CN110118160B - Solar supercritical carbon dioxide Brayton cycle system - Google Patents
Solar supercritical carbon dioxide Brayton cycle system Download PDFInfo
- Publication number
- CN110118160B CN110118160B CN201810116158.3A CN201810116158A CN110118160B CN 110118160 B CN110118160 B CN 110118160B CN 201810116158 A CN201810116158 A CN 201810116158A CN 110118160 B CN110118160 B CN 110118160B
- Authority
- CN
- China
- Prior art keywords
- carbon dioxide
- supercritical carbon
- solar
- brayton cycle
- storage tank
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 title claims abstract description 224
- 229910002092 carbon dioxide Inorganic materials 0.000 title claims abstract description 112
- 239000001569 carbon dioxide Substances 0.000 title claims abstract description 111
- 239000006096 absorbing agent Substances 0.000 claims abstract description 54
- 238000003860 storage Methods 0.000 claims abstract description 52
- 229910052751 metal Inorganic materials 0.000 claims abstract description 16
- 239000002184 metal Substances 0.000 claims abstract description 16
- 150000004649 carbonic acid derivatives Chemical class 0.000 claims abstract description 11
- 229910044991 metal oxide Inorganic materials 0.000 claims abstract description 11
- 150000004706 metal oxides Chemical class 0.000 claims abstract description 11
- 238000005338 heat storage Methods 0.000 claims description 18
- 238000012546 transfer Methods 0.000 claims description 12
- 238000006243 chemical reaction Methods 0.000 claims description 10
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 9
- 238000001816 cooling Methods 0.000 claims description 9
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 6
- 229910052788 barium Inorganic materials 0.000 claims description 6
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052790 beryllium Inorganic materials 0.000 claims description 6
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 claims description 6
- 229910052792 caesium Inorganic materials 0.000 claims description 6
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 6
- 229910052730 francium Inorganic materials 0.000 claims description 6
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052749 magnesium Inorganic materials 0.000 claims description 6
- 239000011777 magnesium Substances 0.000 claims description 6
- 229910052701 rubidium Inorganic materials 0.000 claims description 6
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052712 strontium Inorganic materials 0.000 claims description 6
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 claims description 6
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 5
- 238000010521 absorption reaction Methods 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 229910052700 potassium Inorganic materials 0.000 claims description 5
- 239000011591 potassium Substances 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- 229910052705 radium Inorganic materials 0.000 claims description 4
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 claims description 4
- 239000011159 matrix material Substances 0.000 claims description 3
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 3
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 3
- 230000005587 bubbling Effects 0.000 claims description 2
- 238000000354 decomposition reaction Methods 0.000 claims description 2
- 238000004146 energy storage Methods 0.000 abstract description 23
- 238000004519 manufacturing process Methods 0.000 abstract description 2
- 239000007789 gas Substances 0.000 description 21
- 238000000034 method Methods 0.000 description 12
- 238000010586 diagram Methods 0.000 description 10
- 238000010248 power generation Methods 0.000 description 9
- 230000008569 process Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 5
- 230000008901 benefit Effects 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- YPWICUOZSQYGTD-UHFFFAOYSA-L [Ra+2].[O-]C([O-])=O Chemical class [Ra+2].[O-]C([O-])=O YPWICUOZSQYGTD-UHFFFAOYSA-L 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000014380 magnesium carbonate Nutrition 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000003303 reheating Methods 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000011232 storage material Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001845 yogo sapphire Inorganic materials 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K13/00—General layout or general methods of operation of complete plants
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01K—STEAM ENGINE PLANTS; STEAM ACCUMULATORS; ENGINE PLANTS NOT OTHERWISE PROVIDED FOR; ENGINES USING SPECIAL WORKING FLUIDS OR CYCLES
- F01K7/00—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating
- F01K7/32—Steam engine plants characterised by the use of specific types of engine; Plants or engines characterised by their use of special steam systems, cycles or processes; Control means specially adapted for such systems, cycles or processes; Use of withdrawn or exhaust steam for feed-water heating the engines using steam of critical or overcritical pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03G—SPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
- F03G6/00—Devices for producing mechanical power from solar energy
- F03G6/06—Devices for producing mechanical power from solar energy with solar energy concentrating means
- F03G6/064—Devices for producing mechanical power from solar energy with solar energy concentrating means having a gas turbine cycle, i.e. compressor and gas turbine combination
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/40—Solar thermal energy, e.g. solar towers
- Y02E10/46—Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
Abstract
本发明公开了一种太阳能超临界二氧化碳布雷顿循环系统,包括太阳能吸热器,涡轮单元和布雷顿循环单元,其中,太阳能吸热器和布雷顿循环单元分别与涡轮单元通过管路相连;还包括与太阳能吸热器和涡轮单元之间的管路呈并联或串联的储罐,用于储存金属碳酸盐和金属氧化物;此外,在布雷顿循环单元中还设置有储气罐,用于储存超临界二氧化碳。本发明所提供的太阳能超临界二氧化碳布雷顿循环系统将基于热化学直接产超临界二氧化碳与超临界二氧化碳布雷顿循环耦合,既能实现高效储能和换热,提高装置效率,又能降低成本。
The invention discloses a solar supercritical carbon dioxide Brayton cycle system, comprising a solar heat absorber, a turbine unit and a Brayton cycle unit, wherein the solar heat absorber and the Brayton cycle unit are respectively connected with the turbine unit through pipelines; and Including a storage tank in parallel or in series with the pipeline between the solar heat absorber and the turbine unit for storing metal carbonates and metal oxides; for the storage of supercritical carbon dioxide. The solar supercritical carbon dioxide Brayton cycle system provided by the invention couples the direct production of supercritical carbon dioxide based on thermochemistry with the supercritical carbon dioxide Brayton cycle, which can realize high-efficiency energy storage and heat exchange, improve device efficiency, and reduce costs.
Description
技术领域technical field
本发明涉及能源技术领域,尤其涉及一种太阳能超临界二氧化碳布雷顿循环系统。The invention relates to the technical field of energy, in particular to a solar supercritical carbon dioxide Brayton cycle system.
背景技术Background technique
我国陆地表面每年接受的太阳能辐射相当于4.9万亿吨标准煤,西部青藏高原、甘肃背部、宁夏北部和新疆南部等地区是太阳能资源最丰富的地区,开发潜力超过85万亿千瓦时/年,约占全国的75%,我国的太阳能蕴藏着巨大的开发潜力。太阳能发电技术主要分为光伏发电和光热发电两大类。光伏发电存在昼夜不连续、储能成本高、弃光严重且使用寿命短等诸多缺点。而太阳能热发电可利用廉价储能技术,稳定发电功率的输出,既可以作为基础负荷供电,又可以作为调峰电源,因此太阳能热发电在未来具有巨大潜力,太阳能热发电技术包括塔式、槽式、碟式和菲涅尔式太阳能光热发电,基本原理主要是通过聚光抛物面形成高热流密度的能量,加热做功介质驱动热机进行发电。The annual solar radiation received by my country's land surface is equivalent to 4.9 trillion tons of standard coal. The western Qinghai-Tibet Plateau, the back of Gansu, northern Ningxia, and southern Xinjiang are the regions with the most abundant solar energy resources, with a development potential of more than 85 trillion kWh/year. Accounting for about 75% of the country's total, my country's solar energy contains huge potential for development. Solar power generation technology is mainly divided into two categories: photovoltaic power generation and solar thermal power generation. Photovoltaic power generation has many disadvantages, such as discontinuous day and night, high energy storage cost, serious solar abandonment and short service life. Solar thermal power generation can use cheap energy storage technology to stabilize the output of power generation, which can be used as both basic load power supply and peak-shaving power supply. Therefore, solar thermal power generation has great potential in the future. Solar thermal power generation technologies include tower, tank The basic principle of solar thermal power generation is to form energy with high heat flux density through the concentrating paraboloid, and heat the work medium to drive the heat engine to generate electricity.
太阳能超临界二氧化碳布雷顿循环以太阳能为热源,以处于超临界状态的二氧化碳(临界压力7.38MPa,临界温度30.98℃)为工质,实现能量的转换。超临界二氧化碳布雷顿循环相对于水蒸气朗肯循环而言,单相做功,系统设计简单,降低了操作的复杂性;密度大,压缩功小,换热性能好,可降低涡轮机和换热器的体积,从而达到降低成本,提高整体效率的目的。此外,超临界二氧化碳无毒无害,腐蚀性小,价格便宜,以聚光太阳能(温度范围550℃-800℃)作为热源,热稳定性好。Solar supercritical carbon dioxide Brayton cycle uses solar energy as heat source and carbon dioxide in supercritical state (critical pressure 7.38MPa, critical temperature 30.98℃) as working fluid to realize energy conversion. Compared with the water vapor Rankine cycle, the supercritical carbon dioxide Brayton cycle performs work in a single phase, the system design is simple, and the complexity of the operation is reduced; the density is large, the compression work is small, and the heat exchange performance is good, which can reduce the turbine and heat exchanger. volume, so as to achieve the purpose of reducing costs and improving overall efficiency. In addition, supercritical carbon dioxide is non-toxic, harmless, less corrosive, cheap, and uses concentrated solar energy (temperature range 550°C-800°C) as a heat source, with good thermal stability.
储能技术按照储能方式可分为显热储能、潜热储能和热化学能储能。显热储能是不改变物质形态通过温度提升将热能存储起来,储能密度较低。而潜热储能通过相变形式将热能存储起来,相变储热所需吸收热量较大,因此潜热储能密度比显热储能高。与上述两种储热方式相比,化学能储热具有储能密度大、储能温度高、储能周期长、热损小,适合长距离运输等优点。Energy storage technology can be divided into sensible heat energy storage, latent heat energy storage and thermochemical energy storage according to the energy storage method. Sensible heat energy storage is to store thermal energy through temperature increase without changing the material form, and the energy storage density is low. Latent heat energy storage stores thermal energy in the form of phase change, and phase change heat storage needs to absorb more heat, so the density of latent heat energy storage is higher than that of sensible heat energy storage. Compared with the above two heat storage methods, chemical energy heat storage has the advantages of high energy storage density, high energy storage temperature, long energy storage period, small heat loss, and is suitable for long-distance transportation.
光热发电技术发展几十年来,目前停留在以熔融盐为代表的第二代技术的商业化应用层面,由于受高温腐蚀的影响,市场上熔融盐的平均运行温度在565℃,极大的限制了太阳能超临界二氧化碳布雷顿循环的整体效率。同时,与太阳能超临界二氧化碳结合的储能和换热技术的不足也是另一难题,储热介质和做功介质大多采用间接换热方式,换热效率低,限制了整体效率的提高。除此之外,超临界二氧化碳布雷顿循环系统中,补充超临界二氧化碳装置复杂,步骤繁琐,有待进一步简化装置。CSP technology has been developed for decades, and it is currently at the commercial application level of the second-generation technology represented by molten salt. Due to the influence of high temperature corrosion, the average operating temperature of molten salt in the market is 565 °C, which is extremely Limits the overall efficiency of the solar supercritical CO2 Brayton cycle. At the same time, the insufficiency of energy storage and heat exchange technology combined with solar supercritical carbon dioxide is also another problem. Most of the heat storage medium and work medium use indirect heat exchange, and the heat exchange efficiency is low, which limits the improvement of the overall efficiency. In addition, in the supercritical carbon dioxide Brayton cycle system, the supplementary supercritical carbon dioxide device is complicated and the steps are cumbersome, and the device needs to be further simplified.
发明内容SUMMARY OF THE INVENTION
本发明的目的在于针对现有的太阳能超临界二氧化碳布雷顿循环系统热效率低、成本高的问题,提供了一种既能实现高效储能和换热,提高系统效率、又能降低成本的太阳能超临界二氧化碳布雷顿循环系统。The purpose of the present invention is to solve the problems of low thermal efficiency and high cost of the existing solar supercritical carbon dioxide Brayton cycle system, and to provide a solar supercritical system that can realize high-efficiency energy storage and heat exchange, improve system efficiency and reduce costs. Critical carbon dioxide Brayton cycle system.
本发明的目的通过以下技术方案实现:The object of the present invention is achieved through the following technical solutions:
本发明提供了一种太阳能超临界二氧化碳布雷顿循环系统,超临界二氧化碳在该系统中循环,该系统包括:The invention provides a solar supercritical carbon dioxide Brayton cycle system in which supercritical carbon dioxide circulates, and the system includes:
太阳能吸热器,涡轮单元和布雷顿循环单元,所述太阳能吸热器和所述布雷顿循环单元分别与所述涡轮单元通过管路相连;a solar heat absorber, a turbine unit and a Brayton cycle unit, the solar heat absorber and the Brayton cycle unit are respectively connected with the turbine unit through pipelines;
还包括与太阳能吸热器和涡轮单元之间的管路呈并联或串联连接的储罐,用于储存金属碳酸盐和金属氧化物;Also includes storage tanks connected in parallel or in series with the piping between the solar heat absorber and the turbine unit for storing metal carbonates and metal oxides;
在所述布雷顿循环单元中还设置有储气罐,用于储存超临界二氧化碳;A gas storage tank is also provided in the Brayton cycle unit for storing supercritical carbon dioxide;
当光照条件充足时,循环超临界二氧化碳在太阳能吸热器中吸收热量;同时,传热介质在太阳能吸热器中吸收热量并传递给储罐中的金属碳酸盐,金属碳酸盐发生分解反应,储存热量,产生超临界二氧化碳,与循环超临界二氧化碳一同进入涡轮单元对外做功;做功后的超临界二氧化碳经布雷顿循环单元,一部分储存于储气罐中,另一部分返回太阳能吸热器中吸收热量、循环做功;When the light conditions are sufficient, the circulating supercritical carbon dioxide absorbs heat in the solar heat absorber; at the same time, the heat transfer medium absorbs heat in the solar heat absorber and transfers it to the metal carbonate in the storage tank, and the metal carbonate is decomposed React, store heat, generate supercritical carbon dioxide, and enter the turbine unit together with the circulating supercritical carbon dioxide to do external work; the supercritical carbon dioxide after the work passes through the Brayton cycle unit, part of it is stored in the gas storage tank, and the other part is returned to the solar heat absorber Absorb heat and cycle to do work;
当光照条件不佳或者无光照时,将太阳能吸热器隔离,在储气罐中储存的超临界二氧化碳与循环超临界二氧化碳一同经过布雷顿循环单元,进入储罐,与金属氧化物发生化合反应,释放热量,加热超临界二氧化碳,进入涡轮单元对外做功。When the light conditions are poor or there is no light, the solar heat absorber is isolated, and the supercritical carbon dioxide stored in the gas storage tank and the circulating supercritical carbon dioxide pass through the Brayton cycle unit together, enter the storage tank, and undergo a compound reaction with metal oxides. , release heat, heat supercritical carbon dioxide, and enter the turbine unit to do external work.
其中,布雷顿循环单元可以为多种形式,例如简单布雷顿循环单元、再压缩布雷顿循环单元、再压缩部分冷却布雷顿循环单元或再压缩中间冷却布雷顿循环单元。Among them, the Brayton cycle unit can be in various forms, such as a simple Brayton cycle unit, a recompression Brayton cycle unit, a recompression partial cooling Brayton cycle unit or a recompression intermediate cooling Brayton cycle unit.
作为优选,布雷顿循环单元包括:高温回热器、低温回热器、主压缩机、再压缩机和冷却器;经涡轮单元对外做功后的超临界二氧化碳经过高温回热器、低温回热器后,分为两股,一股经过冷却器冷却、主压缩机加压和低温回热器加热后,与另一股经过再压缩机加压的超临界二氧化碳一同进入高温回热器加热,然后进入太阳能吸热器吸收热量后,循环做功。上述布雷顿循环单元为再压缩布雷顿循环的一种形式,在该种布雷顿循环单元中设置了两级回热器和压缩机,避免了夹点温度,提高了回热效率。Preferably, the Brayton cycle unit includes: a high temperature regenerator, a low temperature regenerator, a main compressor, a recompressor and a cooler; the supercritical carbon dioxide after the turbine unit performs external work passes through the high temperature regenerator and the low temperature regenerator After that, it is divided into two strands, one is cooled by the cooler, pressurized by the main compressor and heated by the low temperature regenerator, and then enters the high temperature regenerator together with the other strand of supercritical carbon dioxide which is pressurized by the recompressor, and then heated by the high temperature regenerator. After entering the solar heat absorber to absorb heat, the cycle does work. The above-mentioned Brayton cycle unit is a form of the recompression Brayton cycle. Two-stage regenerators and compressors are arranged in the Brayton cycle unit, which avoids the pinch point temperature and improves the heat recovery efficiency.
作为优选,储气罐设置于低温回热器与冷却器之间。储气罐的位置可以有多种选择,为了降低储气罐的成本,以储存低温低压的超临界二氧化碳为最佳选择,因此,将储气罐设置于低温回热器与冷却器之间是较为适宜的位置。Preferably, the gas storage tank is arranged between the low temperature regenerator and the cooler. There are many options for the location of the gas storage tank. In order to reduce the cost of the gas storage tank, it is the best choice to store supercritical carbon dioxide at low temperature and low pressure. more suitable location.
作为优选,可以将涡轮单元设置为中间再热的结构:涡轮单元包含低压涡轮机、高压涡轮机和设置于低压涡轮机和高压涡轮机之间的太阳能储热罐,太阳能储热罐用于储存太阳能热量;进入涡轮单元的超临界二氧化碳,先进入高压涡轮机对外做功,然后在太阳能储热罐中吸收热量,再进入低压涡轮机对外做功。Preferably, the turbine unit can be set as an intermediate reheating structure: the turbine unit includes a low-pressure turbine, a high-pressure turbine, and a solar thermal storage tank disposed between the low-pressure turbine and the high-pressure turbine, and the solar thermal storage tank is used to store solar heat; The supercritical carbon dioxide of the turbine unit first enters the high-pressure turbine to do external work, then absorbs heat in the solar heat storage tank, and then enters the low-pressure turbine to do external work.
作为优选,太阳能吸热器中的吸热介质为超临界二氧化碳,所述超临界二氧化碳同为传热介质和做功介质。超临界二氧化碳在太阳能吸热器中吸收太阳能热量后,作为传热介质把热能传递给储罐中的金属碳酸盐,使得系统中的流动介质仅包括超临界二氧化碳,其同时作为吸热介质和做功介质,避免了多次中间换热过程,降低热损,简化系统,提高了系统效率和经济效益。Preferably, the heat absorption medium in the solar heat absorber is supercritical carbon dioxide, and the supercritical carbon dioxide is both a heat transfer medium and a work medium. After supercritical carbon dioxide absorbs solar heat in the solar heat absorber, it transfers the heat energy to the metal carbonate in the storage tank as a heat transfer medium, so that the flowing medium in the system only includes supercritical carbon dioxide, which acts as a heat absorption medium and The working medium avoids multiple intermediate heat exchange processes, reduces heat loss, simplifies the system, and improves system efficiency and economic benefits.
作为优选,太阳能吸热器的聚焦系统包括塔式聚光系统、碟式聚光系统、槽式聚光系统或线性菲涅尔式聚光系统中的一种或多种。Preferably, the concentrating system of the solar heat absorber includes one or more of a tower concentrating system, a dish concentrating system, a trough concentrating system or a linear Fresnel concentrating system.
作为优选,储罐包括固定床、鼓泡床、流化床、多孔介质或蜂窝陶瓷,其中,流化床可以为循环流化床或内循环流化床等。储罐既是储存金属碳酸盐/金属氧化物的场所,同时也是储热和放热化学反应的发生器。Preferably, the storage tank includes a fixed bed, a bubbling bed, a fluidized bed, a porous medium or a honeycomb ceramic, wherein the fluidized bed can be a circulating fluidized bed or an internal circulating fluidized bed or the like. The storage tank is both a storage place for metal carbonates/metal oxides and a generator for thermal storage and exothermic chemical reactions.
更进一步地,作为优选,储罐为多孔介质或蜂窝陶瓷时,以金属氧化物或碳化硅为基体,金属碳酸盐负载在多孔介质或蜂窝结构的表面。多孔介质或蜂窝陶瓷的储罐可实现显热和热化学储热的结合。Further, preferably, when the storage tank is a porous medium or a honeycomb ceramic, the metal oxide or silicon carbide is used as the matrix, and the metal carbonate is supported on the surface of the porous medium or the honeycomb structure. Porous media or honeycomb ceramic storage tanks allow for a combination of sensible and thermochemical heat storage.
作为优选,金属碳酸盐包括锂、钠、钾、铷、铯、钫、铍、镁、钙、锶、钡或镭的碳酸盐中的一种或多种,或者包括对锂、钠、钾、铷、铯、钫、铍、镁、钙、锶、钡或镭的碳酸盐进行改性的多元混合物,例如,MgCO3和Al2O3的二元混合物。Preferably, the metal carbonates include one or more of carbonates of lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium or radium, or include lithium, sodium, Multicomponent mixtures modified with carbonates of potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium or radium, eg binary mixtures of MgCO3 and Al2O3 .
相对于现有技术,本发明所提供的基于热化学直接产超临界二氧化碳与超临界二氧化碳布雷顿循环耦合的系统,具有以下技术效果:With respect to the prior art, the system based on thermochemical direct production of supercritical carbon dioxide and supercritical carbon dioxide Brayton cycle coupling provided by the present invention has the following technical effects:
1.在本发明所提供的太阳能超临界二氧化碳布雷顿循环系统中,循环做功的超临界二氧化碳直接通过太阳能吸热器以太阳能热量进行加热,超临界二氧化碳同时作为吸热介质和做功介质,避免了换热损,简化装置,提高了该系统的运行温度,从而提高了系统效率和经济效益。1. In the solar supercritical carbon dioxide Brayton cycle system provided by the present invention, the supercritical carbon dioxide that circulates work is directly heated by the solar heat absorber with solar heat, and the supercritical carbon dioxide is simultaneously used as a heat-absorbing medium and a work medium, avoiding the heat exchange It reduces the damage, simplifies the device, and increases the operating temperature of the system, thereby improving the system efficiency and economic benefits.
2.运行本发明所提供的太阳能超临界二氧化碳布雷顿循环系统时,在储热过程中,储能物质金属碳酸盐分解,储热的同时,可直接产生超临界二氧化碳,不仅可以作为超临界二氧化碳的补充源,简化装置、而且可以提高做功量。2. When operating the solar supercritical carbon dioxide Brayton cycle system provided by the present invention, in the heat storage process, the metal carbonate of the energy storage material is decomposed, and at the same time of heat storage, supercritical carbon dioxide can be directly generated, not only can be used as a supercritical carbon dioxide. A supplementary source of carbon dioxide, which simplifies the device and can increase the work capacity.
3.运行本发明所提供的太阳能超临界二氧化碳布雷顿循环系统时,在放热过程中,金属氧化物和超临界二氧化碳直接接触,发生化合反应,可直接将热量传递给超临界二氧化碳,提高了换热效率。3. When operating the solar supercritical carbon dioxide Brayton cycle system provided by the present invention, in the exothermic process, the metal oxide and the supercritical carbon dioxide are in direct contact, and a compound reaction occurs, and the heat can be directly transferred to the supercritical carbon dioxide, which improves the performance of the supercritical carbon dioxide. heat transfer efficiency.
附图说明Description of drawings
图1是本发明第一实施方式的太阳能超临界二氧化碳布雷顿循环系统的示意图;Fig. 1 is the schematic diagram of the solar supercritical carbon dioxide Brayton cycle system of the first embodiment of the present invention;
图2是本发明第二实施方式的太阳能超临界二氧化碳布雷顿循环系统的示意图;Fig. 2 is the schematic diagram of the solar supercritical carbon dioxide Brayton cycle system of the second embodiment of the present invention;
图3和图4是本发明第三实施方式的太阳能超临界二氧化碳布雷顿循环系统的示意图,其中,图3系统中包含再压缩部分冷却布雷顿循环单元,图4系统中包含再压缩中间冷却布雷顿循环单元;3 and 4 are schematic diagrams of a solar supercritical carbon dioxide Brayton cycle system according to a third embodiment of the present invention, wherein the system of FIG. 3 includes a recompression partial cooling Brayton cycle unit, and the system of FIG. 4 includes a recompression intermediate cooling Brayton frame cycle unit;
图5是本发明第四实施方式的太阳能超临界二氧化碳布雷顿循环系统的示意图;5 is a schematic diagram of a solar supercritical carbon dioxide Brayton cycle system according to a fourth embodiment of the present invention;
图6是本发明第五实施方式的储罐的示意图;Fig. 6 is the schematic diagram of the storage tank of the fifth embodiment of the present invention;
图7是本发明第六实施方式的储罐的示意图;7 is a schematic diagram of a storage tank according to a sixth embodiment of the present invention;
图8是本发明第七实施方式的储罐的示意图;8 is a schematic diagram of a storage tank according to a seventh embodiment of the present invention;
图9是本发明第八实施方式的太阳能吸热器的示意图;9 is a schematic diagram of a solar heat absorber according to an eighth embodiment of the present invention;
图10是本发明第九实施方式的太阳能吸热器的示意图;10 is a schematic diagram of a solar heat absorber according to a ninth embodiment of the present invention;
图11是本发明第九实施方式的太阳能超临界二氧化碳布雷顿循环系统的示意图。11 is a schematic diagram of a solar supercritical carbon dioxide Brayton cycle system according to a ninth embodiment of the present invention.
附图标记说明:Description of reference numbers:
1-太阳能吸热器;2-第一阀门;3-涡轮单元;4-再压缩机;5-冷却器;6-主压缩机;7-第二阀门;8-储气罐;9-第三阀门;10-低温回热器;11-高温回热器;12-第四阀门;13-储罐;14-第五阀门;15-第六阀门;16-预压缩机;17-中间冷却器;18-风机;31-低压涡轮机;32-高压涡轮机;33-太阳能储热罐;61-隔板;62-过滤装置。1-solar heat absorber; 2-first valve; 3-turbine unit; 4-recompressor; 5-cooler; 6-main compressor; 7-second valve; 8-air tank; 9-th Three valves; 10-low temperature regenerator; 11-high temperature regenerator; 12-fourth valve; 13-storage tank; 14-fifth valve; 15-sixth valve; 16-pre-compressor; 17-intermediate cooling 18-fan; 31-low pressure turbine; 32-high pressure turbine; 33-solar heat storage tank; 61-baffle plate; 62-filter device.
具体实施方式Detailed ways
下面对照附图对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings.
如图1所示,本发明的第一实施方式涉及一种基于MgCO3/MgO储能的太阳能超临界二氧化碳布雷顿循环系统,超临界二氧化碳在该系统中循环,该系统包括:As shown in FIG. 1 , the first embodiment of the present invention relates to a solar supercritical carbon dioxide Brayton cycle system based on MgCO 3 /MgO energy storage, in which supercritical carbon dioxide circulates, and the system includes:
太阳能吸热器1,涡轮单元3和布雷顿循环单元,太阳能吸热器1和布雷顿循环单元分别与涡轮单元3通过管路相连,用于储存金属碳酸盐和对应金属氧化物的储罐13与太阳能吸热器1和涡轮单元3之间的循环超临界二氧化碳管路呈并联连接,用于储存超临界二氧化碳的储气罐8设置于布雷顿循环单元中;The solar heat absorber 1, the
在本实施方式中的布雷顿循环单元为再压缩布雷顿循环单元,其包括:高温回热器11、低温回热器10、主压缩机6、再压缩机4和冷却器5;高温回热器11的热端连接涡轮单元3和低温回热器10,高温回热器11的冷端入口连接再压缩机4和低温回热器10,高温回热器11的冷端出口连接太阳能吸热器1;低温回热器10的热端入口连接高温回热器11,低温回热器10的热端出口连接再压缩机4和冷却器5,低温回热器10的冷端连接主压缩机6和高温回热器11;冷却器5连接低温回热器10和主压缩机6;储气罐8设置于低温回热器10与冷却器5之间。The Brayton cycle unit in this embodiment is a recompression Brayton cycle unit, which includes: a
本实施方式的太阳能超临界二氧化碳布雷顿循环系统的运行过程如下:The operation process of the solar supercritical carbon dioxide Brayton cycle system of this embodiment is as follows:
当光照条件充足时,打开设于循环超临界二氧化碳的管道中的第一阀门2、第五阀门14和储气罐8的用于进气的第三阀门9,关闭储气罐8的用于出气的第二阀门7和通向储罐13的第四阀门12,循环超临界二氧化碳在太阳能吸热器1中吸收热量,被加热到750℃;同时,通过换热介质将太阳能热量传递给储罐13中的MgCO3,在25MPa、温度达到669℃时,MgCO3发生分解反应,将热量储存,热化学产生的超临界二氧化碳与经过太阳能吸热器1的循环超临界二氧化碳一同进入涡轮单元3,对外做功。When the light conditions are sufficient, open the
做功后的低压中温超临界二氧化碳经过高温回热器11和低温回热器10后,将等量的热化学产生的超临界二氧化碳储存在储气罐8中,剩余的超临界二氧化碳分为两股,一股经过冷却器5,进入主压缩机6,然后经过低温回热器10加热,与另一股经过再压缩机4的超临界二氧化碳汇合,一同经过高温回热器11加热,最后进入太阳能吸热器1吸收热量,形成高温高压超临界二氧化碳,继续循环做功。After the low-pressure medium-temperature supercritical carbon dioxide after the work passes through the high-
上述吸热过程发生的化学反应如下方程所示,热能以化学能形式储存。The chemical reaction that takes place in the above endothermic process is shown in the following equation, and thermal energy is stored in the form of chemical energy.
MgCO3→MgO+CO2 MgCO 3 →MgO+CO 2
当光照条件不佳或无光照时,关闭第四阀门12、第一阀门2和第五阀门14,将太阳能吸热器1隔离。打开储气罐8的用于出气的第二阀门7,关闭用于进气的第三阀门9,储气罐8中储存的热化学产生的超临界二氧化碳与循环超临界二氧化碳汇合成一股物流,然后分为两部分,一股经过冷却器5冷却、主压缩机6加压、低温回热器10加热后,与另一股经过再压缩机4加压的超临界二氧化碳一同进入储罐13,与MgO接触,发生化合反应,释放热量,将循环超临界二氧化碳加热到700℃,进入涡轮单元3,对外做功。When the light conditions are poor or there is no light, the
上述放热过程发生的化学反应如下方程所示:The chemical reaction that occurs during the above exothermic process is represented by the following equation:
MgO+CO2→MgCO3 MgO+CO 2 →MgCO 3
本发明的第二实施方式也涉及一种基于MgCO3/MgO储能的太阳能超临界二氧化碳布雷顿循环系统,其结构如图2所示。The second embodiment of the present invention also relates to a solar supercritical carbon dioxide Brayton cycle system based on MgCO 3 /MgO energy storage, the structure of which is shown in FIG. 2 .
与第一实施方式不同之处在于,本实施方式中的涡轮单元3包括低压涡轮机31、高压涡轮机32和设置于低压涡轮机31和高压涡轮机32之间的太阳能储热罐33,用于储存太阳能热量,以及太阳能储罐33的用于进气的第六阀门15。当光照条件充足时,打开第六阀门15,抽取部分经过太阳能吸热器1加热的高温超临界二氧化碳,进入太阳能储热罐,释放热量,将热量以显热、潜热或热化学的形式在太阳能储热罐33中进行储存,释放热量后的低温超临界二氧化碳进入循环回路,完成太阳能储热罐33的储热过程。The difference from the first embodiment is that the
本实施方式的太阳能超临界二氧化碳布雷顿循环系统的运行过程与第一实施方式区别之处在于,进入涡轮单元3的超临界二氧化碳,先进入高压涡轮机32对外做功,然后在太阳能储热罐33中吸收热量,再进入低压涡轮机31对外做功,提高整体效率。The difference between the operation process of the solar supercritical carbon dioxide Brayton cycle system of this embodiment and the first embodiment is that the supercritical carbon dioxide entering the
本发明的第三实施方式也涉及一种基于MgCO3/MgO储能的太阳能超临界二氧化碳布雷顿循环系统,与第二实施方式不同之处在于布雷顿循环单元添加中间冷却器17,根据中间冷却器17位置不同,其结构如图3或图4所示。The third embodiment of the present invention also relates to a solar supercritical carbon dioxide Brayton cycle system based on MgCO 3 /MgO energy storage, and differs from the second embodiment in that the Brayton cycle unit adds an
图3所示系统中所包括的为再压缩部分冷却布雷顿循环单元,与第二实施方式不同之处在于,本实施方式中添加了预压缩机16和中间冷却器17,预压缩机16位于主压缩机6和再压缩机4之前,中间冷却器17位于预压缩机16和主压缩机6之间,经过冷却器5降温后的超临界二氧化碳进入预压缩机16加压,分为两股流,一股经过中间冷却器17降温,主压缩机6增压,低温回热器10加热后,与另一股经过再压缩机4加压的超临界二氧化碳混合,进入高温回热器11。The system shown in FIG. 3 includes a recompression part cooling Brayton cycle unit. The difference from the second embodiment is that a pre-compressor 16 and an
图4所示系统中所包括的为再压缩中间冷却布雷顿循环单元,与第二实施方式不同之处在于,本实施方式中添加了预压缩机16和中间冷却器17,预压缩机16位于冷却器5之后,中间冷却器17之前,中间冷却器17位于预压缩机16和主压缩机6之间。从低温回热器10流出的超临界二氧化碳分为两股流,一股经过冷却器5预冷,预压缩机16加压,中间冷却器17冷却,主压缩机6加压,低温回热器10加热与另一股经过再压缩机4加压的超临二氧化碳混合,共同进入高温回热器11。What is included in the system shown in FIG. 4 is the recompression intercooling Brayton cycle unit, which is different from the second embodiment in that a
本实施方式的再压缩部分冷却布雷顿单元和再压缩中间冷却布雷顿单元与第二实施方式运行效果区别之处在于,增加了预压缩机16和中间冷却器17,降低了对压比变化的敏感性和压缩机耗功,提高了整体效率,更加适用于较大的涡轮机压比系统。The difference between the recompression part cooling Brayton unit and the recompression intercooling Brayton unit in this embodiment and the second embodiment is that the pre-compressor 16 and the
本发明的第四实施方式也涉及一种基于MgCO3/MgO储能的太阳能超临界二氧化碳布雷顿循环系统,其结构如图5所示。The fourth embodiment of the present invention also relates to a solar supercritical carbon dioxide Brayton cycle system based on MgCO 3 /MgO energy storage, the structure of which is shown in FIG. 5 .
与第一实施方式不同之处在于,本实施方式中的储罐13与太阳能吸热器1和涡轮单元3之间的循环超临界二氧化碳管路呈串联连接。The difference from the first embodiment is that the
本发明的第五实施方式涉及第一至第四实施方式中的储罐的结构。如图6所示,本实施方式中的储罐为固定床结构,该种结构简单,无颗粒磨损。The fifth embodiment of the present invention relates to the structure of the storage tank in the first to fourth embodiments. As shown in FIG. 6 , the storage tank in this embodiment has a fixed bed structure, which is simple in structure and free from particle wear.
本发明的第六实施方式也涉及第一至第四实施方式中的储罐的结构。如图7所示,本实施方式中的储罐为隔板型内循环流化床结构,在循环流化床结构中设有隔板61和过滤装置62,采用循环流化床可增强传热传质效果,从而增强反应速率,保证化学反应完全。The sixth embodiment of the present invention also relates to the structure of the storage tank in the first to fourth embodiments. As shown in FIG. 7 , the storage tank in this embodiment is a clapboard-type inner circulating fluidized bed structure, and a
本发明的第七实施方式也涉及第一至第四实施方式中的储罐的结构。如图8所示,本实施方式中的储罐为蜂窝结构或者多孔结构,以金属氧化物或碳化硅为基体,MgCO3负载在蜂窝结构或者多孔结构表面,该种结构可实现以热化学和显热的形式储存太阳能。The seventh embodiment of the present invention also relates to the structure of the storage tank in the first to fourth embodiments. As shown in FIG. 8 , the storage tank in this embodiment has a honeycomb structure or a porous structure, with metal oxide or silicon carbide as the matrix, and MgCO 3 is loaded on the surface of the honeycomb structure or porous structure. This structure can realize thermochemical and Solar energy is stored in the form of sensible heat.
本发明的第八实施方式涉及第一至第四实施方式中的太阳能吸热器的结构。如图9所示,本实施方式中的太阳能吸热器为螺旋管腔式吸热器,该结构通过增加加热管路长度,可提高太阳能吸热器出口处超临界二氧化碳的温度。The eighth embodiment of the present invention relates to the structure of the solar heat absorber in the first to fourth embodiments. As shown in FIG. 9 , the solar heat absorber in this embodiment is a spiral-tube cavity heat absorber. This structure can increase the temperature of supercritical carbon dioxide at the outlet of the solar heat absorber by increasing the length of the heating pipeline.
本发明的第九实施方式涉及另一种适用于本发明系统的太阳能吸热器的结构和对应的太阳能超临界二氧化碳布雷顿循环系统。The ninth embodiment of the present invention relates to another structure of a solar heat sink suitable for use in the system of the present invention and a corresponding solar supercritical carbon dioxide Brayton cycle system.
本实施方式中的太阳能吸热器的结构如图10所示,该种太阳能吸热器为埋管式颗粒流化床吸热器,将太阳能吸热器填充适当颗粒,以二氧化碳或其他气体为流化气体,使得太阳能吸热器中的固体颗粒处于流化状态,固体颗粒吸收太阳能,热量主要以对流和导热的方式传递给管道,从而加热管道中的超临界二氧化碳,此种加热方式使得温度分布更加均匀,减小管道热应力。The structure of the solar heat absorber in this embodiment is shown in FIG. 10 . This kind of solar heat absorber is a buried tube type particle fluidized bed heat absorber. The solar heat absorber is filled with appropriate particles, and carbon dioxide or other gases are used as the The fluidizing gas makes the solid particles in the solar heat absorber in a fluidized state, the solid particles absorb solar energy, and the heat is mainly transferred to the pipeline by convection and heat conduction, thereby heating the supercritical carbon dioxide in the pipeline. This heating method makes the temperature The distribution is more uniform, reducing the thermal stress of the pipeline.
埋管式颗粒流化床太阳能吸热器对应的太阳能超临界二氧化碳布雷顿循环系统如图11所示,本实施方式中的太阳能超临界二氧化碳布雷顿循环系统与第三实施方式不同之处在于添加了太阳能吸热器1的流化气体循环回路和用于回路气体循环的风机18,流化气体进入太阳能吸热器1,使得太阳能吸热器1中的固体颗粒呈流化状态,流化气体在太阳能吸热器1中吸收热量,吸热后的高温流化气体由太阳能吸热器1排出,进入太阳能储热罐33,释放热量,将热量以显热、潜热或化学热的形式在太阳能储热罐33中进行储存,释放热量后的低温流化气体经过风机18进入太阳能吸热器1,循环流动。The solar supercritical carbon dioxide Brayton cycle system corresponding to the buried-tube particle fluidized bed solar heat absorber is shown in FIG. 11 . The solar supercritical carbon dioxide Brayton cycle system in this embodiment is different from the third embodiment in that the addition of The fluidizing gas circulation loop of the solar heat absorber 1 and the
需要说明的是,在本发明的实施方式中,布雷顿循环单元除了可以为再压缩布雷顿循环单元之外,也可以选择其他多种形式,例如简单布雷顿循环单元、再压缩部分冷却布雷顿循环单元或再压缩中间冷却布雷顿循环单元。太阳能吸热器的聚焦系统可以为现有技术中的各种聚焦系统,例如塔式聚光系统、碟式聚光系统、槽式聚光系统或线性菲涅尔式聚光系统中的一种或多种。金属碳酸盐也可以包括锂、钠、钾、铷、铯、钫、铍、镁、钙、锶、钡或镭的碳酸盐中的一种或多种;或者包括对锂、钠、钾、铷、铯、钫、铍、镁、钙、锶、钡或镭的碳酸盐进行改性的多元混合物。本领域技术人员可以根据需要进行选择,这并不对本发明的技术方案构成限定。It should be noted that, in the embodiment of the present invention, the Brayton cycle unit can be selected in various other forms besides the recompression Brayton cycle unit, such as simple Brayton cycle unit, recompression partial cooling Brayton Recycle unit or recompression intercooled Brayton cycle unit. The focusing system of the solar heat absorber can be various focusing systems in the prior art, such as one of a tower concentrating system, a dish concentrating system, a trough concentrating system or a linear Fresnel concentrating system or more. Metal carbonates may also include one or more of lithium, sodium, potassium, rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium, or radium carbonates; , rubidium, cesium, francium, beryllium, magnesium, calcium, strontium, barium or radium carbonate modified multi-component mixture. Those skilled in the art can make selections as required, which does not constitute a limitation on the technical solutions of the present invention.
本领域的普通技术人员可以理解,在上述的各实施方式中,为了使读者更好地理解本申请而提出了许多技术细节。但是,即使没有这些技术细节和基于上述各实施方式的种种变化和修改,也可以基本实现本申请各权利要求所要求保护的技术方案,因此,在实际应用中,可以在形式上和细节上对上述实施方式作各种改变,而不偏离本发明的精神和范围。It can be understood by those skilled in the art that, in the above-mentioned embodiments, many technical details are provided for the reader to better understand the present application. However, even without these technical details and various changes and modifications based on the above-mentioned embodiments, the technical solutions claimed in the claims of the present application can basically be realized. Various changes may be made to the above-described embodiments without departing from the spirit and scope of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810116158.3A CN110118160B (en) | 2018-02-06 | 2018-02-06 | Solar supercritical carbon dioxide Brayton cycle system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810116158.3A CN110118160B (en) | 2018-02-06 | 2018-02-06 | Solar supercritical carbon dioxide Brayton cycle system |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110118160A CN110118160A (en) | 2019-08-13 |
CN110118160B true CN110118160B (en) | 2020-10-30 |
Family
ID=67519959
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810116158.3A Active CN110118160B (en) | 2018-02-06 | 2018-02-06 | Solar supercritical carbon dioxide Brayton cycle system |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110118160B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112576467A (en) * | 2019-09-29 | 2021-03-30 | 杨浩仁 | Solar Brayton cycle power generation system and method thereof |
CN111859563B (en) * | 2020-07-10 | 2023-04-28 | 西安交通大学 | Similar modeling method for supercritical carbon dioxide turbine test |
CN111895836A (en) * | 2020-09-08 | 2020-11-06 | 西安热工研究院有限公司 | A combined energy storage system and method for thermochemical energy storage and sensible heat energy storage |
CN113048666A (en) * | 2021-01-31 | 2021-06-29 | 浙江工业大学 | Based on S-CO2Recompression Brayton cycle's amino solar energy utilizes device |
CN115127378B (en) * | 2021-03-25 | 2024-08-20 | 清华大学 | Particle/supercritical carbon dioxide heat exchange experiment system and power generation experiment system |
CN113663636B (en) * | 2021-08-31 | 2022-10-14 | 南京工业大学 | Rotary calcium-based high-temperature thermochemical energy storage reaction device and energy storage reaction method |
CN114412603B (en) * | 2022-02-28 | 2024-12-10 | 浙江大学 | Power Generation System |
CN116072318B (en) * | 2023-01-18 | 2024-01-23 | 哈尔滨工程大学 | Multi-loop brayton cycle energy conversion system for heat pipe stacks and method of operation |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011139804A2 (en) * | 2010-04-27 | 2011-11-10 | Sequesco | Use of oxyhydrogen microorganisms for non-photosynthetic carbon capture and conversion of inorganic and/or c1 carbon sources into useful organic compounds |
CN102797650A (en) * | 2011-05-27 | 2012-11-28 | 中国科学院工程热物理研究所 | Low-CO2-emisison solar energy and methanol complementary thermodynamic cycle system and method |
CN103352814A (en) * | 2013-07-25 | 2013-10-16 | 中国科学院工程热物理研究所 | Parabolic groove type composite power generation system with solar heat collector and chemical heat pump being combined together |
CN105863977A (en) * | 2016-04-05 | 2016-08-17 | 西安热工研究院有限公司 | Supercritical carbon dioxide Brayton cycle power generation system and method |
CN106281469A (en) * | 2016-07-28 | 2017-01-04 | 石家庄新华能源环保科技股份有限公司 | A kind of high pressure low temperature Gas Energy Source system |
CN106524809A (en) * | 2016-12-01 | 2017-03-22 | 西安交通大学 | Gradient energy storage and energy release system and method based on reversible chemical reaction |
CN106595363A (en) * | 2016-12-09 | 2017-04-26 | 南京工业大学 | High-temperature calcium circulation thermochemical energy storage method and system |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8303916B2 (en) * | 2008-02-01 | 2012-11-06 | Oscura, Inc. | Gaseous transfer in multiple metal bath reactors |
CN101888194B (en) * | 2009-05-13 | 2013-07-10 | 中国科学院工程热物理研究所 | Solar energy and methanol fuel chemical-looping combustion power generation system and method |
-
2018
- 2018-02-06 CN CN201810116158.3A patent/CN110118160B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011139804A2 (en) * | 2010-04-27 | 2011-11-10 | Sequesco | Use of oxyhydrogen microorganisms for non-photosynthetic carbon capture and conversion of inorganic and/or c1 carbon sources into useful organic compounds |
CN102797650A (en) * | 2011-05-27 | 2012-11-28 | 中国科学院工程热物理研究所 | Low-CO2-emisison solar energy and methanol complementary thermodynamic cycle system and method |
CN103352814A (en) * | 2013-07-25 | 2013-10-16 | 中国科学院工程热物理研究所 | Parabolic groove type composite power generation system with solar heat collector and chemical heat pump being combined together |
CN105863977A (en) * | 2016-04-05 | 2016-08-17 | 西安热工研究院有限公司 | Supercritical carbon dioxide Brayton cycle power generation system and method |
CN106281469A (en) * | 2016-07-28 | 2017-01-04 | 石家庄新华能源环保科技股份有限公司 | A kind of high pressure low temperature Gas Energy Source system |
CN106524809A (en) * | 2016-12-01 | 2017-03-22 | 西安交通大学 | Gradient energy storage and energy release system and method based on reversible chemical reaction |
CN106595363A (en) * | 2016-12-09 | 2017-04-26 | 南京工业大学 | High-temperature calcium circulation thermochemical energy storage method and system |
Also Published As
Publication number | Publication date |
---|---|
CN110118160A (en) | 2019-08-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110118160B (en) | Solar supercritical carbon dioxide Brayton cycle system | |
CN102758748B (en) | High-pressure liquid air energy storage/release system | |
CN114135349B (en) | Thermal power plant waste heat recycling method and energy storage power generation system coupled with thermal power plant | |
CN110905747B (en) | A combined power cycle power generation system utilizing high temperature solar energy and LNG cold energy | |
CN112562879B (en) | A multi-energy supply system based on nuclear energy cascade utilization | |
CN206539381U (en) | A kind of supercritical carbon dioxide cycle generating system based on combustion gas and solar heat | |
CN108151364A (en) | Heat-pump-type energy storage for power supply heat supply method and device | |
CN101719385A (en) | Superconductive heat tube type nuclear power heat-clod cogeneration system | |
CN106481522B (en) | A Closed Helium Turbine Tower Solar Thermal Power Generation System with Thermal Storage | |
WO2023193486A1 (en) | Normal-temperature liquid compressed carbon dioxide mixed working fluid energy storage system and method | |
CN107514837A (en) | Cogeneration system of cooling, heating and power coupled with heat pump and supercritical carbon dioxide Brayton cycle | |
CN108731303A (en) | Heat-pump-type replaces energy storage for power supply method and device | |
CN112943393B (en) | A geothermal energy thermochemical and compressed air composite energy storage system and its operation method | |
CN202811079U (en) | High-efficiency and high-pressure liquid air energy storage/ release system | |
CN106545370A (en) | A kind of helium Closed Brayton Power Cycle electricity generation system of two grade utility LNG cold energy | |
CN106499601B (en) | Closed helium turbine tower type solar thermal power generation system with heat storage function | |
CN107313904B (en) | Solar air-carbon dioxide combined cycle power generation system | |
CN108643982A (en) | A kind of overcritical Brayton cycle electricity generation system and method that band refrigeration is cooling | |
CN201943904U (en) | Thermal power generating system using solar-energy return-heating, reheating and inter-cooling gas turbine circulation | |
CN108252757A (en) | A kind of multi-stage compression circulating generation method using supercritical carbon dioxide | |
CN111895836A (en) | A combined energy storage system and method for thermochemical energy storage and sensible heat energy storage | |
CN209943012U (en) | A solar thermal power generation system based on thermochemical energy storage | |
CN110242522A (en) | A solar thermal power generation system and method based on thermochemical energy storage | |
CN114382565B (en) | Energy storage power generation system with combined cooling, heating and power | |
CN102162397A (en) | Cycling generating system of pressurized water reactor nuclear power gas turbine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |