CN110225575B - 传输功率控制方法、相关设备及系统 - Google Patents
传输功率控制方法、相关设备及系统 Download PDFInfo
- Publication number
- CN110225575B CN110225575B CN201910375078.4A CN201910375078A CN110225575B CN 110225575 B CN110225575 B CN 110225575B CN 201910375078 A CN201910375078 A CN 201910375078A CN 110225575 B CN110225575 B CN 110225575B
- Authority
- CN
- China
- Prior art keywords
- uplink
- terminal
- downlink configuration
- power
- configuration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0209—Power saving arrangements in terminal devices
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/06—TPC algorithms
- H04W52/14—Separate analysis of uplink or downlink
- H04W52/146—Uplink power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/18—TPC being performed according to specific parameters
- H04W52/28—TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
- H04W52/283—Power depending on the position of the mobile
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/365—Power headroom reporting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/04—TPC
- H04W52/30—TPC using constraints in the total amount of available transmission power
- H04W52/36—TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
- H04W52/367—Power values between minimum and maximum limits, e.g. dynamic range
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/04—Wireless resource allocation
- H04W72/044—Wireless resource allocation based on the type of the allocated resource
- H04W72/0446—Resources in time domain, e.g. slots or frames
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/20—Control channels or signalling for resource management
- H04W72/23—Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W76/00—Connection management
- H04W76/20—Manipulation of established connections
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W72/00—Local resource management
- H04W72/50—Allocation or scheduling criteria for wireless resources
- H04W72/51—Allocation or scheduling criteria for wireless resources based on terminal or device properties
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请提供一种传输功率控制方法,终端可以从网络侧获得上下行配置(UL/DL assignment)。如果该上下行配置所配置的上行时间占比不是100%,即不是全上行(AllUplink)配置,则终端可以确定该上下行配置相对于全上行配置能够减少的功率降幅。全上行配置时的功率降幅可以参考图2所示的现有方式来确定。这样,相比现有技术可以抬升传输功率,可实现终端在上行传输时获得更多的功率余量,提升传输性能,同时又能符合电磁能量吸收规范。
Description
技术领域
本申请涉及无线通信技术领域,尤其涉及一种传输功率控制方法、相关设备及系统。
背景技术
电磁能量吸收比(specific absorption rate,SAR)是一个标准量,用来测量人体组织对手机等终端产品产生的电磁能量的吸收。SAR的单位是W/Kg(瓦/千克)。SAR越大,电磁辐射对人体的影响越大;反之则影响较小。目前,一些规范机构都设立了电磁能量吸收规范,设置了SAR限制值。SAR限制值是指6分钟内,每千克人体组织最多被允许吸收的电磁能量。例如,美国联邦传播委员会(federal communication commission,FCC)设立的SAR限制值为1.6W/Kg,欧盟电信标准组织(european telecommunications standard insitute,ESTI)设立的SAR限制值为2.0W/Kg。
目前,采取降低终端的传输功率的方式来遵守SAR限制值。但是,现有技术中,为了确保各种业务场景下都能遵守SAR限制值,需要降低的传输功率是在连续上行传输这种严格的也场景下确定的,并未有区别考虑不同业务场景的传输特点。
发明内容
本申请提供了一种传输功率控制方法、相关设备及系统,终端可以根据网络侧下发的上下行配置确定实际功率降幅,可实现终端在上行传输时获得更多的功率余量,提升传输性能,同时又能符合电磁能量吸收规范。
第一方面,本申请提供了一种传输功率控制方法,应用于终端(如手机)侧,该方法可包括:终端接收网络设备发送的第一信息,第一信息指示第一上下行配置。然后,终端在第一上下行配置指示的部分或全部上行时间资源上进行上行传输。上行传输的实际传输功率等于终端的最大传输功率减去实际功率降幅,符合电磁能量吸收规范。实际功率降幅由第一功率降幅和第一功率增幅计算得到,实际功率降幅小于第一功率降幅。
其中,第一功率增幅等于第一上下行配置下符合电磁能量吸收规范的最大传输功率,与,第二上下行配置下符合电磁能量吸收规范的最大传输功率,的差值。第一上下行配置所确定的第一上行时间占比小于第二上下行配置所确定的第二上行时间占比。第一功率降幅用于在第二上下行配置下,且终端与人体相距第一距离,将传输功率从终端的最大传输功率降低至符合电磁能量吸收规范的最大传输功率。
第二方面,本申请提供了一种传输功率控制方法,应用于网络设备(如gNB)侧,该方法可包括:网络设备向终端发送第一信息,第一信息指示第一上下行配置。然后,网络设备可接收终端传输的上行信号。
这里,终端传输上行信号的实际传输功率等于终端的最大传输功率减去实际功率降幅,符合电磁能量吸收规范。实际功率降幅由第一功率降幅和第一功率增幅计算得到,实际功率降幅小于第一功率降幅。关于第一功率降幅和第一功率增幅的说明,可参考第一方面,这里不赘述。
在第一方面或第二方面中,第一上下行配置可指示一段时间内上行时间资源和下行时间资源的分配。例如配置周期内的哪些子帧是UL子帧,哪些子帧是DL子帧。关于上下行配置,可以参考前述内容,这里不再赘述。
在第一方面或第二方面中,第一映射表中可包括多个候选距离以及这多个候选距离对应的功率降幅(简称delta1)。第一映射表可以根据图2所示的现有技术中的步骤1得到。第二映射表可包括多个候选上行时间占比以及这多个候选上行时间占比对应的功率增幅(简称delta2)。一个上行时间占比对应的功率增幅表示该上行时间占比相比全上行配置少降的功率。在SAR评估周期(如6分钟)内,非连续上行传输(上行时间占比小于100%)比连续上行传输(全上行配置,上行时间占比为100%)产生更少的电磁辐射,需要降低的功率也就更少。第二映射表中的delta2可以是经验值,比如50%上行占比相较于100%上行占比,传输功率可以少降3dB;delta2也可以通过实际测试得到。
结合第一方面或第二方面,第二上下行配置可以为全上行配置,此时第二上行时间占比为100%。不限于全上行配置这种极端上行配置,第二上行配置还可以是其他上行时间占比很高的上下行配置,例如上行时间占比为95%。
实施第一方面和第二方面描述的方法,终端可以从网络侧获得上下行配置(UL/DLassignment)。如果该上下行配置所配置的上行时间占比不是100%,即不是全上行(AllUplink)配置,则终端可以确定该上下行配置相对于全上行配置能够减少的功率降幅。全上行配置时的功率降幅可以参考图2所示的现有方式来确定。最后,终端可以利用减少后的功率降幅来降低上行传输功率。这样,相比现有技术,本申请提供的传输功率控制方法可以抬升传输功率,可实现终端在上行传输时获得更多的功率余量,提升传输性能,同时又能符合SAR规范。结合第一方面或第二方面,在一些实施例中,终端可以通过距离传感器检测终端与人体之间的距离,也可以通过雷达测距传感器或红外线测距传感器等检测终端与人体之间的距离。可选的,终端还可以根据使用场景(use case)来确定终端与人体之间的距离。例如,当判断出用户在打电话时,此时终端的听筒开启,则终端可以确定用户与终端之间的距离在特定距离范围内,如0.1mm至1.0mm。不限于该示例,终端还可以根据其他使用场景确定用户与终端之间的距离,本申请对此不作限制。
结合第一方面或第二方面,在一些实施例中,终端可以根据第一距离从第一映射表中查找出该距离对应的功率降幅。这样,可确保遵守电磁能量吸收规范,即使在终端进行连续上行传输这种极端场景下。也即是说,在这种极端场景下测试确定的功率降幅是最大功率降幅,因为它能确保其他场景下也能遵守电磁能量吸收规范。
结合第一方面或第二方面,在一些实施例中,终端可以根据第一上行时间占比,从第二映射表中查找出第一上行时间占比对应的功率增幅(即少降的功率,delta 2)。
结合第一方面或第二方面,在一些实施例中,第一信息可以携带于系统消息(如SIB 1)中,还可以携带于高层消息(如RRC消息中),也还可以携带于PDCCH(如DCI消息)中。
结合第一方面或第二方面,在一些实施例中,当第一上下行配置采用小区级半静态UL/DL配置时,第一信息可以携带于系统消息中。在LTE通信系统中,第一信息可以是SIB1中的TDD-Config IE。在NR通信系统中,第一信息可以是SIB 1中的UL-DL-configuration-commonIE,和/或UL-DL-configuration-common-Set2IE。
结合第一方面或第二方面,在一些实施例中,当第一上下行配置采用用户级半静态UL/DL配置时,第一信息可以携带于高层消息中。第一信息可以是RRC消息中的ServingCellConfig IE。
结合第一方面或第二方面,在一些实施例中,当第一上下行配置采用动态UL/DL配置时,第一信息可以携带于DCI消息中。第一信息可以是RRC消息中的ServingCellConfigIE。
结合第一方面或第二方面,在一些实施例中,对于特定终端,上行传输具体占用的上行时间资源需要网络设备下发上行授权(UL grant)来进一步指示。在接收第一信息之前,终端还可以接收网络设备发送的UL grant,UL grant可携带于DCI消息中,并可以在第一上下行配置指示的上行时间资源中根据UL grant进一步确定上行数据承载于哪一部分上行时间资源。
结合第一方面或第二方面,在一些实施例中,,终端还可以向网络设备发送能力上报消息,如用户设备能力(userequipmentcapability,UEcapability),该能力上报消息可以携带第二信息(如maxUplinkDutyCycle-PC2-FR1IE)。第二信息可指示终端能够被调度的上行时间在SAR评估周期(如6分钟)内的最大比例。网络设备在为终端调度的上行时间资源时,需要考虑终端上报的该最大比例。该最大比例越大,网络设备为终端调度的上行时间资源,即ULgrant配置的上行时间资源,在第一上下行配置指示的上行时间资源中所占比例越大。
结合第一方面或第二方面,在一些实施例中,终端上报的该最大比例可以大于第一值(如90%),例如最大比例可以设置为100%。这样,网络设备通过ULgrant配置给终端的上行时间资源,在第一上下行配置指示的上行时间资源内,所占的比例能够超出第二值(如100%)。也即是说,如果终端能力上报中的该最大比例很大,如100%,那么,网络设备下发的ULgrant配置的上行时间资源在第一上下行配比指示的上行时间资源内的占比就可以很高,如100%,有利于终端被配置更多上行时间资源,有利于终端上行传输更多数据。
在一种可能的情况下,如果处于RRC空闲态的终端没有接收到来自网络设备的第一信息,则可以根据极限上行时间占比,如20%,确定实际功率降幅,从而确定出上行传输的实际传输功率。
第三方面,本申请提供了一种终端,包括多个功能单元,用于相应的执行第一方面可能的实施方式中的任意一种所提供的方法。
第四方面,本申请提供了一种网络设备,包括多个功能单元,用于相应的执行第二方面可能的实施方式中的任意一种所提供的方法。
第五方面,本申请提供了一种终端,用于执行第一方面可能的实施方式中的任意一种所描述的传输功率控制方法。终端可包括:存储器以及与存储器耦合的处理器、收发器,其中:收发器用于与其他通信设备(如网络设备)通信。存储器用于存储第一方面可能的实施方式中的任意一种所描述的传输功率控制方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第一方面可能的实施方式中的任意一种所提供的方法。
第六方面,本申请提供了一种接入网设备,用于执行第二方面或第四方面可能的实施方式中的任意一种所描述的传输功率控制方法。网络设备可包括:存储器以及与存储器耦合的处理器、收发器,其中:收发器用于与其他通信设备(如终端)通信。存储器用于存储第二方面可能的实施方式中的任意一种所描述的传输功率控制方法的实现代码,处理器用于执行存储器中存储的程序代码,即执行第二方面可能的实施方式中的任意一种所提供的方法。
第七方面,本申请提供了一种通信系统,通信系统包括:终端和网络设备,其中:终端可以是第三方面或第五方面中描述的终端。网络设备可以是第四方面或第六方面中描述的网络设备。
第八方面,本申请提供了一种计算机可读存储介质,可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面描述的传输功率控制方法。
第九方面,本申请提供了另一种计算机可读存储介质,可读存储介质上存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面描述的传输功率控制方法。
第十方面,本申请提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面描述的传输功率控制方法。
第十一方面,本申请提供了另一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面描述的传输功率控制方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所需要使用的附图进行说明。
图1是本申请提供的一种无线通信系统的架构示意图;
图2是现有技术的降功率方法的流程;
图3是LTE无线帧的7种上下行配置的示意图;
图4是一种NR无线帧结构的示意图;
图5是本申请提供的传输功率控制方法的流程示意图;
图6是本申请提供的传输功率控制方法应用于的消息流程示意图;
图7是一种非独立(non-standalone)组网架构示意图;
图8是本申请的一个实施例提供的终端设备的硬件架构示意图;
图9是本申请的一个实施例提供的网络设备的硬件架构示意图;
图10是本申请的提供的无线通信系统,终端和网络设备的功能框图;
图11是本申请的一种处理器的结构示意图。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图1示出了本申请涉及的无线通信系统100。无线通信系统100可以工作在高频频段上,可以是第五代移动通信(the 5th Generation,5G)系统、新空口(new radio,NR)系统,还可以是长期演进(Long Term Evolution,LTE)系统,机器与机器通信(Machine toMachine,M2M)系统,未来演进的第六代通信系统等。如图1所示,无线通信系统100可包括:一个或多个网络设备101,一个或多个终端103,以及核心网115。其中:
网络设备101可以为基站,基站可以用于与一个或多个终端进行通信,也可以用于与一个或多个具有部分终端功能的基站进行通信(比如宏基站与微基站,如接入点,之间的通信)。基站可以是时分同步码分多址(TimeDivisionSynchronousCodeDivisionMultipleAccess,TD-SCDMA)系统中的基站收发台(BaseTransceiverStation,BTS),也可以是LTE系统中的演进型基站(EvolutionalNodeB,eNB),以及5G系统、新空口(NR)系统中的基站。另外,基站也可以为接入点(AccessPoint,AP)、传输节点(TransTRP)、中心单元(CentralUnit,CU)或其他网络实体,并且可以包括以上网络实体的功能中的一些或所有功能。
终端103可以分布在整个无线通信系统100中,可以是静止的,也可以是移动的。在本申请的一些实施例中,终端103可以是用户设备UE、移动设备、移动台(mobilestation)、移动单元(mobileunit)、M2M终端、无线单元,远程单元、用户代理、移动客户端等等。
具体的,网络设备101可用于在网络设备控制器(未示出)的控制下,通过无线接口105与终端103通信。在一些实施例中,所述网络设备控制器可以是核心网115的一部分,也可以集成到网络设备101中。具体的,网络设备101可用于通过回程(blackhaul)接口113(如S1接口)向核心网115传输控制信息或者用户数据。具体的,网络设备101与网络设备101之间也可以通过回程(blackhaul)接口111(如X2接口),直接地或者间接地,相互通信。
需要说明的,图1示出的无线通信系统100仅仅是为了更加清楚的说明本申请的技术方案,并不构成对本申请的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请提供的技术方案对于类似的技术问题,同样适用。
在无线通信系统100中,当终端103向网络设备101传输数据时,终端103产生的电磁辐射会对靠近终端103的人体组织产生影响。针对该影响,一些规范组织设立了SAR限制值。
现有技术中,采取降低终端的传输功率的方式来遵守SAR限制值。现有的降低传输功率的具体过程可如图2所示:
步骤1.在连续上行传输场景下,以6分钟为SAR评估周期,测试不同距离对应的符合SAR规范的最大传输功率。当人体和终端103处于某个距离(例如1毫米)的条件下,终端采用该距离下测试得到的符合SAR规范的最大传输功率进行连续上行传输,6分钟内被人体吸收的电磁能量刚好符合SAR规范,例如接近或等于FCC规定的1.6W/Kg。这里,接近是指6分钟内被人体吸收的电磁能量与1.6W/Kg之间的差值小于特定值,例如0.1W/Kg。
然后,确定不同距离下测试得到的符合SAR规范的最大传输功率相比于终端的最大传输功率所需要的功率降幅,并得到一个映射表。该映射表中记录了不同距离对应的功率降幅。
步骤2.终端103检测和人体之间的距离。例如,终端103可以距离传感器检测该距离。
步骤3.根据步骤2中测量到的距离,从步骤1中得到的映射表中,查找出该距离对应的功率降幅。
步骤4.利用步骤3中的查找到的功率降幅,基于终端的最大传输功率,降低传输功率。
LTE、NR都支持多种上下行配置,可以根据不同的业务类型,调整上下行配置,以灵活适应不同的业务场景,满足上下行非对称的业务需求。在极端的业务场景(例如终端作为广播热点或传输热点)下,配置周期(如1/4个无线帧)中的子帧(或时隙或符号)可能全部分配给上行传输,这种极端的上下行配置可以称为全上行(AllUplink)配置。全上行配置是指,整个配置周期都为上行时间,即上行时间在配置周期内的占比为100%,可以支持连续上行传输,适应连续上传数据的业务场景。后续内容中,上行时间在配置周期内的占比可以称为上行时间占比。
现有技术中,为了确保各种业务场景下都能遵守SAR限制值,功率降幅是在上述极端的上下行配置下确定的,功率降幅较大。这样可以确保所有业务场景都可以使用现有技术确定的功率降幅来遵守SAR限制值。因为,在SAR评估周期(如6分钟)内,连续上行传输比非连续上行传输会产生更多电磁辐射,需要降低的功率也就更多。
但是,针对很多业务场景,例如处于无线资源控制(radio resource control,RRC)空闲态的终端103进行随机接入的业务场景,其上下行配置所配置的上行时间在配置周期内的占比可能只会为20%左右。因此,在全上行(AllUplink)配置下确定的功率降幅,会导致上行传输功率被过多的降低,不利于终端传输性能的发挥。
为了解决现有的技术问题,本申请提供了一种传输功率控制方法。
本申请的主要发明原理可包括:终端可以从网络侧获得上下行配置(UL/DLassignment)。如果该上下行配置所配置的上行时间占比不是100%,即不是全上行(AllUplink)配置,则终端可以确定该上下行配置相对于全上行配置能够减少的功率降幅。全上行配置时的功率降幅可以参考图2所示的现有方式来确定。最后,终端可以利用减少后的功率降幅来降低上行传输功率。这样,相比现有技术,本申请提供的传输功率控制方法可以抬升传输功率,可实现终端在上行传输时获得更多的功率余量,提升传输性能,同时又能符合SAR规范。
首先,介绍本申请中提及的上下行配置(UL/DL assignment)。
为了适应不同的业务需求,网络设备可以调整上下行配置,改变上行和下行时间资源比例。上下行配置,是指一段时间内上行时间资源和下行时间资源的分配。上下行配置可以是周期性配置的。在一个无线帧内,上行数据和下行数据可以在不同时间(如子帧、时隙、符号等)上传输。也即是说,在一个无线帧内,一些时间用于网络设备(如eNB)发信息、终端接收信息,另一些时间用于终端发信息、网络设备接收信息。
(1)在LTE通信系统中,上下行配置可以子帧或时隙为单位。图3示例性示出了LTE无线帧的7种上下行配置(Uplink-downlink configuration)。LTE中,无线帧的长度为10毫秒,分成10个长度为1毫秒的子帧。其中,子帧0、子帧5是下行(D)子帧,子帧1是特殊(S)子帧,特殊子帧后传输的是上行(U)子帧。
如图3所示,采用上下行配置0、2或6时,上下行配置的配置周期为5毫秒。采用上下行配置3、4或5时,上下行配置的配置周期为10毫秒。上下行配置可以子帧为单位进行指示。例如,上下行配置0为:第1个子帧是DL子帧,第3个至第5个子帧是UL子帧,第4个子帧是特殊子帧。上下行配置是可以调整的,可以通过修改特殊子帧中的各部分的长度来实现。
其中,特殊子帧包含三个部分:DwPTS(downlink pilot time slot),GP(guardperiod),UpPTS(uplink pilot time slot)。DwPTS传输的是下行的参考信号,也可以传输一些控制信息。UpPTS上可以传输一些短的随机接入信道(random access channel,RACH)和探测参考信号(sounding reference signal,SRS)的信息。GP是上下行之间的保护时间。LTE规定了9种特殊子帧配置。采用不同的特殊子帧配置,特殊子帧中各个部分的长度可以是不同的。具体的,网络设备可以通过高层消息(如RRC消息)配置特殊子帧采用哪一种特殊子帧配置。
(2)在NR通信系统中,上下行配置可以时隙或符号为单位,又可以称为时隙格式配置。图4示例性示出了NR中的一种无线帧结构。如图4所示,上下行配置的配置周期为2.5ms,子载波间隔为30KHz。在一个配置周期内,下行(DL)时隙的个数为3,上行(UL)时隙的个数为1,特殊(S)时隙的个数为1。在特殊时隙内,下行(DL)符号的个数为8,上行(UL)符号的个数为2,上行符号和下行符号之间的符号称为弹性(flexible)符号。弹性符号可用作上下行切换的保护时间(GP),也可以被其他方式配置为DL符号或者UL符号。
图4示例性所示的帧结构表示的上下行配置为:时隙#0至时隙#2为DL时隙,时隙#4为UL时隙,时隙#3为特殊时隙。该上下行配置是可以调整的,可以通过修改特殊子帧中的弹性符号的传输方向来实现。
不限于图4,NR的上下行配置可以非常灵活,例如全上行(AllUplink)配置。全上行配置是指,整个配置周期都为上行时间,即上行时间在配置周期内的占比为100%,可以支持连续上行传输,适应连续上传数据的业务场景。后续内容中,上行时间在配置周期内容的占比可以称为上行时间占比。
其次,介绍本申请中关于上下行配置的几种配置方式。
(1)小区级半静态UL/DL配置
网络设备可以通过系统消息,如系统信息块(system information block,SIB),下发上下行配置。终端在小区搜索过程中可以接收到网络设备发送的系统消息。
在LTE通信系统中,上下行配置可由SIB 1中的TDD-Config IE来指示。在TDD-Config IE中,subframeAssignment信元可指示一个配置周期采取图3所示的7种上下行配置中的哪一种,specialSubframePattern信元可指示特殊子帧采取哪一种特殊子帧配置。根据这两个信元,终端便可以确定出网络设备下发的上下行配置。
在NR通信系统中,上下行配置可由SIB 1中的下述两种信息元素(informationelement,IE)来指示:UL-DL-configuration-common、UL-DL-configuration-common-Set2。具体的,在这两个IE中,nrofDownlinkSlots信元可指示一个配置周期内DL时隙的个数,nrofDownlinkSymbols信元可指示特殊时隙内DL符号的个数,nrofUplinkSlots信元可指示一个配置周期内UL时隙的个数,nrofUplinkSymbols信元可指示特殊时隙内UL符号的个数。根据这些信元,终端便可以确定出网络设备下发的上下行配置。
(2)用户级半静态UL/DL配置
用户级半静态UL/DL配置可用于修改小区级半静态UL/DL配置中弹性符号的传输方向。用户级半静态UL/DL配置可以由RRC消息中的ServingCellConfig IE来实现。在ServingCellConfig IE中,tdd-UL-DL-ConfigurationDedicated信元可具体指示哪些时隙、哪些符号要修改传输方向。
(3)动态UL/DL配置方式
动态UL/DL配置可用于修改小区级半静态UL/DL配置或用户级半静态UL/DL配置中弹性符号的传输方向。动态UL/DL配置可由DCI消息来实现。具体的,网络设备可以使用DCI格式2_0动态配置时隙格式,对弹性符号的传输方向进行配置修改。
上述用户级半静态UL/DL配置方式、动态UL/DL配置方式可应用于NR通信系统中。LTE帧结构中没有弹性符号,上下行配置通过小区级半静态UL/DL配置实现。
上述几种配置方式适用于时分双工(time division duplex,TDD)通信系统。在频分双工(frequency division duplex,FDD)通信系统中,可以通过配置时分复用(timedivision mutiplexing,TDM)样式(pattern)来指示上行时间资源、下行时间资源的分配。第一信息可以是携带在RRCConnectionReconfiguration消息中的tdm-patternConfig IE。FDD通信系统下配置TDM的场景有两种:1.非独立(non-standalone)组网场景;2.载波聚合(carrier aggregation,CA)场景。这两种场景下均存在互扰,场景1中LTE的二次谐波对NR频段产生干扰,场景2中一个载波的多次谐波会对另一个载波产生干扰。另外,非独立组网时,针对基站远点功控场景,终端向NR基站、LTE基站分时进行上行传输,单模时可用满全部发射功率,也会配置TDM-Pattern提升覆盖。单模是指终端只向单个基站(NR基站或LTE基站)进行上行传输的上行模式。
后续实施例中会详细介绍上述几种配置方式的应用,这里现在不赘述。
下面,基于上述主要发明原理说明本申请提供的传输功率控制方法的总体流程。
如图5所示,在本申请提供的传输功率控制方法中,终端可以访问并查询第一映射表和第二映射表。其中,第一映射表中可包括多个候选距离以及这多个候选距离对应的功率降幅(简称delta1)。第一映射表可以根据图2所示的现有技术中的步骤1得到。第二映射表可包括多个候选上行时间占比以及这多个候选上行时间占比对应的功率增幅(简称delta2)。一个上行时间占比对应的功率增幅表示该上行时间占比相比全上行配置少降的功率。在SAR评估周期(如6分钟)内,非连续上行传输(上行时间占比小于100%)比连续上行传输(全上行配置,上行时间占比为100%)产生更少的电磁辐射,需要降低的功率也就更少。第二映射表中的delta2可以是经验值,比如50%上行占比相较于100%上行占比,传输功率可以少降3dB;delta2也可以通过实际测试得到。
图5中示出的第一映射表、第二映射表的内容仅作示例,不应构成限定。第一映射表和第二映射表可以存储于终端,也可以存储在终端可以访问的云端服务器/存储设备,这里不作限制。
如图5所示,本申请提供的传输功率方法可包括:
S101,终端确定终端与人体之间的距离。
具体的,终端可以通过距离传感器检测终端与人体之间的距离,也可以通过雷达测距传感器或红外线测距传感器等检测终端与人体之间的距离。可选的,终端还可以根据使用场景(use case)来确定终端与人体之间的距离。例如,当判断出用户在打电话时,此时终端的听筒开启,则终端可以确定用户与终端之间的距离在特定距离范围内,如0.1mm至1.0mm。不限于该示例,终端还可以根据其他使用场景确定用户与终端之间的距离,本申请对此不作限制。
S102,终端可以根据S101中确定的距离从第一映射表中查找出该距离对应的功率降幅。
例如,如果S101中确定的距离是1mm,则1mm对应的功率降幅就是5dB。这表示,当人体与终端相距1mm时,将传输功率从终端最大发射功率降低5dB,可确保遵守电磁能量吸收规范,即使在终端进行连续上行传输这种极端场景下。也即是说,在这种极端场景下测试确定的功率降幅是最大功率降幅,因为它能确保其他场景下也能遵守电磁能量吸收规范。
S103,终端可以接收网络设备发送的第一信息,第一信息可指示第一上下行配置。
第一信息可以携带于系统消息(如SIB 1)中,还可以携带于高层消息(如RRC消息中),也还可以携带于PDCCH(如DCI消息)中。
具体的,当第一上下行配置采用小区级半静态UL/DL配置时,第一信息可以携带于系统消息中。在LTE通信系统中,第一信息可以是SIB 1中的TDD-Config IE。在NR通信系统中,第一信息可以是SIB 1中的UL-DL-configuration-commonIE,和/或UL-DL-configuration-common-Set2IE。当第一上下行配置采用用户级半静态UL/DL配置时,第一信息可以携带于高层消息中。第一信息可以是RRC消息中的ServingCellConfig IE。当第一上下行配置采用动态UL/DL配置时,第一信息可以携带于DCI消息中。第一信息可以是RRC消息中的ServingCellConfig IE。
第一上下行配置可指示一段时间内上行时间资源和下行时间资源的分配。例如配置周期内的哪些子帧是UL子帧,哪些子帧是DL子帧。关于上下行配置,可以参考前述内容,这里不再赘述。
S104,终端可以根据第一上下行配置确定第一上行时间占比。
第一上行时间占比是指,第一上下行配置指示的上行时间(例如UL子帧的时长)在配置周期内所占的比例。例如,假设第一上下行配置是图3中示出的上下行配置0。那么,由于上下行配置0为:第1个子帧是DL子帧,第3个至第5个子帧是UL子帧,第4个子帧是特殊子帧,因此,第一上行时间占比为:3/5。其中,3代表3个UL子帧(第3个至第5个子帧),5代表整个配置周期内的子帧数。
S105,终端可以根据第一上行时间占比,从第二映射表中查找出第一上行时间占比对应的功率增幅(即少降的功率,delta 2)。
例如,如果S104中确定的第一上行时间占比是50%,则50%对应的功率增幅就是3dB。这表示,上行时间占比是50%时遵守电磁能量吸收规范的最大传输功率相比于上行时间占比是100%时遵守电磁能量吸收规范的最大传输功率,要大,具体大3dB。因为,在SAR评估周期(如6分钟)内,上行时间占比为50%的非连续上行传输比上行时间占比为100%的连续上行传输产生更少的电磁辐射,需要降低的功率也就更少。
可以理解的是,功率增幅(即少降的功率,delta 2)最多等于S102中查找出的功率降幅,不会超过该功率降幅。
S106,终端可以根据S102中查找出的功率降幅和S105中查找出的少降的功率(功率增幅),确定实际功率降幅(可简称为delta 3)。
具体的,实际功率降幅可以等于S102中查找出的功率降幅减去S105中查找出的少降的功率(功率增幅)。也即是说,实际功率降幅(delta 3)可以由S102中查找出的功率降幅(delta 1)和S105中查找出的功率增幅(delta 2)确定。如果第一上行时间占比小于100%,则实际功率降幅小于S102中查找出的功率降幅。这样,可实现在符合SAR规范同时,尽量少的降低传输功率,获得更多的功率余量,提升传输性能,同时又能符合SAR规范。
不限于实际功率降幅(delta 3)=S102中查找出的功率降幅(delta 1)-S105中查找出的功率增幅(delta 2),它们三者的关系可概括为:delta 3=f(delta 1,delta 2),其中,f是以delta 1、delta 2为参数的函数,delta 3和delta 1正相关,delta 3和delta 2负相关。
S107,终端可以根据S106中确定的实际功率降幅(delta 3),确定实际传输功率。实际传输功率相对于终端的最大传输功率的功率降幅即实际功率降幅(delta 3)。
S108,终端可以在第一上下行配置指示的部分或全部上行时间资源上进行上行传输,该上行传输的传输功率为S107中确定的实际传输功率。
第一上下行配置指示的上行时间资源是针对整个小区的。终端可能在该上行时间资源的部分或全部上进行上行传输。对于特定终端,上行传输具体占用的上行时间资源需要网络设备下发上行授权(UL grant)来进一步指示。图5未示出的,在S108之前,终端还可以接收网络设备发送的UL grant,UL grant可携带于DCI消息中,并可以在第一上下行配置指示的上行时间资源中根据UL grant进一步确定上行数据承载于哪一部分上行时间资源。
图5未示出的,终端还可以向网络设备发送能力上报消息,如用户设备能力(userequipmentcapability,UEcapability),该能力上报消息可以携带第二信息(如maxUplinkDutyCycle-PC2-FR1IE)。第二信息可指示终端能够被调度的上行时间在SAR评估周期(如6分钟)内的最大比例。网络设备在为终端调度的上行时间资源时,需要考虑终端上报的该最大比例。该最大比例越大,网络设备为终端调度的上行时间资源,即ULgrant配置的上行时间资源,在第一上下行配置指示的上行时间资源中所占比例越大。
本申请中,终端上报的该最大比例可以大于第一值(如90%),例如最大比例可以设置为100%。这样,网络设备通过ULgrant配置给终端的上行时间资源,在第一上下行配置指示的上行时间资源内,所占的比例能够超出第二值(如100%)。也即是说,如果终端能力上报中的该最大比例很大,如100%,那么,网络设备下发的ULgrant配置的上行时间资源在第一上下行配比指示的上行时间资源内的占比就可以很高,如100%,有利于终端被配置更多上行时间资源,有利于终端上行传输更多数据。
在一种可能的情况下,如果处于RRC空闲态的终端没有接收到来自网络设备的第一信息,则可以根据极限上行时间占比,如20%,确定实际功率降幅,从而确定出上行传输的实际传输功率。
可以看出,图5所示的传输功率控制方法中,终端可以根据网络侧下发的上下行配置(第一上下行配置)确定实际功率降幅,可实现在符合SAR规范同时,尽量少的降低传输功率,获得更多的功率余量,提升传输性能。
本申请中,生成第一映射表所基于的上下行配置可以称为第二上下行配置。第二上下行配置指示的上行时间占比可以称为第二上行时间占比。第二上下行配置可以为全上行配置,此时第二上行时间占比为100%。不限于全上行配置这种极端上行配置,第二上行配置还可以是其他上行时间占比很高的上下行配置,例如上行时间占比为95%。
本申请中,S102中查找出的功率降幅可以称为第一功率降幅,S105中查找出的少降的功率(功率增幅)可以称为第一功率增幅。第一功率降幅可用于在第二上下行配置下将实际传输功率从终端的最大传输功率降低至符合电磁能量吸收规范的最大传输功率。具体的,在特定距离(如1mm)下,第一功率降幅可以等于终端的最大传输功率和第一测量功率的差值,第一测量功率为终端与人体相距该特定距离时进行连续上行传输测量到的符合电磁能量吸收规范的最大的传输功率。第一功率增幅等于第一上下行配置下符合电磁能量吸收规范的最大传输功率,与,第二上下行配置下符合电磁能量吸收规范的最大传输功率,的差值。即第一功率增幅为少降的功率。第一功率增幅也可以称为,第一上下行配置下符合电磁能量吸收规范的最大传输功率,相对于,第二上下行配置下符合电磁能量吸收规范的最大传输功率,所能够提高的功率。
本申请中,当第一上行时间占比小于第二上行时间占比时,实际功率降幅小于第一功率降幅。而对于大部分业务场景,其上下行配置指示的上行时间占比,都会小于第二上行时间占比(如100%)。实际功率降幅的减少,可获得更多的功率余量,提升传输性能,同时符合SAR规范。
不限于SAR规范,本申请提供的传输功率控制方法所考虑的电磁能量吸收规范还可以是针对毫米波(mmWave)通信的最大允许暴露(maximum permissible exposure,MPE)规范。
图6示出了终端在开机后涉及的主要消息流程,下面结合该流程说明本申请提供的传输功率控制方法的应用。下面展开:
阶段1:小区搜索(S201)
终端开机时需要搜索小区、取得同步。在小区搜索过程中,终端接收网络设备发送的下行同步信号:主同步信号(primary synchronization signal,PSS)和辅同步信号(secondary synchronization signal,SSS)。
阶段2:获取小区系统信息(system information)(S202)
小区搜索过程之后,终端需要获取到小区的系统信息,这样才能知道该小区是如何配置的,以便接入该小区并在该小区内正确地工作。系统信息是小区级别的信息,即对接入该小区的所有UE生效。系统信息可分为主信息块(masterinformationblock,MIB)和多个系统信息块(systeminformationblock,SIB)。
网络设备可以在系统信息,如SIB 1,中携带第一上下行配置的指示信息,即第一信息。通过系统信息(如SIB 1)下发第一上下行配置的方式即前述小区级半静态UL/DL配置方式。关于如何通过SIB 1下发第一上下行配置,具体可参考前述小区级半静态UL/DL配置部分,这里不再赘述。
这样,在后续上行传输时,终端可以根据SIB 1中携带的第一信息,确定第一上下行配置,最终确定出实际传输功率。关于如何确定实际传输功率,可以参考图5方法,这里不再赘述。后续上行传输可发生在以下几种场景下:场景1.处于RRC空闲态的终端进行随机接入的场景;场景2.处于RRC连接态的终端传输上行数据的场景。
阶段3:随机接入(S205-S213)
在小区搜索过程之后,终端已经与小区取得了下行同步,因此终端能够接收下行数据。但终端只有与小区取得上行同步,才能进行上行传输。终端通过随机接入过程与小区建立连接并取得上行同步。
随机接入过程可包括以下几个步骤:
S205,终端向网络设备发送随机接入前导码(preamble),发起随机接入请求。
S207,网络设备检测到preamble之后,向终端返回随机接入响应(random accessresponse)。
S209,终端在接收到随机接入响应后,向网络设备发送Msg3。
针对不同场景,Msg3包含不同的内容。在初始接入场景下,Msg3可携带RRC连接请求(RRC Connection Request)。在RRC连接重建场景下,Msg3可携带RRC连接重建请求(RRCConnectionReestablishmentRequest)。在小区切换场景下,Msg3可携带RRC切换完成消息。图6示出的是初始接入场景,Msg3中携带RRC Connection Request。
S211,网络设备在接收到RRC Connection Request后,返回RRC连接建立(RRCConnection Setup)消息。
S213,终端在接收到RRC Connection Setup后,向网络设备发送RRC ConnectionSetup Complete。至此,RRC连接建立完成,终端从RRC空闲态进入RRC连接态。
在随机接入过程中,S205、S209为上行传输,其实际传输功率可以通过本申请提供的功率传输控制方法确定,具体可参考图5方法实施例,这里不再赘述。确定实际传输功率所依据的第一上下行配置的指示信息(即第一信息)可携带在系统信息(如SIB 1)中。
阶段4:RRC连接重配置
RRC连接重配置的目的是修改RRC连接,例如建立、修改或释放无线承载,建立、修改或释放测量。
RRC连接重配置可包括以下几个步骤:
S215,网络设备向终端发送RRC连接重配置(RRCConnectionReconfiguration)消息。
S217,终端在接收到RRCConnectionReconfiguration之后,向网络设备发送RRCConnectionReconfigurationComplete消息,确认重配置完成。
网络设备可以在RRCConnectionReconfiguration消息中携带第一上下行配置的指示信息,即第一信息。通过RRCConnectionReconfiguration消息下发第一上下行配置的方式可以是前述用户级半静态UL/DL配置方式。也即是说,RRCConnectionReconfiguration消息中携带的第一信息可用于修改SIB 1已下发的第一上下行配置。不限于RRCConnectionReconfiguration,网络设备下发的其他RRC消息也可以下发第一上下行配置。关于如何通过RRC消息下发第一上下行配置,具体可参考前述用户级半静态UL/DL配置部分,这里不再赘述。
这样,在后续上行传输时,基于SIB 1已下发的第一上下行配置,终端可以根据RRCConnectionReconfiguration消息中携带的第一信息,进一步确定修改后的第一上下行配置。后续上行传输的实际传输功率依据修改后的第一上下行配置确定。后续上行传输可以发生在以下场景:处于RRC连接态的终端传输上行数据的场景。
阶段5:上行调度(S219-S223)
S219,终端发送SRS。与下行类似,网络设备在进行上行调度时,需要进行上行信道估计。这是通过对终端发送的SRS进行测量得到的。
S221,当有上行数据需要传输时,终端向网络设备发送调度请求(schedulingrequest,SR),告诉网络设备有数据要发送,并请求网络设备分配上行资源。上行资源包括上行时间资源和上行频域资源。
S223,网络设备向终端下发UL grant,UL grant可携带在DCI消息中。UL grant可指示网络设备分配给终端的上行资源。具体的,UL grant指示的分配给终端的上行时间资源,在第一上下行配置所指示的时间资源内的占比小于或等于100%。
网络设备可以在DCI消息中携带第一上下行配置的指示信息,即第一信息。通过DCI消息下发第一上下行配置的方式可以是前述动态UL/DL配置方式。也即是说,DCI消息中携带的第一信息可用于修改SIB 1已下发的第一上下行配置,或修改RRC消息已修改的第一上下行配置。不限于DCI消息,网络设备下发的其他物理下行控制信道(physical downlinkcontrol channel,PDCCH)消息也可以下发第一上下行配置。关于如何通过DCI消息下发第一上下行配置,具体可参考前述动态UL/DL配置部分,这里不再赘述。
这样,在后续上行传输时,基于SIB 1已下发的第一上下行配置或RRC消息已修改的第一上下行配置,终端可以根据DCI消息中携带的第一信息,进一步确定修改后的第一上下行配置。后续上行传输的实际传输功率依据进一步修改后的第一上下行配置确定。后续上行传输可以发生在以下场景:处于RRC连接态的终端传输上行数据的场景。
阶段6:上行数据传输(S225)
S225,在获得UL grant之后,终端在网络设备分配给终端的上行资源上传输上行数据。
在上行数据传输过程中,其实际传输功率可以通过本申请提供的功率传输控制方法确定,具体可参考图5方法实施例,这里不再赘述。
确定实际传输功率所依据的第一上下行配置,可通过下述几种方式确定:
方式1.根据系统信息(如SIB 1)中携带的第一信息确定第一上下行配置。
方式2.根据RRC消息(如RRCConnectionReconfiguration)中携带的第一信息,修改系统信息(如SIB 1)已下发的第一上下行配置。
方式3.根据DCI消息中携带的第一信息,修改系统信息(如SIB 1)已下发的第一上下行配置,或者进一步修改RRC消息修改过的第一上下行配置。
也即是说,第一上下行配置可以通过小区级半静态UL/DL配置、用户级半静态UL/DL配置、动态UL/DL配置,进行递进式配置。
另外,在FDD通信系统中,可以通过TDM pattern来指示上行时间资源、下行时间资源的分配。第一信息即携带在RRCConnectionReconfiguration消息中的tdm-patternConfig IE。
举例说明,如图6所示,假设SIB 1中携带的第一信息指示的第一上行配置如图6中上下行配置220所示,具体为:时隙#0至时隙#2为DL时隙,时隙#4为UL时隙,时隙#3为特殊时隙。该上下行配置是可以调整的,可以通过修改特殊子帧中的弹性符号的传输方向来实现。在特殊时隙内,下行(DL)符号的个数为8,上行(UL)符号的个数为2,上行符号和下行符号之间的符号称为弹性(flexible)符号。其中,弹性符号可用作上下行切换的保护时间(GP),也可以被其他方式(如用户级半静态UL/DL配置、动态UL/DL配置)配置为DL符号或者UL符号。
进一步的,S215中传输的RRCConnectionReconfiguration消息中携带的第一信息可修改上下行配置220中的弹性符号的传输方向。例如,将DL符号和UL符合之间的第1个弹性符号修改为UL符号。
进一步的,基于RRCConnectionReconfiguration消息修改过的第一上下行配置,S223中传输的DCI消息中携带的第一信息可进一步修改上下行配置220中的弹性符号的传输方向。例如,将DL符号和UL符合之间的第2个弹性符号修改为UL符号。可选的,DCI消息中携带的第一信息可修改SIB 1下发的第一上下行配置,尤其当RRC消息没有对第一上下行配置进行修改的情况下。
本申请提供的传输功率控制方法还可以应用于非独立(non-standalone)组网架构。
在图7示例性所示的非独立(non-standalone)组网架构中,终端103可以连接到两个网络设备,例如网络设备101-A(LTE eNB)和网络设备101-B(NR gNB)。其中,网络设备101-A(LTE eNB)连接LTE核心网(演进分组核心网(evolved packet core,EPC))113-A,网络设备101-B(NR gNB)连接NR核心网(下一代核心网(next generation core,NGC))113-B。网络设备101-A(LTE eNB)为主网络设备,网络设备101-B(NR gNB)为辅网络设备。
在这种图7所示的组网架构下,终端可以接收到网络设备101-A(LTE eNB)和网络设备101-B(NR gNB)分别下发的两套第一上下行配置,可分别简称为:配置A、配置B。配置A可以通过小区级半静态UL/DL配置、用户级半静态UL/DL配置、动态UL/DL配置,进行递进式配置。配置B可以通过用户级半静态UL/DL配置、动态UL/DL配置,进行递进式配置。配置B不能通过SIB 1消息下发,因为终端不能接收到辅网络设备下发的SIB 1。
终端可以根据配置A确定向网络设备101-A进行上行传输时的实际功率降幅,从而确定向网络设备101-A进行上行传输的实际传输功率。终端可以根据配置B确定向网络设备101-B进行上行传输时的实际功率降幅,从而确定向网络设备101-B进行上行传输的实际传输功率。这两种上行传输的实际传输功率均可以通过本申请提供的功率传输控制方法确定,具体可参考图5方法实施例,这里不再赘述。
这样,在非独立(non-standalone)组网架构中,在向不同的网络设备进行上行传输时,终端都可以相应的上下行配置分别确定实际功率降幅,获得更多的功率余量,提升传输性能,同时又能符合SAR规范。
参考图8,图8示出了本申请的一些实施例提供的终端300。如图8所示,终端300可包括:输入输出模块(包括音频输入输出模块318、按键输入模块316以及显示器320等)、用户接口302、一个或多个终端处理器304、发射器306、接收器308、耦合器310、天线314以及存储器312。这些部件可通过总线或者其他方式连接,图8以通过总线连接为例。其中:
通信接口301可用于终端300与其他通信设备,例如基站,进行通信。具体的,所述基站可以是图9所示的网络设备400。通信接口301是指终端处理器304与收发系统(由发射器306和接收器308构成)之间的接口,例如LTE中的X1接口。具体实现中,通信接口301可包括:全球移动通信系统(Global System for Mobile Communication,GSM)(2G)通信接口、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)(3G)通信接口,以及长期演进(Long Term Evolution,LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,终端300还可以配置有有线的通信接口301,例如局域接入网(Local Access Network,LAN)接口。非独立(non-standalone)组网架构
天线314可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器310用于将天线314接收到的移动通信信号分成多路,分配给多个的接收器308。
发射器306可用于对终端处理器304输出的信号进行发射处理。接收器308可用于对天线314接收的移动通信信号进行接收处理。在本申请的一些实施例中,发射器306和接收器308可看作一个无线调制解调器。在终端300中,发射器306和接收器308的数量均可以是一个或者多个。
除了图8所示的发射器306和接收器308,终端300还可包括其他通信部件,例如GPS模块、蓝牙(Bluetooth)模块、无线高保真(Wireless Fidelity,Wi-Fi)模块等。不限于上述表述的无线通信信号,终端300还可以支持其他无线通信信号,例如卫星信号、短波信号等等。不限于无线通信,终端300还可以配置有有线网络接口(如LAN接口)来支持有线通信。
所述输入输出模块可用于实现终端300和用户/外部环境之间的交互,可主要包括音频输入输出模块318、按键输入模块316以及显示器320等。具体实现中,所述输入输出模块还可包括:摄像头、触摸屏以及传感器等等。其中,所述输入输出模块均通过用户接口302与终端处理器304进行通信。
存储器312与终端处理器304耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器312可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器312可以存储操作系统(下述简称系统),例如ANDROID,IOS,WINDOWS,或者LINUX等嵌入式操作系统。存储器312还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。存储器312还可以存储用户接口程序,该用户接口程序可以通过图形化的操作界面将应用程序的内容形象逼真的显示出来,并通过菜单、对话框以及按键等输入控件接收用户对应用程序的控制操作。
在本申请的一些实施例中,存储器312可用于存储本申请的一个或多个实施例提供的传输功率控制方法在终端300侧的实现程序。关于本申请的一个或多个实施例提供的传输功率控制方法的实现,请参考后续实施例。
终端处理器304可用于读取和执行计算机可读指令。具体的,终端处理器304可用于调用存储于存储器312中的程序,例如本申请的一个或多个实施例提供的传输功率控制方法在终端300侧的实现程序,并执行该程序包含的指令。
终端处理器304可以为调制解调器(Modem)处理器,是实现3GPP、ETSI等无线通信标准中主要功能的模块。Modem可以作为单独的芯片,也可以与其他芯片或电路在一起形成系统级芯片或集成电路。这些芯片或集成电路可应用于所有实现无线通信功能的设备,包括:手机、电脑、笔记本、平板、路由器、可穿戴设备、汽车、家电设备等。需要说明的是,在不同的实施方式中,终端处理器304处理器可以作为单独的芯片,与片外存储器耦合,即芯片内不包含存储器;或者终端处理器304处理器与片内存储器耦合并集成于芯片中,即芯片内包含存储器。
可以理解的,终端300可以是图1示出的无线通信系统100中的终端103,可实施为移动设备,移动台(mobile station),移动单元(mobile unit),无线单元,远程单元,用户代理,移动客户端等等。
需要说明的,图8所示的终端300仅仅是本申请的一种实现方式,实际应用中,终端300还可以包括更多或更少的部件,这里不作限制。
参考图9,图9示出了本申请的一些实施例提供的网络设备400。如图9所示,网络设备400可包括:通信接口403、一个或多个网络设备处理器401、发射器407、接收器409、耦合器411、天线413和存储器405。这些部件可通过总线或者其他方式连接,图9以通过总线连接为例。其中:
通信接口403可用于网络设备400与其他通信设备,例如终端设备或其他基站,进行通信。具体的,所述终端设备可以是图8所示的终端300。通信接口301是指网络设备处理器401与收发系统(由发射器407和接收器409构成)之间的接口,例如LTE中的S1接口。具体实现中,通信接口403可包括:全球移动通信系统(GSM)(2G)通信接口、宽带码分多址(WCDMA)(3G)通信接口,以及长期演进(LTE)(4G)通信接口等等中的一种或几种,也可以是4.5G、5G或者未来新空口的通信接口。不限于无线通信接口,网络设备400还可以配置有有线的通信接口403来支持有线通信,例如一个网络设备400与其他网络设备400之间的回程链接可以是有线通信连接。
天线413可用于将传输线中的电磁能转换成自由空间中的电磁波,或者将自由空间中的电磁波转换成传输线中的电磁能。耦合器411可用于将移动通信号分成多路,分配给多个的接收器409。
发射器407可用于对网络设备处理器401输出的信号进行发射处理。接收器409可用于对天线413接收的移动通信信号进行接收处理。在本申请的一些实施例中,发射器407和接收器409可看作一个无线调制解调器。在网络设备400中,发射器407和接收器409的数量均可以是一个或者多个。
存储器405与网络设备处理器401耦合,用于存储各种软件程序和/或多组指令。具体实现中,存储器405可包括高速随机存取的存储器,并且也可包括非易失性存储器,例如一个或多个磁盘存储设备、闪存设备或其他非易失性固态存储设备。存储器405可以存储操作系统(下述简称系统),例如uCOS、VxWorks、RTLinux等嵌入式操作系统。存储器405还可以存储网络通信程序,该网络通信程序可用于与一个或多个附加设备,一个或多个终端设备,一个或多个网络设备进行通信。
网络设备处理器401可用于进行无线信道管理、实施呼叫和通信链路的建立和拆除,并为本控制区内用户设备的过区切换进行控制等。具体实现中,网络设备处理器401可包括:管理/通信模块(Administration Module/Communication Module,AM/CM)(用于话路交换和信息交换的中心)、基本模块(Basic Module,BM)(用于完成呼叫处理、消息处理、无线资源管理、无线链路的管理和电路维护功能)、码变换及子复用单元(Transcoder andSubMultiplexer,TCSM)(用于完成复用解复用及码变换功能)等等。
本申请中,网络设备处理器401可用于读取和执行计算机可读指令。具体的,网络设备处理器401可用于调用存储于存储器405中的程序,例如本申请的一个或多个实施例提供的传输功率控制方法在网络设备400侧的实现程序,并执行该程序包含的指令。
网络设备处理器401可以为调制解调器(Modem)处理器,是实现3GPP、ETSI等无线通信标准中主要功能的模块。Modem可以作为单独的芯片,也可以与其他芯片或电路在一起形成系统级芯片或集成电路。这些芯片或集成电路可应用于所有实现无线通信功能的网络侧设备,例如,在LTE网络中,称为演进的节点B(evolved NodeB,eNB或eNodeB),在第三代(the 3rd Generation,3G)网络中,称为节点B(Node B)等,在5G网络中,称为5G基站(NRNodeB,gNB)。需要说明的是,在不同的实施方式中,网络设备处理器401可以作为单独的芯片,与片外存储器耦合,即芯片内不包含存储器;或者网络设备处理器401处理器与片内存储器耦合并集成于芯片中,即芯片内包含存储器。
可以理解的,网络设备400可以是图1示出的无线通信系统100中的网络设备101,可实施为基站收发台,无线收发器,一个基本服务集(BSS),一个扩展服务集(ESS),NodeB,eNodeB等等。网络设备400可以实施为几种不同类型的基站,例如宏基站、微基站等。网络设备400可以应用不同的无线技术,例如小区无线接入技术,或者WLAN无线接入技术。
需要说明的,图9所示的网络设备400仅仅是本申请的一种实现方式,实际应用中,网络设备400还可以包括更多或更少的部件,这里不作限制。
参见图10,图10示出了本申请的一个实施例提供的无线通信系统的结构示意图。如图10所示,无线通信系统10可包括:终端600、网络设备500。终端600、网络设备500可分别为图1所示的无线通信系统100中的终端103、网络设备101。
如图10所示,终端600可包括:处理单元601和通信单元603。其中:
通信单元603可用于接收网络设备500发送的第一信息。第一信息可指示第一上下行配置。
处理单元601可用于在第一上下行配置指示的部分或全部上行时间资源上进行上行传输。其中,上行传输的实际传输功率等于终端的最大传输功率减去实际功率降幅,符合电磁能量吸收规范。实际功率降幅由第一功率降幅和第一功率增幅计算得到,实际功率降幅小于第一功率降幅。
其中,第一功率增幅等于第一上下行配置下符合电磁能量吸收规范的最大传输功率,与,第二上下行配置下符合电磁能量吸收规范的最大传输功率,的差值;第一上下行配置所确定的第一上行时间占比小于第二上下行配置所确定的第二上行时间占比;第一功率降幅用于在第二上下行配置下,且终端与人体相距第一距离,将传输功率从终端的最大传输功率降低至符合电磁能量吸收规范的最大传输功率。
终端600还可包括:测距单元(未示出),可用于确定第一距离。该测距单元可以是近距离传感器、雷达测距传感器或红外线测距传感器等。测距单元还可以用于根据使用场景(use case)来确定终端与人体之间的距离。例如,当判断出用户在打电话时,此时终端的听筒开启,则终端可以确定用户与终端之间的距离在特定距离范围内,如0.1mm至1.0mm。
处理单元601还可用于根据测距单元确定的第一距离从第一映射表中查找出该距离对应的功率降幅。第一映射表中可包括多个候选距离以及这多个候选距离对应的功率降幅(简称delta1)。第一映射表可以根据图2所示的现有技术中的步骤1得到。
处理单元601还可用于根据第一上下行配置确定第一上行时间占比,并可以根据第一上行时间占比,从第二映射表中查找出第一上行时间占比对应的功率增幅(即少降的功率,delta 2)。第二映射表可包括多个候选上行时间占比以及这多个候选上行时间占比对应的功率增幅(简称delta2)。一个上行时间占比对应的功率增幅表示该上行时间占比相比全上行配置少降的功率。
在一些实施例中,第一信息可以携带于系统消息(如SIB 1)中,还可以携带于高层消息(如RRC消息中),也还可以携带于PDCCH(如DCI消息)中。
在一些实施例中,通信单元603还可用于在接收第一信息之前,接收网络设备发送的UL grant,UL grant可携带于DCI消息中,并可以在第一上下行配置指示的上行时间资源中根据UL grant进一步确定上行数据承载于哪一部分上行时间资源。
在一些实施例中,通信单元603还可用于向网络设备发送能力上报消息,该能力上报消息可以携带第二信息(如maxUplinkDutyCycle-PC2-FR1IE)。第二信息可指示终端能够被调度的上行时间在SAR评估周期(如6分钟)内的最大比例。该最大比例可以大于第一值(如90%),例如最大比例可以设置为100%。这样,ULgrant配置给终端的上行时间资源,在第一上下行配置指示的上行时间资源内,所占的比例能够超出第二值(如100%)。也即是说,如果终端能力上报中的该最大比例很大,如100%,那么,网络设备下发的ULgrant配置的上行时间资源在第一上下行配比指示的上行时间资源内的占比就可以很高,如100%,有利于终端被配置更多上行时间资源,有利于终端上行传输更多数据。
终端600包括的各个功能单元的具体实现还可参考前述方法实施例,这里不再赘述。
如图10所示,网络设备500可包括:处理单元503和通信单元501。其中:
通信单元501可用于向终端600发送第一信息。
通信单元501还可用于在第一上下行配置指示的部分或全部上行时间资源上接收终端600传输的上行信号。
其中,终端传输上行信号的实际传输功率等于终端的最大传输功率减去实际功率降幅,符合电磁能量吸收规范。实际功率降幅由第一功率降幅和第一功率增幅计算得到,实际功率降幅小于第一功率降幅。第一功率增幅等于第一上下行配置下符合电磁能量吸收规范的最大传输功率,与,第二上下行配置下符合电磁能量吸收规范的最大传输功率,的差值;第一上下行配置所确定的第一上行时间占比小于第二上下行配置所确定的第二上行时间占比;第一功率降幅用于在第二上下行配置下,且终端与人体相距第一距离,将传输功率从终端的最大传输功率降低至符合电磁能量吸收规范的最大传输功率。
在一些实施例中,通信单元501还可用于在发送第一信息之前,向终端600发送ULgrant。UL grant可以进一步指示上行信号承载于第一上下行配置指示的上行时间资源中的哪一部分。UL grant可携带于DCI消息中。
在一些实施例中,通信单元501还可用于向接收终端600发送能力上报消息,该能力上报消息可以携带第二信息(如maxUplinkDutyCycle-PC2-FR1IE)。第二信息可指示终端能够被调度的上行时间在SAR评估周期(如6分钟)内的最大比例。该最大比例可以大于第一值(如90%),例如最大比例可以设置为100%。这样,ULgrant配置给终端的上行时间资源,在第一上下行配置指示的上行时间资源内,所占的比例能够超出第二值(如100%)。也即是说,如果终端能力上报中的该最大比例很大,如100%,那么,网络设备下发的ULgrant配置的上行时间资源在第一上下行配比指示的上行时间资源内的占比就可以很高,如100%,有利于终端被配置更多上行时间资源,有利于终端上行传输更多数据。
网络设备500包括的各个功能单元的具体实现还可参考前述方法实施例,这里不再赘述。
在终端600、网络设备500中,处理单元可以是处理器或控制器。其可以实现或执行结合本申请公开内容所描述的各种示例性的逻辑方框,单元和电路。处理器也可以是实现计算功能的组合,例如包含一个或多个微处理器组合,数字信号处理(digital signalprocessing,DSP)和微处理器的组合等等。存储单元可以是存储器。通信单元具体可以为射频电路、蓝牙芯片、Wi-Fi芯片等与其他电子设备交互的设备。
参见图11,图11示出了本申请提供的一种装置的结构示意图。如图11所示,装置50可包括:处理器501,以及耦合于处理器501的一个或多个接口502。其中:
处理器501可用于读取和执行计算机可读指令。具体实现中,处理器501可主要包括控制器、运算器和寄存器。其中,控制器主要负责指令译码,并为指令对应的操作发出控制信号。运算器主要负责执行定点或浮点算数运算操作、移位操作以及逻辑操作等,也可以执行地址运算和转换。寄存器主要负责保存指令执行过程中临时存放的寄存器操作数和中间操作结果等。具体实现中,处理器501的硬件架构可以是专用集成电路(ApplicationSpecific IntegratedCircuits,ASIC)架构、MIPS架构、ARM架构或者NP架构等等。处理器501可以是单核的,也可以是多核的。
接口502可用于输入待处理的数据至处理器501,并且可以向外输出处理器501的处理结果。具体实现中,接口502可以是通用输入输出(GeneralPurposeInputOutput,GPIO)接口,可以和多个外围设备(如射频模块等等)连接。接口502还可以包括多个独立的接口,例如以太网接口、移动通信接口(如X1接口)等,分别负责不同外围设备和处理器501之间的通信。
本申请中,处理器501可用于从存储器中调用本申请的一个或多个实施例提供的传输功率控制方法在网络设备侧或终端侧的实现程序,并执行该程序包含的指令。接口502可用于输出处理器501的执行结果。本申请中,接口503可具体用于输出处理器501的处理结果。关于本申请的一个或多个实施例提供的传输功率控制方法可参考前述各个实施例,这里不再赘述。
具体的,当装置50实现为本申请中的终端时,接口503可用于将接收器接收到的第一信息(指示第一上下行配置)输入到处理器501,处理器501可用于确定该上下行配置相对于全上行配置能够减少的功率降幅,进而确定实际功率降幅。
具体的,当装置50实现为本申请的中的网络设备时,处理器501可用于确定第一上下行配置,并生成第一信息。接口503可以输出第一信息(指示第一上下行配置)到发射器,发射器可用于发射第一信息(指示第一上下行配置)。
关于第一上下行配置的配置方式、实际功率降幅的确定方式可以参考前述实施例,这里不再赘述。
需要说明的,处理器501、接口502各自对应的功能既可以通过硬件设计实现,也可以通过软件设计来实现,还可以通过软硬件结合的方式来实现,这里不作限制。
在上述实施例中,可以全部或部分的通过软件,硬件,固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式出现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。
所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘,硬盘、磁带)、光介质(例如,DVD)或者半导体介质(例如固态硬盘SolidStateDisk(SSD))等。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个可读取存储介质中。基于这样的理解,本申请实施例的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该软件产品存储在一个存储介质中,包括若干指令用以使得一个设备(可以是单片机,芯片等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-OnlyMemory,ROM)、随机存取存储器(RandomAccessMemory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。
Claims (11)
1.一种传输功率控制方法,其特征在于,包括:
终端确定所述终端与人体之间的第一距离;
所述终端根据 所述第一距离从第一映射表中查找出所述第一距离对应的第一功率降幅,所述第一映射表包括多个候选距离各自对应的功率降幅,所述多个候选距离包括所述第一距离;
所述终端接收网络设备发送的第一信息,所述第一信息指示周期性配置的第一上下行配置;
所述终端在所述第一上下行配置指示的部分或全部上行时间资源上进行上行传输;所述上行传输的实际传输功率等于所述终端的最大传输功率减去实际功率降幅,符合电磁能量吸收规范;所述实际功率降幅由第一功率降幅和第一功率增幅计算得到,所述实际功率降幅小于所述第一功率降幅;
其中,所述第一功率增幅等于所述第一上下行配置下符合电磁能量吸收规范的最大传输功率,与,第二上下行配置下符合电磁能量吸收规范的最大传输功率,的差值;所述第一上下行配置所确定的第一上行时间占比小于所述第二上下行配置所确定的第二上行时间占比;所述第一功率降幅用于在所述第二上下行配置下,且所述终端与人体相距所述第一距离,将传输功率从所述终端的最大传输功率降低至符合电磁能量吸收规范的最大传输功率;所述第二上下行配置指示的上行时间占比高于所述第一上下行配置指示的上行时间占比;所述第一映射表基于所述第二上下行配置生成。
2.如权利要求1所述的方法,其特征在于,所述第二上行时间占比为100%。
3.如权利要求2所述的方法,其特征在于,所述第一功率降幅等于所述终端的最大传输功率和第一测量功率的差值,所述第一测量功率为所述终端与所述人体相距所述第一距离时进行连续上行传输测量到的符合电磁能量吸收规范的最大传输功率。
4.如权利要求1-3中任一项所述的方法,其特征在于,还包括:所述终端根据所述第一上行时间占比,从第二映射表中查找出所述第一功率增幅,所述第二映射表包括多个候选上行时间占比各自对应的功率增幅,所述多个候选上行时间占比包括所述第一上行时间占比。
5.如权利要求1-4中任一项所述的方法,其特征在于,还包括:所述终端确定出所述第一距离。
6.如权利要求1-5中任一项所述的方法,其特征在于,所述实际功率降幅等于所述第一功率降幅减去所述第一功率增幅。
7.如权利要求1-6中任一项所述的方法,其特征在于,所述第一信息携带在以下一项或多项中:系统信息块SIB、无线资源控制RRC消息、下行控制信息DCI消息。
8.如权利要求1-7中任一项所述的方法,其特征在于,还包括:所述终端向所述网络设备发送能力上报消息,所述能力上报消息中携带第二信息,所述第二信息指示能够被调度的上行时间在电磁能量吸收规范的评估周期内的最大比例;所述最大比例大于第一值。
9.如权利要求8所述的方法,其特征在于,还包括:所述终端接收所述网络设备发送的上行授权;所述上行授权配置的上行时间资源,在所述第一上下行配置指示的上行时间资源内,所占的比例大于第二值。
10.一种终端,其特征在于,包括:发射器和接收器,存储器以及耦合于所述存储器的处理器,所述存储器用于存储可由所述处理器执行的指令,所述处理器用于调用所述存储器中的所述指令,执行权利要求1-9中任一项所述的方法。
11.一种计算机可读存储介质,其特征在于,包括:所述计算机可读存储介质上存储有指令,当所述指令在计算机上运行时,所述计算机执行权利要求1-9中任一项所述的方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110188496.XA CN112996091B (zh) | 2019-05-03 | 2019-05-03 | 传输功率控制方法、相关设备及系统 |
CN201910375078.4A CN110225575B (zh) | 2019-05-03 | 2019-05-03 | 传输功率控制方法、相关设备及系统 |
EP20802588.2A EP3955653A4 (en) | 2019-05-03 | 2020-04-24 | TRANSMISSION POWER CONTROL METHOD, DEVICE AND SYSTEM |
PCT/CN2020/086672 WO2020224451A1 (zh) | 2019-05-03 | 2020-04-24 | 传输功率控制方法、相关设备及系统 |
US17/608,341 US12089164B2 (en) | 2019-05-03 | 2020-04-24 | Transmit power control method based on an uplink-downlink configuration, related device, and system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910375078.4A CN110225575B (zh) | 2019-05-03 | 2019-05-03 | 传输功率控制方法、相关设备及系统 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110188496.XA Division CN112996091B (zh) | 2019-05-03 | 2019-05-03 | 传输功率控制方法、相关设备及系统 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110225575A CN110225575A (zh) | 2019-09-10 |
CN110225575B true CN110225575B (zh) | 2021-02-23 |
Family
ID=67820574
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110188496.XA Active CN112996091B (zh) | 2019-05-03 | 2019-05-03 | 传输功率控制方法、相关设备及系统 |
CN201910375078.4A Active CN110225575B (zh) | 2019-05-03 | 2019-05-03 | 传输功率控制方法、相关设备及系统 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202110188496.XA Active CN112996091B (zh) | 2019-05-03 | 2019-05-03 | 传输功率控制方法、相关设备及系统 |
Country Status (4)
Country | Link |
---|---|
US (1) | US12089164B2 (zh) |
EP (1) | EP3955653A4 (zh) |
CN (2) | CN112996091B (zh) |
WO (1) | WO2020224451A1 (zh) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112996091B (zh) | 2019-05-03 | 2022-07-22 | 华为技术有限公司 | 传输功率控制方法、相关设备及系统 |
CN112867123B (zh) * | 2019-11-08 | 2023-11-17 | 荣耀终端有限公司 | 一种通信方法和装置 |
CN114902750A (zh) * | 2020-01-07 | 2022-08-12 | Oppo广东移动通信有限公司 | 发射功率调整的方法、装置、终端、基站及存储介质 |
CN113099542B (zh) * | 2020-01-09 | 2023-04-07 | 维沃移动通信有限公司 | 参数上报方法及上行调度方法、设备及介质 |
CN113163435B (zh) * | 2020-01-22 | 2022-11-22 | 华为技术有限公司 | 确定回退功率的方法和调整发射功率的方法 |
WO2021164007A1 (en) * | 2020-02-21 | 2021-08-26 | Qualcomm Incorporated | Power rebalancing in a maximum permissible exposure event |
US20230065671A1 (en) * | 2020-02-25 | 2023-03-02 | Qualcomm Incorporated | Transmit power prioritization in inter-band carrier aggregation |
WO2021168642A1 (en) * | 2020-02-25 | 2021-09-02 | Qualcomm Incorporated | Techniques for detecting maximum permissible exposure (mpe) events in wireless communications |
WO2021168655A1 (en) * | 2020-02-25 | 2021-09-02 | Qualcomm Incorporated | Techniques for modifying uplink communications to avoid maximum permissible exposure (mpe) in wireless communications |
CN113316240B (zh) * | 2020-02-27 | 2022-07-15 | 大唐移动通信设备有限公司 | 一种nsa中终端设备功率调整方法及装置 |
CN113358020A (zh) * | 2020-03-05 | 2021-09-07 | 青岛海尔工业智能研究院有限公司 | 一种机器视觉检测系统及方法 |
EP4115660A4 (en) * | 2020-03-06 | 2023-11-22 | Qualcomm Incorporated | INFORMATION REPORT ON MAXIMUM ALLOWABLE EXPOSURE |
CN113453264B (zh) * | 2020-03-24 | 2022-11-18 | 维沃移动通信有限公司 | 检测终端发射行为的方法及网络设备 |
CN113573415A (zh) * | 2020-04-29 | 2021-10-29 | 中国移动通信有限公司研究院 | 发送参数的上报方法、更新方法、终端及网络侧设备 |
CN113824455B (zh) * | 2020-06-18 | 2023-04-07 | 华为技术有限公司 | 一种控制天线输出功率的方法、介质及设备 |
CN114071685A (zh) * | 2020-07-29 | 2022-02-18 | 中国移动通信有限公司研究院 | 数据调度方法及装置 |
US20220295422A1 (en) * | 2021-03-09 | 2022-09-15 | Qualcomm Incorporated | Techniques for power control for dual subscribers |
CN115623571A (zh) * | 2021-07-13 | 2023-01-17 | 维沃移动通信有限公司 | 能力上报方法、装置、终端及网络侧设备 |
WO2023245642A1 (zh) * | 2022-06-24 | 2023-12-28 | Oppo广东移动通信有限公司 | 无线通信方法、终端设备以及网络设备 |
WO2024138699A1 (zh) * | 2022-12-30 | 2024-07-04 | 北京小米移动软件有限公司 | 一种终端能力上报方法、装置、设备及存储介质 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103329602A (zh) * | 2011-01-11 | 2013-09-25 | 三星电子株式会社 | 用于移动通信系统的上行链路传输功率配置方法和装置 |
CN107231682A (zh) * | 2017-05-25 | 2017-10-03 | 北京小米移动软件有限公司 | 降低终端sar的处理方法、装置及终端 |
CN108601073A (zh) * | 2018-07-09 | 2018-09-28 | 深圳市万普拉斯科技有限公司 | 降低sar的方法、移动终端及计算机可读存储介质 |
CN108702709A (zh) * | 2018-05-31 | 2018-10-23 | 北京小米移动软件有限公司 | 控制上行发射功率的方法和装置、基站及用户设备 |
CN109155976A (zh) * | 2016-05-13 | 2019-01-04 | 高通股份有限公司 | 管理用户设备的比吸收率 |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201780605U (zh) * | 2009-04-22 | 2011-03-30 | 万信电子科技有限公司 | 服装试穿系统 |
US8358615B2 (en) * | 2010-03-11 | 2013-01-22 | Research In Motion Limited | Modulation and coding scheme selection method for a specific absorption rate compliant communication device |
KR101309854B1 (ko) * | 2010-09-21 | 2013-09-23 | 브로드콤 코포레이션 | 특정 흡수율을 위한 전송 전력 관리 |
TWI470955B (zh) | 2011-05-20 | 2015-01-21 | Wistron Corp | 行動裝置、調整無線電發射功率之方法及電腦程式產品 |
CN104378460A (zh) * | 2013-08-16 | 2015-02-25 | 中兴通讯股份有限公司 | 无线装置及其降低电磁波能量吸收比的方法 |
CN104581896A (zh) * | 2013-10-15 | 2015-04-29 | 中兴通讯股份有限公司 | 一种终端发射功率的调整方法、装置和终端 |
CN107528957A (zh) * | 2016-06-21 | 2017-12-29 | 江苏省产品质量监督检验研究院 | 一种测试td‑lte手机比吸收率的方法 |
CN112996091B (zh) * | 2019-05-03 | 2022-07-22 | 华为技术有限公司 | 传输功率控制方法、相关设备及系统 |
-
2019
- 2019-05-03 CN CN202110188496.XA patent/CN112996091B/zh active Active
- 2019-05-03 CN CN201910375078.4A patent/CN110225575B/zh active Active
-
2020
- 2020-04-24 US US17/608,341 patent/US12089164B2/en active Active
- 2020-04-24 WO PCT/CN2020/086672 patent/WO2020224451A1/zh unknown
- 2020-04-24 EP EP20802588.2A patent/EP3955653A4/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103329602A (zh) * | 2011-01-11 | 2013-09-25 | 三星电子株式会社 | 用于移动通信系统的上行链路传输功率配置方法和装置 |
CN109155976A (zh) * | 2016-05-13 | 2019-01-04 | 高通股份有限公司 | 管理用户设备的比吸收率 |
CN107231682A (zh) * | 2017-05-25 | 2017-10-03 | 北京小米移动软件有限公司 | 降低终端sar的处理方法、装置及终端 |
CN108702709A (zh) * | 2018-05-31 | 2018-10-23 | 北京小米移动软件有限公司 | 控制上行发射功率的方法和装置、基站及用户设备 |
CN108601073A (zh) * | 2018-07-09 | 2018-09-28 | 深圳市万普拉斯科技有限公司 | 降低sar的方法、移动终端及计算机可读存储介质 |
Non-Patent Citations (1)
Title |
---|
《Discussion on the FR2 duty cycle capability default value》;OPPO;《3GPP TSG-RAN WG4 Meeting #90bis R4-1903047》;20190401;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN110225575A (zh) | 2019-09-10 |
CN112996091A (zh) | 2021-06-18 |
WO2020224451A1 (zh) | 2020-11-12 |
US12089164B2 (en) | 2024-09-10 |
CN112996091B (zh) | 2022-07-22 |
EP3955653A1 (en) | 2022-02-16 |
US20220264470A1 (en) | 2022-08-18 |
EP3955653A4 (en) | 2022-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110225575B (zh) | 传输功率控制方法、相关设备及系统 | |
US11303343B2 (en) | Method, terminal device, and network device for beam failure management and beam recovery | |
CN111656852B (zh) | 用于5g网络中的回程的方法和装置 | |
JP2021153303A (ja) | 時間周波数リソースの伝送方向を構成するための方法、および装置 | |
US20200137703A1 (en) | Synchronization method and apparatus | |
WO2021007759A1 (zh) | 控制信道的传输方法、装置及存储介质 | |
CN113225846A (zh) | 一种通信方法及装置 | |
US11006447B2 (en) | Random access for NR | |
EP4192150A1 (en) | Channel transmission method, terminal device, and network device | |
WO2022022517A1 (zh) | 确定传输功率的方法及装置 | |
EP4040889A1 (en) | Resource configuration method and apparatus | |
WO2022022306A1 (zh) | 一种通信方法及装置 | |
CN111670602B (zh) | 一种数据传输方法及相关设备 | |
CN113993142A (zh) | 通信方法及装置 | |
CN113498136B (zh) | 测量方法及装置 | |
JP7541013B2 (ja) | 信号送信方法、及び装置 | |
CN116636278A (zh) | 信号处理方法、装置、设备及存储介质 | |
EP4429312A1 (en) | Communication method and apparatus | |
US20240365309A1 (en) | Method, device and computer readable medium for communication | |
JP2024526309A (ja) | 端末装置及びネットワーク装置 | |
WO2024175228A1 (en) | Method to measure and signal in-device co-existence | |
CN117956585A (zh) | 传输功率确定方法、装置及存储介质 | |
CN117751654A (zh) | 无线通信的方法、终端设备和网络设备 | |
CN118891903A (zh) | 无线通信的方法、终端设备及网络设备 | |
CN117397319A (zh) | 无线通信的方法、终端设备和网络设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |