CN110222749B - A method for matching visible light image and infrared image - Google Patents
A method for matching visible light image and infrared image Download PDFInfo
- Publication number
- CN110222749B CN110222749B CN201910447148.2A CN201910447148A CN110222749B CN 110222749 B CN110222749 B CN 110222749B CN 201910447148 A CN201910447148 A CN 201910447148A CN 110222749 B CN110222749 B CN 110222749B
- Authority
- CN
- China
- Prior art keywords
- area
- region
- visible light
- image
- mser
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 238000000605 extraction Methods 0.000 claims description 15
- 238000004364 calculation method Methods 0.000 claims description 14
- 230000008859 change Effects 0.000 claims description 7
- 238000012545 processing Methods 0.000 claims description 6
- 239000000284 extract Substances 0.000 abstract description 9
- 238000003384 imaging method Methods 0.000 description 5
- 238000001514 detection method Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 230000011218 segmentation Effects 0.000 description 3
- 230000002159 abnormal effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000003044 adaptive effect Effects 0.000 description 1
- 238000007792 addition Methods 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 238000003331 infrared imaging Methods 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000007903 penetration ability Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 238000004321 preservation Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/751—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
Landscapes
- Engineering & Computer Science (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Medical Informatics (AREA)
- Computing Systems (AREA)
- Databases & Information Systems (AREA)
- Evolutionary Computation (AREA)
- General Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Multimedia (AREA)
- Image Analysis (AREA)
- Compression Or Coding Systems Of Tv Signals (AREA)
Abstract
Description
技术领域technical field
本发明涉及图像处理技术领域,具体地说,是涉及一种基于MSER与改进LBP算法的可见光与红外图像匹配方法。The invention relates to the technical field of image processing, in particular to a visible light and infrared image matching method based on MSER and improved LBP algorithm.
背景技术Background technique
在多模图像匹配中,红外图像在夜间的探测能力出众、有较好的抗遮挡能力、感知物体温度等优点;可见光成像能保留场景丰富的信息。相比于单模图像而言,多模图像能够从不同方面刻画场景或目标的成像特性,所获取到的信息具有更加可靠性和互补性。多模图像通过不同类型的传感器获取,如可见光与红外图像结合、可见光与合成孔径雷达结合。红外传感器具有的夜间探测能力、大雾穿透能力、抗遮挡能力等与可见光成像时保留场景丰富的细节信息形成较为典型的互补性,因此在多模图像匹配中可见光与红外成像成为了比较常见的一种组合方式。图像匹配是通过对影像内容、特征、结构、关系、纹理及灰度等的对应关系,相似性和一致性的分析,寻求相似影像目标的方法,针对单模图像匹配,使用当前主流的SIFT、SURF、Harris等算法都能得到鲁棒性较高的结果。对于多模图像匹配,由于成像的工作波段不同,导致使用一般的特征检测算法不能正确地提取出多模图像中相同的特征区域或特征点。In multi-mode image matching, infrared images have the advantages of outstanding detection ability at night, better anti-occlusion ability, and object temperature perception; visible light imaging can retain rich scene information. Compared with single-mode images, multi-mode images can describe the imaging characteristics of scenes or objects from different aspects, and the obtained information is more reliable and complementary. Multimode images are acquired by different types of sensors, such as a combination of visible light and infrared images, and a combination of visible light and synthetic aperture radar. The night-time detection ability, fog penetration ability, and anti-blocking ability of infrared sensors are typical complements with the preservation of rich detailed information of the scene in visible light imaging. Therefore, visible light and infrared imaging have become more common in multi-mode image matching. a combination of . Image matching is a method of seeking similar image targets through the analysis of the corresponding relationship, similarity and consistency of image content, features, structure, relationship, texture and grayscale, etc. For single-mode image matching, the current mainstream SIFT, Algorithms such as SURF and Harris can obtain highly robust results. For multi-mode image matching, due to the different working bands of imaging, common feature detection algorithms cannot correctly extract the same feature regions or feature points in multi-mode images.
国内外针对可见光与红外图像匹配这一课题,已经做了很多的研究。采用可见光结合红外图像匹配的方法较早的时候是采用基于图像轮廓提取算法,利用LOG算子提取边缘,采用链码对边缘进行描述,或者进一步在边缘上提取角点并利用不变矩对其秒速,最后对线或点进行基于特征描述的匹配。针对可见光结合红外图像轮廓特征提取效果较差,Coiras等人进一步提出了基于分割的匹配方法,利用提取到的直线构建虚拟三角形,再以三角形为基于进行匹配,这种方法具有较强的鲁棒性,但局限于存在有较多不平行直线特征的图像。A lot of research has been done at home and abroad on the subject of visible light and infrared image matching. The method of using visible light combined with infrared image matching was earlier based on the image contour extraction algorithm, using the LOG operator to extract the edge, using the chain code to describe the edge, or further extracting the corner points on the edge and using the invariant moment. In seconds, feature description-based matching is performed on lines or points at the end. In view of the poor effect of visible light combined with infrared image contour feature extraction, Coiras et al. further proposed a segmentation-based matching method, using the extracted lines to construct virtual triangles, and then matching based on triangles. This method has strong robustness However, it is limited to images with many non-parallel line features.
此外,目前可见光与红外图像匹配还存在计算量大、效率低的不足。In addition, the current visible light and infrared image matching still has the shortcomings of large amount of calculation and low efficiency.
发明内容SUMMARY OF THE INVENTION
本发明为了解决现有图像配准无法同时保证可见光与红外图像配准的准确性和高速性的问题,提出了一种可见光图像与红外图像匹配方法,可以解决上述问题。In order to solve the problem that the existing image registration cannot guarantee the accuracy and high speed of the visible light and infrared image registration at the same time, the present invention proposes a visible light image and infrared image matching method, which can solve the above problems.
为了解决上述技术问题,本发明采用以下技术方案予以实现:In order to solve the above-mentioned technical problems, the present invention adopts the following technical solutions to be realized:
一种可见光图像与红外图像匹配方法,其特征在于,包括以下步骤:A method for matching a visible light image and an infrared image, comprising the following steps:
(1)、分别对可见光图像和红外图像提取出最大稳定极值区域;(1), extract the maximum stable extreme value area from the visible light image and the infrared image respectively;
(2)、分别对可见光图像和红外图像的最大稳定极值区域进行椭圆拟合,并归一化成为标准圆形区域;(2) Perform ellipse fitting on the maximum stable extreme value regions of the visible light image and the infrared image respectively, and normalize them into a standard circular region;
(3)、建立FBP模型,使用二进制编码描述所述标准圆内的纹理信息,包括:(3), establish the FBP model, use binary coding to describe the texture information in the standard circle, including:
(31)、以标准圆形区域的中心作为圆心、以r作为半径画圆,划定一个圆形区域为第二圆形区域,其中r=R/2,R为标准圆形区域的半径;(31), draw a circle with the center of the standard circular area as the center of the circle and r as the radius, and delineate a circular area as the second circular area, where r=R/2, and R is the radius of the standard circular area;
(32)、在第二圆形区域的圆周上选取若干个边界点,分别以各边界点为圆心,以r作为半径画圆,再次划定相应的若干个圆形区域,为边缘圆形区域,其中,各边界点均匀分布在第二圆形区域的圆周上;(32), select several boundary points on the circumference of the second circular area, draw a circle with each boundary point as the center and r as the radius, and then demarcate several corresponding circular areas as the edge circular area , wherein each boundary point is evenly distributed on the circumference of the second circular area;
(33)、分别将各区域和标准圆形区域采用LBP算法进行编码,各区域包括第二圆形区域以及所有边缘圆形区域;(33), use LBP algorithm to encode each area and standard circular area respectively, and each area includes the second circular area and all edge circular areas;
(4)、使用汉明距离匹配各区域的编码,包括:(4), use the Hamming distance to match the codes of each area, including:
(41)、计算各区域的权重;(41), calculate the weight of each area;
(42)、计算各区域的汉明距离;(42), calculate the Hamming distance of each area;
(43)、利用各区域的汉明距离以及各区域的权重,计算总汉明距离;(43), use the Hamming distance of each area and the weight of each area to calculate the total Hamming distance;
(44)、将总汉明距离与设定阈值比较,若总汉明距离不大于设定阈值,则可见光图像与红外图像符合匹配条件,否则,不匹配。(44) Comparing the total Hamming distance with the set threshold, if the total Hamming distance is not greater than the set threshold, the visible light image and the infrared image meet the matching conditions, otherwise, they do not match.
进一步的,步骤(1)中,采用MSER算法提取最大稳定极值区域,包括:Further, in step (1), the MSER algorithm is used to extract the maximum stable extreme value region, including:
(11)、将图像划分为不同的连通区域,标记这些区域,完成MSER块的提取;(11), divide the image into different connected regions, mark these regions, and complete the extraction of MSER blocks;
(12)、将阈值像素从0到255逐渐递增,将图像划分为不同的连通区域,标记这些区域,完成MSER块划分;(12) Gradually increase the threshold pixels from 0 to 255, divide the image into different connected areas, mark these areas, and complete the MSER block division;
(13)、计算MSER块的面积变化率,完成MSER块的提取,计算方法为其中,qi表示第i时刻MSER块的面积变化率,Qi表示第i次递增时MSER块的面积,Qi+Δ表示第i+Δ次递增时MSER块的面积,Qi-Δ表示第i-Δ次递增时MSER块的面积;(13), calculate the area change rate of the MSER block, and complete the extraction of the MSER block. The calculation method is: Among them, qi represents the area change rate of the MSER block at the ith time, Qi represents the area of the MSER block at the i -th increment, Qi +Δ represents the area of the MSER block at the i+Δ-th increment, and Qi -Δ represents the area of the MSER block. The area of the MSER block at the i-Δth increment;
(14)、判断MSER块是否为最大稳定极值区域,当qi最小时,当前的区域为最大稳定极值区域。(14), judging whether the MSER block is the maximum stable extreme value region, when qi is the smallest, the current region is the maximum stable extreme value region.
进一步的,步骤(2)中,采用最小二乘法对最大稳定极值区域进行椭圆拟合。Further, in step (2), the least squares method is used to perform ellipse fitting on the maximum stable extreme value region.
进一步的,在步骤(2)和步骤(3)之间还包括对整幅图像进行高斯模糊处理的步骤。Further, between step (2) and step (3), the step of performing Gaussian blurring on the entire image is also included.
进一步的,步骤(33)中,分别将各区域采用LBP算法进行编码之前还包括步骤:Further, in step (33), before each region is encoded by LBP algorithm, it also includes steps:
以标准圆形区域的中心作为圆心、以3个像素作为半径画圆,划定一个圆形区域为第三圆形区域,计算第三圆形区域的所有像素值的平均值,作为标准圆形区域的中心像素值。Draw a circle with the center of the standard circular area as the center and 3 pixels as the radius, delimit a circular area as the third circular area, and calculate the average value of all pixel values in the third circular area as the standard circle The center pixel value of the area.
进一步的,步骤(33)中,将各区域采用LBP算法进行编码包括:Further, in step (33), encoding each region using the LBP algorithm includes:
(331)、在各区域的边界上分别选取若干个编码点;(331), select several coding points respectively on the boundary of each region;
(332)、将编码点的像素值与该编码点所在区域的中心像素值相比较,若编码点的像素值不小于中心像素值,则该编码点编码为1,否则,编码为0。(332), comparing the pixel value of the coding point with the central pixel value of the region where the coding point is located, if the pixel value of the coding point is not less than the central pixel value, the coding point is coded as 1, otherwise, the coding is 0.
进一步的,步骤(41)中各区域的权重计算方法为:Further, the weight calculation method of each area in step (41) is:
其中,wj为第j个区域的权重,j为整数且0<j≤n,n为第二圆形区域以及所有边缘圆形区域的总数量,(xj,yj)为第j个区域的中心坐标,(xc.yc)为标准圆形区域的中心坐标,rj为第j个区域的半径。 Among them, w j is the weight of the j-th area, j is an integer and 0<j≤n, n is the total number of the second circular area and all edge circular areas, (x j ,y j ) is the j-th circular area The center coordinates of the area, (x c .y c ) is the center coordinate of the standard circular area, and r j is the radius of the jth area.
进一步的,各区域的汉明距离计算方法为:Further, the Hamming distance calculation method for each region is:
其中dj为第j个区域的汉明距离,x[i]为第j个区域的编码,y[i]为标准圆形区域的编码。 where d j is the Hamming distance of the jth area, x[i] is the code of the jth area, and y[i] is the code of the standard circular area.
进一步的,总汉明距离d的计算方法为:Further, the calculation method of the total Hamming distance d is:
与现有技术相比,本发明的优点和积极效果是:本发明的可见光图像与红外图像匹配方法,提取最大稳定极值区域,并建立FBP模型处理并描述特征区域纹理信息。FBP算法首先通过提取最稳定极值区域作为待匹配区域,然后使用FBP算法对每个区域进行特征描述,最后设定阈值,使用汉明距离判断每一个区域是否相匹配。实验结果证明了发明在定位精度、算法速度、稳定性、灵活性、实时性上都有良好的表现。Compared with the prior art, the advantages and positive effects of the present invention are: the visible light image and infrared image matching method of the present invention extracts the maximum stable extreme value region, and establishes an FBP model to process and describe the texture information of the feature region. The FBP algorithm first extracts the most stable extreme value area as the area to be matched, then uses the FBP algorithm to describe each area, and finally sets the threshold, and uses the Hamming distance to determine whether each area matches. The experimental results prove that the invention has good performance in positioning accuracy, algorithm speed, stability, flexibility and real-time performance.
结合附图阅读本发明实施方式的详细描述后,本发明的其他特点和优点将变得更加清楚。Other features and advantages of the present invention will become more apparent upon reading the detailed description of the embodiments of the present invention in conjunction with the accompanying drawings.
附图说明Description of drawings
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to explain the embodiments of the present invention or the technical solutions in the prior art more clearly, the following briefly introduces the accompanying drawings that need to be used in the description of the embodiments or the prior art. Obviously, the accompanying drawings in the following description are only These are some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained according to these drawings without creative efforts.
图1是本发明所提出的可见光图像与红外图像匹配方法的一种实施例流程图;1 is a flowchart of an embodiment of a method for matching a visible light image and an infrared image proposed by the present invention;
图2a是本发明所提出的可见光图像与红外图像匹配方法的一种实验例中场景1可见光原图;Fig. 2a is a visible light original image of scene 1 in an experimental example of a method for matching a visible light image and an infrared image proposed by the present invention;
图2b是本发明所提出的可见光图像与红外图像匹配方法的一种实验例中场景1红外原图;Fig. 2b is the original infrared image of scene 1 in an experimental example of the visible light image and infrared image matching method proposed by the present invention;
图3a是图2a中MSER提取结果;Fig. 3a is the MSER extraction result in Fig. 2a;
图3b是图2b中MSER提取结果;Fig. 3b is the MSER extraction result in Fig. 2b;
图4a是图3a中MSER区域椭圆拟合结果;Fig. 4a is the ellipse fitting result of the MSER region in Fig. 3a;
图4b是图3b中MSER区域椭圆拟合结果;Fig. 4b is the ellipse fitting result of the MSER region in Fig. 3b;
图5a是图3a中其中一MSER区域椭圆拟合局部图;Fig. 5a is a partial diagram of ellipse fitting of one of the MSER regions in Fig. 3a;
图5b是图5a中MSER区域规归一化的标准圆形区域;Fig. 5b is the standard circular area normalized by the MSER area in Fig. 5a;
图6a是图2a中部分纹理图;Fig. 6a is a partial texture map in Fig. 2a;
图6b是图2b中部分纹理图;Fig. 6b is a partial texture map in Fig. 2b;
图7图2a与图2b中图像配准结果;Fig. 7 Image registration results in Fig. 2a and Fig. 2b;
图8是FBP模型所划定区域的示意图。FIG. 8 is a schematic diagram of the area delineated by the FBP model.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
实施例一,本实施例提出了一种可见光图像与红外图像匹配方法,包括以下步骤:Embodiment 1, this embodiment proposes a method for matching a visible light image and an infrared image, including the following steps:
S1、分别对可见光图像和红外图像提取出最大稳定极值区域;S1. Extract the maximum stable extreme value region from the visible light image and the infrared image respectively;
S2、分别对可见光图像和红外图像的最大稳定极值区域进行椭圆拟合,并归一化成为标准圆形区域;S2. Perform ellipse fitting on the maximum stable extreme value regions of the visible light image and the infrared image respectively, and normalize them into a standard circular region;
S3、建立FBP模型,使用二进制编码描述所述标准圆内的纹理信息,包括:S3, establish an FBP model, and use binary coding to describe the texture information in the standard circle, including:
S31、如图8所示,以标准圆形区域的中心O作为圆心、以r作为半径画圆,划定一个圆形区域为第二圆形区域,其中r=R/2,R为标准圆形区域的半径;S31. As shown in Figure 8, draw a circle with the center O of the standard circular area as the center and r as the radius, and delimit a circular area as the second circular area, where r=R/2, and R is the standard circle the radius of the shaped area;
S32、在第二圆形区域的圆周上选取若干个边界点,如图8中的O1点,分别以各边界点为圆心,以r作为半径画圆,再次划定相应的若干个圆形区域,为边缘圆形区域,其中,各边界点均匀分布在第二圆形区域的圆周上;图8为FBP模型所划分的区域。S32. Select a number of boundary points on the circumference of the second circular area, such as point O1 in Figure 8, draw a circle with each boundary point as the center and r as the radius, and then delimit several corresponding circular areas again , is an edge circular area, in which each boundary point is evenly distributed on the circumference of the second circular area; Figure 8 shows the area divided by the FBP model.
S33、分别将各区域和标准圆形区域进行编码,各区域包括第二圆形区域以及所有边缘圆形区域;S33, encode each area and the standard circular area respectively, and each area includes the second circular area and all edge circular areas;
S4、使用汉明距离匹配各区域的编码,包括:S4. Use the Hamming distance to match the codes of each area, including:
S41、计算各区域的权重;S41. Calculate the weight of each area;
S42、计算各区域的汉明距离;S42. Calculate the Hamming distance of each area;
S43、利用各区域的汉明距离以及各区域的权重,计算总汉明距离;S43, using the Hamming distance of each area and the weight of each area to calculate the total Hamming distance;
S44、将总汉明距离与设定阈值比较,若总汉明距离不大于设定阈值,则可见光图像与红外图像符合匹配条件,否则,不匹配。本实施例的可见光图像与红外图像匹配方法,提取最大稳定极值区域,并建立FBP模型处理并描述特征区域纹理信息。FBP算法首先通过提取最稳定极值区域作为待匹配区域,然后使用FBP算法对每个区域进行特征描述,最后设定阈值,使用汉明距离判断每一个区域是否相匹配。实验结果证明了发明在定位精度、算法速度、稳定性、灵活性、实时性上都有良好的表现。S44. Compare the total Hamming distance with the set threshold. If the total Hamming distance is not greater than the set threshold, the visible light image and the infrared image meet the matching conditions, otherwise, they do not match. The visible light image and infrared image matching method of this embodiment extracts the maximum stable extreme value region, and establishes an FBP model to process and describe the texture information of the feature region. The FBP algorithm first extracts the most stable extreme value area as the area to be matched, then uses the FBP algorithm to describe each area, and finally sets the threshold, and uses the Hamming distance to determine whether each area matches. The experimental results prove that the invention has good performance in positioning accuracy, algorithm speed, stability, flexibility and real-time performance.
在描述纹理信息步骤中,传统LBP算法简单快速,但LBP描述特征区域时只比较了中心像素灰度值与周围圆形边界上像素灰度值的大小,对于面积较小、纹理简单的特征区域LBP可以只对特征区域边缘信息进行描述,且得到的纹理特征具有鲁棒性.但如果检测出的特征区域较大、纹理较复杂时时,LBP算法在描述特征区域时如果只描述特征区域边缘信息将会丢失很多图像纹理信息,导致最终配准结果出现较大误差。本方案步骤S3中提出新型算法FBP,使用扇形分割和圆环分割对LBP区域更进一步进行扩充,使得FBP在检测出的特征区域较大、纹理较复杂时也能有效描述特征区域。In the step of describing texture information, the traditional LBP algorithm is simple and fast, but LBP only compares the gray value of the center pixel and the gray value of the pixel on the surrounding circular boundary when describing the feature area. LBP can only describe the edge information of the feature area, and the obtained texture features are robust. However, if the detected feature area is large and the texture is complex, the LBP algorithm only describes the edge information of the feature area when describing the feature area. A lot of image texture information will be lost, resulting in a large error in the final registration result. In step S3 of this scheme, a new algorithm FBP is proposed, which further expands the LBP area by using sector segmentation and ring segmentation, so that FBP can effectively describe the feature area when the detected feature area is large and the texture is complex.
步骤S1中,采用MSER算法提取最大稳定极值区域,包括:In step S1, the MSER algorithm is used to extract the maximum stable extreme value region, including:
S11、将图像划分为不同的连通区域,标记这些区域,完成MSER块的提取;S11. Divide the image into different connected regions, mark these regions, and complete the extraction of the MSER block;
S12、将阈值像素从0到255逐渐递增,将图像划分为不同的连通区域,标记这些区域,完成MSER块划分;S12. Gradually increase the threshold pixels from 0 to 255, divide the image into different connected areas, mark these areas, and complete the MSER block division;
S13、计算MSER块的面积变化率,完成MSER块的提取,计算方法为其中,qi表示第i时刻MSER块的面积变化率,Qi表示第i次递增时MSER块的面积,Qi+Δ表示第i+Δ次递增时MSER块的面积,Qi-Δ表示第i-Δ次递增时MSER块的面积;S13. Calculate the area change rate of the MSER block, and complete the extraction of the MSER block. The calculation method is as follows Among them, qi represents the area change rate of the MSER block at the ith time, Qi represents the area of the MSER block at the i -th increment, Qi +Δ represents the area of the MSER block at the i+Δ-th increment, and Qi -Δ represents the area of the MSER block. The area of the MSER block at the i-Δth increment;
S14、判断MSER块是否为最大稳定极值区域,当qi最小时,当前的区域为最大稳定极值区域。S14. Determine whether the MSER block is the maximum stable extreme value region. When qi is the smallest, the current region is the maximum stable extreme value region.
为了同时提取到图像中的极大值区域和极小值区域,MSER算法包含了正向和反向两种提取过程。正向提取过程中根据其面积变化率确定正向最稳定极值区域提取原始图像中的极大值区域,记为MSER+。反向提取过程中首先对原始图像进行灰度值反转,提取反转图像中的最稳定极值区域,记为MSER-。一般来说,正向和反向提取能够比较稳定地提取图像中对应目标的关联特征,MSER的良好性能源于其提取过程和人眼视觉系统的注意机制相似,着重关注“显眼部分”区域的边界及其演化规律。In order to extract the maximum value area and the minimum value area in the image at the same time, the MSER algorithm includes both forward and reverse extraction processes. In the forward extraction process, the most stable extreme value region in the forward direction is determined according to its area change rate to extract the maximum value region in the original image, which is recorded as MSER+. In the reverse extraction process, the gray value of the original image is reversed first, and the most stable extreme value region in the reversed image is extracted, which is recorded as MSER-. Generally speaking, forward and reverse extraction can stably extract the relevant features of the corresponding objects in the image. The good performance of MSER is due to the similarity of its extraction process to the attention mechanism of the human visual system, focusing on the "conspicuous part" area. boundaries and their evolution.
FBP方法通过分割圆形的方式使得最终提取出来的特征编码包含更多的纹理信息,最终得到的特征编码鲁棒性更高,并且FBP模型支持自适应扩展,可根据实际需求对FBP模型按照指定规则进行扩展,兼顾时间性能与特征编码精度。The FBP method makes the final extracted feature code contain more texture information by dividing the circle, and the final feature code is more robust, and the FBP model supports adaptive expansion, and the FBP model can be specified according to actual needs. The rules are extended to take into account both time performance and feature encoding accuracy.
经过MSER算法提取出来的最稳定极值区域的形状是任意的,为了方便处理,需要对这些最稳定极值区域进行拟合,如椭圆拟合、多边形拟合、圆形拟合等。一般来说,由于特征区域协方差矩阵的特征值和特征向量唯一确定一个椭圆,都会选择对提取出来的特征区域进行椭圆拟合。但考虑到最终要使用LBP算法的概念对特征区域进行描述,而圆形天生就具有旋转不变性,所以这里我们选择首先对特征区域进行椭圆拟合,随后把拟合出来的椭圆归一化成一个圆,以方便对特征区域进行描述。本实施例的步骤S2中,采用最小二乘法对最大稳定极值区域进行椭圆拟合。随后把拟合出来的椭圆归一化成一个圆,形成标准圆形区域,以方便对特征区域进行描述。The shape of the most stable extreme value regions extracted by the MSER algorithm is arbitrary. In order to facilitate processing, these most stable extreme value regions need to be fitted, such as ellipse fitting, polygon fitting, and circular fitting. Generally speaking, since the eigenvalues and eigenvectors of the feature region covariance matrix uniquely determine an ellipse, ellipse fitting will be performed on the extracted feature regions. However, considering that the concept of the LBP algorithm will be used to describe the feature area, and the circle is inherently invariant to rotation, here we choose to first perform ellipse fitting on the feature area, and then normalize the fitted ellipse into a circle to facilitate the description of the feature area. In step S2 of this embodiment, the least squares method is used to perform ellipse fitting on the maximum stable extreme value region. Then, the fitted ellipse is normalized into a circle to form a standard circular area to facilitate the description of the feature area.
为了降低噪声产生的影响,在步骤S2和步骤S3之间还包括对整幅图像进行高斯模糊处理的步骤,使特征区域的像素灰度值更加平滑,原始像素的值有最大的高斯分布之,所有就有最大的权值,相邻像素随着距离原始像素越来越远,其权重也越来越小。这样进行图像模糊处理比其他的均衡模糊滤波器更高地保留了边缘效果。In order to reduce the influence of noise, a step of Gaussian blurring is also included between step S2 and step S3 to make the pixel gray value of the feature area smoother, and the value of the original pixel has the largest Gaussian distribution. All have the largest weight, and adjacent pixels get smaller and smaller as they get farther and farther from the original pixel. This image blur preserves edge effects better than other equalization blur filters.
步骤S33中,分别将各区域采用LBP算法进行编码之前还包括步骤:In step S33, before encoding each region using the LBP algorithm, the following steps are further included:
由于标准圆形区域的中心像素值在后面的纹理描述步骤中需要作为基准,因此,该值的精度对后续步骤中的精度影响极大,为了防止位于标准圆形区域的中心的像素值异常,导致计算精度低,本方案中以标准圆形区域的中心作为圆心、以3个像素作为半径画圆,划定一个圆形区域为第三圆形区域,计算第三圆形区域的所有像素值的平均值,作为标准圆形区域的中心像素值。通过划定以标准圆形区域的中心周围的一个小区域,取该小区域内的像素值平均值作为标准圆形区域的中心像素值,即便是真正的中心像素值出现异常,也不会影响后续计算的精度。Since the central pixel value of the standard circular area needs to be used as a benchmark in the subsequent texture description steps, the accuracy of this value has a great influence on the accuracy in the subsequent steps. In order to prevent abnormal pixel values in the center of the standard circular area, This leads to low calculation accuracy. In this scheme, the center of the standard circular area is used as the center of the circle and 3 pixels are used as the radius to draw a circle. A circular area is designated as the third circular area, and all pixel values of the third circular area are calculated. The average value of , as the center pixel value of the standard circular area. By delineating a small area around the center of the standard circular area, and taking the average value of the pixel values in the small area as the central pixel value of the standard circular area, even if the real central pixel value is abnormal, it will not affect the subsequent The precision of the calculation.
步骤S33中,将各区域采用LBP算法进行编码包括:In step S33, encoding each region using the LBP algorithm includes:
S331、在各区域的边界上分别选取若干个编码点;S331, select several code points respectively on the boundary of each area;
S332、将编码点的像素值与该编码点所在区域的中心像素值相比较,若编码点的像素值不小于中心像素值,则该编码点编码为1,否则,编码为0。也即,第j个区域的编码为:S332. Compare the pixel value of the coding point with the central pixel value of the region where the coding point is located. If the pixel value of the coding point is not less than the central pixel value, the coding point is coded as 1; otherwise, the coding is 0. That is, the encoding of the jth region is:
其中,gi为第i个编码点的像素值,gc为该编码点所在区域的中心像素值。Among them, gi is the pixel value of the ith code point, and g c is the center pixel value of the region where the code point is located.
j=0,1,2,...,n,这样最终可以得到n个编码值,并且n个编值都具有灰度不变性,但此时还不具备旋转不变性,首先不断旋转圆形邻域内的LBP编码,从这些LBP特征值中选择LBP特征值最小的作为中心像素的LBP特征。本FBP方法中有n个编码值,选择对圆心处3×3邻域的圆套用旋转不变LBP特性,计算一个旋转方向,而剩下的n-1个编码都以这个旋转方向为主方向进行旋转编码,最终得出n个具有灰度不变性和旋转不变性的编码值。j=0,1,2,...,n, in this way, n encoded values can be finally obtained, and the n encoded values have grayscale invariance, but at this time, they do not have rotation invariance. First, rotate the circle continuously. The LBP encoding in the neighborhood selects the LBP feature with the smallest LBP feature value as the LBP feature of the center pixel from these LBP feature values. There are n coding values in this FBP method, and the rotation-invariant LBP feature is applied to the circle in the 3×3 neighborhood at the center of the circle to calculate a rotation direction, and the remaining n-1 codes are all based on this rotation direction. Perform rotation encoding, and finally obtain n encoded values with grayscale invariance and rotation invariance.
配准过程中,借鉴等价模式理念,降低编码维度,最终以汉明距离为度量标准。In the registration process, the concept of equivalence mode is used for reference, the coding dimension is reduced, and the Hamming distance is finally used as the metric.
步骤S41中各区域的权重计算方法为:The weight calculation method of each area in step S41 is:
其中,wj为第j个区域的权重,j为整数且0<j≤n,n为第二圆形区域以及所有边缘圆形区域的总数量,(xj,yj)为第j个区域的中心坐标,(xc.yc)为标准圆形区域的中心坐标,rj为第j个区域的半径。|(xj,yj)-(xc.yc)|表示第j个区域的中心到标准圆中心的距离。 Among them, w j is the weight of the j-th area, j is an integer and 0<j≤n, n is the total number of the second circular area and all edge circular areas, (x j ,y j ) is the j-th circular area The center coordinates of the area, (x c .y c ) is the center coordinate of the standard circular area, and r j is the radius of the jth area. |(x j ,y j )-(x c .y c )| represents the distance from the center of the jth region to the center of the standard circle.
各区域的汉明距离计算方法为:The Hamming distance calculation method for each area is as follows:
其中dj为第j个区域的汉明距离,x[i]为第j个区域的编码,y[i]为标准圆形区域的编码,表示异或运算。 where d j is the Hamming distance of the jth area, x[i] is the code of the jth area, y[i] is the code of the standard circular area, Represents an exclusive OR operation.
总汉明距离d的计算方法为:The calculation method of the total Hamming distance d is:
实验例:Experimental example:
为了验证本发明算法的有效性,使用FBP算法分别对两种场景下的可见光图像和红外图像进行配准。实验环境为:处理器Intel(R)Xeon(R)CPU E5-2603v3@1.60GHz1.50GHz,内存16.0GB,window7系统,编码环境为VS2015,opencv2.4.13计算平台。实验分别选用两组路边监控视频帧序列图像,如图2a、图2b为场景1中第1帧图像。In order to verify the effectiveness of the algorithm of the present invention, the FBP algorithm is used to register the visible light image and the infrared image in the two scenarios respectively. The experimental environment is: processor Intel(R) Xeon(R) CPU E5-2603v3@1.60GHz1.50GHz, memory 16.0GB, window7 system, coding environment is VS2015, opencv2.4.13 computing platform. In the experiment, two sets of roadside surveillance video frame sequence images were selected respectively. Figure 2a and Figure 2b are the first frame images in scene 1.
实验进行首先将场景1和场景2的图像都转化为灰度图像,对灰度图像进行MSER+和MSER-操作提取图像中的最稳定极值区域,可以看出可见光图像与红外图像提取出的最稳定极值区域和人眼观察类似,突出显眼区域,其结果如图3a、图3b所示,白色区域为提取出来的最稳定极值区域。In the experiment, the images of scene 1 and scene 2 were first converted into grayscale images, and the MSER+ and MSER- operations were performed on the grayscale images to extract the most stable extreme value regions in the images. The stable extreme value area is similar to the observation of the human eye, highlighting the conspicuous area. The results are shown in Figure 3a and Figure 3b, and the white area is the most stable extreme value area extracted.
提取出来的mser最稳定极值区域都是不规则形状,不利于后续图像处理,需要对每一个区域进行椭圆拟合,最终拟合椭圆区域将作为待选图像配准特征区域使用,其椭圆拟合结果如图4a、图4b所示。The most stable extremum regions of the extracted mser are irregular in shape, which is not conducive to subsequent image processing. It is necessary to perform ellipse fitting on each region. The final fitted ellipse region will be used as the candidate image registration feature region. The combined results are shown in Figure 4a and Figure 4b.
本方法提出的FBP算法是在针对圆形区域,并且不难发现,MSER区域经过椭圆拟合,针对椭圆区域的处理显然不如对圆形区域处理来得方便。为了建立FBP算法模型,通过转换矩阵将椭圆规则化处理成一个圆形区域,归一化结果如图5a和图5b。The FBP algorithm proposed by this method is aimed at the circular area, and it is not difficult to find that the MSER area is fitted by an ellipse, and the processing of the elliptical area is obviously not as convenient as the processing of the circular area. In order to establish the FBP algorithm model, the ellipse is regularized into a circular area by the transformation matrix, and the normalized results are shown in Fig. 5a and Fig. 5b.
归一化之后的圆形区域为纹理图像,可见光图像与红外图像成像机制不同,因此图像所含信息不一样,但是可见光与红外图像都保留了完整的图像轮廓信息,利用好纹理之间像素与像素之间的关系即可生成特征描述符,场景1部分特征区域纹理信息如图6a、图6b所示。The normalized circular area is a texture image. The imaging mechanism of visible light image is different from that of infrared image, so the information contained in the image is different. However, both visible light and infrared images retain the complete image outline information. The relationship between the pixels can generate feature descriptors, and the texture information of the feature area of scene 1 is shown in Figure 6a and Figure 6b.
以椭圆区域圆心坐标点为最终匹配点位置,分别对红外图像和可见光图像进行FBP算法处理,得到FBP编码值进行配准,针对场景1使用FBP模型进行编码配准,其得到结果如图7所示。由图7可知,FBP算法都能正确寻找到匹配区域并且实现可见光图像语红外图像的配准。Taking the coordinate point of the center of the ellipse area as the final matching point position, the infrared image and the visible light image are processed by the FBP algorithm respectively, and the FBP code value is obtained for registration. For scene 1, the FBP model is used for code registration, and the result is shown in Figure 7. Show. It can be seen from Figure 7 that the FBP algorithm can correctly find the matching area and realize the registration of visible light images and infrared images.
当然,上述说明并非是对本发明的限制,本发明也并不仅限于上述举例,本技术领域的普通技术人员在本发明的实质范围内所做出的变化、改型、添加或替换,也应属于本发明的保护范围。Of course, the above description is not intended to limit the present invention, and the present invention is not limited to the above examples. Changes, modifications, additions or substitutions made by those of ordinary skill in the art within the scope of the present invention should also belong to protection scope of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910447148.2A CN110222749B (en) | 2019-05-27 | 2019-05-27 | A method for matching visible light image and infrared image |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910447148.2A CN110222749B (en) | 2019-05-27 | 2019-05-27 | A method for matching visible light image and infrared image |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110222749A CN110222749A (en) | 2019-09-10 |
CN110222749B true CN110222749B (en) | 2022-06-07 |
Family
ID=67818406
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910447148.2A Expired - Fee Related CN110222749B (en) | 2019-05-27 | 2019-05-27 | A method for matching visible light image and infrared image |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110222749B (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113570808A (en) * | 2021-07-08 | 2021-10-29 | 郑州海为电子科技有限公司 | Wireless smoke detector based on ZYNQ7020 |
CN116310675A (en) * | 2023-02-24 | 2023-06-23 | 云南电网有限责任公司玉溪供电局 | Feature complementary image processing method of infrared-visible light image under low illumination |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400384A (en) * | 2013-07-22 | 2013-11-20 | 西安电子科技大学 | Large viewing angle image matching method capable of combining region matching and point matching |
CN103971385A (en) * | 2014-05-27 | 2014-08-06 | 重庆大学 | Detecting method for moving object in video |
CN104376548A (en) * | 2014-11-07 | 2015-02-25 | 中国电子科技集团公司第二十八研究所 | Fast image splicing method based on improved SURF algorithm |
RU2557755C1 (en) * | 2014-02-25 | 2015-07-27 | Открытое акционерное общество "Центр судоремонта "Звездочка" | Method for image compression during fractal coding |
CN106529591A (en) * | 2016-11-07 | 2017-03-22 | 湖南源信光电科技有限公司 | Improved MSER image matching algorithm |
CN108197585A (en) * | 2017-12-13 | 2018-06-22 | 北京深醒科技有限公司 | Recognition algorithms and device |
CN108198157A (en) * | 2017-12-22 | 2018-06-22 | 湖南源信光电科技股份有限公司 | Heterologous image interfusion method based on well-marked target extracted region and NSST |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6442152B2 (en) * | 2014-04-03 | 2018-12-19 | キヤノン株式会社 | Image processing apparatus and image processing method |
-
2019
- 2019-05-27 CN CN201910447148.2A patent/CN110222749B/en not_active Expired - Fee Related
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103400384A (en) * | 2013-07-22 | 2013-11-20 | 西安电子科技大学 | Large viewing angle image matching method capable of combining region matching and point matching |
RU2557755C1 (en) * | 2014-02-25 | 2015-07-27 | Открытое акционерное общество "Центр судоремонта "Звездочка" | Method for image compression during fractal coding |
CN103971385A (en) * | 2014-05-27 | 2014-08-06 | 重庆大学 | Detecting method for moving object in video |
CN104376548A (en) * | 2014-11-07 | 2015-02-25 | 中国电子科技集团公司第二十八研究所 | Fast image splicing method based on improved SURF algorithm |
CN106529591A (en) * | 2016-11-07 | 2017-03-22 | 湖南源信光电科技有限公司 | Improved MSER image matching algorithm |
CN108197585A (en) * | 2017-12-13 | 2018-06-22 | 北京深醒科技有限公司 | Recognition algorithms and device |
CN108198157A (en) * | 2017-12-22 | 2018-06-22 | 湖南源信光电科技股份有限公司 | Heterologous image interfusion method based on well-marked target extracted region and NSST |
Non-Patent Citations (4)
Title |
---|
Human and Machine Performance on Periocular Biometrics Under Near-Infrared Light and Visible Light;Karen P. Hollingsworth等;《IEEE Transactions on Information Forensics and Security 》;20111027;第7卷(第2期);第588-601页 * |
一种基于聚类分析的红外图像配准算法;尹丽华等;《半导体光电》;20170815;第38卷(第4期);第571-576页 * |
基于LBP 核密度估计的动态目标分割模型研究;何黄凯等;《计算机应用研究》;20120731;第29卷(第7期);第2719-2721、第2732页 * |
浅谈改进的LBP算法;房德峰;《现代企业教育》;20130823(第16期);第262-263页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110222749A (en) | 2019-09-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110097093B (en) | Method for accurately matching heterogeneous images | |
CN107316031B (en) | Image feature extraction method for pedestrian re-identification | |
CN110807473B (en) | Target detection method, device and computer storage medium | |
CN110097586B (en) | Face detection tracking method and device | |
CN108416291B (en) | Face detection and recognition method, device and system | |
CN108764004B (en) | Annular coding mark point decoding and identifying method based on coding ring sampling | |
CN103870808A (en) | Finger vein identification method | |
CN107066969A (en) | A kind of face identification method | |
CN114299299B (en) | Tree leaf feature extraction method and device, computer equipment and storage medium | |
CN110222749B (en) | A method for matching visible light image and infrared image | |
CN112308044B (en) | Image enhancement processing method and palm vein identification method for palm vein image | |
Dai et al. | An improved orb feature extraction algorithm based on enhanced image and truncated adaptive threshold | |
CN112085816B (en) | Font curve generation method and device | |
CN112381042A (en) | Method for extracting palm vein features from palm vein image and palm vein identification method | |
CN111814618B (en) | Pedestrian re-recognition method, gait recognition network training method and related devices | |
US10115195B2 (en) | Method and apparatus for processing block to be processed of urine sediment image | |
CN108985216B (en) | Pedestrian head detection method based on multivariate logistic regression feature fusion | |
Nguyen et al. | LAWNet: A lightweight attention-based deep learning model for wrist vein verification in smartphones using RGB images | |
CN106558065A (en) | The real-time vision tracking to target is realized based on color of image and texture analysiss | |
CN116958600A (en) | Similarity calculation and optimization method, similarity calculation and optimization device and storage medium | |
CN112949361B (en) | Fingerprint identification method and device | |
CN112906431A (en) | Iris image segmentation method and device, electronic equipment and storage medium | |
Li et al. | Image stitching algorithm based on fast feature extraction and perceptual hash | |
Ishikawa et al. | Pupil Center Detection by Abstracted Contour Graph Analysis for Iris Detection | |
Xu | A Multistage Method for Road Extraction from Optical Remotely Sensed Imagery. |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220607 |