CN110196417A - The bistatic MIMO radar angle estimating method concentrated based on emitted energy - Google Patents
The bistatic MIMO radar angle estimating method concentrated based on emitted energy Download PDFInfo
- Publication number
- CN110196417A CN110196417A CN201910544141.2A CN201910544141A CN110196417A CN 110196417 A CN110196417 A CN 110196417A CN 201910544141 A CN201910544141 A CN 201910544141A CN 110196417 A CN110196417 A CN 110196417A
- Authority
- CN
- China
- Prior art keywords
- matrix
- angle
- target
- pulse
- signal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 33
- 239000011159 matrix material Substances 0.000 claims abstract description 198
- 239000013598 vector Substances 0.000 claims abstract description 38
- 230000005540 biological transmission Effects 0.000 claims abstract description 25
- 238000001914 filtration Methods 0.000 claims abstract description 24
- 238000005457 optimization Methods 0.000 claims abstract description 17
- 238000013507 mapping Methods 0.000 claims abstract description 16
- 238000005259 measurement Methods 0.000 claims abstract description 11
- 238000005070 sampling Methods 0.000 claims description 14
- 238000003491 array Methods 0.000 claims description 10
- 238000000354 decomposition reaction Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 6
- 238000012545 processing Methods 0.000 claims description 6
- 230000001427 coherent effect Effects 0.000 claims description 5
- 230000000295 complement effect Effects 0.000 claims description 3
- 238000013139 quantization Methods 0.000 claims description 2
- 238000004364 calculation method Methods 0.000 claims 1
- 238000001514 detection method Methods 0.000 abstract 1
- 230000000875 corresponding effect Effects 0.000 description 13
- 238000000691 measurement method Methods 0.000 description 8
- 238000004088 simulation Methods 0.000 description 8
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本发明公开了基于发射能量集中的双基地MIMO雷达角度估计方法,其实现为:在已知目标相对于发射阵列角度区域的情况下,通过求解凸优化问题设计发射波束域矩阵并对其缩放;定义基于发射波束域矩阵的发射波形,以得到接收回波模型;对接收回波模型进行匹配滤波,并将滤波后的数据转换为列矢量构造新的回波模型;对新构造的回波模型求解其自相关矩阵,并对自相关矩阵进行特征值分解得到包含波离角和波达角信息的信号子空间;根据信号子空间得到目标波离角与波达角的估计值;建立映射关系以补偿在求解凸优化问题过程中的波离角差值误差,得到目标波离角的最优估计值。本发明解决了现有技术发射能量不集中的问题,提高了测角精度,可用于目标探测。
The invention discloses a bistatic MIMO radar angle estimation method based on transmission energy concentration, which is realized as follows: in the case of a known target relative to the transmission array angle region, the transmission beam domain matrix is designed and scaled by solving a convex optimization problem; Define the transmit waveform based on the transmit beam domain matrix to obtain the received echo model; perform matched filtering on the echo model, and convert the filtered data into column vectors to construct a new echo model; solve the newly constructed echo model Its autocorrelation matrix, and decompose the eigenvalues of the autocorrelation matrix to obtain the signal subspace containing the wave departure angle and arrival angle information; obtain the estimated value of the target wave departure angle and arrival angle according to the signal subspace; establish a mapping relationship to Compensate the wave departure angle difference error in the process of solving the convex optimization problem, and obtain the optimal estimation value of the target wave departure angle. The invention solves the problem that the transmission energy is not concentrated in the prior art, improves the angle measurement accuracy, and can be used for target detection.
Description
技术领域technical field
本发明属于雷达技术领域,更进一步涉及双基地MIMO雷达角度估计方法,可用于改善传统双基地MIMO雷达在测角过程中各个方向的发射增益都比较均匀而造成的能量损失问题。The invention belongs to the technical field of radar, and further relates to a bistatic MIMO radar angle estimation method, which can be used to improve the problem of energy loss caused by uniform transmission gains in all directions of the traditional bistatic MIMO radar in the angle measurement process.
背景技术Background technique
与传统的相控阵雷达相比,MIMO雷达近年来引起了广泛的关注,MIMO雷达是在常规相控阵雷达的基础上要求发射天线发射不完全相关的波形,当发射正交波形时就可以使得信号在空域的覆盖范围更广泛,在信号处理时,就可以同时形成多波束来覆盖空域范围。Compared with the traditional phased array radar, MIMO radar has attracted extensive attention in recent years. MIMO radar is based on the conventional phased array radar and requires the transmitting antenna to transmit incompletely correlated waveforms. When transmitting orthogonal waveforms, it can be used. The coverage of the signal in the airspace is wider, and during signal processing, multiple beams can be formed to cover the airspace at the same time.
在双基地MIMO雷达中,波离角DOD指的是雷达发射信号方向与发射天线法线的夹角,波达角DOA指的是目标回波方向与接收天线法线的夹角。波离角和波达角的角度测量是双基地MIMO雷达的一个重要研究领域。双基地MIMO雷达波离角和波达角的测角方法现阶段主要是基于子空间类的算法,基于子空间类的算法中常用的是ESPRIT算法和MUSIC算法。相比于MUSIC算法,ESPRIT算法通过两个特性完全相同的子阵,利用旋转不变技术,避免了MUSIC算法的谱峰搜索,具有更好的稳健性。In a bistatic MIMO radar, the wave departure angle DOD refers to the angle between the direction of the radar's transmitted signal and the normal of the transmitting antenna, and the angle of arrival DOA refers to the angle between the direction of the target echo and the normal to the receiving antenna. The angle measurement of wave departure and arrival angles is an important research area for bistatic MIMO radars. At present, the angle measurement methods of bistatic MIMO radar wave departure angle and arrival angle are mainly based on subspace class algorithms, and ESPRIT algorithm and MUSIC algorithm are commonly used in subspace class algorithms. Compared with the MUSIC algorithm, the ESPRIT algorithm uses the rotation-invariant technology to avoid the spectral peak search of the MUSIC algorithm through two sub-arrays with identical characteristics, and has better robustness.
在文献“Angle estimation using ESPRIT in MIMO radar”中提出了基于ESPRIT算法的双基地MIMO雷达角度估计方法,上述文献中该ESPRIT算法采用波形分集技术,即其发射波形是完全正交的,通过对目标回波数据求解自相关矩阵并进行特征值分解,从而得到包含目标波离角和波达角信息的信号子空间;然而,由于采用完全正交的发射波形,导致各个方向的发射增益都比较均匀,在已知目标相对于发射阵列的角度区域的情况下,实际上降低了发射的相干增益并导致了测角性能的降低,这是传统双基地MIMO雷达测角的一个显著缺点。In the document "Angle estimation using ESPRIT in MIMO radar", a bistatic MIMO radar angle estimation method based on ESPRIT algorithm is proposed. In the above document, the ESPRIT algorithm adopts waveform diversity technology, that is, its transmit waveform is completely orthogonal. The echo data solves the autocorrelation matrix and performs eigenvalue decomposition to obtain the signal subspace containing the information of the departure angle and the arrival angle of the target wave; however, due to the use of completely orthogonal transmit waveforms, the transmit gain in all directions is relatively uniform , where the angular region of the target relative to the transmit array is known, it actually reduces the coherence gain of the transmit and results in degraded goniometric performance, which is a significant disadvantage of traditional bistatic MIMO radar goniometric.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对上述现有技术存在的不足,提出一种基于发射能量集中的双基地MIMO雷达角度估计方法,以提高目标波离角和波达角的测角精度。The purpose of the present invention is to propose a bistatic MIMO radar angle estimation method based on the concentration of transmission energy to improve the angle measurement accuracy of the departure angle and the arrival angle of the target wave.
本发明的技术方案是,在已知目标相对于发射阵列的角度区域的情况下,通过求解凸优化问题设计发射波束域矩阵并对其缩放,定义基于发射波束域矩阵的发射波形,再利用发射波形得到接收回波模型,通过对接收回波模型进行匹配滤波,并将滤波后的数据转换为列矢量构造新的回波模型,对新构造的回波模型求解自相关矩阵,并对自相关矩阵进行特征值分解得到包含波离角和波达角信息的信号子空间,根据获得的信号子空间得到目标波离角与波达角的估计值,最后建立映射关系对在求解凸优化问题过程中造成的波离角的差值误差进行误差补偿,从而得到目标波离角的最优估计值。其实现步骤包括如下:The technical solution of the present invention is that, when the angular area of the target relative to the transmitting array is known, the transmit beam domain matrix is designed and scaled by solving a convex optimization problem, the transmit waveform based on the transmit beam domain matrix is defined, and then the transmit beam domain matrix is used. The received echo model is obtained from the waveform, matched filtering is performed on the echo model, and the filtered data is converted into a column vector to construct a new echo model, the autocorrelation matrix is solved for the newly constructed echo model, and the autocorrelation matrix is Perform eigenvalue decomposition to obtain the signal subspace containing the wave departure angle and arrival angle information, and obtain the estimated value of the target wave departure angle and arrival angle according to the obtained signal subspace, and finally establish a mapping relationship. In the process of solving the convex optimization problem The difference error of the wave departure angle caused by the error is compensated, so as to obtain the optimal estimation value of the target wave departure angle. Its implementation steps include the following:
(1)设置双基地MIMO雷达的发射阵元数为M,接收阵元数为N,双基地MIMO雷达总的发射能量为E,发射波束域空间维度为L,雷达一个相干处理间隔CPI内总的回波脉冲数为Q,在目标空域中有G个目标;(1) Set the number of transmitting array elements of the bistatic MIMO radar to M, the number of receiving array elements to be N, the total transmit energy of the bistatic MIMO radar to be E, the spatial dimension of the transmit beam domain to be L, and the total amount of the radar in a coherent processing interval CPI. The number of echo pulses is Q, and there are G targets in the target airspace;
(2)根据目标相对于发射阵列的角度区域,利用凸优化方法设计发射波束域矩阵W,并对W进行放缩,使其满足tr(W*WT)=L,得到缩放后的发射波束域矩阵W',其中,[·]*表示矩阵的共轭,[·]T表示矩阵的转置,tr(·)表示矩阵的迹;(2) According to the angular area of the target relative to the transmit array, the transmit beam domain matrix W is designed using the convex optimization method, and W is scaled to satisfy tr(W * W T )=L, and the scaled transmit beam is obtained Domain matrix W', where [ ] * represents the conjugate of the matrix, [ ] T represents the transpose of the matrix, and tr( ) represents the trace of the matrix;
(3)根据基于发射波束域的发射波形计算得到第q个接收脉冲的回波信号矩阵Xq,再对Xq从1到Q依次取q值,得到回波信号矩阵X=[X1,X2,…,Xq,...,XQ],(3) According to the transmit waveform based on transmit beam domain Calculate the echo signal matrix X q of the qth received pulse, and then take the q value for X q from 1 to Q, and obtain the echo signal matrix X=[X 1 , X 2 ,...,X q ,... ,X Q ],
其中,[·]*表示矩阵的共轭,表示双基地MIMO雷达发射阵列发射的L个相互正交的波形,且SSH=IL,IL表示L×L的单位矩阵,t=1,2,...,T,T表示每个脉冲周期的采样数,表示发射波形S中第m个阵元发射的波形,q=1,…,Q表示脉冲编号;where [ ] * denotes the conjugate of the matrix, Represents L mutually orthogonal waveforms transmitted by the bistatic MIMO radar transmitting array, and SSH = IL , IL represents the L×L identity matrix, t=1,2,...,T,T represents each the number of samples in the pulse period, represents the waveform transmitted by the mth array element in the transmit waveform S, q=1,...,Q represents the pulse number;
(4)对第q个接收脉冲的回波信号Xq进行匹配滤波,并将匹配滤波后的数据矩阵Yq转化为列矢量yq,进而构建新的回波信号矩阵Y;(4) matched filtering is performed on the echo signal X q of the qth received pulse, and the matched filtered data matrix Y q is converted into a column vector y q , and then a new echo signal matrix Y is constructed;
(5)计算新构造的回波信号矩阵Y的自相关矩阵R,并对该自相关矩阵R进行特征值分解,确定信号子空间Es;(5) calculate the autocorrelation matrix R of the newly constructed echo signal matrix Y, and carry out eigenvalue decomposition to the autocorrelation matrix R to determine the signal subspace E s ;
(6)根据信号子空间Es,计算得到目标波离角估计值和波达角估计值其中,k=1,...,G,表示目标编号;(6) According to the signal subspace E s , calculate the estimated value of the departure angle of the target wave and the estimated angle of arrival Among them, k=1,...,G, represents the target number;
(7)建立无噪声的回波信号矩阵模型:(7) Establish a noise-free echo signal matrix model:
其中A为发射导向矩阵,B为接收导向矩阵,C为反射系数矩阵,[·]H表示矩阵的共轭转置,⊙表示Khatri-Rao积;where A is the transmit steering matrix, B is the receive steering matrix, C is the reflection coefficient matrix, [ ] H represents the conjugate transpose of the matrix, and ⊙ represents the Khatri-Rao product;
(8)根据(7)中的无噪声的回波矩阵模型,当发射天线和接收天线的阵列结构为半波长等间隔均匀线阵ULA时,可得到以下映射关系:(8) According to the noise-free echo matrix model in (7), when the array structure of the transmitting antenna and the receiving antenna is a half-wavelength uniformly spaced linear array ULA, the following mapping relationship can be obtained:
其中Jt,1=[IL-1,0],Jt,2=[0,IL-1],IL-1为L-1阶单位阵,θi表示目标相对于发射阵列的角度区域内第i个采样点的角度值,a(θi)为目标空域的发射导向矢量,表示目标相对于发射阵列的角度区域内第i个采样点的映射角度值,与θi一一对应,i=1,...,I,I为目标相对于发射阵列的角度区域内的采样点数;where J t,1 =[I L-1 ,0], J t,2 =[0,I L-1 ], I L-1 is the L-1 order unit matrix, θ i represents the target relative to the transmitting array The angle value of the ith sampling point in the angle area, a(θ i ) is the launch steering vector of the target airspace, represents the mapping angle value of the ith sampling point in the angular region of the target relative to the emission array, One-to-one correspondence with θ i , i=1,...,I, where I is the number of sampling points in the angular region of the target relative to the transmitting array;
(9)根据(8)中得到的映射关系,计算出(7)中信号模型所对应的波离角 (9) According to the mapping relationship obtained in (8), calculate the wave departure angle corresponding to the signal model in (7)
(10)在无噪声信号模型所对应的波离角中找到与每个目标的波离角估计值最接近的波离角再通过(8)中映射关系找到所对应的θi,并将其作为所对应目标波离角的最优估计值。(10) The wave departure angle corresponding to the noise-free signal model Find the wave departure angle estimate from each target in The closest wave departure angle Then find the corresponding θ i through the mapping relationship in (8), and use it as the optimal estimation value of the corresponding target wave departure angle.
本发明与现有技术相比具有如下的优点:Compared with the prior art, the present invention has the following advantages:
第一,本发明利用凸优化方法设计MIMO雷达的发射波束域矩阵,使得MIMO雷达的发射能量集中于目标所位于的空间扇区,减少了发射能量的损失。First, the present invention uses the convex optimization method to design the transmit beam domain matrix of the MIMO radar, so that the transmit energy of the MIMO radar is concentrated in the space sector where the target is located, thereby reducing the loss of transmit energy.
第二,本发明与传统MIMO雷达的ESPRIT测角方法相比,由于发射阵列在目标所位于空间扇区的角度区域的发射能量高,使目标回波信号信噪比增强,提高了波离角和波达角的测角精度。Second, compared with the ESPRIT angle measurement method of the traditional MIMO radar, the present invention enhances the signal-to-noise ratio of the target echo signal and improves the wave departure angle due to the high transmission energy of the transmitting array in the angular region of the space sector where the target is located. and the angular accuracy of the angle of arrival.
第三,本发明通过建立映射关系对目标波离角估计值进行误差补偿,减小了在利用凸优化方法求解发射波束域矩阵时造成的波离角误差。Third, the present invention performs error compensation on the estimated value of the target wave off-angle by establishing a mapping relationship, thereby reducing the wave off-angle error caused by using the convex optimization method to solve the transmit beam domain matrix.
附图说明Description of drawings
图1是本发明的实现流程图;Fig. 1 is the realization flow chart of the present invention;
图2是本发明中基于发射能量集中的双基地MIMO雷达的发射能量分布与传统双基地MIMO雷达的发射能量分布对比图;2 is a comparison diagram of the transmission energy distribution of the bistatic MIMO radar based on the concentrated transmission energy in the present invention and the transmission energy distribution of the traditional bistatic MIMO radar;
图3是本发明与传统测角方法对两个不相关目标测角的均方根误差随信噪比变化对比图;Fig. 3 is the comparison diagram of the root mean square error of the present invention and the traditional angle measurement method to the angle measurement of two unrelated targets with signal-to-noise ratio;
图4是本发明与传统测角方法对两个不相关目标测角的均方根误差随脉冲数变化对比图。FIG. 4 is a comparison diagram of the root mean square error of the present invention and the traditional angle measurement method for angle measurement of two uncorrelated targets as a function of the number of pulses.
具体实施方式Detailed ways
下面将结合附图对本发明的实施例和效果进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The embodiments and effects of the present invention will be clearly and completely described below with reference to the accompanying drawings. Obviously, the described embodiments are only a part of the embodiments of the present invention, but not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
参照图1,本实施例的实现步骤如下:1, the implementation steps of this embodiment are as follows:
步骤1,设置双基地MIMO雷达参数Step 1, set bistatic MIMO radar parameters
设置双基地MIMO雷达的发射阵元数为M,M>0,接收阵元数为N,N>0,双基地MIMO雷达总的发射能量为E>0,发射波束域空间维度为L,L<M,雷达一个相干处理间隔CPI内总的回波脉冲编号为q,q=1,2,...Q,Q为雷达一个相干处理间隔CPI内总的回波脉冲数,在目标空域中目标数为G,G>0;Set the number of transmitting array elements of the bistatic MIMO radar to M, M>0, the number of receiving array elements to be N, N>0, the total transmit energy of the bistatic MIMO radar to be E>0, and the spatial dimension of the transmit beam domain to be L, L <M, the total number of echo pulses in one coherent processing interval CPI of the radar is q, q=1, 2,...Q, Q is the total number of echo pulses in one coherent processing interval CPI of the radar, in the target airspace The number of targets is G, G>0;
步骤2,根据目标相对于发射阵列的角度区域的位置,利用凸优化方法设计发射波束域矩阵W。Step 2, according to the position of the target relative to the angular region of the transmitting array, use the convex optimization method to design the transmitting beam domain matrix W.
凸优化方法是指求解目标函数是凸函数,变量所属集合是凸集合的优化问题的方法。The convex optimization method refers to the method of solving the optimization problem in which the objective function is a convex function and the set to which the variable belongs is a convex set.
本实例是用凸优化方法根据目标相对于发射阵列的角度区域设计发射波束域矩阵W,其实现如下:In this example, the convex optimization method is used to design the transmit beam domain matrix W according to the angular area of the target relative to the transmit array. The implementation is as follows:
(2.1)确定目标相对于发射阵列的角度区域Θ及其补集角度区域 (2.1) Determine the angle area Θ of the target relative to the launch array and its complement angle area
设定目标相对于发射阵列的角度区域Θ为[δmin,δmax],δmin表示目标出现的最小预期角度,δmax表示目标出现的最大预期角度;The angular area Θ of the target relative to the transmitting array is set as [δ min ,δ max ], where δ min represents the minimum expected angle at which the target appears, and δ max represents the maximum expected angle at which the target appears;
目标相对于发射阵列的角度区域Θ的补集角度区域为[-90°,δmin-1°]和[δmax+1°,90°];Complement angular region of the target relative to the angular region Θ of the transmit array are [-90°, δ min -1°] and [δ max +1°, 90°];
(2.2)根据(2.1)中的参数,设定一个指向角度区域Θ的L×1的虚拟发射导向矢量当发射天线和接收天线的阵列结构为半波长等间隔均匀线阵ULA时:(2.2) According to the parameters in (2.1), set a virtual launch steering vector of L×1 pointing to the angle area Θ When the array structure of the transmitting antenna and the receiving antenna is a half-wavelength uniformly spaced linear array ULA:
其中,[·]T表示矢量的转置,θi∈Θ,i=1,2,...,I,I表示Θ的采样点总个数;Among them, [ ] T represents the transpose of the vector, θ i ∈Θ, i=1,2,...,I, I represents the total number of sampling points of Θ;
(2.3)根据(2.1)中的参数,当发射天线和接收天线的阵列结构为半波长等间隔均匀线阵ULA时,将指向角度区域Θ的发射导向矢量a(θi)和指向角度区域的发射导向矢量a(θβ)分别表示为:(2.3) According to the parameters in (2.1), when the array structure of the transmitting antenna and the receiving antenna is a half-wavelength uniformly spaced linear array ULA, the transmission steering vector a (θ i ) of the pointing angle area Θ and the pointing angle area The launch steering vector a(θ β ) of , respectively, is expressed as:
其中,[·]T表示矢量的转置,θi∈Θ,i=1,2,...,I,I表示Θ的采样点总个数,β=1,2,...,J,J表示的采样点总个数;Among them, [·] T represents the transpose of the vector, θ i ∈Θ, i=1,2,...,I, I represents the total number of sampling points of Θ, β=1,2,...,J, J means The total number of sampling points;
(2.4)根据(2.1)、(2.2)和(2.3)的参数,通过求解下列凸优化问题设计发射波束域矩阵W:(2.4) According to the parameters of (2.1), (2.2) and (2.3), design the transmit beam domain matrix W by solving the following convex optimization problem:
其中,[·]H表示矩阵的共轭转置;||·||表示矩阵的2-范数;α表示在Θ中最大可接受WHa(θi)和之间的误差,要求在保证上述优化问题有解的前提下尽可能的小,经验取值一般为0<α<1。Among them, [·] H represents the conjugate transpose of the matrix; ||·|| represents the 2-norm of the matrix; α represents the maximum acceptable W H a(θ i ) and The error between the two is required to be as small as possible on the premise of ensuring that the above optimization problem has a solution, and the empirical value is generally 0<α<1.
步骤3,对发射波束域矩阵W进行缩放,使其满足tr(W*WT)=L,得到缩放后的发射波束域矩阵W'。Step 3: The transmit beam domain matrix W is scaled to satisfy tr(W * W T )=L, and the scaled transmit beam domain matrix W' is obtained.
步骤4,根据缩放后的发射波束域矩阵W',得到回波信号矩阵X。Step 4: Obtain the echo signal matrix X according to the scaled transmit beam domain matrix W'.
(4.1)根据缩放后的发射波束域矩阵,得到基于发射波束域的发射波形:(4.1) According to the scaled transmit beam domain matrix, the transmit waveform based on transmit beam domain is obtained:
其中,[·]*表示矩阵的共轭,表示L个相互正交的波形,且SSH=IL,IL表示L×L的单位矩阵,t=1,2,...,T,T表示每个脉冲周期的采样数,表示发射波形S中第m个正交波形;where [ ] * denotes the conjugate of the matrix, represents L mutually orthogonal waveforms, and SSH = IL , IL represents the L×L unit matrix, t=1,2,...,T,T represents the number of samples per pulse period, represents the mth quadrature waveform in the transmitted waveform S;
(4.2)确定发射导向矩阵A和接收导向矩阵B:(4.2) Determine the transmit steering matrix A and the receive steering matrix B:
当发射和接收阵列为半波长等间隔均匀线阵ULA时,第k个目标的波离角和波达角分别用θk和表示,k=1,2,…,G,则发射导向矩阵A和接收导向矩阵B可分别表示为:When the transmitting and receiving arrays are half-wavelength equally spaced linear arrays ULA, the departure angle and arrival angle of the k-th target are denoted by θ k and Representation, k=1,2,...,G, then the transmit steering matrix A and the receive steering matrix B can be expressed as:
A=[a(θ1),a(θ2),...a(θk),...,a(θG)]A=[a(θ 1 ),a(θ 2 ),...a(θ k ),...,a(θ G )]
其中,表示第k个目标的发射导向矢量,in, represents the launch steering vector of the kth target,
表示第k个目标的接收导向矢量; Represents the received steering vector of the k-th target;
(4.3)将G个目标在第q个回波脉冲的反射系数对角矩阵Λq表示为:(4.3) The reflection coefficient diagonal matrix Λ q of the G targets at the qth echo pulse is expressed as:
Λq=diag(cq),Λ q =diag(c q ),
其中,diag(·)表示对角化操作,cq=[α1,q,α2,q,…αk,q,…,αG,q]T表示G个目标在第q个回波脉冲的反射系数向量,αk,q表示第q个回波脉冲中第k个目标的反射系数;Among them, diag(·) represents the diagonalization operation, c q =[α 1,q ,α 2,q ,…α k,q ,…,α G,q ] T represents the qth echo of the G target The reflection coefficient vector of the pulse, α k,q represents the reflection coefficient of the kth target in the qth echo pulse;
(4.4)根据(4.1)中发射波形和(4.2)中发射导向矩阵A、接收导向矩阵B和(4.3)中的反射系数对角矩阵Λq,计算第q个接收脉冲的回波信号矩阵Xq:(4.4) Calculate the echo signal matrix X of the qth received pulse according to the transmit waveform in (4.1), the transmit steering matrix A, the receive steering matrix B in (4.2), and the reflection coefficient diagonal matrix Λ q in (4.3). q :
其中,[·]T表示矩阵转置,[·]*表示矩阵共轭;Nq代表第q个回波脉冲的噪声矩阵,其均值为零并服从高斯白噪声分布;Among them, [ ] T represents the matrix transpose, [ ] * represents the matrix conjugate; N q represents the noise matrix of the qth echo pulse, whose mean value is zero and obeys the Gaussian white noise distribution;
(4.5)对Xq从1到Q依次取q值,得到回波信号矩阵X=[X1,X2,...,Xq,...,XQ]。(4.5) Take the value of q for X q from 1 to Q in turn, and obtain the echo signal matrix X=[X 1 , X 2 ,...,X q ,...,X Q ].
步骤5,利用步骤4中得到的第q个接收脉冲的回波信号Xq,构建新的回波信号矩阵Y。In step 5, a new echo signal matrix Y is constructed by using the echo signal X q of the qth received pulse obtained in step 4 .
(5.1)对第q个回波脉冲的信号矩阵Xq右乘SH进行匹配滤波,得到匹配滤波后第q个脉冲的信号矩阵Yq:(5.1) Multiply the signal matrix X q of the q-th echo pulse to the right by SH and perform matched filtering to obtain the signal matrix Y q of the q-th pulse after matched filtering:
其中,[·]T表示矩阵转置,[·]H表示矩阵共轭转置;S为双基地MIMO雷达发射阵列发射的L个相互正交的波形;表示匹配滤波后第q个脉冲的噪声矩阵,Λq表示G个目标在第q个回波脉冲的反射系数对角矩阵;A为发射导向矩阵;B为接收导向矩阵;表示缩放后的发射波束域矩阵;Among them, [ ] T represents the matrix transpose, [ ] H represents the matrix conjugate transpose; S is the L mutually orthogonal waveforms transmitted by the bistatic MIMO radar transmitting array; represents the noise matrix of the qth pulse after matched filtering, Λ q represents the diagonal matrix of reflection coefficients of G targets at the qth echo pulse; A is the transmit steering matrix; B is the receive steering matrix; represents the scaled transmit beam domain matrix;
(5.2)根据(5.1)中的公式,将Yq按列排列得到匹配滤波后的第q个脉冲的信号列向量yq:(5.2) According to the formula in (5.1), arrange Y q in columns to obtain the signal column vector y q of the qth pulse after matched filtering:
其中,表示匹配滤波后的噪声构成的列矢量,vec(·)表示将矩阵向量化;cq表示G个目标在第q个回波脉冲的反射系数向量;⊙表示Khatri-Rao积;in, Represents the column vector formed by the matched filtered noise, vec( ) represents the quantization of the matrix vector; c q represents the reflection coefficient vector of the qth echo pulse of the G targets; ⊙ represents the Khatri-Rao product;
(5.3)从1到Q取q值,根据(5.2)中的公式,分别得到如下矩阵:(5.3) Take the value of q from 1 to Q, and according to the formula in (5.2), the following matrices are obtained:
将匹配滤波后的第1个脉冲的信号列向量y1至匹配滤波后第Q个脉冲的信号列向量yQ,记为新的回波信号矩阵:Y=[y1,y2,...,yq,...,yQ];The signal column vector y 1 of the first pulse after matched filtering to the signal column vector y Q of the Q-th pulse after matched filtering is denoted as a new echo signal matrix: Y=[y 1 , y 2 , .. .,y q ,...,y Q ];
将G个目标在第1个脉冲的反射系数向量c1至G个目标在第Q个脉冲的反射系数向量cQ,记为反射系数矩阵:C=[c1,c2,...,cq,...,cQ];Denote the reflection coefficient vector c 1 of the G targets at the first pulse to the reflection coefficient vector c Q of the G targets at the Q-th pulse as a reflection coefficient matrix: C=[c 1 ,c 2 ,..., c q ,...,c Q ];
将匹配滤波后第1个脉冲的噪声矩阵至匹配滤波后第Q个脉冲的噪声矩阵记为匹配滤波后的噪声矩阵: The noise matrix of the first pulse after matching filtering Noise matrix to the Qth pulse after matched filtering Denoted as the noise matrix after matched filtering:
(5.4)将(5.2)中的公式代入Y=[y1,y2,...,yq,...,yQ],根据(5.3)中的反射系数矩阵C和匹配滤波后的噪声矩阵得到新的回波信号矩阵Y:(5.4) Substitute the formula in (5.2) into Y=[y 1 , y 2 ,...,y q ,...,y Q ], according to the reflection coefficient matrix C in (5.3) and the matched filtered noise matrix Get the new echo signal matrix Y:
步骤6,根据步骤5中得到的新的回波信号矩阵Y,确定信号子空间Es。Step 6, according to the new echo signal matrix Y obtained in step 5, determine the signal subspace Es .
(6.1)计算新的回波信号矩阵Y的自相关矩阵R:(6.1) Calculate the autocorrelation matrix R of the new echo signal matrix Y:
其中,[·]H表示矩阵共轭转置,yq为匹配滤波后的第q个脉冲的信号列向量。Among them, [ ] H represents the conjugate transpose of the matrix, and y q is the signal column vector of the qth pulse after matched filtering.
(6.2)对自相关矩阵R进行特征值分解,得到:(6.2) Perform eigenvalue decomposition on the autocorrelation matrix R to get:
其中,uk表示自相关矩阵R的第k个特征值,vk表示自相关矩阵R的第k个特征值uk对应的特征向量,σ2表示噪声功率,ILN表示LN阶单位阵;Among them, uk represents the k-th eigenvalue of the autocorrelation matrix R, v k represents the eigenvector corresponding to the k -th eigenvalue uk of the autocorrelation matrix R, σ 2 represents the noise power, and I LN represents the LN order unit matrix;
(6.3)确定信号子空间(6.3) Determine the signal subspace
将(6.2)中自相关矩阵R的第1个特征值u1对应的特征向量v1至自相关矩阵R的第G个特征值uG对应的特征向量vG按列构成MN×G维矩阵,将此矩阵记为信号子空间Es。The eigenvector v 1 corresponding to the first eigenvalue u 1 of the autocorrelation matrix R in (6.2) to the eigenvector v G corresponding to the G-th eigenvalue u G of the autocorrelation matrix R form a MN×G dimension matrix by column , denote this matrix as the signal subspace E s .
步骤7,根据信号子空间Es,计算得到目标波离角估计值和波达角估计值 Step 7, according to the signal subspace E s , calculate and obtain the estimated value of the departure angle of the target wave and the estimated angle of arrival
(7.1)定义发射角度矩阵Ψt和接收角度矩阵Ψr (7.1) Define the transmit angle matrix Ψ t and the receive angle matrix Ψ r
当发射和接收阵列为半波长等间隔均匀线阵ULA时,第k个目标的波离角和波达角分别用θk和表示,k=1,2,...,G,定义发射角度矩阵Ψt和接收角度矩阵Ψr具有以下的结构:When the transmitting and receiving arrays are half-wavelength equally spaced linear arrays ULA, the departure angle and arrival angle of the k-th target are denoted by θ k and Representation, k=1,2,...,G, defines that the transmit angle matrix Ψ t and the receive angle matrix Ψ r have the following structure:
Ψt=T-1ΦtTΨ t =T -1 Φ t T
Ψr=T-1ΦrTΨ r =T -1 Φ r T
其中,Φt为Ψt的特征值矩阵, Among them, Φ t is the eigenvalue matrix of Ψ t ,
Φr为Ψr的特征值矩阵, Φ r is the eigenvalue matrix of Ψ r ,
T为一个特定的G×G的非奇异矩阵;T is a specific G×G non-singular matrix;
(7.2)根据信号子空间的性质及雷达阵列结构,得到以下两个方程:(7.2) According to the properties of the signal subspace and the structure of the radar array, the following two equations are obtained:
其中,符号代表Kronecker积,Es表示信号子空间,Jt,1=[IL-1,0],Jt,2=[0,IL-1],Jr,1=[IN-1,0],Jr,2=[0,IN-1]表示选择矩阵,IL-1表示(L-1)×(L-1)的单位矩阵,IN-1表示(N-1)×(N-1)的单位矩阵,IN表示N×N的单位矩阵,IL表示L×L的单位矩阵;Among them, the symbol represents the Kronecker product, Es represents the signal subspace, J t ,1 =[I L-1 ,0], J t,2 =[0,I L-1 ], J r,1 =[ IN-1 , 0], J r,2 = [0, I N-1 ] represents the selection matrix, I L-1 represents the identity matrix of (L-1)×(L-1), and I N-1 represents (N-1) ×(N-1) unit matrix, I N represents the N×N unit matrix, and IL represents the L×L unit matrix;
(7.3)将(7.1)代入(7.2)中的方程,求解发射角度矩阵Ψt和接收角度矩阵Ψr:(7.3) Substitute (7.1) into the equation in (7.2) to solve the transmit angle matrix Ψ t and the receive angle matrix Ψ r :
其中,表示对矩阵求伪逆;in, Represents the pseudo-inverse of the matrix;
(7.4)对求得的发射角度矩阵Ψt和接收角度矩阵Ψr进行特征分解:(7.4) Perform eigendecomposition on the obtained transmit angle matrix Ψ t and receive angle matrix Ψ r :
其中,γk表示发射角度矩阵Ψt的第k个特征值,qk表示发射角度矩阵Ψt的第k个特征值γk对应的特征向量,μk表示接收角度矩阵Ψr的第k个特征值,fk表示接收角度矩阵Ψr的第k个特征值μk对应的特征向量;Among them, γ k represents the k-th eigenvalue of the transmission angle matrix Ψ t , q k represents the eigenvector corresponding to the k-th eigenvalue γ k of the transmission angle matrix Ψ t , and μ k represents the k-th eigenvalue of the receiving angle matrix Ψ r eigenvalue, f k represents the eigenvector corresponding to the k-th eigenvalue μ k of the receiving angle matrix Ψ r ;
(7.5)根据(7.4)中的γk和μk,本实施例中认为γk和μk包含的是同一个目标的角度信息,具体的角度配对方法不属于本发明创新内容,用以下公式求得第k个目标的波离角估计值和第k个目标的波达角估计值 (7.5) According to γ k and μ k in (7.4), in this embodiment, it is considered that γ k and μ k contain the angle information of the same target, and the specific angle pairing method does not belong to the innovative content of the present invention, and the following formula is used Obtain the estimated value of the wave departure angle of the kth target and the estimated angle of arrival of the k-th target
其中,angle(·)表示取相位操作;Among them, angle( ) represents the operation of taking the phase;
步骤8,建立无噪声的回波信号矩阵模型:Step 8, establish a noise-free echo signal matrix model:
其中A为发射导向矩阵,B为接收导向矩阵,C为反射系数矩阵,[·]H表示矩阵的共轭转置,⊙表示Khatri-Rao积。where A is the transmit steering matrix, B is the receive steering matrix, C is the reflection coefficient matrix, [ ] H represents the conjugate transpose of the matrix, and ⊙ represents the Khatri-Rao product.
步骤9,根据步骤8中的无噪声的回波信号矩阵模型,建立映射关系,并计算信号模型对应的波离角 Step 9, according to the noise-free echo signal matrix model in step 8, establish a mapping relationship, and calculate the wave departure angle corresponding to the signal model
(9.1)根据步骤8中的无噪声的回波矩阵模型,当发射天线和接收天线的阵列结构为半波长等间隔均匀线阵ULA时,得到以下映射关系:(9.1) According to the noise-free echo matrix model in step 8, when the array structure of the transmitting antenna and the receiving antenna is a half-wavelength uniformly spaced linear array ULA, the following mapping relationship is obtained:
其中,Jt,1=[IL-1,0],Jt,2=[0,IL-1],IL-1为L-1阶单位阵,θi∈Θ,i=1,2,...,I,I表示Θ的采样点总个数,a(θi)为目标空域的发射导向矢量,表示θi的映射角度值,与θi一一对应;Among them, J t,1 =[I L-1 ,0], J t,2 =[0,I L-1 ], I L-1 is an L-1 order identity matrix, θ i ∈Θ,i=1 ,2,...,I, I represents the total number of sampling points of Θ, a(θ i ) is the launch steering vector of the target airspace, represents the mapping angle value of θ i , One-to-one correspondence with θ i ;
(9.2)根据(9.1)中得到的映射关系,计算出步骤8中信号模型所对应的I个波离角 (9.2) According to the mapping relationship obtained in (9.1), calculate I wave departure angles corresponding to the signal model in step 8
步骤10,通过查找,得到每个目标波离角的最优估计值。Step 10: Obtain the optimal estimated value of the off-angle of each target wave by searching.
(10.1)在(9.2)中计算出的波离角i=1,...,I中,查找与步骤7中每个目标的波离角估计值最接近的波离角 (10.1) The wave departure angle calculated in (9.2) In i=1,...,I, find the estimated value of the wave departure angle from each target in step 7 The closest wave departure angle
(10.2)根据(9.1)中的映射关系,找到与(10.1)中查找到的波离角所对应的采样角度θi,并将该采样角度θi作为所对应目标波离角的最优估计值。(10.2) According to the mapping relationship in (9.1), find the wave departure angle from (10.1) The corresponding sampling angle θ i , and the sampling angle θ i is used as the optimal estimation value of the corresponding target wave departure angle.
通过以下仿真实验对本发明效果作进一步的描述。The effects of the present invention will be further described through the following simulation experiments.
1.仿真实验条件:1. Simulation experimental conditions:
设双基地MIMO雷达的发射天线数M=8,接收天线数N=4,发射阵列和接收阵列均为半波长等间隔均匀线阵,发射总能量E=8,目标相对于发射阵列的角度区域Θ=[-15°,15°],假定Θ中有两个不相干目标,其分别位于和蒙特卡洛实验次数为P=500。Assume that the number of transmitting antennas of the bistatic MIMO radar is M=8, the number of receiving antennas is N=4, the transmitting array and the receiving array are half-wavelength equally spaced line arrays, the total transmitting energy E=8, the angular area of the target relative to the transmitting array Θ=[-15°, 15°], it is assumed that there are two irrelevant targets in Θ, which are located at and The number of Monte Carlo experiments was P=500.
2.仿真内容2. Simulation content
仿真1,在上述条件下,设本发明中的发射波束域维度L=6,在Θ中最大可接受WHa(θi)和之间的误差α=0.04;分别仿真本发明中基于发射能量集中的双基地MIMO雷达能量分布与传统双基地MIMO雷达的能量分布,结果如图2所示。Simulation 1, under the above conditions, set the transmit beam domain dimension L=6 in the present invention, the maximum acceptable W H a(θ i ) and The error α=0.04; the energy distribution of the bistatic MIMO radar based on the transmission energy concentration in the present invention and the energy distribution of the traditional bistatic MIMO radar are simulated respectively, and the results are shown in FIG. 2 .
从图2可见,传统的双基地MIMO雷达的发射能量均匀,然而本发明的双基地MIMO雷达的发射能量集中在目标相对于发射阵列的角度区域,发射能量的损失更小,目标回波信号的信噪比更高。As can be seen from Figure 2, the transmission energy of the traditional bistatic MIMO radar is uniform, but the transmission energy of the bistatic MIMO radar of the present invention is concentrated in the angular area of the target relative to the transmission array, the loss of transmission energy is smaller, and the target echo signal The signal-to-noise ratio is higher.
仿真2,在上述仿真条件下,设雷达一个相干处理间隔CPI内总的回波脉冲数Q=50,并在本发明中,设发射波束域维度L=6,设在Θ中最大可接受WHa(θi)和之间的误差α=0.04;分别仿真本发明与三种传统测角方法,传统的ESPRIT方法、传统的PM方法和传统的U-ESPRIT方法,的均方根误差RMSE随信噪比变化,结果如图3所示。Simulation 2, under the above-mentioned simulation conditions, set the total echo pulse number Q=50 in a coherent processing interval CPI of the radar, and in the present invention, set the transmission beam domain dimension L=6, set the maximum acceptable W in Θ H a(θ i ) and The error α=0.04; respectively simulate the present invention and three traditional angle measurement methods, the traditional ESPRIT method, the traditional PM method and the traditional U-ESPRIT method, the root mean square error RMSE changes with the signal-to-noise ratio, the results As shown in Figure 3.
从图3可见,本发明的双基地MIMO雷达测角的均方根误差RMSE相比于其他测角方法均方根误差更小,测角精度更高。It can be seen from FIG. 3 that the root mean square error RMSE of the bistatic MIMO radar angle measurement of the present invention is smaller than that of other angle measurement methods, and the angle measurement accuracy is higher.
仿真3,在上述仿真条件下,设雷达的信噪比SNR=0db,并在本发明中,设发射波束域维度L=6,在Θ中最大可接受WHa(θi)和之间的误差为α=0.04;分别仿真本发明与三种传统测角方法,传统的ESPRIT方法、传统的PM方法和传统的U-ESPRIT方法,的均方根误差RMSE随回波脉冲总数变化,结果如图4所示。Simulation 3, under the above-mentioned simulation conditions, set the signal-to-noise ratio SNR=0db of the radar, and in the present invention, set the transmission beam domain dimension L=6, in Θ, the maximum acceptable W H a (θ i ) and The error between them is α=0.04; simulating the present invention and three traditional angle measurement methods, the traditional ESPRIT method, the traditional PM method and the traditional U-ESPRIT method, the root mean square error RMSE varies with the total number of echo pulses , the results are shown in Figure 4.
从图4可见,本发明的双基地MIMO雷达测角的均方根误差RMSE相比于其他测角方法均方根误差更小,测角精度更高。It can be seen from FIG. 4 that the root mean square error RMSE of the bistatic MIMO radar angle measurement of the present invention is smaller than that of other angle measurement methods, and the angle measurement accuracy is higher.
所述均方根误差其定义为:The root mean square error is defined as:
其中,和表示第k个目标第p次蒙特卡洛试验的波离角和波达角的最优估计值,θk和表示第k个目标的波离角和波达角的真实值。in, and represents the optimal estimation of the wave departure angle and arrival angle of the pth Monte Carlo test of the kth target, θ k and Represents the true value of the wave departure angle and arrival angle of the kth target.
以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。The above are only specific embodiments of the present invention, but the protection scope of the present invention is not limited thereto. Any person skilled in the art can easily think of changes or substitutions within the technical scope disclosed by the present invention. Included within the scope of protection of the present invention. Therefore, the protection scope of the present invention should be based on the protection scope of the claims.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910544141.2A CN110196417B (en) | 2019-06-21 | 2019-06-21 | Angle Estimation Method for Bistatic MIMO Radar Based on Transmission Energy Concentration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910544141.2A CN110196417B (en) | 2019-06-21 | 2019-06-21 | Angle Estimation Method for Bistatic MIMO Radar Based on Transmission Energy Concentration |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110196417A true CN110196417A (en) | 2019-09-03 |
CN110196417B CN110196417B (en) | 2023-04-21 |
Family
ID=67754984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910544141.2A Active CN110196417B (en) | 2019-06-21 | 2019-06-21 | Angle Estimation Method for Bistatic MIMO Radar Based on Transmission Energy Concentration |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110196417B (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113281702A (en) * | 2021-04-30 | 2021-08-20 | 中国人民解放军战略支援部队信息工程大学 | Over-the-horizon target direct positioning method based on cooperative short wave multi-station angle and satellite time frequency |
CN113468735A (en) * | 2021-06-24 | 2021-10-01 | 国汽(北京)智能网联汽车研究院有限公司 | Laser radar simulation method, device and system and storage medium |
CN113655475A (en) * | 2021-08-16 | 2021-11-16 | 电子科技大学 | Radar communication integration method based on waveform selection |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105974388A (en) * | 2016-06-24 | 2016-09-28 | 西安电子科技大学 | Bistatic MIMO radar signal processing method based on distance-orientation coupling |
JP2017116425A (en) * | 2015-12-24 | 2017-06-29 | 学校法人東京電機大学 | MIMO radar system and signal processing apparatus |
CN108490425A (en) * | 2018-03-07 | 2018-09-04 | 西安电子科技大学 | A kind of angle-measuring method of bistatic MIMO radar |
CN108828586A (en) * | 2018-06-27 | 2018-11-16 | 西安电子科技大学 | A kind of bistatic MIMO radar angle measurement optimization method based on Beam Domain |
CN108983143A (en) * | 2018-05-23 | 2018-12-11 | 长江大学 | Bistatic MIMO radar angle estimating method under Colored Noise |
-
2019
- 2019-06-21 CN CN201910544141.2A patent/CN110196417B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017116425A (en) * | 2015-12-24 | 2017-06-29 | 学校法人東京電機大学 | MIMO radar system and signal processing apparatus |
CN105974388A (en) * | 2016-06-24 | 2016-09-28 | 西安电子科技大学 | Bistatic MIMO radar signal processing method based on distance-orientation coupling |
CN108490425A (en) * | 2018-03-07 | 2018-09-04 | 西安电子科技大学 | A kind of angle-measuring method of bistatic MIMO radar |
CN108983143A (en) * | 2018-05-23 | 2018-12-11 | 长江大学 | Bistatic MIMO radar angle estimating method under Colored Noise |
CN108828586A (en) * | 2018-06-27 | 2018-11-16 | 西安电子科技大学 | A kind of bistatic MIMO radar angle measurement optimization method based on Beam Domain |
Non-Patent Citations (2)
Title |
---|
BAOQING XU等: "Transmit Beamspace-Based Unitary Parallel Factor Method for DOD and DOA Estimation in Bistatic MIMO Radar", 《IEEE ACCESS》 * |
吴磊等: "最大化信干噪比的双基地MIMO雷达波形设计", 《现代防御技术》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113281702A (en) * | 2021-04-30 | 2021-08-20 | 中国人民解放军战略支援部队信息工程大学 | Over-the-horizon target direct positioning method based on cooperative short wave multi-station angle and satellite time frequency |
CN113281702B (en) * | 2021-04-30 | 2024-02-09 | 中国人民解放军战略支援部队信息工程大学 | Direct over-the-horizon target positioning method using shortwave multi-station angles and satellite time-frequency |
CN113468735A (en) * | 2021-06-24 | 2021-10-01 | 国汽(北京)智能网联汽车研究院有限公司 | Laser radar simulation method, device and system and storage medium |
CN113468735B (en) * | 2021-06-24 | 2024-03-22 | 国汽(北京)智能网联汽车研究院有限公司 | Laser radar simulation method, device, system and storage medium |
CN113655475A (en) * | 2021-08-16 | 2021-11-16 | 电子科技大学 | Radar communication integration method based on waveform selection |
CN113655475B (en) * | 2021-08-16 | 2023-06-20 | 电子科技大学 | An Integrated Radar Communication Method Based on Waveform Selection |
Also Published As
Publication number | Publication date |
---|---|
CN110196417B (en) | 2023-04-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107064892B (en) | MIMO radar angle estimation algorithm based on tensor subspace and rotation invariance | |
CN105467365B (en) | A kind of low sidelobe transmitting pattern design method improving MIMO radar DOA estimation performances | |
Zhang et al. | A method for finding best channels in beam-space post-Doppler reduced-dimension STAP | |
CN106707257B (en) | Direction of Arrival Estimation Method for MIMO Radar Based on Nested Array | |
CN110133631B (en) | Fuzzy function-based frequency control array MIMO radar target positioning method | |
CN108693511B (en) | Calculation method of moving target angle for time-division multiplexing MIMO radar | |
CN109407055A (en) | The Beamforming Method utilized based on multipath | |
CN107390197B (en) | Radar self-adaption sum-difference beam angle measurement method based on feature space | |
CN106646388B (en) | Anti-jamming method of MIMO radar based on nested array | |
CN108828586B (en) | A beam-domain-based optimization method for angle measurement of bistatic MIMO radar | |
Gu et al. | Compressed sensing for DOA estimation with fewer receivers than sensors | |
CN103760527B (en) | Direction of Arrival Estimation Method for Coherent Sources in Monostatic MIMO Radar | |
CN108562866A (en) | Bistatic MIMO radar angle evaluation method based on matrix fill-in | |
CN112881975B (en) | Monopulse and difference beam angle measurement method based on joint diagonalization of subarray characteristic matrices | |
CN109188386B (en) | MIMO radar high-resolution parameter estimation method based on improved two-dimensional ESPRIT algorithm | |
CN103777197A (en) | Orientation estimation method of dimension descending propagation operator in monostatic MIMO radar | |
CN111239677B (en) | Multi-beam passive monopulse angle measurement method based on digital array | |
CN110196417A (en) | The bistatic MIMO radar angle estimating method concentrated based on emitted energy | |
CN107576947B (en) | Two-dimensional DOA estimation method for coherent sources based on L-shaped array paired with time smoothing | |
CN108872930A (en) | Extend aperture two dimension Joint diagonalization DOA estimation method | |
CN109901103B (en) | MIMO radar DOA estimation method and device based on non-orthogonal waveforms | |
Yang et al. | Estimation of the DOAs of coherent signals in beam space processing for phased arrays | |
Hassanien et al. | Direction finding for MIMO radar with colocated antennas using transmit beamspace preprocessing | |
Zhou et al. | Research on interferometer direction finding technology based on digital beam forming | |
Wu et al. | Accelerating 3-D MUSIC algorithm with fast fourier transform for collocated FDMA-MIMO radar with subarray configuration |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |