-3)每个分组器对输入的(a+2)bit信息进行分段处理,将其中前a位进行M元映射,剩余的2位信息进行QPSK映射;则第k个分组器得到M元映射后的M进制数据xk,选择混沌调相扩频序列集合中M个扩频序列中的第xk个扩频码作为输出,得到对应的扩频码QPSK映射后得到d(k),并利用扩频码对d(k)扩频调制后得到与第k个分组器对应的基带信号b(n):Step 1-3) Each grouper performs segmentation processing on the input (a+2) bit information, performs M-ary mapping on the first a bit, and performs QPSK mapping on the remaining 2-bit information; then the kth grouper obtains The M-ary data x k after M-element mapping, select the x kth spreading code in the M spreading sequences in the set of chaotic phase modulation spreading sequences as output, and get the corresponding spreading code After QPSK mapping, d(k) is obtained, and the spreading code is used The baseband signal b(n) corresponding to the kth grouper is obtained after spread spectrum modulation of d(k):
其中n=0,1...,KN,q=n-kN,k=1,…K,代表扩频码的第q个码片;where n=0,1...,KN, q=n-kN, k=1,...K, Spreading code The qth chip of ;
步骤1-4)每个分组器输出一个长度为N的基带信号,将K组基带信号与导频序列一一映射到OFDM符号的L个子载波上,得到总基带信号,对总基带信号进行IFFT变换,得到时域信号S(t)为:Steps 1-4) Each grouper outputs a baseband signal with a length of N, maps K groups of baseband signals and pilot sequences to L subcarriers of OFDM symbols one by one, obtains the total baseband signal, and performs IFFT on the total baseband signal Transform, the time domain signal S(t) is obtained as:
其中,fn为每个子载波的频率,T为一个OFDM符号的时间长度,Tg为循环前缀的时间长度,T′=T+Tg;完整的M元CPM扩频OFDM信号表示为:Wherein, f n is the frequency of each subcarrier, T is the time length of an OFDM symbol, T g is the time length of the cyclic prefix, T'=T+T g ; the complete M element CPM spread spectrum OFDM signal is expressed as:
其中,b(n,i)是第i个符号中的第n个子载波上调制的数据,g(t)为每个符号的脉冲波形,表示为:Among them, b(n,i) is the data modulated on the nth subcarrier in the i-th symbol, and g(t) is the pulse waveform of each symbol, expressed as:
作为上述方法的一种改进,所述步骤1-1)具体包括:As an improvement of the above method, the step 1-1) specifically includes:
步骤1-1-1)利用Quadratic映射得到原始混沌码,映射方程表示为:Step 1-1-1) Utilize Quadratic mapping to obtain the original chaotic code, and the mapping equation is expressed as:
y(m+1)=P-Qy2(m)y(m+1)=P-Qy 2 (m)
其中,当3/4<PQ<2时,原始混沌码y(m)∈(-2/Q,2/Q),Q=4,P=1/4,y(0)∈(-0.5,0.5),y(m)∈(-0.5,0.5),m为正整数;Among them, when 3/4<PQ<2, the original chaotic code y(m)∈(-2/Q,2/Q), Q=4, P=1/4, y(0)∈(-0.5, 0.5), y(m)∈(-0.5,0.5), m is a positive integer;
步骤1-1-2)将未经二值量化的y(m)调制在复指数上,生成混沌调相扩频码c,c包含N个码片,其中第q个码片为:Step 1-1-2) Modulate the y(m) without binary quantization on the complex exponent to generate the chaotic phase modulation spread spectrum code c, c contains N chips, wherein the qth chip is:
c(q)=exp{j2πy(q)},q=0,1...N-1c(q)=exp{j2πy(q)},q=0,1...N-1
步骤1-1-3)选择M个相互正交的混沌调相扩频码组成M元混沌调相扩频码序列集合{c1,c2,...,cM};Step 1-1-3) Select M mutually orthogonal chaotic phase modulation spreading codes to form an M-element chaotic phase modulation spreading code sequence set {c 1 ,c 2 ,...,c M };
步骤1-1-4)利用原始混沌序列y(m)生成一段固定的混沌调相扩频码,扩频码长度为D,将该扩频码作为导频序列。Step 1-1-4) Using the original chaotic sequence y(m) to generate a fixed chaotic phase-modulation spreading code, the spreading code length is D, and the spreading code is used as a pilot sequence.
作为上述方法的一种改进,所述步骤1-2)中的a为:As an improvement of the above method, a in the step 1-2) is:
作为上述方法的一种改进,所述步骤1-2)中的K的大小由混沌调相扩频码的长度N和一个多载波M元混沌调相扩频符号S的子载波个数L决定,其关系满足:As an improvement of the above method, the size of K in the step 1-2) is determined by the length N of the chaotic phase modulation spread spectrum code and the subcarrier number L of a multi-carrier M element chaos phase modulation spread spectrum symbol S , whose relationship satisfies:
K×N+D≤L。K×N+D≤L.
作为上述方法的一种改进,所述步骤2)具体包括:As an improvement of the above method, the step 2) specifically includes:
步骤2-1)接收端对接收到的OFDM信号进行时频同步;Step 2-1) The receiving end performs time-frequency synchronization on the received OFDM signal;
步骤2-2)对同步后的信号r(t)在时间段[iT′,iT′+T]内做傅里叶变换,由式(7)得到输出的第i个符号中第n个子载波上的信号为:Step 2-2) Perform Fourier transform on the synchronized signal r(t) within the time period [iT′,iT′+T], and obtain the nth subcarrier in the output i symbol by formula (7) The signal on is:
其中,为同步误差导致的相位偏差;in, is the phase deviation caused by synchronization error;
步骤2-3)对分布在不同子载波上的扩频信号进行频域上的M元相关解扩;Step 2-3) performing M-element correlation despreading in the frequency domain to spread spectrum signals distributed on different subcarriers;
假设第i个OFDM符号中的第k个待解扩的扩频信号在子载波上的位置为γ=[0 1… N-1],则相关解扩的过程为:Assuming that the position of the k-th spread spectrum signal to be despread in the i-th OFDM symbol on the subcarrier is γ=[0 1... N-1], then the process of related despreading is:
其中,rni代表按照第k个扩频信号在子载波中位置对第i个OFDM符号进行子载波抽取后的基带信号,cp代表M元混沌调相扩频序列集中的第p个扩频码,表示取共轭操作,为rni与cp解扩后得到的结果;根据可以得到M进制的数据xk的估计值:Among them, r ni represents the baseband signal after subcarrier extraction of the i-th OFDM symbol according to the position of the k-th spread spectrum signal in the sub-carrier, and c p represents the p-th spread spectrum in the set of M-ary chaotic phase-modulated spread-spectrum sequences code, Indicates the conjugate operation, is the result obtained after despreading r ni and c p ; according to The estimated value of the M-ary data x k can be obtained:
对M进制的进行逆映射得到对应的a个比特信息;For M base Perform inverse mapping to obtain corresponding a bit information;
步骤2-4)令对进行QPSK逆映射即可解调得出后2个比特信息;Step 2-4) order right Perform QPSK inverse mapping to demodulate to obtain the last 2 bits of information;
步骤2-5)将步骤2-3)和步骤2-4)中得到的a比特和2比特信息输入第k个组合器进行组合得到第k组信息序列;Step 2-5) input the a bit and 2 bit information obtained in step 2-3) and step 2-4) into the kth combiner to combine to obtain the kth group information sequence;
步骤2-6)重复步骤2-5)解调得到全部K组信息序列,并将这K组信息序列进行并串转换得到最终的解调信息序列。Step 2-6) Repeat step 2-5) to demodulate to obtain all K groups of information sequences, and perform parallel-to-serial conversion on these K groups of information sequences to obtain the final demodulated information sequence.
作为上述方法的一种改进,所述步骤2-1)具体包括:As an improvement of the above method, the step 2-1) specifically includes:
步骤2-1-1)以一个时域搜索步长的时延截取待同步的OFDM符号,根据频域变采样算法对时域OFDM符号进行高分辨的FFT变换,得到各个子载波受多普勒干扰后搬移的频谱;Step 2-1-1) Intercept OFDM symbols to be synchronized with a time delay of a time-domain search step, and perform high-resolution FFT transformation on the time-domain OFDM symbols according to the frequency-domain variable sampling algorithm to obtain the Doppler effect of each subcarrier Spectrum shifted after interference;
步骤2-1-2)以一个频域搜索步长的多普勒因子计算导频信号的子载波位置,并根据得到的位置对上述频谱进行就近抽取,得到与导频信号对应的基带信号;Step 2-1-2) Calculate the subcarrier position of the pilot signal with a Doppler factor of a frequency domain search step, and extract the above-mentioned frequency spectrum according to the obtained position to obtain the baseband signal corresponding to the pilot signal;
步骤2-1-3)将上述基带信号与接收端本地生成的用于时频同步的混沌调相扩频码进行频域扩频解扩,求出解扩结果的能量值作为本次频域搜索的结果;Step 2-1-3) Perform frequency-domain spread-spectrum despreading on the above-mentioned baseband signal and the chaotic phase-modulation spreading code used for time-frequency synchronization locally generated by the receiving end, and obtain the energy value of the despreading result as this frequency-domain the results of the search;
步骤2-1-4)以上述频域搜索步长更新频域搜索的多普勒因子,在搜索范围内按照步骤2-1-2)至步骤2-1-3)的过程迭代搜索,求出各次频域搜索结果的最大值作为本次时域搜索的结果;Step 2-1-4) Update the Doppler factor of the frequency domain search with the above-mentioned frequency domain search step size, iteratively search according to the process of step 2-1-2) to step 2-1-3) within the search range, and find The maximum value of each frequency domain search result is taken as the result of this time domain search;
步骤2-1-5)以上述时域搜索步长更新时延,在搜索范围内按照步骤2-1-1)至步骤2-1-4)的过程迭代搜索,求出各次时域搜索结果的最大值,并计算该次搜索对应的多普勒因子和时延作为最终的输出,获取信号解调需要的多普勒估计值和OFDM符号的时域同步点。Step 2-1-5) Update the time delay with the above-mentioned time-domain search step size, iteratively search within the search range according to the process from step 2-1-1) to step 2-1-4), and obtain the time-domain search The maximum value of the result, and calculate the Doppler factor and time delay corresponding to this search as the final output, and obtain the Doppler estimation value required for signal demodulation and the time domain synchronization point of the OFDM symbol.
本发明的优点在于:The advantages of the present invention are:
1、本发明的方法以CPM序列作为频域扩频码,并结合正交多载波技术获得更高的通信速率,在M元扩频上叠加QPSK调制进一步提高了频带利用率;去除CP保护后系统性能也不会明显下降,在不影响可靠性的同时进一步提高了通信效率;此外,CPM序列充分利用了混沌序列的优良相关特性,克服了常规PN序列互相关不佳的缺点,同时具有生成简单,数量巨大的特点;1, the method of the present invention uses CPM sequence as frequency domain spread spectrum code, and obtains higher communication rate in conjunction with orthogonal multi-carrier technology, superimposed QPSK modulation on M element spread spectrum has improved frequency band utilization rate further; After removing CP protection The system performance will not decrease significantly, and the communication efficiency is further improved without affecting the reliability; in addition, the CPM sequence makes full use of the excellent correlation characteristics of the chaotic sequence, overcomes the shortcomings of the poor cross-correlation of the conventional PN sequence, and has the ability to generate Simple, huge number of features;
2、本发明的方法结合频域M元扩频和正交多载波技术,并引入CPM序列提出一种新的正交多载波M元混沌调相扩频水声通信方式,在保证通信误码性能的同时极大的提高了通信速率,并可适用于保密水声通信。2. The method of the present invention combines frequency-domain M-element spread spectrum and orthogonal multi-carrier technology, and introduces a CPM sequence to propose a new orthogonal multi-carrier M-element chaotic phase-modulation spread-spectrum underwater acoustic communication mode, which ensures communication error codes While improving the performance, the communication rate is greatly improved, and it can be applied to confidential underwater acoustic communication.
附图说明Description of drawings
图1为本发明的正交多载波M元混沌调相扩频水声通信方法流程图;Fig. 1 is the flowchart of the orthogonal multi-carrier M-element chaos phase modulation spread spectrum underwater acoustic communication method of the present invention;
图2为本发明的正交多载波M元混沌调相扩频水声通信时频同步实现示意图。Fig. 2 is a schematic diagram of realizing time-frequency synchronization of orthogonal multi-carrier M-element chaotic phase-modulation spread-spectrum underwater acoustic communication according to the present invention.
具体实施方式Detailed ways
下面结合具体附图和实施例对本发明提供的一种正交多载波M元混沌调相扩频水声通信方法(M-ary Chaotic Phase Modulation Orthogonal Multi-carrier SpreadSpectrum,M-ary CPM-OMCSS)做进一步阐释。A kind of orthogonal multi-carrier M element chaotic phase modulation spread spectrum underwater acoustic communication method (M-ary Chaotic Phase Modulation Orthogonal Multi-carrier SpreadSpectrum, M-ary CPM-OMCSS) provided by the present invention is described below in conjunction with specific drawings and embodiments Further explanation.
本发明提供的正交多载波M元混沌调相扩频水声通信方法流程图,如图1所示,具体描述如下:The flow chart of the orthogonal multi-carrier M-element chaotic phase-modulation spread-spectrum underwater acoustic communication method provided by the present invention is shown in Figure 1, and is specifically described as follows:
步骤一:利用Quadratic映射得到原始混沌码,映射方程表示为:Step 1: Use Quadratic mapping to obtain the original chaotic code, and the mapping equation is expressed as:
y(m+1)=P-Qy2(m) (1)y(m+1)=P-Qy 2 (m) (1)
其中,当3/4<PQ<2时,原始混沌码y(m)∈(-2/Q,2/Q),Q=4,P=1/4,y(0)∈(-0.5,0.5),y(m)∈(-0.5,0.5),m为正整数;Among them, when 3/4<PQ<2, the original chaotic code y(m)∈(-2/Q,2/Q), Q=4, P=1/4, y(0)∈(-0.5, 0.5), y(m)∈(-0.5,0.5), m is a positive integer;
将未经二值量化的y(m)调制在复指数上,生成混沌调相扩频码c,c包含N个码片,其中第q个码片为:Modulate the y(m) without binary quantization on the complex exponent to generate the chaotic phase modulation spreading code c, c contains N chips, where the qth chip is:
c(q)=exp{j2πy(q)},q=0,1...N-1 (2)c(q)=exp{j2πy(q)},q=0,1...N-1 (2)
选择M个相互正交的混沌调相扩频码组成M元混沌调相扩频码序列集合{c1,c2,...,cM};Select M mutually orthogonal chaotic phase modulation spreading codes to form an M-element chaotic phase modulation spreading code sequence set {c 1 ,c 2 ,...,c M };
步骤二:利用原始混沌码y(m)生成一段固定的混沌调相扩频码,扩频码长度为D,将该扩频码作为导频序列。Step 2: Use the original chaotic code y(m) to generate a fixed chaotic phase-modulation spreading code with a length of D, and use the spreading code as a pilot sequence.
步骤三:通信发射端将输入信息序列按照每a+2bit一组进行顺序串并转换,得到K组长度为a+2的信息序列,并将其分别送入K个分组器中,如图1所示。其中K的大小由混沌调相扩频码的长度N和一个多载波M元混沌调相扩频符号S的子载波个数L决定,其关系满足:Step 3: The communication transmitter performs serial-to-parallel conversion of the input information sequence according to each a+2bit group, and obtains K groups of information sequences with a length of a+2, and sends them to K groupers respectively, as shown in Figure 1 shown. The size of K is determined by the length N of the chaotic phase modulation spread spectrum code and the number L of subcarriers of a multi-carrier M-element chaotic phase modulation spread spectrum symbol S, and the relationship satisfies:
K×N+D≤L。K×N+D≤L.
每个分组器对输入的(a+2)bit信息进行分段处理,将其中前a位进行M元映射,剩余的2位信息进行QPSK映射;则第k个分组器得到M元映射后的M进制数据xk,选择混沌调相扩频序列集合中M个扩频序列中的第xk个扩频码作为输出,得到对应的扩频码其中每个扩频码的选取方式有M种,因此对应的a的值为:Each grouper performs segmentation processing on the input (a+2)bit information, performs M-element mapping on the first a bit, and performs QPSK mapping on the remaining 2-bit information; then the kth grouper obtains the M-element mapped For the M-ary data x k , select the x kth spreading code in the M spreading sequences in the set of chaotic phase modulation spreading sequences as output, and obtain the corresponding spreading code There are M kinds of selection methods for each spreading code, so the corresponding value of a is:
式中代表向下取整数操作。In the formula Represents a round down operation.
QPSK映射后得到d(k),并利用扩频码对d(k)扩频调制后得到与第k个分组器对应的基带信号b(n):After QPSK mapping, d(k) is obtained, and the spreading code is used The baseband signal b(n) corresponding to the kth grouper is obtained after spread spectrum modulation of d(k):
其中n=0,1...,KN,q=n-kN,k=1,…K,代表扩频码的第q个码片;where n=0,1...,KN, q=n-kN, k=1,...K, Spreading code The qth chip of ;
步骤四:上述每个分组器对应一个长度为N的基带信号,将K组基带信号与导频序列一一映射到OFDM符号的L个子载波上,得到总长度为K×N+D的总基带信号,对总基带信号做IFFT变换进行,可得到时域信号S(t)为:Step 4: Each of the above groupers corresponds to a baseband signal with a length of N, and maps K groups of baseband signals and pilot sequences to L subcarriers of OFDM symbols one by one to obtain a total baseband with a total length of K×N+D Signal, IFFT transformation is performed on the total baseband signal, and the time domain signal S(t) can be obtained as:
其中,fn为每个子载波的频率,T为一个OFDM符号的时间长度,Tg为循环前缀的时间长度,T′=T+Tg;从而完整的M元CPM扩频OFDM信号可以表示为:Wherein, f n is the frequency of each subcarrier, T is the time length of an OFDM symbol, T g is the time length of the cyclic prefix, T'=T+T g ; thus the complete M-element CPM spread spectrum OFDM signal can be expressed as :
其中,b(n,i)是第i个符号中的第n个子载波上调制的数据,g(t)为每个符号的脉冲波形,定义为:Among them, b(n,i) is the data modulated on the n-th subcarrier in the i-th symbol, g(t) is the pulse waveform of each symbol, defined as:
步骤五:接收端接收到信号后对其进行时频同步,如图2所示,所述时域同步包括:Step 5: After receiving the signal, the receiving end performs time-frequency synchronization on it, as shown in Figure 2, the time domain synchronization includes:
步骤5-1)以一个时域搜索步长的时延截取待同步的OFDM符号,根据频域变采样算法对时域OFDM符号进行高分辨的FFT变换,得到各个子载波受多普勒干扰后搬移的频谱;Step 5-1) Intercept OFDM symbols to be synchronized with a delay of a time-domain search step, perform high-resolution FFT transformation on the time-domain OFDM symbols according to the frequency-domain variable sampling algorithm, and obtain each subcarrier after Doppler interference shifted spectrum;
步骤5-2)以一个频域搜索步长的多普勒因子计算导频信号的子载波位置,并根据得到的位置对上述频谱进行就近抽取,得到与导频信号对应的基带信号;Step 5-2) Calculate the subcarrier position of the pilot signal with a Doppler factor of a frequency domain search step, and extract the above-mentioned frequency spectrum according to the obtained position to obtain the baseband signal corresponding to the pilot signal;
步骤5-3)将上述基带信号与接收端本地生成的用于时频同步的混沌调相扩频码进行频域扩频解扩,求出解扩结果的能量值作为本次频域搜索的结果;Step 5-3) Perform frequency-domain spread-spectrum despreading on the above-mentioned baseband signal and the chaotic phase-modulation spreading code used for time-frequency synchronization locally generated by the receiving end, and obtain the energy value of the despreading result as the frequency-domain search. result;
步骤5-4)以上述频域搜索步长更新频域搜索的多普勒因子,在搜索范围内按照步骤5-2)至步骤5-3)的过程迭代搜索,求出各次频域搜索结果的最大值作为本次时域搜索的结果;Step 5-4) Update the Doppler factor of the frequency domain search with the above-mentioned frequency domain search step size, iteratively search according to the process of step 5-2) to step 5-3) within the search range, and obtain the frequency domain search The maximum value of the result is taken as the result of this time domain search;
步骤5-5)以上述时域搜索步长更新时延,在搜索范围内按照步骤5-1)至步骤5-4)的过程迭代搜索,求出各次时域搜索结果的最大值,并计算该次搜索对应的多普勒因子和时延作为最终的输出,获取信号解调需要的多普勒估计值和OFDM符号的时域同步点。Step 5-5) update the time delay with the above-mentioned time-domain search step size, iteratively search according to the process of step 5-1) to step 5-4) within the search range, find the maximum value of each time-domain search result, and Calculate the Doppler factor and time delay corresponding to this search as the final output, and obtain the Doppler estimation value required for signal demodulation and the time domain synchronization point of the OFDM symbol.
对同步后的信号在时间段[iT′,iT′+T]内对接收信号做傅里叶变换,由式(7)得到输出的第i个符号中第n个子载波上的信号为:Perform Fourier transform on the received signal within the time period [iT′,iT′+T] of the synchronized signal, and the signal on the nth subcarrier in the output i symbol is obtained from formula (7):
其中,r(t)为同步后的接收信号,为同步误差导致的相位偏差。Among them, r(t) is the received signal after synchronization, is the phase deviation caused by synchronization error.
步骤六:对分布在不同子载波上的扩频信号进行频域上的M元相关解扩;Step 6: performing M-ary correlation despreading in the frequency domain on the spread spectrum signals distributed on different subcarriers;
假设第i个OFDM符号中的第k个待解扩的扩频信号在子载波上的位置为γ=[0 1… N-1],则相关解扩的过程为:Assuming that the position of the k-th spread spectrum signal to be despread in the i-th OFDM symbol on the subcarrier is γ=[0 1... N-1], then the process of related despreading is:
其中,rni代表按照第k个扩频信号在子载波中位置对第i个OFDM符号进行子载波抽取后的基带信号,cp代表M元CPM序列集中的第p个扩频码,表示取共轭操作,为rni与cp解扩后得到的结果;根据可以得到M进制的数据xk的估计值:Among them, r ni represents the baseband signal after subcarrier extraction of the i-th OFDM symbol according to the position of the k-th spread-spectrum signal in the sub-carrier, c p represents the p-th spreading code in the M-ary CPM sequence set, Indicates the conjugate operation, is the result obtained after despreading r ni and c p ; according to The estimated value of the M-ary data x k can be obtained:
对M进制的进行逆映射得到对应的a个比特信息;For M base Perform inverse mapping to obtain corresponding a bit information;
步骤七:通过步骤六的频域解扩很大程度上提高了基带信号的信干噪比,利于对QPSK调制信息d(k)的恢复,Step seven: through the frequency domain despreading of step six, the SINR of the baseband signal is greatly improved, which is beneficial to the recovery of the QPSK modulation information d(k),
对进行QPSK逆映射即可解调得出后2个比特信息。right After performing QPSK inverse mapping, the last 2 bits of information can be obtained through demodulation.
步骤八:将步骤六和步骤七中得到的a比特和2比特信息输入第k个组合器进行组合得到第k组信息序列。Step 8: Input the a-bit and 2-bit information obtained in Step 6 and Step 7 into the kth combiner for combination to obtain the kth group of information sequences.
步骤九:重复步骤八解调得到全部K组信息序列,并将这K组信息序列进行并串转换得到最终的解调信息序列。Step 9: Repeat step 8 to demodulate to obtain all K groups of information sequences, and perform parallel-to-serial conversion on these K groups of information sequences to obtain the final demodulated information sequences.
最后所应说明的是,以上实施例仅用以说明本发明的技术方案而非限制。尽管参照实施例对本发明进行了详细说明,本领域的普通技术人员应当理解,对本发明的技术方案进行修改或者等同替换,都不脱离本发明技术方案的精神和范围,其均应涵盖在本发明的权利要求范围当中。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than limit them. Although the present invention has been described in detail with reference to the embodiments, those skilled in the art should understand that modifications or equivalent replacements to the technical solutions of the present invention do not depart from the spirit and scope of the technical solutions of the present invention, and all of them should be included in the scope of the present invention. within the scope of the claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810201338.1A CN110266622B (en) | 2018-03-12 | 2018-03-12 | An Orthogonal Multi-Carrier M-Element Chaotic Phase Modulation Spread Spectrum Underwater Acoustic Communication Method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810201338.1A CN110266622B (en) | 2018-03-12 | 2018-03-12 | An Orthogonal Multi-Carrier M-Element Chaotic Phase Modulation Spread Spectrum Underwater Acoustic Communication Method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110266622A true CN110266622A (en) | 2019-09-20 |
CN110266622B CN110266622B (en) | 2020-12-01 |
Family
ID=67911482
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810201338.1A Active CN110266622B (en) | 2018-03-12 | 2018-03-12 | An Orthogonal Multi-Carrier M-Element Chaotic Phase Modulation Spread Spectrum Underwater Acoustic Communication Method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110266622B (en) |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110995364A (en) * | 2019-11-29 | 2020-04-10 | 舟山国海通信科技有限公司 | Communication method for improving communication rate of double-differential spread spectrum underwater acoustic communication system |
CN111294082A (en) * | 2020-02-10 | 2020-06-16 | 西安电子科技大学 | Spread spectrum-based parallel transmission OFDM communication method and system |
CN111431835A (en) * | 2020-03-25 | 2020-07-17 | 哈尔滨工程大学 | Parallel multi-carrier-based high-efficiency underwater current field communication method |
CN111478720A (en) * | 2020-06-09 | 2020-07-31 | 华南理工大学 | A multi-band hyperbolic FM spread spectrum communication method based on cross sub-band division |
CN112073352A (en) * | 2020-08-28 | 2020-12-11 | 西北工业大学深圳研究院 | Single-carrier high-speed spread spectrum underwater acoustic communication method based on index modulation |
CN112636882A (en) * | 2019-09-24 | 2021-04-09 | 上海朗帛通信技术有限公司 | Method and apparatus in a node used for wireless communication |
CN112713912A (en) * | 2020-12-23 | 2021-04-27 | 北京升哲科技有限公司 | Spread spectrum index modulation, demodulation communication method, transmitter, receiver and storage medium |
CN112887240A (en) * | 2021-03-12 | 2021-06-01 | 哈尔滨工程大学 | Doppler factor estimation method based on dual Kalman filtering |
CN113595585A (en) * | 2021-07-23 | 2021-11-02 | 哈尔滨工程大学青岛船舶科技有限公司 | M-element cyclic shift Chirp spread spectrum mobile underwater acoustic communication method, device and storage medium |
CN114019453A (en) * | 2022-01-04 | 2022-02-08 | 山东科技大学 | Ranging method based on underwater acoustic baseline positioning system |
CN114513275A (en) * | 2020-10-29 | 2022-05-17 | 海鹰航空通用装备有限责任公司 | Time division multiplexing unmanned aerial vehicle swarm communication method based on chaotic spread spectrum |
CN115390020A (en) * | 2022-08-29 | 2022-11-25 | 长沙理工大学 | MCPC signal intermittent sampling interference suppression method and device and radar equipment |
CN115720117A (en) * | 2022-09-29 | 2023-02-28 | 厦门大学 | Grouping direct sequence spread spectrum underwater acoustic modulation and demodulation method resisting long multipath time delay |
CN117938319A (en) * | 2024-03-25 | 2024-04-26 | 杭州之江创智科技有限公司 | Signal arrival detection method, system and field programmable gate array |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1592161A (en) * | 2003-08-29 | 2005-03-09 | 中国科学院声学研究所 | M-ary spread spectrum communication method |
CN101494632A (en) * | 2008-10-16 | 2009-07-29 | 清华大学 | Unite synchronization method of block transmission system and applied receiver thereof |
CN101567727A (en) * | 2009-04-10 | 2009-10-28 | 西北工业大学 | Differential cyclic shift spread-spectrum underwater sound communication method |
CN104753561A (en) * | 2013-12-26 | 2015-07-01 | 中国科学院声学研究所 | Direct sequence spread spectrum modulation method for suppressing multipath interference in underwater acoustic communication |
CN107026808A (en) * | 2017-03-23 | 2017-08-08 | 西安电子科技大学 | The multi-system Continuous Phase Modulation frequency-domain equilibrium method interweaved based on chaos |
US20170317712A1 (en) * | 2016-04-28 | 2017-11-02 | Raytheon Company | Rate line suppression using chaotic spreading codes |
CN107426124A (en) * | 2017-09-06 | 2017-12-01 | 厦门大学 | Code multiplexing differential Chaos Shift Keying modem based on orthogonal frequency division multiplexi |
-
2018
- 2018-03-12 CN CN201810201338.1A patent/CN110266622B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1592161A (en) * | 2003-08-29 | 2005-03-09 | 中国科学院声学研究所 | M-ary spread spectrum communication method |
CN101494632A (en) * | 2008-10-16 | 2009-07-29 | 清华大学 | Unite synchronization method of block transmission system and applied receiver thereof |
CN101567727A (en) * | 2009-04-10 | 2009-10-28 | 西北工业大学 | Differential cyclic shift spread-spectrum underwater sound communication method |
CN104753561A (en) * | 2013-12-26 | 2015-07-01 | 中国科学院声学研究所 | Direct sequence spread spectrum modulation method for suppressing multipath interference in underwater acoustic communication |
US20170317712A1 (en) * | 2016-04-28 | 2017-11-02 | Raytheon Company | Rate line suppression using chaotic spreading codes |
CN107026808A (en) * | 2017-03-23 | 2017-08-08 | 西安电子科技大学 | The multi-system Continuous Phase Modulation frequency-domain equilibrium method interweaved based on chaos |
CN107426124A (en) * | 2017-09-06 | 2017-12-01 | 厦门大学 | Code multiplexing differential Chaos Shift Keying modem based on orthogonal frequency division multiplexi |
Non-Patent Citations (4)
Title |
---|
尹艳玲 等: "正交多载波M元循环移位键控扩频水声通信", 《物理学报》 * |
普湛清 等: "远程水声扩频通信时变多普勒估计与码片同步联合处理算法", 《声学技术》 * |
申东: "MIMO雷达混沌波形设计及性能分析", 《中国博士学位论文全文数据库 信息科技辑》 * |
舒秀军 等: "一种多通道混沌调相扩频方式及其在水声通信中的应用", 《声学学报》 * |
Cited By (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11502789B2 (en) | 2019-09-24 | 2022-11-15 | Shanghai Langbo Communication Technology Company Limited | Method and device in node used for wireless communication |
CN112636882A (en) * | 2019-09-24 | 2021-04-09 | 上海朗帛通信技术有限公司 | Method and apparatus in a node used for wireless communication |
US12047308B2 (en) | 2019-09-24 | 2024-07-23 | Shanghai Langbo Communication Technology Company Limited | Method and device in node used for wireless communication |
US11791954B2 (en) | 2019-09-24 | 2023-10-17 | Shanghai Langbo Communication Technology Company Limited | Method and device in node used for wireless communication |
CN110995364A (en) * | 2019-11-29 | 2020-04-10 | 舟山国海通信科技有限公司 | Communication method for improving communication rate of double-differential spread spectrum underwater acoustic communication system |
CN110995364B (en) * | 2019-11-29 | 2021-06-15 | 青岛国海通讯科技有限公司 | Communication method for improving communication rate of double-differential spread spectrum underwater acoustic communication system |
CN111294082A (en) * | 2020-02-10 | 2020-06-16 | 西安电子科技大学 | Spread spectrum-based parallel transmission OFDM communication method and system |
CN111431835A (en) * | 2020-03-25 | 2020-07-17 | 哈尔滨工程大学 | Parallel multi-carrier-based high-efficiency underwater current field communication method |
CN111478720A (en) * | 2020-06-09 | 2020-07-31 | 华南理工大学 | A multi-band hyperbolic FM spread spectrum communication method based on cross sub-band division |
CN112073352A (en) * | 2020-08-28 | 2020-12-11 | 西北工业大学深圳研究院 | Single-carrier high-speed spread spectrum underwater acoustic communication method based on index modulation |
CN114513275B (en) * | 2020-10-29 | 2024-01-05 | 海鹰航空通用装备有限责任公司 | Time division multiplexing unmanned aerial vehicle bee colony communication method based on chaos spread spectrum |
CN114513275A (en) * | 2020-10-29 | 2022-05-17 | 海鹰航空通用装备有限责任公司 | Time division multiplexing unmanned aerial vehicle swarm communication method based on chaotic spread spectrum |
CN112713912B (en) * | 2020-12-23 | 2022-06-17 | 北京升哲科技有限公司 | Spread spectrum index modulation and demodulation communication method, transmitter, receiver and storage medium |
CN112713912A (en) * | 2020-12-23 | 2021-04-27 | 北京升哲科技有限公司 | Spread spectrum index modulation, demodulation communication method, transmitter, receiver and storage medium |
CN112887240B (en) * | 2021-03-12 | 2022-04-19 | 哈尔滨工程大学 | Doppler Factor Estimation Method Based on Double Kalman Filter |
CN112887240A (en) * | 2021-03-12 | 2021-06-01 | 哈尔滨工程大学 | Doppler factor estimation method based on dual Kalman filtering |
CN113595585A (en) * | 2021-07-23 | 2021-11-02 | 哈尔滨工程大学青岛船舶科技有限公司 | M-element cyclic shift Chirp spread spectrum mobile underwater acoustic communication method, device and storage medium |
CN114019453A (en) * | 2022-01-04 | 2022-02-08 | 山东科技大学 | Ranging method based on underwater acoustic baseline positioning system |
CN115390020A (en) * | 2022-08-29 | 2022-11-25 | 长沙理工大学 | MCPC signal intermittent sampling interference suppression method and device and radar equipment |
CN115390020B (en) * | 2022-08-29 | 2024-10-29 | 长沙理工大学 | MCPC signal intermittent sampling interference suppression method and device and radar equipment |
CN115720117A (en) * | 2022-09-29 | 2023-02-28 | 厦门大学 | Grouping direct sequence spread spectrum underwater acoustic modulation and demodulation method resisting long multipath time delay |
CN115720117B (en) * | 2022-09-29 | 2024-11-08 | 厦门大学 | Packet direct sequence spread spectrum underwater sound modulation and demodulation method resistant to long multipath time delay |
CN117938319A (en) * | 2024-03-25 | 2024-04-26 | 杭州之江创智科技有限公司 | Signal arrival detection method, system and field programmable gate array |
CN117938319B (en) * | 2024-03-25 | 2024-06-04 | 杭州之江创智科技有限公司 | Signal arrival detection method, system and field programmable gate array |
Also Published As
Publication number | Publication date |
---|---|
CN110266622B (en) | 2020-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110266622B (en) | An Orthogonal Multi-Carrier M-Element Chaotic Phase Modulation Spread Spectrum Underwater Acoustic Communication Method | |
CN105635022B (en) | A kind of offset quadrature multicarrier baseband system | |
CN107800662B (en) | Method for reducing peak-to-average power ratio of spread spectrum OFDM signal | |
CN102932289B (en) | Cyclic shifting-based method for estimating shifting number and channel response in orthogonal frequency division multiplexing (OFDM) system | |
CN110518935B (en) | Underwater acoustic communication system and PAPR suppression method based on MC-CDMA | |
CN111628955B (en) | Dual-mode multi-carrier differential chaotic shift keying modulation method and transmitter | |
CN110266344A (en) | A Chaotic Hybrid Spread Spectrum Secure Underwater Acoustic Communication Method | |
CN112165378B (en) | A Low PAPR High Security Optical Access Method with High Resource Utilization | |
CN103973629A (en) | SLM (selective mapping) method for reducing PAPR (peak to average power ratio) of MIMO-OFDM (multiple input multiple output-orthogonal frequency division multiplexing) system | |
CN109150308A (en) | A kind of application method of Multicarrier DS CDMA technology in visible light positioning system | |
JP7489431B2 (en) | Method, transmitter, structure, transceiver and access point for providing a multi-carrier on-off keying signal - Patents.com | |
CN113315541B (en) | Pseudo-random phase sequence spread spectrum modulation method | |
CN101534278B (en) | Time-frequency expansion Orthogonal Frequency Division Multiplexing transmitting and receiving device, method and system | |
Kaiming et al. | PAPR reduction for FBMC-OQAM systems using P-PTS scheme | |
CN110290087A (en) | Modulation and demodulation method and device for a GFDM signal | |
Kaur et al. | Survey of Filter Bank Multicarrier (FBMC) as an efficient waveform for 5G | |
Shaheen et al. | PAPR reduction of FBMC/OQAM systems based on combination of DST precoding and A-law nonlinear companding technique | |
Cheng et al. | An improved selective mapping method for PAPR reduction in OFDM/OQAM system | |
CN110149295A (en) | A method of companding transform United Technologies are spread and normalized based on DFT reduces P-OFDM system PAPR | |
CN106685474B (en) | A kind of cycle spread spectrum modulation technique based on ZC sequences | |
CN109412998B (en) | Position Pattern Design Method in Pilot Pattern Modulation System | |
CN102832964A (en) | Multi-band DS-MFSK (Direct Sequence-Multi Frequency Shift Keying) modem | |
JP2007295265A (en) | Ofdm communication system, ofdm communication method, ofdm signal transmitter, and ofdm signal receiver | |
CN101883067A (en) | A Training Sequence Construction and Synchronization Algorithm Suitable for OFDM Time Synchronization | |
CN103458485B (en) | Peak power optimization method and emission system thereof in ofdm system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |