CN110069015A - A kind of method of Distributed Predictive function control under non-minimumization state-space model - Google Patents
A kind of method of Distributed Predictive function control under non-minimumization state-space model Download PDFInfo
- Publication number
- CN110069015A CN110069015A CN201910431800.1A CN201910431800A CN110069015A CN 110069015 A CN110069015 A CN 110069015A CN 201910431800 A CN201910431800 A CN 201910431800A CN 110069015 A CN110069015 A CN 110069015A
- Authority
- CN
- China
- Prior art keywords
- subsystem
- moment
- input
- increment
- output
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 claims abstract description 5
- 238000005457 optimization Methods 0.000 claims abstract description 5
- 230000008569 process Effects 0.000 claims description 6
- 239000011159 matrix material Substances 0.000 claims description 3
- 238000005070 sampling Methods 0.000 claims description 3
- 230000005540 biological transmission Effects 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 230000007812 deficiency Effects 0.000 abstract description 2
- 230000007246 mechanism Effects 0.000 abstract description 2
- 238000004886 process control Methods 0.000 abstract description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 17
- 238000009776 industrial production Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/042—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance
Landscapes
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Artificial Intelligence (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Evolutionary Computation (AREA)
- Medical Informatics (AREA)
- Software Systems (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Feedback Control In General (AREA)
Abstract
本发明公开了一种非最小化状态空间模型下的分布式预测函数控制方法,包括如下步骤:步骤1、建立分布式预测函数控制非最小化状态空间模型;步骤2、设计非最小化状态空间模型下分布式预测函数控制控制器。本发明通过数据采集、模型建立、预测机理、优化等手段,确立了一种非最小化状态空间模型下的分布式预测函数控制方法,利用该方法在保证较高控制精度和稳定性的前提下,能够有效弥补传统愤分布式预测函数控制方法在含非自衡对象的多变量过程控制中的不足,并满足实际工业过程的需求。The invention discloses a distributed prediction function control method under a non-minimization state space model, comprising the following steps: Step 1, establishing a distributed prediction function control non-minimization state space model; A distributed predictive function control controller under the model. The invention establishes a distributed prediction function control method under the non-minimization state space model by means of data acquisition, model establishment, prediction mechanism, optimization, etc., and uses this method under the premise of ensuring higher control accuracy and stability. , which can effectively make up for the deficiencies of traditional distributed predictive function control methods in multivariable process control with non-self-balancing objects, and meet the needs of actual industrial processes.
Description
技术领域technical field
本发明属于自动化技术领域,涉及一种非最小化状态空间模型下的分布式预测函数控制的设计方法。The invention belongs to the technical field of automation, and relates to a design method of distributed predictive function control under a non-minimization state space model.
背景技术Background technique
分布式预测函数控制(DPFC)虽然控制效果较好,但是系统的快速性还是不够好,特别是在引入干扰的情况下,再次恢复稳定的时间过长,有些工业过程中可能达不到要求,同时在引入干扰,并且设定值较小的情况下,输出就不能完美的跟踪设定值了,存在微小的偏差,虽然偏差很小,但是确实存在。在实际工业生产过程中,随着对产品的控制精度和安全操作的要求越来越高,一些微小的偏差也有必要消除。因此,对于分布式预测函数控制进行一定的改进是很有必要的。Although the distributed predictive function control (DPFC) has a good control effect, the rapidity of the system is still not good enough. Especially in the case of introducing interference, it takes too long to restore stability again, and some industrial processes may not meet the requirements. At the same time, when interference is introduced and the set value is small, the output cannot track the set value perfectly, and there is a slight deviation. Although the deviation is small, it does exist. In the actual industrial production process, as the requirements for the control accuracy and safe operation of the product are getting higher and higher, it is necessary to eliminate some small deviations. Therefore, it is necessary to make some improvements to the distributed predictive function control.
发明内容SUMMARY OF THE INVENTION
基于非最小状态空间(NMSS)模型预测控制提供了状态空间方法的优点,如分析容易,结构设计简单等。针对这一事实,本发明提出了一种新的扩展非最小状态空间模型(EMSMS),其中考虑了输出误差、测量输出和输入对模型预测控制控制器设计的影响,扩展的非最小状态空间模型预测控制保持了状态空间模型的良好优点,并防止跟踪误差的进一步增大,可以很好地控制误差。这里结合了扩展非的最小状态空间模型和分布式预测函数控制,既保持了分布式预测函数控制较好的控制效果,同时在一定程度上改善了系统的快速性。Model predictive control based on non-minimum state space (NMSS) offers the advantages of state space methods, such as easy analysis and simple structural design. In response to this fact, the present invention proposes a new extended non-minimum state space model (EMSMS), which takes into account the influence of output errors, measured outputs and inputs on the design of model predictive control controllers. The extended non-minimum state space model Predictive control maintains the good advantages of the state-space model and prevents the further increase of the tracking error, which can control the error well. The extended non-minimum state space model and the distributed predictive function control are combined here, which not only maintains the better control effect of the distributed predictive function control, but also improves the rapidity of the system to a certain extent.
本发明的技术方案是通过数据采集、模型建立、预测机理、优化等手段,确立了一种非最小化状态空间模型下的分布式预测函数控制方法,利用该方法在保证较高控制精度和稳定性的前提下,能够有效弥补传统愤分布式预测函数控制方法在含非自衡对象的多变量过程控制中的不足,并满足实际工业过程的需求。The technical scheme of the present invention is to establish a distributed prediction function control method under the non-minimization state space model by means of data acquisition, model establishment, prediction mechanism, optimization, etc. Under the premise of stability, it can effectively make up for the deficiencies of the traditional distributed predictive function control method in multivariable process control with non-self-balancing objects, and meet the needs of actual industrial processes.
本发明方法的步骤包括:The steps of the method of the present invention include:
步骤1、分布式预测函数控制非最小化状态空间模型的建立,具体步骤是:Step 1. The distributed prediction function controls the establishment of a non-minimized state space model. The specific steps are:
1.1、将工业过程中的多变量N输入N输出大规模系统看成由N个一阶惯性加纯滞后(FOPDT)模型的子系统组成,可以得到如下形式的N输入N输出多变量一阶惯性加纯滞后(FOPDT)模型系统:1.1. Considering the multi-variable N-input N-output large-scale system in the industrial process as a subsystem composed of N first-order inertia plus pure lag (FOPDT) models, the following form of N-input N-output multi-variable first-order inertia can be obtained Plus pure lag (FOPDT) model system:
其中,K11,…,Kij,…,Knn为多变量过程对象第j个输入对第i个输出的稳态增益,i=1,…,n;j=1,…,n,T11,…,Tij,…,Tnn为多变量过程对象第j个输入对第i个输出的时间常数,τ11,…,τij,…,τnn为多变量过程对象第j个输入对第i个输出的滞后时间。Among them, K 11 ,…,K ij ,…,K nn is the steady-state gain of the j-th input to the i-th output of the multivariable process object, i=1,…,n; j=1,…,n,T 11 ,…,T ij ,…,T nn is the time constant of the jth input to the ith output of the multivariate process object, τ 11 ,…,τ ij ,…,τ nn is the jth input of the multivariate process object Lag time for the ith output.
1.2、第j个对象的输入对第i个对象的输出的传递函数为:1.2. The transfer function of the input of the j-th object to the output of the i-th object is:
1.3、在采样时间Ts条件下,对步骤1.2进行离散化,可以得到:1.3. Under the condition of sampling time T s , discretize step 1.2, we can get:
其中,k表示时刻,d=τij/Ts的整数部分,αij=e-Ts/Tij,yi(k),yi(k-1)分别为第i个子系统的在k时刻以及k-1时刻的输出,ui(k-d-1)为第i个子系统在k-d-1时刻的输入,uj(k-d-1)为第j个子系统在k-d-1时刻的输入,反映了其他子系统输入对第i个子系统输出的影响。Among them, k represents time, d=τ ij /T s integer part, α ij =eT s /T ij , yi (k), yi (k-1) are the ith subsystem at time k and The output at time k-1, u i (kd-1) is the input of the ith subsystem at time kd-1, u j (kd-1) is the input of the jth subsystem at time kd-1, It reflects the influence of other subsystem inputs on the output of the ith subsystem.
1.4、对离散化的模型取向后的一阶差分,得到:1.4. For the first-order difference of the discretized model orientation, we get:
其中,Δyi(k),Δyi(k-1)分别为第i个子系统的在k时刻以及k-1时刻的输出增量,Δui(k-d-1)为第i个子系统在k-d-1时刻的输入增量,Δuj(k-d-1)为第j个子系统在k-d-1时刻的输入增量,反映了其他子系统输入对第i个子系统输出的影响增量。Among them, Δy i (k), Δy i (k-1) are the output increments of the ith subsystem at time k and time k-1, respectively, Δu i (kd-1) is the ith subsystem at kd-1 The input increment at time 1, Δu j (kd-1) is the input increment of the jth subsystem at time kd-1, Reflects the incremental influence of other subsystem inputs on the output of the ith subsystem.
1.5、由步骤1.3与步骤1.4;可得:1.5. From step 1.3 and step 1.4; obtain:
Δxi,j(k+1)=Ai,j,mΔxi,j(k)+Bi,j,mΔui(k)+Di,j,mΔuj(k)Δx i,j (k+1)=A i,j,m Δx i,j (k)+B i,j,m Δu i (k)+D i,j,m Δu j (k)
Δyi(k+1)=Ci,j,mΔxi,j(k+1)Δy i (k+1)=C i,j,m Δx i,j (k+1)
其中,Δxi,j(k)=[Δyi(k),Δui(k-1),…,Δui(k-d),Δuj(k-1),…,Δuj(k-d)]T,Δui(k-1),,Δui(k-d),Δuj(k-1),…,Δuj(k-d)分别表示k-1,…,k-d,时刻的输入增量、输出增量;Δxi,j(k+1)=[Δyi(k+1),Δui(k),…,Δui(k-d+1),Δuj(k),…,Δuj(k-d+1)]T,Δyi(k+1),Δui(k-d+1),Δuj(k-d+1)分别表示第i个子系统的在k+1时刻的输出增量、第i个子系统在k-d+1时刻的输入增量、第j个子系统在k-d+1时刻的输入增量,T表示矩阵的转置符号。where Δx i,j (k)=[Δy i (k),Δu i (k-1),…,Δu i (kd),Δu j (k-1),…,Δu j (kd)] T , Δu i (k-1),,Δu i (kd), Δu j (k-1),…,Δu j (kd) represent k-1,…,kd respectively, the input increment and output increment at time ;Δx i,j (k+1)=[Δy i (k+1),Δu i (k),…,Δu i (k-d+1),Δu j (k),…,Δu j (k -d+1)] T , Δy i (k+1), Δu i (k-d+1), Δu j (k-d+1) represent the output increase of the ith subsystem at time k+1, respectively Quantity, the input increment of the ith subsystem at the time k-d+1, the input increment of the jth subsystem at the time k-d+1, and T represents the transpose symbol of the matrix.
Bi,j,m=[0 1 0 0 0 … 0]T;B i,j,m = [0 1 0 0 0 ... 0] T ;
Ci,j,m=[1 0 0 … 0 0 0 0];C i,j,m = [1 0 0 ... 0 0 0 0];
Di,j,m=[0 … 0 0 1 0 … 0]T;D i,j,m = [0 ... 0 0 1 0 ... 0] T ;
1.6、根据步骤1.5,可得非最小状态空间模型:1.6. According to step 1.5, the non-minimum state space model can be obtained:
zi(k+1)=Azi(k)+BΔui(k)+DΔuj(k)+CΔri(k+1) zi (k+1)=Azi (k)+BΔu i (k)+DΔu j (k)+CΔr i ( k+1)
其中:ei(k)=yi(k)-ri(k)in: e i (k)=y i (k)-r i (k)
ei(k+1)=ei(k)+Ci,j,mAi,j,mΔxi,j(k)+Ci,j,mBi,j,mΔui(k)+Di,j,mBi,j,mΔuj(k)-Δri(k+1)e i (k+1)=e i (k)+C i,j,m A i,j,m Δx i,j (k)+C i,j,m B i,j,m Δu i (k )+D i,j,m B i,j,m Δu j (k)-Δr i (k+1)
ri(k)为k时刻的参考轨迹,Δri(k+1)为k+1时刻的参考轨迹增量,ei(k),ei(k+1)分别为k,k+1时刻系统输出与参考轨迹的误差。 ri (k) is the reference trajectory at time k, Δr i ( k+1) is the reference trajectory increment at time k+1, e i (k), e i (k+1) are k, k+1 respectively The error between the system output and the reference trajectory at time.
步骤2、非最小化状态空间模型下分布式预测函数控制控制器的设计,具体步骤是:Step 2, the design of the distributed predictive function control controller under the non-minimized state space model, the specific steps are:
2.1、根据步骤1.6,可得:2.1. According to step 1.6, we can get:
Zi=Gzi(k)+SΔUi,j+ΨΔRi Z i =Gz i (k)+SΔU i,j +ΨΔR i
其中,P表示优化时域,M表示控制时域Among them, P represents the optimization time domain, M represents the control time domain
ΔUi,j=[Δui(k) Δui(k+1) … Δui(k+M-1),Δuj(k) Δuj(k+1) … Δuj(k+M-1)]T ΔU i,j = [Δu i (k) Δu i (k+1) … Δu i (k+M-1),Δu j (k) Δu j (k+1) … Δu j (k+M-1) )] T
ΔRi=[Δri(k+1) Δri(k+2) … Δri(k+P)]T ΔR i =[Δr i (k+1) Δr i (k+2) … Δr i (k+P)] T
ri(k+ii)=λiiyi(k)+(1-λii)ci(k),ii=1,2,…,Pr i (k+ii)=λ ii y i (k)+(1-λ ii )c i (k),ii=1,2,...,P
λ表示柔化因子,ci(k)表示第i个子系统k时刻的设定值,Δri(k+1),Δri(k+2),…,Δri(k+P)分别表示k+1,...,k+P时刻参考轨迹增量。λ represents the softening factor, c i (k) represents the set value of the i-th subsystem at time k, Δr i (k+1), Δr i (k+2), ..., Δr i (k+P) represent respectively The reference trajectory increments at time k+1,...,k+P.
2.2、取第i个子系统目标函数:2.2. Take the i-th subsystem objective function:
Ji=Zi TQi,mZi+ΔUi,j TRi,j,mΔUi,j J i =Z i T Q i,m Z i +ΔU i,j T R i,j,m ΔU i,j
其中,Qi,m=block diag(Qi,1,Qi,2,…,Qi,P-1,Qi,P)Wherein, Q i,m =block diag(Q i,1 ,Q i,2 ,...,Q i,P-1 ,Q i,P )
ri,1,…,ri,M,rj,1,…,rj,M分别表示第i、j个子系统从1,...,k时刻的参考轨迹的值。r i,1 ,…,r i,M ,r j,1 ,…,r j,M respectively represent the values of the reference trajectories of the ith and jth subsystems from time 1,…,k time.
2.3、由步骤2.2可得:2.3. From step 2.2, we can get:
ΔUi,j=-(STQi,mS+Ri,j,m)-1STQi,m(Gzi(k)+ΨΔRi)ΔU i,j =-(S T Q i,m S+R i,j,m ) -1 S T Q i,m (Gz i (k)+ΨΔR i )
ui(k)=[1 0 … 0]ΔUi,j+ui(k-1)u i (k)=[1 0 … 0]ΔU i,j +u i (k-1)
其中,ui(k),ui(k-1)分别表示第i个子系统k,k-1时刻的控制量。Among them, u i (k) and u i (k-1) represent the control quantities of the i-th subsystem k and k-1, respectively.
2.4、利用第i个子系统的控制增量ΔUi,j,得到第i个子系统的实际控制量ui(k)=[1 0 … 0]ΔUi,j+ui(k-1)作用于第i个子系统的;然后同理可以分别求出第1,...,n个子系统的控制量。2.4. Use the control increment ΔU i,j of the ith subsystem to obtain the actual control variable u i (k)=[1 0 … 0]ΔU i,j +u i (k-1) of the ith subsystem in the i-th subsystem; then similarly, the control quantities of the 1st,...,n subsystems can be obtained respectively.
具体实施方式Detailed ways
下面对本发明作进一步说明。The present invention will be further described below.
以锅炉汽包水位控制为例:Take boiler drum water level control as an example:
锅炉汽包水位控制系统是一个典型的多变量复杂对象,调节手段采用控制给水阀阀门开度。The boiler drum water level control system is a typical multi-variable complex object, and the adjustment method is to control the opening of the feed water valve.
步骤1、锅炉汽包水位控制系统模型的建立,具体步骤是:Step 1. The establishment of the boiler drum water level control system model, the specific steps are:
1.1、将锅炉汽包水位控制系统中的多变量N输入N输出大规模系统看成由N个一阶惯性加纯滞后(FOPDT)模型的子系统组成,可以得到如下形式的N输入N输出多变量一阶惯性加纯滞后(FOPDT)模型系统:1.1. Considering the multi-variable N-input N-output large-scale system in the boiler drum water level control system as a subsystem composed of N first-order inertia plus pure lag (FOPDT) models, the following forms of N-input and N-output are obtained: Variable first-order inertia plus pure lag (FOPDT) model system:
其中,K11,…,Kij,…,Knn为锅炉汽包水位控制系统第j个输入对第i个输出的稳态增益,i=1,…,n;j=1,…,n,T11,…,Tij,…,Tnn为锅炉汽包水位控制系统第j个输入对第i个输出的时间常数,τ11,…,τij,…,τnn为锅炉汽包水位控制系统第j个输入对第i个输出的滞后时间。Among them, K 11 ,…,K ij ,…,K nn is the steady-state gain of the j-th input to the i-th output of the boiler drum water level control system, i=1,…,n; j=1,…,n , T 11 ,…,T ij ,…,T nn is the time constant of the jth input to the i-th output of the boiler drum water level control system, τ 11 ,…,τ ij ,…,τ nn is the boiler drum water level The lag time of the jth input to the ith output of the control system.
1.2、锅炉汽包水位控制系统中第j个对象的输入对第i个对象的输出的传递函数为:1.2. The transfer function of the input of the j-th object to the output of the i-th object in the boiler drum water level control system is:
1.3、在采样时间Ts条件下,对步骤1.2进行离散化,可以得到:1.3. Under the condition of sampling time T s , discretize step 1.2, we can get:
其中,k表示时刻,d=τij/Ts的整数部分,αij=e-Ts/Tij,yi(k),yi(k-1)分别为第i个子系统的在k时刻以及k-1时刻的汽包水位,ui(k-d-1)为第i个子系统在k-d-1时刻的阀门开度,uj(k-d-1)为第j个子系统在k-d-1时刻的阀门开度,反映了其他子系统输入对第i个子系统汽包水位的影响。Among them, k represents time, d=τ ij /T s integer part, α ij =eT s /T ij , yi (k), yi (k-1) are the ith subsystem at time k and Drum water level at time k-1, u i (kd-1) is the valve opening of the ith subsystem at time kd-1, u j (kd-1) is the valve of the jth subsystem at time kd-1 opening, It reflects the influence of other subsystem inputs on the drum water level of the ith subsystem.
1.4、对离散化的模型取向后的一阶差分,得到:1.4. For the first-order difference of the discretized model orientation, we get:
其中,Δyi(k),Δyi(k-1)分别为第i个子系统的在k时刻以及k-1时刻的汽包水位增量,Δui(k-d-1)为第i个子系统在k-d-1时刻的阀门开度增量,Δuj(k-d-1)为第j个子系统在k-d-1时刻的阀门开度增量,反映了其他子系统输入对第i个子系统汽包水位的影响增量。Among them, Δy i (k), Δy i (k-1) are the drum water level increments of the ith subsystem at time k and time k-1, respectively, and Δu i (kd-1) is the ith subsystem at time k-1. The valve opening increment at time kd-1, Δu j (kd-1) is the valve opening increment of the jth subsystem at time kd-1, It reflects the incremental influence of other subsystem inputs on the drum water level of the ith subsystem.
1.5、由步骤1.3与步骤1.4;可得:1.5. From step 1.3 and step 1.4; obtain:
Δxi,j(k+1)=Ai,j,mΔxi,j(k)+Bi,j,mΔui(k)+Di,j,mΔuj(k)Δx i,j (k+1)=A i,j,m Δx i,j (k)+B i,j,m Δu i (k)+D i,j,m Δu j (k)
Δyi(k+1)=Ci,j,mΔxi,j(k+1)Δy i (k+1)=C i,j,m Δx i,j (k+1)
其中,Δxi,j(k)=[Δyi(k),Δui(k-1),…,Δui(k-d),Δuj(k-1),…,Δuj(k-d)]T,where Δx i,j (k)=[Δy i (k),Δu i (k-1),…,Δu i (kd),Δu j (k-1),…,Δu j (kd)] T ,
Δui(k-1),…,Δui(k-d),Δuj(k-1),…,Δuj(k-d)分别表示k-1,…,k-d,时刻的阀门开度增量、汽包水位增量;Δxi,j(k+1)=[Δyi(k+1),Δui(k),…,Δui(k-d+1),Δuj(k),…,Δuj(k-d+1)]T,Δyi(k+1),Δui(k-d+1),Δuj(k-d+1)分别表示第i个子系统的在k+1时刻的汽包水位增量、第i个子系统在k-d+1时刻的阀门开度增量、第j个子系统在k-d+1时刻的阀门开度增量,T表示矩阵的转置符号。Δu i (k-1),…,Δu i (kd), Δu j (k-1),…,Δu j (kd) represent k-1,…,kd, respectively, the valve opening increment at time, the steam Include water level increment; Δx i,j (k+1)=[Δy i (k+1),Δu i (k),…,Δu i (k-d+1),Δu j (k),…, Δu j (k-d+1)] T , Δy i (k+1), Δu i (k-d+1), Δu j (k-d+1) respectively represent the ith subsystem at k+1 The water level increment of the steam drum at the moment, the valve opening increment of the ith subsystem at the time k-d+1, the valve opening increment of the jth subsystem at the time k-d+1, T represents the transpose of the matrix symbol.
Bi,j,m=[0 1 0 0 0 … 0]T;B i,j,m = [0 1 0 0 0 ... 0] T ;
Ci,j,m=[1 0 0 … 0 0 0 0];C i,j,m = [1 0 0 ... 0 0 0 0];
Di,j,m=[0 … 0 0 1 0 … 0]T;D i,j,m = [0 ... 0 0 1 0 ... 0] T ;
1.6、根据步骤1.5,可得非最小状态空间模型:1.6. According to step 1.5, the non-minimum state space model can be obtained:
zi(k+1)=Azi(k)+BΔui(k)+DΔuj(k)+CΔri(k+1) zi (k+1)=Azi (k)+BΔu i (k)+DΔu j (k)+CΔr i ( k+1)
其中:ei(k)=yi(k)-ri(k)in: e i (k)=y i (k)-r i (k)
ei(k+1)=ei(k)+Ci,j,mAi,j,mΔxi,j(k)+Ci,j,mBi,j,mΔui(k)+Di,j,mBi,j,mΔuj(k)-Δri(k+1)e i (k+1)=e i (k)+C i,j,m A i,j,m Δx i,j (k)+C i,j,m B i,j,m Δu i (k )+D i,j,m B i,j,m Δu j (k)-Δr i (k+1)
ri(k)为k时刻的参考轨迹,Δri(k+1)为k+1时刻的参考轨迹增量,ei(k),ei(k+1)分别为k,k+1时刻系统汽包水位与参考轨迹的误差。 ri (k) is the reference trajectory at time k, Δr i ( k+1) is the reference trajectory increment at time k+1, e i (k), e i (k+1) are k, k+1 respectively The error between the system drum water level and the reference trajectory at time.
步骤2、锅炉汽包水位控制系统控制器的设计,具体步骤是:Step 2. The design of the boiler drum water level control system controller, the specific steps are:
2.1、根据步骤1.6,可得:2.1. According to step 1.6, we can get:
Zi=Gzi(k)+SΔUi,j+ΨΔRi Z i =Gz i (k)+SΔU i,j +ΨΔR i
其中,P表示优化时域,M表示控制时域Among them, P represents the optimization time domain, M represents the control time domain
ΔUi,j=[Δui(k) Δui(k+1) … ui(k+M-1),Δuj(k) Δuj(k+1) … Δuj(k+M-1)]T ΔU i,j = [Δu i (k) Δu i (k+1) … u i (k+M-1),Δu j (k) Δu j (k+1) … Δu j (k+M-1) )] T
ΔRi=[Δri(k+1) Δri(k+2) … Δri(k+P)]T ΔR i =[Δr i (k+1) Δr i (k+2) … Δr i (k+P)] T
ri(k+ii)=λiiyi(k)+(1-λii)ci(k),ii=1,2,…,Pr i (k+ii)=λ ii y i (k)+(1-λ ii )c i (k),ii=1,2,...,P
λ表示柔化因子,ci(k)表示第i个子系统k时刻的设定值,Δri(k+1),Δri(k+2),…,Δri(k+P)分别表示k+1,...,k+P时刻参考轨迹增量。λ represents the softening factor, c i (k) represents the set value of the i-th subsystem at time k, Δr i (k+1), Δr i (k+2), ..., Δr i (k+P) represent respectively The reference trajectory increments at time k+1,...,k+P.
2.2、取第i个子系统目标函数:2.2. Take the i-th subsystem objective function:
Ji=Zi TQi,mZi+ΔUi,j TRi,j,mΔUi,j J i =Z i T Q i,m Z i +ΔU i,j T R i,j,m ΔU i,j
其中,Qi,m=block diag(Qi,1,Qi,2,…,Qi,P-1,Qi,P)Wherein, Q i,m =block diag(Q i,1 ,Q i,2 ,...,Q i,P-1 ,Q i,P )
ri,1,…,ri,M,rj,1,…,rj,M分别表示第i、j个子系统从1,...,k时刻的参考轨迹的值。r i,1 ,…,r i,M ,r j,1 ,…,r j,M respectively represent the values of the reference trajectories of the ith and jth subsystems from time 1,…,k time.
2.3、由步骤2.2可得:2.3. From step 2.2, we can get:
ΔUi,j=-(STQi,mS+Ri,j,m)-1STQi,m(Gzi(k)+ΨΔRi)ΔU i,j =-(S T Q i,m S+R i,j,m ) -1 S T Q i,m (Gz i (k)+ΨΔR i )
ui(k)=[1 0 … 0]ΔUi,j+ui(k-1)u i (k)=[1 0 … 0]ΔU i,j +u i (k-1)
其中,ui(k),ui(k-1)分别表示第i个子系统k,k-1时刻的阀门开度。Among them, u i (k), u i (k-1) represent the valve opening of the ith subsystem k, k-1, respectively.
2.4、利用第i个子系统的阀门开度增量ΔUi,j,得到第i个子系统的实际阀门开度ui(k)=[1 0 … 0]ΔUi,j+ui(k-1)作用于第i个子系统的;然后同理可以分别求出第1,...,n个子系统的阀门开度。2.4. Use the valve opening increment ΔU i,j of the ith subsystem to obtain the actual valve opening of the ith subsystem u i (k)=[1 0 … 0]ΔU i,j +u i (k- 1) Acting on the ith subsystem; then similarly, the valve openings of the 1st, . . . , n subsystems can be obtained respectively.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910431800.1A CN110069015B (en) | 2019-05-22 | 2019-05-22 | Distributed prediction function control method under non-minimized state space model |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201910431800.1A CN110069015B (en) | 2019-05-22 | 2019-05-22 | Distributed prediction function control method under non-minimized state space model |
Publications (2)
Publication Number | Publication Date |
---|---|
CN110069015A true CN110069015A (en) | 2019-07-30 |
CN110069015B CN110069015B (en) | 2021-12-28 |
Family
ID=67371270
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201910431800.1A Active CN110069015B (en) | 2019-05-22 | 2019-05-22 | Distributed prediction function control method under non-minimized state space model |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN110069015B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112947323A (en) * | 2021-01-26 | 2021-06-11 | 杭州电子科技大学 | Chemical process distributed control method for explicit model predictive control optimization |
Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120053751A1 (en) * | 2009-02-03 | 2012-03-01 | Dong Energy Power A/S | Distributed electrical power production system and method of control thereof |
CN102520616A (en) * | 2011-12-30 | 2012-06-27 | 杭州电子科技大学 | Partial decoupling unminimized model prediction function control method in oil refining industrial process |
KR20130081965A (en) * | 2012-01-10 | 2013-07-18 | 주식회사 에어로네트 | Mathod for smart grid control and monitering of wind power turbin based on day-ahead wind distribution model |
CN104317321A (en) * | 2014-09-23 | 2015-01-28 | 杭州电子科技大学 | Coking furnace hearth pressure control method based on state-space predictive functional control optimization |
CN105159095A (en) * | 2015-10-10 | 2015-12-16 | 杭州电子科技大学 | Multivariable process distillation column model prediction control optimization PID control method |
CN106338915A (en) * | 2016-10-31 | 2017-01-18 | 浙江邦业科技股份有限公司 | Extended state space predictive function control based integral object control method |
CN106444362A (en) * | 2016-12-06 | 2017-02-22 | 杭州电子科技大学 | Distributed PID (Proportion Integration Differentiation) predictive function control method for furnace box temperature of waste plastic cracking furnace |
CN106786677A (en) * | 2017-03-29 | 2017-05-31 | 温州大学 | A kind of interconnected electric power system distributed dynamic matrix frequency control method of meter and wind-powered electricity generation |
CN106842958A (en) * | 2017-03-20 | 2017-06-13 | 福州大学 | A kind of distributed model predictive control method of back-to-back converter |
CN108089442A (en) * | 2017-12-12 | 2018-05-29 | 浙江大学宁波理工学院 | A kind of PI controller parameter automatic setting methods based on Predictive function control and fuzzy control |
CN109085755A (en) * | 2018-08-14 | 2018-12-25 | 中国电力科学研究院有限公司 | The advanced control method for frequency of wind-powered electricity generation group system and system based on distributed model predictive control |
CN109491248A (en) * | 2018-11-20 | 2019-03-19 | 中南大学 | Magnetic levitation ball position prediction control method based on RBF-ARX model and laguerre function |
CN109544922A (en) * | 2018-11-27 | 2019-03-29 | 华南理工大学 | A kind of traffic network Distributed Predictive Control method based on region division |
-
2019
- 2019-05-22 CN CN201910431800.1A patent/CN110069015B/en active Active
Patent Citations (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120053751A1 (en) * | 2009-02-03 | 2012-03-01 | Dong Energy Power A/S | Distributed electrical power production system and method of control thereof |
CN102520616A (en) * | 2011-12-30 | 2012-06-27 | 杭州电子科技大学 | Partial decoupling unminimized model prediction function control method in oil refining industrial process |
KR20130081965A (en) * | 2012-01-10 | 2013-07-18 | 주식회사 에어로네트 | Mathod for smart grid control and monitering of wind power turbin based on day-ahead wind distribution model |
CN104317321A (en) * | 2014-09-23 | 2015-01-28 | 杭州电子科技大学 | Coking furnace hearth pressure control method based on state-space predictive functional control optimization |
CN105159095A (en) * | 2015-10-10 | 2015-12-16 | 杭州电子科技大学 | Multivariable process distillation column model prediction control optimization PID control method |
CN106338915A (en) * | 2016-10-31 | 2017-01-18 | 浙江邦业科技股份有限公司 | Extended state space predictive function control based integral object control method |
CN106444362A (en) * | 2016-12-06 | 2017-02-22 | 杭州电子科技大学 | Distributed PID (Proportion Integration Differentiation) predictive function control method for furnace box temperature of waste plastic cracking furnace |
CN106842958A (en) * | 2017-03-20 | 2017-06-13 | 福州大学 | A kind of distributed model predictive control method of back-to-back converter |
CN106786677A (en) * | 2017-03-29 | 2017-05-31 | 温州大学 | A kind of interconnected electric power system distributed dynamic matrix frequency control method of meter and wind-powered electricity generation |
CN108089442A (en) * | 2017-12-12 | 2018-05-29 | 浙江大学宁波理工学院 | A kind of PI controller parameter automatic setting methods based on Predictive function control and fuzzy control |
CN109085755A (en) * | 2018-08-14 | 2018-12-25 | 中国电力科学研究院有限公司 | The advanced control method for frequency of wind-powered electricity generation group system and system based on distributed model predictive control |
CN109491248A (en) * | 2018-11-20 | 2019-03-19 | 中南大学 | Magnetic levitation ball position prediction control method based on RBF-ARX model and laguerre function |
CN109544922A (en) * | 2018-11-27 | 2019-03-29 | 华南理工大学 | A kind of traffic network Distributed Predictive Control method based on region division |
Non-Patent Citations (5)
Title |
---|
DAWEI WANG 等: "《Design of distributed PID-type dynamic matrix controller for fractional-order systems》", 《INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE》 * |
JIANMING ZHANG: "《A non-minimal state space formulation based predictive functional control design for inverse-response processes》", 《CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS》 * |
RIDONG ZHANG 等: "《Design of fractional order modeling based extended non-minimal state space MPC for temperature in an industrial electric heating furnace》", 《JOURNAL OF PROCESS CONTROL》 * |
张运诗 等: "《分布式预测函数控制优化算法》", 《自动化仪表》 * |
霍爱清 等: "《增广非最小状态空间法的稳定平台预测控制研究》", 《计算机工程与应用》 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112947323A (en) * | 2021-01-26 | 2021-06-11 | 杭州电子科技大学 | Chemical process distributed control method for explicit model predictive control optimization |
CN112947323B (en) * | 2021-01-26 | 2022-03-18 | 杭州电子科技大学 | An Explicit Model Predictive Control Optimization Method for Chemical Process Distributed Control |
Also Published As
Publication number | Publication date |
---|---|
CN110069015B (en) | 2021-12-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109581870B (en) | Dynamic matrix control method for temperature in energetic material reaction kettle | |
CN110866659B (en) | On-line prediction method for caustic ratio in high-pressure pipeline digestion process of Bayer process alumina production | |
CN101004591A (en) | Decoupling control method of non - square matrix system in industrial process | |
CN101995822A (en) | Grey active disturbance rejection control method of long time-delay system | |
CN105487376B (en) | A kind of method for optimally controlling based on data-driven list network structure | |
CN110764414B (en) | Robust predictive control method for multi-stage batch asynchronous switching process with various disturbances | |
Tian et al. | Time-delay compensation method for networked control system based on time-delay prediction and implicit PIGPC | |
CN101556458A (en) | Automatic control algorithm for feeding vitriol in tap water by coagulation | |
Jin et al. | Optimal terminal iterative learning control for the automatic train stop system | |
CN103699009A (en) | Linear quadratic type fault-tolerant control method for batch process | |
CN106200379B (en) | A kind of distributed dynamic matrix majorization method of Nonself-regulating plant | |
CN108445867B (en) | A Non-Gaussian Process Monitoring Method Based on Decentralized ICR Model | |
CN108490779A (en) | A kind of Rare-Earth Extraction Process decoupling control method | |
CN111506037A (en) | Distributed Control Method of Industrial Heating Furnace System Based on Dynamic Matrix Optimization | |
CN102455718B (en) | Temperature control system in catalyst production device, temperature control method and application of temperature control system | |
CN110069015A (en) | A kind of method of Distributed Predictive function control under non-minimumization state-space model | |
CN109143853A (en) | Fractionating column liquid level self-adaptation control method during a kind of oil refining | |
CN113159647A (en) | Secondary chemical reactor fault estimation method based on delta operator | |
CN108829058B (en) | A Fuzzy Iterative Learning Control Method for Chemical Batch Process | |
CN111123708B (en) | Coking furnace hearth pressure control method based on distributed dynamic matrix control optimization | |
CN109407512A (en) | Rely on the batch process 2D input and output about beam control method of time lag | |
Yao et al. | An enhanced dynamic artificial immune system based on simulated vaccine for early fault diagnosis with limited data | |
CN102540897A (en) | Method for carrying out composite predictive control on coagulant dosage of water treatment | |
CN115113518A (en) | Data-driven general dynamic matrix control system and control method | |
CN112947323B (en) | An Explicit Model Predictive Control Optimization Method for Chemical Process Distributed Control |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |