CN110108276B - Method for precisely measuring geographic latitude by using magnetic suspension gyroscope - Google Patents
Method for precisely measuring geographic latitude by using magnetic suspension gyroscope Download PDFInfo
- Publication number
- CN110108276B CN110108276B CN201910337409.5A CN201910337409A CN110108276B CN 110108276 B CN110108276 B CN 110108276B CN 201910337409 A CN201910337409 A CN 201910337409A CN 110108276 B CN110108276 B CN 110108276B
- Authority
- CN
- China
- Prior art keywords
- gyro
- measuring instrument
- magnetic suspension
- program
- latitude
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 239000000725 suspension Substances 0.000 title claims description 23
- 238000005339 levitation Methods 0.000 claims abstract description 74
- 238000005259 measurement Methods 0.000 claims abstract description 10
- 238000013016 damping Methods 0.000 claims description 44
- 238000007667 floating Methods 0.000 claims description 18
- 238000005070 sampling Methods 0.000 claims description 11
- 230000005672 electromagnetic field Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 5
- 230000001939 inductive effect Effects 0.000 claims description 4
- 230000005484 gravity Effects 0.000 claims description 3
- 238000009987 spinning Methods 0.000 claims 6
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims 1
- 238000012545 processing Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 3
- 230000006698 induction Effects 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005305 interferometry Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01C—MEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
- G01C21/00—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
- G01C21/10—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration
- G01C21/12—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
- G01C21/16—Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00 by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
- G01C21/18—Stabilised platforms, e.g. by gyroscope
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Gyroscopes (AREA)
- Navigation (AREA)
- Measuring Magnetic Variables (AREA)
Abstract
本发明公开了一种利用磁悬浮陀螺精密测定地理纬度的方法,该方法所采用的测量仪由磁悬浮陀螺系统、精密测角及回转系统、对中整平系统和计算机系统等构成,所述的方法为:安置测量仪、输入所需的纬度精度要求、纬度初值解算、测量仪近北、地理纬度解算,最后,通过与所需的精度要求进行比较进而判定是否继续迭代或是输出最终的地理纬度值。采用发明的测量仪简单易操作,地理纬度解算方法简便,数据处理时间短,无需进行大范围联测,可以独立获取单个测站的地理纬度。
The invention discloses a method for accurately measuring geographic latitude by using a magnetic levitation gyroscope. The measuring instrument used in the method is composed of a magnetic levitation gyroscope system, a precise angle measurement and rotation system, a centering and leveling system, a computer system, and the like. It is: placing the measuring instrument, inputting the required latitude accuracy requirements, calculating the initial latitude value, measuring the near north of the measuring instrument, calculating the geographic latitude, and finally, by comparing with the required accuracy requirements to determine whether to continue the iteration or output the final the geographic latitude value. The measuring instrument of the invention is simple and easy to operate, the method for calculating the geographic latitude is simple, the data processing time is short, the large-scale joint survey is not required, and the geographic latitude of a single measuring station can be independently obtained.
Description
技术领域technical field
本发明属于大地测量学、天体测量与天体力学、地球动力学、惯性导航技术领域,可以用于板块运动监测、航空航天、精密导航定位、地球物理学等研究领域,提供一种利用磁悬浮陀螺精密测定地理纬度的方法。The invention belongs to the technical fields of geodesy, astrometry and celestial mechanics, geodynamics, inertial navigation, and can be used in research fields such as plate motion monitoring, aerospace, precision navigation and positioning, geophysics, etc. A method of determining geographic latitude.
背景技术Background technique
由于地球的自转过程是不稳定的,极移是用以描述地球的自转状态的一个重要参数。通过监测测站上地理纬度值的变化可推导极移变化。因此,准确地测量纬度的变化对于地球动力学、大地测量学的研究都有着重要的实际意义和应用价值。Since the rotation process of the earth is unstable, the pole shift is an important parameter to describe the rotation state of the earth. Polar shift changes can be derived by monitoring changes in geographic latitude values at stations. Therefore, the accurate measurement of latitude changes has important practical significance and application value for the study of geodynamics and geodesy.
而传统的用于监测地球自转的变化的空间大地测量技术,如全球卫星定位技术GNSS、卫星激光测距技术SLR、甚长基线干涉测量技术VLBI等。而这些空间大地测量技术具有如下共同特点:The traditional space geodetic technology used to monitor the change of the earth's rotation, such as global satellite positioning technology GNSS, satellite laser ranging technology SLR, very long baseline interferometry technology VLBI and so on. These spatial geodetic techniques have the following common characteristics:
1.监测系统复杂且庞大,需要花费巨大的人力物力;2.观测周期长,解算方法复杂,数据处理时间长;3.无法对单个测站进行纬度测量,必须进行大范围联测。1. The monitoring system is complex and huge, which requires huge manpower and material resources; 2. The observation period is long, the solution method is complex, and the data processing time is long; 3. It is impossible to measure the latitude of a single station, and a large-scale joint measurement must be carried out.
发明内容SUMMARY OF THE INVENTION
针对上述现有技术中存在的问题,本发明的目的是提供一种比现有技术精度更高且更为简便的利用磁悬浮陀螺精密测定地理纬度的方法。Aiming at the problems existing in the above-mentioned prior art, the purpose of the present invention is to provide a method for precisely measuring geographic latitude by using a magnetic levitation gyroscope, which is more precise and simpler than the prior art.
为了实现上述任务,本发明采用以下技术方案:In order to realize the above-mentioned tasks, the present invention adopts the following technical solutions:
一种磁悬浮陀螺地理纬度测量仪,包括外壳体,还包括设置于外壳体中的内壳体、位于外壳体下部,用于驱动外壳体旋转的下转台,以及:A magnetic levitation gyro geographic latitude measuring instrument includes an outer casing, an inner casing disposed in the outer casing, a lower turntable located at the lower part of the outer casing and used for driving the outer casing to rotate, and:
磁悬浮陀螺系统,包括设置于内壳体中的浮起装置,浮起装置通过衔接架带动陀螺房上浮或下落至初始位置,通过调节浮起装置使陀螺房上浮后处于位置稳定状态;所述的内壳体下方设置有与所述陀螺房下部连接的阻尼传感器转子,外壳体内的底部在周向分布有阻尼传感器定子;The magnetic levitation gyro system includes a floating device arranged in the inner casing, the floating device drives the gyro room to float or fall to the initial position through the connecting frame, and the gyro room is in a stable position after floating by adjusting the floating device; A damping sensor rotor connected to the lower part of the gyro room is arranged under the inner casing, and a damping sensor stator is distributed in the circumferential direction at the bottom of the outer casing;
精密测角及回转系统,用于驱动所述内壳体转动并测量转动角度,以及测量外壳体的旋转角度;A precision angle measuring and turning system, used to drive the inner casing to rotate and measure the rotation angle, as well as measure the rotation angle of the outer casing;
对中整平系统,用于在测量仪安装时通过指北标识进行初步指北、调整测量仪处于水平状态以及使测量仪的中心轴线穿过待测点;The centering and leveling system is used for preliminary north pointing through the north pointing sign when the measuring instrument is installed, adjusting the measuring instrument to be in a horizontal state, and making the central axis of the measuring instrument pass through the point to be measured;
计算机系统,用于驱动所述陀螺旋转或停止、驱动陀螺房浮起或下落以及浮起后的位置稳定判断、在所述阻尼传感器转子和阻尼传感器定子之间形成均匀水平电磁场并采集阻尼传感器转子电流值和阻尼传感器定子电流值、控制内壳体转动至指定角度、控制下转台转动至指定角度。The computer system is used to drive the gyro to rotate or stop, to drive the gyro room to float or fall, and to judge the position stability after floating, to form a uniform horizontal electromagnetic field between the damping sensor rotor and the damping sensor stator, and to collect the damping sensor rotor Current value and damping sensor stator current value, control the inner shell to rotate to the specified angle, and control the lower turntable to rotate to the specified angle.
进一步地,所述的阻尼传感器转子的下部连接有陀螺下落锥,位于外壳体底部内表面的中心处设置有与所述陀螺下落锥配合的陀螺下落槽;Further, the lower part of the damping sensor rotor is connected with a gyro falling cone, and a gyro falling groove is arranged at the center of the inner surface of the bottom of the outer casing to cooperate with the gyro falling cone;
所述衔接架下部设置有衔接杆下落锥,位于内壳体底部设置有与所述衔接杆下落锥配合的衔接杆下落槽。A connecting rod drop cone is arranged at the lower part of the connecting frame, and a connecting rod falling groove is arranged at the bottom of the inner casing to cooperate with the connecting rod falling cone.
进一步地,所述的对中整平系统包括所述的指北标识、水准管、脚螺旋以及下对中标识孔,其中:Further, the centering and leveling system includes the north-pointing mark, the level tube, the foot screw and the lower centering mark hole, wherein:
所述的指北标识位于外壳体上表面,水准管位于外壳体上表面中心处,水准管的中心轴线与测量仪的中心轴线垂直;所述下转台下部安装于水平平台上,水平平台通过其底部的脚螺旋安装在下平台上,下对中标识孔位于所述下平台的中心处。The north-pointing sign is located on the upper surface of the outer shell, the leveling tube is located at the center of the upper surface of the outer shell, and the central axis of the leveling tube is perpendicular to the central axis of the measuring instrument; the lower part of the lower turntable is installed on the horizontal platform, and the horizontal platform passes through it. The bottom foot screw is mounted on the lower platform, and the lower centering identification hole is located at the center of the lower platform.
进一步地,所述的计算机系统设置在外壳体上表面上,包括微型计算机、键盘以及显示屏。Further, the computer system is arranged on the upper surface of the outer casing, and includes a microcomputer, a keyboard and a display screen.
进一步地,所述的精密测角及回转系统包括光栅度盘、回转马达以及所述的下转台,其中:Further, the precision angle measurement and rotation system includes a grating scale, a rotation motor, and the lower turntable, wherein:
光栅度盘安装于外壳体内的顶部,其下部连接所述回转马达,回转马达下部连接所述内壳体。The grating scale plate is installed on the top of the outer casing, the lower part of which is connected to the rotary motor, and the lower part of the rotary motor is connected to the inner casing.
进一步地,所述的浮起装置包括位于内壳体中顶部的电感线圈,在所述的衔接架上设置有与所述电杆线圈配合的衔铁;Further, the floating device includes an inductance coil located at the top of the inner casing, and an armature matched with the pole coil is arranged on the connecting frame;
在所述衔接架的端部分布有自准直光电传感器,所述内壳体的内壁上分布有与所述自准直光电传感器相互配合且一一对应的反射棱镜。A self-collimation photoelectric sensor is distributed at the end of the connecting frame, and reflecting prisms are distributed on the inner wall of the inner casing, which cooperate with the self-collimation photoelectric sensor and correspond one-to-one.
进一步地,所述的陀螺房内部设置有陀螺转轴,陀螺转轴的两端通过轴承安装于陀螺房内壁上,陀螺转轴上安装有陀螺。Further, the gyro room is provided with a gyro rotating shaft, both ends of the gyro rotating shaft are mounted on the inner wall of the gyro room through bearings, and a gyro is installed on the gyro rotating shaft.
一种利用磁悬浮陀螺精密测定地理纬度的方法,包括以下步骤:A method for accurately measuring geographic latitude using a magnetic levitation gyro, comprising the following steps:
步骤1,在待测点上安装磁悬浮陀螺地理纬度测量仪,使测量仪的指北标识初步指北,并调平测量仪;
步骤2,通过计算机系统输入所需的纬度精度要求e;
步骤3,在回转马达0°位置处进行指向力矩采样,得到该位置处对应的力矩值M甲0,然后回转马达逆时针旋转λ,采集该位置处对应的力矩值M乙0;通过以下公式计算纬度初值
上式中,H为陀螺角动量,ωe为平均地球自转角速度;In the above formula, H is the angular momentum of the gyro, and ω e is the average angular velocity of the earth's rotation;
步骤4,在回转马达0°位置处进行指向力矩采样,得到该位置处对应的力矩值M丙 i ,然后回转马达顺时针旋转180°,采集该位置处对应的力矩值M丁i;由以下公式计算测量仪偏北角:
其中,为上一步中的纬度解算值;in, is the solved value for the latitude in the previous step;
控制下转台逆时针旋转角度αi,从而使测量仪零位更加接近真北方向;Control the counterclockwise rotation angle α i of the lower turntable, so that the zero position of the measuring instrument is closer to the true north direction;
步骤5,在回转马达0°位置处进行指向力矩采样,得到该位置处对应的力矩值M甲i+1,然后回转马达逆时针旋转λ,采集该位置处对应的力矩值M乙i+1;通过下式计算地理纬度:Step 5: Sampling the pointing torque at the 0° position of the rotary motor to obtain the corresponding torque value M a i+1 at this position, and then the rotary motor rotates λ counterclockwise to collect the corresponding torque value M i+1 at this position. ; Calculate geographic latitude by:
步骤6,判断地理纬度是否满足精度要求,如满足,则输出如不满足,则返回步骤4重新迭代计算。Step 6: Determine whether the geographic latitude meets the accuracy requirements, if so, output If it is not satisfied, go back to
进一步地,步骤3、步骤4、步骤5在每一个位置处进行力矩采样之前,先通过计算机系统依次执行以下程序:Further, before the moment sampling is performed at each position in
磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,其中:Magnetic levitation gyroscope rotation program, magnetic levitation gyroscope floating program, magnetic levitation gyroscope stable position determination program, torquer measurement program, magnetic levitation gyroscope falling program, magnetic levitation gyroscope stop program, among which:
磁悬浮陀螺转动程序:陀螺接收计算机系统指令后转速从零增加到额定转速,并维持在额定转速;Magnetic levitation gyro rotation program: After the gyro receives the computer system command, the speed increases from zero to the rated speed, and maintains the rated speed;
磁悬浮陀螺浮起程序:电感线圈接收计算机系统指令后通电,通过衔接架带动陀螺房上浮;Maglev Gyro Floating Procedure: The induction coil is powered on after receiving the command from the computer system, and drives the gyro room to float up through the connecting frame;
磁悬浮陀螺稳定位置判定程序:控制自准直光电传感器发射激光,并接收反射棱镜反射的激光,如果发射出的激光与反射激光重合,则位置稳定;否则计算机系统调整电感线圈中电流大小以及水平电磁场大小,直至位置稳定;The program for determining the stable position of the magnetic levitation gyro: control the self-collimation photoelectric sensor to emit laser and receive the laser reflected by the reflecting prism. If the emitted laser coincides with the reflected laser, the position is stable; otherwise, the computer system adjusts the current in the inductive coil and the horizontal electromagnetic field. size until the position stabilizes;
力矩器测量程序:通过在阻尼传感器转子和阻尼传感器定子之间形成均匀水平电磁场,实时阻尼传感器转子内部电流值IR和阻尼传感器定子内部电流值IS,则可计算出力矩值为:Torque measurement program: By forming a uniform horizontal electromagnetic field between the damping sensor rotor and the damping sensor stator, the real-time damping sensor rotor internal current value I R and damping sensor stator internal current value IS , the torque value can be calculated as:
M=k·IR·IS M =k·IR·I S
其中,k为力矩器系数;Among them, k is the torquer coefficient;
磁悬浮陀螺下落程序:电感线圈接收计算机系统指令后断电,陀螺房在重力作用下下落,衔接杆下落锥落入衔接杆下落槽中,陀螺下落锥落入陀螺下落槽中,从而实现磁悬浮陀螺系统的准确复位;Maglev Gyro Drop Program: After the induction coil receives the computer system command, the power is turned off, the gyro room falls under the action of gravity, the drop cone of the connecting rod falls into the falling groove of the connecting rod, and the falling cone of the gyro falls into the falling groove of the gyro, so as to realize the magnetic levitation gyro system accurate reset;
磁悬浮陀螺停止程序:陀螺接收计算机系统指令后转速从额定转速逐渐减速到零。Magnetic levitation gyro stop procedure: After the gyro receives the command from the computer system, the speed gradually decelerates from the rated speed to zero.
本发明与现有技术相比具有以下技术特点:Compared with the prior art, the present invention has the following technical characteristics:
本发明提供了一种利用磁悬浮陀螺精密测定地理纬度的方法,根据磁悬浮陀螺敏感地球自转运动的原理获取地面上某一点的地理纬度。采用发明的测量仪简单易操作,地理纬度解算方法简便,数据处理时间短,无需进行大范围联测,可以独立获取单个测站的地理纬度。The invention provides a method for accurately measuring geographic latitude by using a magnetic levitation gyroscope, and obtains the geographic latitude of a certain point on the ground according to the principle that the magnetic levitation gyroscope is sensitive to the rotation of the earth. The measuring instrument of the invention is simple and easy to operate, the method for calculating the geographic latitude is simple, the data processing time is short, the large-scale joint survey is not required, and the geographic latitude of a single measuring station can be independently obtained.
附图说明Description of drawings
图1为本发明利用磁悬浮陀螺测定地理纬度的原理示意图;Fig. 1 is the principle schematic diagram that the present invention utilizes magnetic levitation gyro to measure geographical latitude;
图2为本发明的磁悬浮陀螺地理纬度测量仪处于待机状态下的内部结构示意图。FIG. 2 is a schematic diagram of the internal structure of the magnetic levitation gyro geographic latitude measuring instrument of the present invention in a standby state.
图3为本发明的磁悬浮陀螺地理纬度测量仪处于悬浮状态下的内部结构示意图。3 is a schematic diagram of the internal structure of the magnetic levitation gyro geographic latitude measuring instrument of the present invention in a suspended state.
图4为本发明的磁悬浮陀螺地理纬度测量仪的俯视图;Fig. 4 is the top view of the magnetic levitation gyro geographic latitude measuring instrument of the present invention;
图5为本发明的磁悬浮陀螺地理纬度测量仪的衔接架、自准直光电传感器、反射棱镜工作状态下的俯视图;5 is a top view of the connecting frame, the self-collimating photoelectric sensor, and the reflecting prism of the magnetic levitation gyro geographic latitude measuring instrument of the present invention in the working state;
图6为本发明方法的流程示意图;Fig. 6 is the schematic flow chart of the method of the present invention;
图7为位置甲、位置乙的关系图;Fig. 7 is the relation diagram of position A, position B;
图8为位置丙、位置丁的关系图。Fig. 8 is a relationship diagram of position C and position D.
图中标号说明:1指北标识,2微型计算机,3显示屏,4键盘,5水准管,6光栅度盘,7回转马达,8电感线圈,9外壳体,10内壳体,11衔铁,12衔接架,13反射棱镜,14自准直光电传感器,15衔接杆下落锥,16衔接杆下落槽,17陀螺房,18陀螺,19陀螺转轴,20轴承,21阻尼传感器转子,22阻尼传感器定子,23陀螺下落锥,24陀螺下落槽,25下转台,26水平平台,27脚螺旋,28下对中标识孔。Description of the labels in the figure: 1 pointing to the north, 2 microcomputer, 3 display screen, 4 keyboard, 5 level tube, 6 grating dial, 7 rotary motor, 8 inductor coil, 9 outer shell, 10 inner shell, 11 armature, 12 connecting frame, 13 reflecting prism, 14 self-collimating photoelectric sensor, 15 connecting rod drop cone, 16 connecting rod drop groove, 17 gyro room, 18 gyro, 19 gyro shaft, 20 bearing, 21 damping sensor rotor, 22 damping sensor stator , 23 gyro drop cone, 24 gyro drop groove, 25 lower turntable, 26 horizontal platform, 27 foot screw, 28 lower centering mark hole.
具体实施方式Detailed ways
本发明首先公开了一种磁悬浮陀螺地理纬度测量仪,包括外壳体9,还包括设置于外壳体9中的内壳体10、位于外壳体9下部,用于驱动外壳体9旋转的下转台25,以及磁悬浮陀螺系统、精密测角及回转系统、对中整平系统和计算机系统,下面分别对每一个系统进行详细说明。The present invention firstly discloses a magnetic levitation gyro geographic latitude measuring instrument, which includes an
如图2所示,XX轴为磁悬浮陀螺地理纬度测量仪的中心轴线,也是外壳体9及下转台25的中心轴线,YY轴为水准管5的中心轴线,YY轴与XX轴垂直。As shown in Figure 2, the XX axis is the central axis of the magnetic levitation gyro geographic latitude measuring instrument, and is also the central axis of the
1.磁悬浮陀螺系统1. Magnetic levitation gyro system
包括设置于内壳体10中的浮起装置,浮起装置通过衔接架12带动陀螺房17上浮或下落至初始位置,通过调节浮起装置使陀螺房17上浮后处于位置稳定状态;所述的内壳体10下方设置有与所述陀螺房17下部连接的阻尼传感器转子21,外壳体9内的底部在周向分布有阻尼传感器定子22;所述的浮起装置包括位于内壳体10中顶部的电感线圈8,在所述的衔接架12上设置有与所述电杆线圈8配合的衔铁11;Including a floating device arranged in the
在所述衔接架12的端部分布有自准直光电传感器14,所述内壳体10的内壁上分布有与所述自准直光电传感器14相互配合且一一对应的反射棱镜13。所述的陀螺房17内部设置有陀螺转轴19,陀螺转轴19的两端通过轴承20安装于陀螺房17内壁上,陀螺转轴19上安装有陀螺18。A self-collimating
如图2和图3所示,本方案中的衔接架12由多根长度相同、同一端连接且在圆周方向上均匀分布的衔接杆构成,本实施例中衔接杆为6根,在每一根衔接杆的端部安装一个自准直光电传感器14;对应地,在内壳体10内壁上设置6个反射棱镜13。如图5所示,自准直光电传感器14发射沿杆臂方向的激光至内壳体10内侧壁上相对应的6个反射棱镜13上,自准直光电传感器14同时会接收反射棱镜13反射回的激光,若反射棱镜13反射回的激光与自准直光电传感器14射出的激光重合,则可以判定陀螺18处于稳定位置。As shown in FIG. 2 and FIG. 3 , the connecting
所述的电感线圈8以XX轴为中心、以正六边形均匀分布6个,在每一根衔接杆上部设置一个与电感线圈8配合的衔铁11。电杆线圈8通电后吸引衔铁11,从而带动陀螺房17上浮。The
衔接杆杆臂下方设有衔接杆下落锥15,衔接杆下方固连有陀螺房17,陀螺转轴19的两端均通过轴承20连接在陀螺房17上,陀螺18可带动陀螺转轴19进行旋转。陀螺房17下方与阻尼传感器转子21固连,阻尼传感器转子21下方固连有陀螺下落锥23,在磁悬浮陀螺系统浮起并下落后陀螺下落锥23落入外壳体9内壁下方的陀螺下落槽24中,同时衔接杆下落锥15准确下落在内壳体10内壁下方的衔接杆下落槽16中,从而保证磁悬浮陀螺系统浮起以后下落的准确复位。阻尼传感器定子22位于外壳体9内表面处的下方,阻尼传感器转子21与阻尼传感器定子22间可产生均匀的水平电磁场。There is a connecting
2.精密测角及回转系统2. Precise angle measurement and rotation system
用于驱动所述内壳体10转动并测量转动角度,以及测量外壳体9的旋转角度;具体地,所述的精密测角及回转系统包括光栅度盘6、回转马达7以及所述的下转台25,其中:光栅度盘6安装于外壳体9内的顶部,其下部连接所述回转马达7,回转马达7下部连接所述内壳体10。It is used to drive the
所述的光栅度盘6可精确测量与控制回转马达7以及下转台25转动的角度,回转马达7可带动内壳体10及其内部装置以及衔接架12、陀螺房17及其内部装置、阻尼传感器转子21、陀螺下落锥23围绕XX轴回转至任意角度,并可接收微型计算机2的指令回转至指定的位置上。下转台25可以接收微型计算机2的指令并使整个外壳体9及其内部装置围绕XX轴旋转至指定位置。The
3.对中整平系统3. Centering and leveling system
用于在测量仪安装时通过指北标识1进行初步指北、调整测量仪处于水平状态以及使测量仪的中心轴线穿过待测点;所述的对中整平系统包括所述的指北标识1、水准管5、脚螺旋27以及下对中标识孔28,其中:When the measuring instrument is installed, it is used for preliminary north pointing through the
所述的指北标识1位于外壳体9上表面,指北标识1标定了测量仪零位,即光栅度盘6的0°位置处以及回转马达7的零位。在测量仪安装时,将指北标识1粗略对准该点处的真北方向(使指北标识1与该点处真北方向夹角小于±10°以内)以进行初步指北。水准管5位于外壳体9上表面中心处,水准管5的中心轴线与测量仪的中心轴线垂直;所述下转台25下部安装于水平平台26上,水平平台26通过其底部的脚螺旋27安装在下平台上,下对中标识孔28位于所述下平台的中心处。安装时,通过在下对中标识孔28中安装垂球保证测量仪的中心轴线XX轴穿过待测点,调节脚螺旋27使水准管5气泡居中,此时测量仪在YY轴方向上处于水平状态,XX轴穿过测点。The
4.计算机系统4. Computer system
用于驱动所述陀螺18旋转或停止、驱动陀螺房17浮起或下落以及浮起后的位置稳定判断、在所述阻尼传感器转子21和阻尼传感器定子22之间形成均匀水平电磁场并采集阻尼传感器转子21电流值和阻尼传感器定子22电流值、控制内壳体10转动至指定角度、控制下转台25转动至指定角度。计算机系统设置在外壳体9上表面上,包括微型计算机2、键盘4以及显示屏3。It is used to drive the
计算机系统是整个磁悬浮陀螺地理纬度测量仪的控制中心,其中的磁悬浮陀螺地理纬度测量程序由以下几个子程序组成:The computer system is the control center of the entire magnetic levitation gyro geographic latitude measuring instrument, and the magnetic levitation gyro geographic latitude measurement program consists of the following subroutines:
磁悬浮陀螺转动程序:陀螺18接收计算机系统指令后转速从零增加到额定转速,并维持在额定转速。Rotation program of the magnetic levitation gyro: After the
磁悬浮陀螺浮起程序:电感线圈8接收计算机系统指令后通电,衔接杆上的衔铁11受到磁力影响,拉起下方的陀螺房17及其内部装置、阻尼传感器转子21、陀螺下落锥23等一起向上浮起。Maglev Gyro Floating Procedure: The
磁悬浮陀螺稳定位置判定程序:如图5所示,衔接杆杆头上的自准直光电传感器14发射沿杆臂方向的激光至内壳体10内侧壁上相对应的6个反射棱镜13上,自准直光电传感器14同时会接收反射棱镜13反射回的激光,若6组反射棱镜13反射回的激光与自准直光电传感器14射出的激光均重合,则可以判定陀螺18处于稳定位置。若反射棱镜13反射回的激光与自准直光电传感器14射出的激光不重合,则通过调整相应的衔接杆杆臂下方的电感线圈8电流大小以及阻尼传感器转子21与阻尼传感器定子22之间的均匀水平电磁场大小,直至6组反射棱镜13反射回的激光与自准直光电传感器14射出的激光均重合。The procedure for determining the stable position of the magnetic levitation gyro: As shown in Figure 5, the self-collimating
力矩器测量程序:通过在阻尼传感器转子21与阻尼传感器定子22之间形成均匀水平电磁场,实时采集阻尼传感器转子21内部的电流值IR以及阻尼传感器定子22内部的电流值IS,则可计算出力矩值为Torque device measurement program: By forming a uniform horizontal electromagnetic field between the damping
M=k·IR·IS M =k·IR·I S
其中,k为力矩器系数,k值在磁悬浮陀螺出厂时已经由生产厂家精确标定事先得出储存于微型计算机2中。测量出力矩值大小M以后将结果保存在微型计算机2中。Among them, k is the torquer coefficient, and the k value has been accurately calibrated by the manufacturer and stored in the
磁悬浮陀螺下落程序:电感线圈8接收计算机系统指令后断电,悬浮体在重力作用下下落,衔接杆下落锥15落入衔接杆下落槽16中,陀螺下落锥23落入陀螺下落槽24中,从而实现磁悬浮陀螺系统的准确复位。Magnetic levitation gyro falling procedure: after the
磁悬浮陀螺停止程序:陀螺18接收计算机系统指令后转速从额定转速逐渐减速到零。Magnetic levitation gyro stop procedure: after the
悬浮体回转程序:回转马达7接计算机系统指令后,带动内壳体10及其内部固连的电感线圈8、反射棱镜13以及衔接架12、陀螺房17及其内部装置、阻尼传感器转子21、陀螺下落锥23围绕XX轴回转至光栅度盘6所指定的角度上。回转完成后,光栅度盘6进行精密角度测量,判定是否回转到指定角度上。Suspension rotation program: After the
转台旋转程序:下转台25接收计算机系统指令后,使整个外壳体9及其内部装置围绕XX轴旋转至光栅度盘6所指定的角度上,下转台25旋转完成后,光栅度盘6进行精密角度测量,判定下转台25是否旋转到指定角度上。Turntable rotation program: after the
本发明的理论依据如下:The theoretical basis of the present invention is as follows:
如图1所示,回转马达7首先在在位置A处测量力矩值MA,然后逆时针旋转一个小角度λ转至位置B处测量力矩值MB。位置A与位置B之间的夹角λ可通过光栅度盘6精确测量得出。根据磁悬浮陀螺的物理性质,有As shown in FIG. 1 , the
式中,H为磁悬浮陀螺角动量,H值在磁悬浮陀螺出厂时已经由生产厂家测定储存于测量仪中;ωe为平均地球自转角速度,ωe=7.292115147×10-5rad/s,为该点处的地理纬度;α为回转马达7与真北方向的夹角。In the formula, H is the angular momentum of the magnetic levitation gyroscope, and the H value has been determined by the manufacturer and stored in the measuring instrument when the magnetic levitation gyroscope leaves the factory; is the geographic latitude of the point; α is the angle between the
将两式做差,得Do the difference between the two formulas, we get
当α为一个小角度(几度)时,即当测量仪架设时指北标识1与待测点处真北方向的夹角为一个小角度时,有When α is a small angle (several degrees), that is, when the measuring instrument is erected, the angle between the
sin(α+λ)-sinα≈sinλ 式4sin(α+λ)-sinα≈sinλ
则此时,公式3转化为Then,
进而可求解出该点处的地理纬度值Then the geographic latitude value at that point can be solved
由推导过程可知,的精度与α的大小有直接关系:在其他条件一定时,α越小,地理纬度解算精度越高。由于在测量仪初始架设时,难以保证测量仪的指北标识1与待测点处真北方向的夹角为一个小角度(几度),因此本发明采用迭代的方法,逐渐使测量仪的指北标识1与待测点处真北方向的夹角越来越小,从而使测量仪可测定出高精度的地理纬度。It can be seen from the derivation process that The accuracy of α is directly related to the size of α: when other conditions are certain, the smaller α is, the better the accuracy of geographic latitude calculation. higher. When the measuring instrument is initially erected, it is difficult to ensure that the angle between the north-
在上述技术方案的基础上,本发明进一步公开了一种利用磁悬浮陀螺精密测定地理纬度的方法,包括以下步骤:On the basis of the above technical solutions, the present invention further discloses a method for accurately measuring geographic latitude by using a magnetic levitation gyro, comprising the following steps:
步骤1,安置测量仪
在待测点上安置磁悬浮陀螺地理纬度测量仪,使测量仪指北标识1与该点处真北方向夹角小于10°以内以进行初步指北,调节脚螺旋27使水平平台26保持水平;在下对中标识孔28中安装垂球并使其通过待测点,则此时测量仪在YY轴方向上处于水平状态,XX轴穿过待测点;A magnetic levitation gyro geographic latitude measuring instrument is placed on the point to be measured, so that the included angle between the measuring instrument pointing
步骤2,输入所需的纬度精度要求e
按下键盘4的开机按钮打开微型计算机2,显示屏3亮起,通过键盘4输入所需的纬度精度要求e,并点击确认按钮;Press the power-on button of the
步骤3,纬度初值解算
接收到微型计算机2的指令后进行指向力矩采样:按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,得到回转马达7的0°位置处(如图7中所示位置甲)处对应的力矩值M甲0,然后悬浮体回转程序启动,回转马达7逆时针旋转λ,再一次按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,采集乙位置处(如图7所示)对应的力矩值M乙0;通过以下公式计算纬度初值 After receiving the instruction of the
上式中,H为陀螺18角动量,H值在磁悬浮陀螺出厂时已经由生产厂家测定储存于测量仪中;ωe为平均地球自转角速度;ωe=7.292115147×10-5rad/s;将纬度初值保存于微型计算机2中;In the above formula, H is the 18 angular momentum of the gyro, and the H value has been determined by the manufacturer and stored in the measuring instrument when the magnetic levitation gyro leaves the factory; ω e is the average angular velocity of the earth's rotation ; initial value stored in the
最后,悬浮体回转程序启动,回转马达7顺时针旋转λ回到零位。本实施例中,λ取值为0.2,也可以取值为任意小角度。Finally, the suspension rotation program is started, and the
步骤4,测量仪近北
接收到微型计算机2的指令后进行指向力矩采样:按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,得到回转马达7的0°位置处(如图8中所示位置丙)对应的力矩值M丙i;然后悬浮体回转程序启动,回转马达7顺时针旋转180°,再一次按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,采集丁位置处(如图8所示)对应的力矩值M丁i;由以下公式计算测量仪偏北角:After receiving the instruction of the
其中,为上一步中的纬度解算值;in, is the solved value for the latitude in the previous step;
最后,悬浮体回转程序启动,回转马达7顺时针旋转180°回到零位;转台旋转程序启动,测量仪下方的转台逆时针旋转αi,使测量仪零位更加接近真北方向;Finally, the suspension rotation program is started, and the
步骤5,地理纬度解算Step 5, Geographical Latitude Solution
接收到微型计算机2的指令后进行指向力矩采样:按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,得到回转马达7的0°位置处(如图7中所示位置甲)对应的力矩值M甲i+1;然后悬浮体回转程序启动,回转马达7逆时针旋转λ,再一次按顺序依次执行磁悬浮陀螺转动程序、磁悬浮陀螺浮起程序、磁悬浮陀螺稳定位置判定程序、力矩器测量程序以及磁悬浮陀螺下落程序、磁悬浮陀螺停止程序,采集该位置处(如图7中所示位置乙)对应的力矩值M乙i+1,通过下式计算地理纬度:After receiving the instruction of the
将地理纬度解算结果保存于微型计算机2中。最后,悬浮体回转程序启动,回转马达7顺时针旋转λ回到零位。Solve the result of geographic latitude stored in the
步骤6,判断地理纬度是否满足精度要求:
若则不满足精度要求,返回步骤4重新迭代计算;like If the accuracy requirement is not met, go back to
若则满足要求,即得到待测点最终的地理纬度值并将显示到显示屏3上;like Then the requirements are met, that is, the final geographic latitude value of the point to be measured is obtained. and will displayed on the
其中,当第一次计算时,的取值为步骤3中的纬度初值;当第i(i>1)次计算时,为前一次计算的值,即上一次迭代值。Among them, when the first calculation hour, The value of is the initial latitude value in
需要说明的是本发明并不仅限于上述具体实施例,还可根据本发明的构思得到其他不同的具体方案,例如本发明可以不需要进行迭代直接测量纬度值;在地理纬度解算中选择的两个位置为0°和逆时针旋转的λ=0.3°处测量指向力矩,也可以选择其他角度;诸如此等改变以及等效变换等均落入本发明的保护范围之内。It should be noted that the present invention is not limited to the above-mentioned specific embodiments, and other different specific solutions can also be obtained according to the concept of the present invention. For example, the present invention can directly measure the latitude value without iteration; The pointing moment is measured at a position of 0° and a counterclockwise rotation at λ=0.3°, and other angles can also be selected; such changes and equivalent transformations all fall within the protection scope of the present invention.
Claims (9)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910337409.5A CN110108276B (en) | 2019-04-25 | 2019-04-25 | Method for precisely measuring geographic latitude by using magnetic suspension gyroscope |
PCT/CN2020/074469 WO2020215855A1 (en) | 2019-04-25 | 2020-02-07 | Method for accurately measuring geographical latitude by using magnetic suspension gyroscope |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910337409.5A CN110108276B (en) | 2019-04-25 | 2019-04-25 | Method for precisely measuring geographic latitude by using magnetic suspension gyroscope |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110108276A CN110108276A (en) | 2019-08-09 |
CN110108276B true CN110108276B (en) | 2022-09-13 |
Family
ID=67486563
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910337409.5A Expired - Fee Related CN110108276B (en) | 2019-04-25 | 2019-04-25 | Method for precisely measuring geographic latitude by using magnetic suspension gyroscope |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN110108276B (en) |
WO (1) | WO2020215855A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110108276B (en) * | 2019-04-25 | 2022-09-13 | 长安大学 | Method for precisely measuring geographic latitude by using magnetic suspension gyroscope |
CN114812520B (en) * | 2022-03-04 | 2023-07-04 | 中铁第四勘察设计院集团有限公司 | Method and system for testing high-speed magnetic levitation track installation measurement and control three-dimensional control network |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006067058A1 (en) * | 2004-12-23 | 2006-06-29 | Thales | Device for autonomously determining absolute geographic coordinates of a mobile changing with regard to immersion |
CN101776445A (en) * | 2010-02-05 | 2010-07-14 | 长安大学 | Magnetically suspended gyroscope total station |
CN201600134U (en) * | 2010-02-05 | 2010-10-06 | 长安大学 | A New Magnetic Suspension Gyro Total Station |
CN103376098A (en) * | 2012-04-27 | 2013-10-30 | 中国人民解放军第二炮兵工程学院 | Automatic latitude measuring and calculating and automatic precision compensating method of pendulum gyro north seeker |
CN103983259A (en) * | 2014-05-29 | 2014-08-13 | 中国人民解放军第二炮兵工程大学 | Omnibearing north-seeking method based on maximum precession velocity coarse north-seeking principle of pendulous gyroscope |
CN104655095A (en) * | 2015-01-21 | 2015-05-27 | 长安大学 | Method for measuring geographic latitude by fiber-optic gyroscope |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IL209261A0 (en) * | 2010-11-11 | 2011-01-31 | Israel Aerospace Ind Ltd | A system and method for north finding |
EP2578992B1 (en) * | 2011-10-06 | 2017-01-25 | Vectronix AG | Geographical azimuth determination referenced to north |
CN104931029B (en) * | 2015-04-30 | 2017-10-27 | 长安大学 | Northern measuring method is sought in a kind of two-position revolution based on locked rotor torque pattern gyroscope total station |
CN104833348B (en) * | 2015-04-30 | 2017-07-14 | 长安大学 | A kind of gradually multiposition based on locked rotor torque pattern gyroscope total station seeks northern measuring method |
US10378900B2 (en) * | 2015-09-16 | 2019-08-13 | Raytheon Company | Magnetic field gradient navigation aid |
CN110108276B (en) * | 2019-04-25 | 2022-09-13 | 长安大学 | Method for precisely measuring geographic latitude by using magnetic suspension gyroscope |
-
2019
- 2019-04-25 CN CN201910337409.5A patent/CN110108276B/en not_active Expired - Fee Related
-
2020
- 2020-02-07 WO PCT/CN2020/074469 patent/WO2020215855A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006067058A1 (en) * | 2004-12-23 | 2006-06-29 | Thales | Device for autonomously determining absolute geographic coordinates of a mobile changing with regard to immersion |
CN101776445A (en) * | 2010-02-05 | 2010-07-14 | 长安大学 | Magnetically suspended gyroscope total station |
CN201600134U (en) * | 2010-02-05 | 2010-10-06 | 长安大学 | A New Magnetic Suspension Gyro Total Station |
CN103376098A (en) * | 2012-04-27 | 2013-10-30 | 中国人民解放军第二炮兵工程学院 | Automatic latitude measuring and calculating and automatic precision compensating method of pendulum gyro north seeker |
CN103983259A (en) * | 2014-05-29 | 2014-08-13 | 中国人民解放军第二炮兵工程大学 | Omnibearing north-seeking method based on maximum precession velocity coarse north-seeking principle of pendulous gyroscope |
CN104655095A (en) * | 2015-01-21 | 2015-05-27 | 长安大学 | Method for measuring geographic latitude by fiber-optic gyroscope |
Non-Patent Citations (1)
Title |
---|
基于双位置的磁悬浮陀螺异常数据检测;石震等;《测绘科学》;20151020(第10期);第102-105、109页 * |
Also Published As
Publication number | Publication date |
---|---|
CN110108276A (en) | 2019-08-09 |
WO2020215855A1 (en) | 2020-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101776445B (en) | Magnetically suspended gyroscope total station | |
US8826550B2 (en) | Geographically north-referenced azimuth determination | |
CN104931029B (en) | Northern measuring method is sought in a kind of two-position revolution based on locked rotor torque pattern gyroscope total station | |
CN104833348B (en) | A kind of gradually multiposition based on locked rotor torque pattern gyroscope total station seeks northern measuring method | |
CN111220123B (en) | Foundation ring inclination angle monitoring system and method | |
CN100504296C (en) | Combination Orientation Method of Total Station Based on Fiber Optic Gyroscope | |
CN209673994U (en) | A kind of portable mapping rangefinder | |
CN103376098B (en) | A kind of pendulum type gyroscope north searching instrument latitude is from measuring and calculating and precision automatic compensation method | |
CN112197741B (en) | UAV SLAM technology based on extended Kalman filter to measure tilt angle system | |
CN110108276B (en) | Method for precisely measuring geographic latitude by using magnetic suspension gyroscope | |
CN201600134U (en) | A New Magnetic Suspension Gyro Total Station | |
CN114838721B (en) | A fiber optic gyro orientation instrument | |
CN109681189A (en) | A kind of hole diameter sector cementing quality and track integrated measuring instrument | |
CN104655123B (en) | A kind of method that utilization optical fibre gyro determines rotational-angular velocity of the earth | |
CN110108265B (en) | A gyroscope measuring instrument that acquires geographic latitude autonomously and seeks north automatically | |
CN104864842B (en) | Moment feedback gyroscopic total station based on static mode | |
CN109484630B (en) | A multi-directional surveying and mapping erecting bracket for complex terrain | |
CN102494679B (en) | Superconducting magnetic levitation based north-seeking device | |
CN103791896B (en) | Omni-directional north-seeking device and method for a pendulum gyro north-finder | |
CN104655095B (en) | A kind of method that utilization optical fibre gyro determines geographic latitude | |
CN107179066B (en) | Rotary calibration device and calibration method thereof | |
CN101819284B (en) | Method for measuring polar motion of globe by using gyroscope | |
CN106949905B (en) | Gravity plumb line deviation measuring device | |
CN206756137U (en) | Rotary scaling device | |
CN101833015B (en) | A Method for Measuring the Earth's Rotation Angular Velocity Using a Gyroscope |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220913 |
|
CF01 | Termination of patent right due to non-payment of annual fee |