Nothing Special   »   [go: up one dir, main page]

CN118520428A - Power load prediction method and system based on artificial intelligence - Google Patents

Power load prediction method and system based on artificial intelligence Download PDF

Info

Publication number
CN118520428A
CN118520428A CN202410977249.1A CN202410977249A CN118520428A CN 118520428 A CN118520428 A CN 118520428A CN 202410977249 A CN202410977249 A CN 202410977249A CN 118520428 A CN118520428 A CN 118520428A
Authority
CN
China
Prior art keywords
power load
load data
historical
data segment
historical power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202410977249.1A
Other languages
Chinese (zh)
Other versions
CN118520428B (en
Inventor
陈莉娟
王逸兮
李磊
吴颖波
徐文峰
毛亚飞
罗宾
阮羚
付文涛
平志勇
郑立
陈颖哲
方瑞
刘依妮
郑瑶
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hubei Central China Technology Development Of Electric Power Co ltd
Original Assignee
Hubei Central China Technology Development Of Electric Power Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hubei Central China Technology Development Of Electric Power Co ltd filed Critical Hubei Central China Technology Development Of Electric Power Co ltd
Priority to CN202410977249.1A priority Critical patent/CN118520428B/en
Publication of CN118520428A publication Critical patent/CN118520428A/en
Application granted granted Critical
Publication of CN118520428B publication Critical patent/CN118520428B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/27Regression, e.g. linear or logistic regression
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/10Pre-processing; Data cleansing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for AC mains or AC distribution networks
    • H02J3/003Load forecast, e.g. methods or systems for forecasting future load demand
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/50Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Evolutionary Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Business, Economics & Management (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • Water Supply & Treatment (AREA)
  • General Business, Economics & Management (AREA)
  • Tourism & Hospitality (AREA)
  • Strategic Management (AREA)
  • Primary Health Care (AREA)
  • Marketing (AREA)
  • Human Resources & Organizations (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)

Abstract

The invention relates to the field of power load prediction, in particular to an artificial intelligence-based power load prediction method and system, wherein the method comprises the following steps: and fitting the load data in the obtained historical power load data segments, determining extreme points of a fitting curve, calculating the initial noise degree of the historical power load data segments, correcting the initial noise degree according to the initial noise degree of the corresponding historical power grid frequency data segments and the correlation between the historical power load data segments and the corresponding historical power grid frequency data segments to obtain final noise degrees of the historical power load data segments, and weighting predicted values determined by the corresponding historical power load data segments by utilizing the final noise degree of each historical power load data segment to obtain final predicted values. The method and the device can reduce the influence of noise data on the prediction result and improve the accuracy of power load prediction.

Description

一种基于人工智能的电力负荷预测方法及系统A method and system for predicting power load based on artificial intelligence

技术领域Technical Field

本发明涉及电力负荷预测领域。更具体地,本发明涉及一种基于人工智能的电力负荷预测方法及系统。The present invention relates to the field of power load forecasting, and more specifically, to a power load forecasting method and system based on artificial intelligence.

背景技术Background Art

随着经济的发展和城市化进程加快,电力需求不断增长,同时社会对智能化和数字化的需求也在不断增加,希望可以通过技术手段提高能源利用效率和管理水平。基于人工智能的电力负荷预测方法及系统符合智能化和数字化的发展趋势,能够提供精准、高效的负荷预测服务。现有用于对电力负荷进行预测的算法是ARIMA模型,该方法具有简单、灵活、可解释性强等优点,是一种常用且有效的时间序列预测方法。With the development of economy and the acceleration of urbanization, the demand for electricity is growing. At the same time, the demand for intelligence and digitalization is also increasing. It is hoped that technical means can be used to improve energy efficiency and management level. The power load forecasting method and system based on artificial intelligence are in line with the development trend of intelligence and digitalization, and can provide accurate and efficient load forecasting services. The existing algorithm for predicting power load is the ARIMA model, which has the advantages of simplicity, flexibility, and strong interpretability. It is a commonly used and effective time series forecasting method.

相关技术中,如公开号为CN116995668A的申请文件中公开了基于改进季节性ARIMA模型的中长期电力负荷预测方法和系统,该方法包括:根据傅里叶级数展开式对周期抽取的历史电力负荷数据进行分解,得到均值、周期分量和非周期分量;趋势拟合,对非周期分量计算其中心化的移动平均值,用最小二乘法拟合得到趋势分量;残差模拟,对非周期分量减去趋势分量得到的残差分量,构建ARIMA自回归差分移动平均模型;然后利用构建的ARIMA预测各分量下一期的预测结果。In the related technology, for example, the application document with publication number CN116995668A discloses a medium- and long-term power load forecasting method and system based on an improved seasonal ARIMA model, the method comprising: decomposing the periodically extracted historical power load data according to the Fourier series expansion to obtain the mean, periodic component and non-periodic component; trend fitting, calculating the central moving average of the non-periodic component, and fitting the trend component using the least squares method; residual simulation, constructing an ARIMA autoregressive difference moving average model for the residual component obtained by subtracting the trend component from the non-periodic component; and then using the constructed ARIMA to predict the prediction results of each component for the next period.

然而,上述方案中主要改进的是构建ARIMA模型时各参数的确定方式,尤其是残差分量的确定方式,并未考虑到采集的历史电力负荷数据中噪声数据对预测结果的影响,从而使得在预构建的ARIMA模型对相应的分量进行预测时,可能会受到噪声数据的影响,在一定程度降低了得到的预测结果的准确性。However, the main improvement in the above scheme is the method of determining the parameters when constructing the ARIMA model, especially the method of determining the residual component, and does not take into account the impact of noise data in the collected historical power load data on the prediction results. As a result, when the pre-constructed ARIMA model predicts the corresponding components, it may be affected by the noise data, which reduces the accuracy of the prediction results to a certain extent.

发明内容Summary of the invention

为了解决由于噪声数据的影响,导致得到的预测结果准确性较低的问题,本发明提供了一种基于人工智能的电力负荷预测方法及系统。In order to solve the problem of low accuracy of prediction results due to the influence of noise data, the present invention provides an artificial intelligence-based power load prediction method and system.

根据本发明实施例的第一方面,提供了一种基于人工智能的电力负荷预测方法,包括:According to a first aspect of an embodiment of the present invention, there is provided a method for predicting power load based on artificial intelligence, comprising:

获取多个历史电力负荷数据段,以及对应的历史电网频率数据段;Acquire multiple historical power load data segments and corresponding historical power grid frequency data segments;

对历史电力负荷数据段中的负荷数据进行拟合,获取历史电力负荷数据段的拟合曲线的极值点,计算历史电力负荷数据段的初始噪声程度,初始噪声程度与历史电力负荷数据段中负荷数据的离散程度以及极值点的个数均正相关,且与极值点的平均间隔时间负相关;Fit the load data in the historical power load data segment, obtain the extreme value points of the fitting curve of the historical power load data segment, and calculate the initial noise level of the historical power load data segment. The initial noise level is positively correlated with the discreteness of the load data in the historical power load data segment and the number of extreme value points, and negatively correlated with the average interval time of the extreme value points.

计算历史负荷数据段的最终噪声程度,最终噪声程度与对应的历史电网频率数据段的初始噪声程度,以及历史电力负荷数据段中的负荷数据与对应的历史电网频率数据段中的频率数据之间的相关性均负相关;Calculating the final noise level of the historical load data segment, the final noise level is negatively correlated with the initial noise level of the corresponding historical power grid frequency data segment, and the correlation between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment;

确定历史负荷数据段对未来时刻的电力负荷量的预测值,利用历史负荷数据的最终噪声程度,对预测值进行加权,得到历史负荷数据段对应预测值的加权值,进而得到每个历史负荷数据段对应预测值的加权值,将各加权值的和作为未来时刻的电力负荷量的最终预测值。Determine the predicted value of the power load at the future time for the historical load data segment, use the final noise level of the historical load data to weight the predicted value, and obtain the weighted value of the predicted value corresponding to the historical load data segment, and then obtain the weighted value of the predicted value corresponding to each historical load data segment, and use the sum of the weighted values as the final predicted value of the power load at the future time.

本发明可以保证确定的各历史电力负荷数据段中噪声数据存在的可能性的准确性,且利用各历史负荷数据段的最终噪声程度,对各历史负荷数据段对未来时刻的电力负荷量的预测值进行加权,可以综合考量多个历史负荷数据段的预测值,保证了确定的最终预测值的准确性。The present invention can ensure the accuracy of the possibility of noise data existing in each determined historical power load data segment, and use the final noise level of each historical load data segment to weight the predicted value of the power load at a future moment in each historical load data segment. The predicted values of multiple historical load data segments can be comprehensively considered to ensure the accuracy of the determined final predicted value.

在本发明的一种示例实施例中,未来时刻的电力负荷量的最终预测值,满足如下关系式:In an exemplary embodiment of the present invention, the final predicted value of the power load at a future time satisfies the following relationship:

;

式中,表示未来时刻的电力负荷量的最终预测值;表示历史电力负荷数据段的数量;表示第个历史电力负荷数据段对未来时刻的电力负荷量的预测值;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的最终噪声程度;表示以自然常数为底的指数函数。In the formula, Indicates future time The final forecast value of the power load; Indicates the number of historical power load data segments; Indicates The historical power load data segment is used for the future time The predicted value of the power load; Indicates the future moment When predicting the power load, The final noise level of each historical power load data segment; Indicated by natural constant An exponential function with base .

本发明通过计算各历史电力负荷数据段的最终噪声程度与所有历史电力负荷数据段的最终噪声程度的累加和的比值,可以保证确定的各历史电力负荷数据段对应的预测值的权重的和为1,可以降低对各预测值进行加权,求得最终预测值的计算难度。By calculating the ratio of the final noise level of each historical power load data segment to the cumulative sum of the final noise levels of all historical power load data segments, the present invention can ensure that the sum of the weights of the prediction values corresponding to each historical power load data segment is 1, which can reduce the difficulty of weighting each prediction value to obtain the final prediction value.

在本发明的一种示例实施例中,历史电力负荷数据段的最终噪声程度,满足如下关系式:In an exemplary embodiment of the present invention, the final noise level of the historical power load data segment satisfies the following relationship:

;

式中,表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的最终噪声程度;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的初始噪声程度;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段对应的历史电网频率数据段的初始噪声程度;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段中的负荷数据与对应的历史电网频率数据段中的频率数据之间的相关性。In the formula, Indicates the future moment When predicting the power load, The final noise level of each historical power load data segment; Indicates the future moment When predicting the power load, The initial noise level of a historical power load data segment; Indicates the future moment When predicting the power load, The initial noise level of the historical power grid frequency data segment corresponding to the historical power load data segment; Indicates the future moment When predicting the power load, The correlation between the load data in a historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment.

由于负荷数据与频率数据为负相关的关系,将负荷数据与频率数据之间的相关性加1,可以更明显的体现各历史负荷数据段的最终表现程度与该相关性的负相关关系。Since the load data and the frequency data are negatively correlated, adding 1 to the correlation between the load data and the frequency data can more clearly reflect the negative correlation between the final performance of each historical load data segment and the correlation.

在本发明的一种示例实施例中,历史电力负荷数据段中的负荷数据与对应的历史电网频率数据段中的频率数据之间的相关性的获取方法,包括:In an exemplary embodiment of the present invention, a method for obtaining the correlation between load data in a historical power load data segment and frequency data in a corresponding historical power grid frequency data segment includes:

计算历史电力负荷数据段中的负荷数据,与对应的历史电网频率数据段中的频率数据之间的皮尔逊相关系数,将皮尔逊相关系数,作为历史电力负荷数据段中的负荷数据与对应的历史电网频率数据段中的频率数据之间的相关性。Calculate the Pearson correlation coefficient between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment, and use the Pearson correlation coefficient as the correlation between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment.

由于皮尔逊相关系数可以反应各数据集中的数据在单调方向上的变化,本发明采用皮尔逊相关系数衡量负荷数据与频率数据之间的相关性,可以清楚的表征负荷数据与频率数据的负相关关系。Since the Pearson correlation coefficient can reflect the change of the data in each data set in a monotonic direction, the present invention uses the Pearson correlation coefficient to measure the correlation between the load data and the frequency data, which can clearly characterize the negative correlation between the load data and the frequency data.

在本发明的一种示例实施例中,历史电力负荷数据段的初始噪声程度,满足如下关系式:In an exemplary embodiment of the present invention, the initial noise level of the historical power load data segment satisfies the following relationship:

;

式中,表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的初始噪声程度;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的拟合曲线中极值点的个数;表示相邻极值点之间的第个间隔;分别表示相邻极值点之间的第个间隔对应的右侧极值点的采集时间以及左侧极值点的采集时间;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段中负荷数据的离散程度。In the formula, Indicates the future moment When predicting the power load, The initial noise level of a historical power load data segment; Indicates the future moment When predicting the power load, The number of extreme value points in the fitting curve of a historical power load data segment; Represents the first intervals; and Respectively represent the first The acquisition time of the extreme value points on the right side and the acquisition time of the extreme value points on the left side corresponding to the interval; Indicates the future moment When predicting the power load, The discrete degree of load data in a historical power load data segment.

本发明可以从多方面考量各历史电力负荷数据段中的负荷数据自身的情况,在一定程度上保证了确定的各历史电力负荷数据段中存在噪声数据的可能性的准确性。The present invention can consider the load data itself in each historical power load data segment from multiple aspects, and to a certain extent ensure the accuracy of the possibility of noise data existing in each historical power load data segment.

在本发明的一种示例实施例中,历史电力负荷数据段中负荷数据的离散程度,满足如下关系式:In an exemplary embodiment of the present invention, the discrete degree of load data in the historical power load data segment satisfies the following relationship:

;

式中,表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段中负荷数据的离散程度;分别表示对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段中负荷数据的上四分位数以及下四分位数;表示预设超参数。In the formula, Indicates the future moment When predicting the power load, The discrete degree of load data in a historical power load data segment; and Respectively for the future moment When predicting the power load, The upper quartile and lower quartile of the load data in a historical power load data segment; Represents preset hyperparameters.

在本发明的一种示例实施例中,确定历史负荷数据段对未来时刻的电力负荷量的预测值,包括:In an exemplary embodiment of the present invention, determining a predicted value of a power load at a future time by a historical load data segment includes:

当对未来时刻的电力负荷量进行预测时,将历史负荷数据段中的所有历史负荷数据输入到预训练的ARIMA模型中,得到历史负荷数据段对未来时刻的电力负荷量的预测值,进而得到每个历史负荷数据段对应的预测值。When predicting the power load at a future moment, all the historical load data in the historical load data segment are input into the pre-trained ARIMA model to obtain the predicted value of the power load at a future moment by the historical load data segment, and then obtain the predicted value corresponding to each historical load data segment.

根据本发明实施例的第二方面,提供了一种基于人工智能的电力负荷预测系统,一种基于人工智能的电力负荷预测系统包括存储器和处理器,存储器上存储有计算机程序,处理器执行计算机程序以实现本发明实施例的第一方面的步骤。According to a second aspect of an embodiment of the present invention, there is provided an artificial intelligence-based power load forecasting system, which includes a memory and a processor, wherein a computer program is stored in the memory, and the processor executes the computer program to implement the steps of the first aspect of the embodiment of the present invention.

本发明具有以下效果:The present invention has the following effects:

本发明通过历史电力负荷数据段中的负荷数据与对应的历史电网数据段中的频率数据之间的相关性,对历史电力数据段的初始噪声程度进行修正,保证了确定的历史电力负荷数据段中存在噪声数据的可能性的准确性;且利用历史负荷数据段的最终噪声程度,对确定的未来时刻的电力负荷量的预测值进行加权,可以考虑每个历史负荷数据段中噪声数据存在的可能性,调整对应的预测值在最终预测值中的占比,保证了确定的最终预测值的准确性。The present invention corrects the initial noise level of the historical power load data segment through the correlation between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid data segment, thereby ensuring the accuracy of the possibility of the existence of noise data in the determined historical power load data segment; and uses the final noise level of the historical load data segment to weight the predicted value of the power load at a determined future moment, thereby considering the possibility of the existence of noise data in each historical load data segment, adjusting the proportion of the corresponding predicted value in the final predicted value, and ensuring the accuracy of the determined final predicted value.

附图说明BRIEF DESCRIPTION OF THE DRAWINGS

通过参考附图阅读下文的详细描述,本发明示例性实施方式的上述以及其他目的、特征和优点将变得易于理解。在附图中,以示例性而非限制性的方式示出了本发明的若干实施方式,并且相同或对应的标号表示相同或对应的部分,其中:By reading the following detailed description with reference to the accompanying drawings, the above and other objects, features and advantages of the exemplary embodiments of the present invention will become readily understood. In the accompanying drawings, several embodiments of the present invention are shown in an exemplary and non-limiting manner, and the same or corresponding reference numerals represent the same or corresponding parts, wherein:

图1是本发明实施例一种基于人工智能的电力负荷预测方法的步骤流程示意图。FIG1 is a schematic diagram of a flow chart of steps of an artificial intelligence-based power load forecasting method according to an embodiment of the present invention.

具体实施方式DETAILED DESCRIPTION

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by those skilled in the art without creative work are within the scope of protection of the present invention.

下面结合附图来详细描述本发明的具体实施方式。The specific embodiments of the present invention are described in detail below with reference to the accompanying drawings.

参照图1,一种基于人工智能的电力负荷预测方法,包括步骤S1-S4,具体如下:Referring to FIG1 , a method for predicting power load based on artificial intelligence includes steps S1-S4, which are as follows:

S1:获取多个历史电力负荷数据段,以及对应的历史电网频率数据段。S1: Acquire multiple historical power load data segments and corresponding historical power grid frequency data segments.

具体的,可以使用智能电表采集各个时间的负荷数据,使用频率测量仪采集电网中各个时间的频率数据,且当对某一时刻的电力负荷量进行预测时,可以将该时刻前一刻的时间作为采集结束时间,将预测的该时刻回溯三十分钟的时刻作为采集开始时间,以1次/秒的采集频率连续采集负荷数据和电网中的频率数据,从而得到历史负荷数据和历史频率数据。Specifically, smart meters can be used to collect load data at various times, and frequency meters can be used to collect frequency data at various times in the power grid. When predicting the power load at a certain moment, the time before that moment can be used as the collection end time, and the time thirty minutes back from the predicted moment can be used as the collection start time. The load data and frequency data in the power grid can be continuously collected at a collection frequency of 1 time/second, thereby obtaining historical load data and historical frequency data.

进一步的,可以从采集的历史负荷数据中选取多个时间段,如6个时间段对应的数据段,得到多个历史电力负荷数据段,然后从历史频率数据中选取对应时间段的数据段,得到对应的历史电网频率数据段,并且选取的多个时间段的最后一个时刻均为需要预测电力负荷量的时刻的上一时刻,本实施例对选取的时间段的数量不做特别限定。Furthermore, multiple time periods can be selected from the collected historical load data, such as data segments corresponding to 6 time periods, to obtain multiple historical power load data segments, and then data segments corresponding to the time periods can be selected from the historical frequency data to obtain corresponding historical power grid frequency data segments, and the last moment of the multiple selected time periods is the previous moment of the moment when the power load needs to be predicted. This embodiment does not specifically limit the number of selected time periods.

可选的,选取的历史电力负荷数据段以及电网频率数据段的长度可以为100、150、200、250、300以及350,当然,也可以根据具体的情况选择合适的长度,本实施例对于历史电力负荷数据段和历史电网频率数据段的长度不作特别限定。Optionally, the length of the selected historical power load data segment and the grid frequency data segment can be 100, 150, 200, 250, 300 and 350. Of course, the appropriate length can also be selected according to the specific situation. This embodiment does not specifically limit the length of the historical power load data segment and the historical grid frequency data segment.

S2:对历史电力负荷数据段中的负荷数据进行拟合,获取历史电力负荷数据段的拟合曲线的极值点,计算历史电力负荷数据段的初始噪声程度,初始噪声程度与历史电力负荷数据段中负荷数据的离散程度以及极值点的个数均正相关,且与极值点的平均间隔时间负相关。S2: Fit the load data in the historical power load data segment, obtain the extreme points of the fitting curve of the historical power load data segment, and calculate the initial noise level of the historical power load data segment. The initial noise level is positively correlated with the discreteness of the load data in the historical power load data segment and the number of extreme points, and negatively correlated with the average interval time of the extreme points.

需要说明的是,噪声数据可能会影响到对电力负荷量预测的准确性,因此需要衡量选取的每个历史电力负荷数据段中存在噪声数据的情况,从而可以根据每个历史电力负荷数据段中噪声数据的情况,有差别的确定对未来时刻的电力负荷量的预测的有效性。It should be noted that noise data may affect the accuracy of power load prediction. Therefore, it is necessary to measure the presence of noise data in each selected historical power load data segment, so that the effectiveness of the prediction of power load at future times can be determined differently according to the situation of noise data in each historical power load data segment.

需要进一步说明的是,历史电力负荷数据段中的噪声数据越多,则该历史电力负荷数据段中的所有负荷数据的整体变化越剧烈,越频繁,且对应的数值分布越离散。It should be further explained that the more noise data there is in a historical power load data segment, the more drastic and frequent the overall change of all load data in the historical power load data segment will be, and the more discrete the corresponding numerical distribution will be.

在本发明的一示例实施例中,初始噪声程度是指用于衡量各历史电力负荷数据段中存在噪声数据的可能性的指标。具体的,若一历史电力负荷数据段的初始噪声程度越高,则该历史电力负荷数据段中存在噪声数据的可能性越大,相反的,若一历史电力负荷数据段的初始噪声程度越低,则该历史电力负荷数据段中存在噪声数据的可能性越小。In an exemplary embodiment of the present invention, the initial noise level refers to an indicator used to measure the possibility of noise data existing in each historical power load data segment. Specifically, if the initial noise level of a historical power load data segment is higher, the possibility of noise data existing in the historical power load data segment is greater, and conversely, if the initial noise level of a historical power load data segment is lower, the possibility of noise data existing in the historical power load data segment is smaller.

可选的,对历史电力负荷数据段中的负荷数据进行拟合,确定历史电力负荷数据段的拟合曲线中的极值点,可以根据极值点的个数判断各历史电力负荷数据段中的各负荷数据的变化情况,若一历史电力负荷数据段对应的拟合曲线中极值点的个数较多时,则说明该历史电力负荷数据段中的负荷数据的变化越频繁,且当两个极值点对应的时间间隔越短时,则可以说明对应的负荷数据的变化越剧烈,从而可以根据各历史电力负荷数据段对应的拟合曲线中的极值点的个数,以及对应极值点之间的时间间隔评估对应的历史电力负荷数据段中负荷数据的变化频繁情况和变化剧烈程度。Optionally, the load data in the historical power load data segments are fitted to determine the extreme points in the fitting curve of the historical power load data segments. The change of each load data in each historical power load data segment can be judged according to the number of extreme points. If the number of extreme points in the fitting curve corresponding to a historical power load data segment is large, it means that the load data in the historical power load data segment changes more frequently, and when the time interval corresponding to two extreme points is shorter, it can be said that the corresponding load data changes more drastically. Therefore, the frequency and severity of the change of the load data in the corresponding historical power load data segment can be evaluated according to the number of extreme points in the fitting curve corresponding to each historical power load data segment and the time interval between the corresponding extreme points.

可选的,各历史电力负荷数据段中的负荷数据的离散程度,可以利用四分位数确定,具体的,可以将一历史电力负荷数据段中的负荷数据按照取值从小到大的顺序排列,然后计算对应的上四分位数和下四分位数之间的差值,从而衡量按照取值从小到大排列的负荷数据中间50%的离散程度,若计算的差值越大,则说明该历史电力负荷数据段中的负荷数据的取值的差距越大,则该历史电力负荷数据段中的负荷数据的离散程度越高,对应的该历史电力负荷数据段存在噪声数据的可能性越大,当然,也可以根据具体的情况选择合适的方式确定各历史电力负荷数据段中的负荷数据的离散程度,本实施例对于离散程度的确定方式不做特别限定。Optionally, the degree of dispersion of the load data in each historical power load data segment can be determined using quartiles. Specifically, the load data in a historical power load data segment can be arranged in ascending order, and then the difference between the corresponding upper quartile and the lower quartile is calculated to measure the dispersion of the middle 50% of the load data arranged in ascending order. If the calculated difference is larger, the difference in the values of the load data in the historical power load data segment is larger, and the degree of dispersion of the load data in the historical power load data segment is higher, the possibility of noise data existing in the corresponding historical power load data segment is greater. Of course, the degree of dispersion of the load data in each historical power load data segment can also be determined in an appropriate manner according to the specific situation. This embodiment does not specifically limit the method for determining the degree of dispersion.

具体的,历史电力负荷数据段中负荷数据的离散程度,满足如下关系式:Specifically, the discrete degree of load data in the historical power load data segment satisfies the following relationship:

;

式中,表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段中负荷数据的离散程度;分别表示对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段中负荷数据的上四分位数以及下四分位数;表示预设超参数,本实施例中,=0.01,需要说明的是,设置超参数可以防止该历史电力负荷数据段中负荷数据的上四分位数与下四分位数数值相同的情况发生,提高计算公式的稳定性。In the formula, Indicates the future moment When predicting the power load, The discrete degree of load data in a historical power load data segment; and Respectively for the future moment When predicting the power load, The upper quartile and lower quartile of the load data in a historical power load data segment; represents a preset hyperparameter. In this embodiment, =0.01. It should be noted that setting the hyperparameter can prevent the situation where the upper quartile and the lower quartile of the load data in the historical power load data segment have the same value, thereby improving the stability of the calculation formula.

进一步的,当确定各历史负荷数据段的拟合曲线中的极值点,以及各历史电力负荷数据段中的负荷数据的离散程度之后,可以计算各历史负荷数据段的初始噪声程度,具体的,历史负荷数据段的初始噪声程度,满足如下关系式:Furthermore, after determining the extreme points in the fitting curve of each historical load data segment and the discrete degree of the load data in each historical power load data segment, the initial noise degree of each historical load data segment can be calculated. Specifically, the initial noise degree of the historical load data segment satisfies the following relationship:

;

式中,表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的初始噪声程度;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的拟合曲线中极值点的个数,需要说明的是,该值越大,则该历史电力负荷数据段中的负荷数据的变化越频繁;表示相邻极值点之间的第个间隔;分别表示相邻极值点之间的第个间隔对应的右侧极值点的采集时间以及左侧极值点的采集时间;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段中负荷数据的离散程度。In the formula, Indicates the future moment When predicting the power load, The initial noise level of a historical power load data segment; Indicates the future moment When predicting the power load, The number of extreme value points in the fitting curve of a historical power load data segment. It should be noted that the larger the value, the more frequent the changes in the load data in the historical power load data segment; Represents the first intervals; and Respectively represent the first The acquisition time of the extreme value points on the right side and the acquisition time of the extreme value points on the left side corresponding to the interval; Indicates the future moment When predicting the power load, The discrete degree of load data in a historical power load data segment.

其中,反映了在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的拟合曲线中,极值点之间的第个间隔对应的两个极值点的时间间隔,该值越小,说明该历史电力负荷数据段中的负荷数据的变化越剧烈;反映了所有极值点之间的平均间隔时间,该值越小,则说明该历史电力负荷数据段中的负荷数据的变化越快速,对应的该历史电力负荷数据段中存在噪声数据的可能性越大,则该历史电力负荷数据段的初始噪声程度越高。in, Reflects the future moment When predicting the power load, In the fitting curve of the historical power load data segment, the first The time interval between the two extreme value points corresponding to the interval, the smaller the value, the more drastic the change of the load data in the historical power load data segment; It reflects the average interval time between all extreme points. The smaller the value is, the faster the load data in the historical power load data segment changes, and the greater the possibility of noise data existing in the corresponding historical power load data segment, and the higher the initial noise level of the historical power load data segment.

S3:计算历史负荷数据段的最终噪声程度,最终噪声程度与对应的历史电网频率数据段的初始噪声程度,以及历史电力负荷数据段中的负荷数据与对应的历史电网频率数据段中的频率数据之间的相关性均负相关。S3: Calculate the final noise level of the historical load data segment. The final noise level is negatively correlated with the initial noise level of the corresponding historical power grid frequency data segment, and the correlation between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment.

需要说明的是,由于历史负荷数据段的初始噪声程度是基于自身的负荷数据分析得到的,对于噪声数据存在的可能性的判断存在一定的局限性,而对于一个稳定运行的电网系统来说,电力供需在一定程度上是比较平衡的,当电力负荷增加时,电力系统需要提供更多的电力来满足供电需求,从而可能会导致电力系统频率的下降,因此,可以结合负荷数据与频率数据之间的相关性,对历史负荷数据段的初始噪声程度进行修正,从而可以更加准确的评估各历史负荷数据段中存在噪声数据的可能性。It should be noted that since the initial noise level of the historical load data segment is obtained based on the analysis of its own load data, there are certain limitations in judging the possibility of the existence of noise data. For a stably operating power grid system, the supply and demand of electricity is relatively balanced to a certain extent. When the power load increases, the power system needs to provide more electricity to meet the power supply demand, which may lead to a decrease in the frequency of the power system. Therefore, the initial noise level of the historical load data segment can be corrected in combination with the correlation between load data and frequency data, so as to more accurately evaluate the possibility of the existence of noise data in each historical load data segment.

在本发明的一示例实施例中,最终噪声程度是指能够结合负荷数据与频率数据之间的相关性,准确衡量各历史负荷数据段中存在噪声数据的可能性的指标,用于表征对应的历史负荷数据段中存在噪声数据的可能性。具体的,若一历史负荷数据段的最终噪声程度较高时,则该历史负荷数据段中存在噪声数据的可能性较大,相反的,若一历史负荷数据段的最终噪声程度较低时,则该历史负荷数据段中存在噪声数据的可能性较低,从而可以根据各历史负荷数据段的最终噪声程度,准确的衡量各历史负荷数据段中存在噪声的可能性。In an exemplary embodiment of the present invention, the final noise level refers to an indicator that can accurately measure the possibility of noise data existing in each historical load data segment by combining the correlation between load data and frequency data, and is used to characterize the possibility of noise data existing in the corresponding historical load data segment. Specifically, if the final noise level of a historical load data segment is high, the possibility of noise data existing in the historical load data segment is high. On the contrary, if the final noise level of a historical load data segment is low, the possibility of noise data existing in the historical load data segment is low, so that the possibility of noise existing in each historical load data segment can be accurately measured according to the final noise level of each historical load data segment.

可选的,各历史电网频率数据段的初始噪声程度的确定方式,与历史负荷数据段的初始噪声程度的确定方式相同,具体如下:首先,对任一历史电网频率数据段中的频率数据进行拟合,然后确定该历史电网频率数据段的拟合曲线的极值点,利用计算历史负荷数据段的初始噪声程度的计算公式,调整对应的参数,计算该历史电网频率数据段的初始噪声程度,从而当确定历史负荷数据段的初始噪声程度,可以确定对应的历史电网频率数据段的初始噪声程度。Optionally, the method for determining the initial noise level of each historical power grid frequency data segment is the same as the method for determining the initial noise level of a historical load data segment, which is as follows: first, fit the frequency data in any historical power grid frequency data segment, and then determine the extreme points of the fitting curve of the historical power grid frequency data segment, and use the calculation formula for calculating the initial noise level of the historical load data segment to adjust the corresponding parameters and calculate the initial noise level of the historical power grid frequency data segment. Therefore, when the initial noise level of the historical load data segment is determined, the initial noise level of the corresponding historical power grid frequency data segment can be determined.

在本发明的一种示例实施例中,可以通过以下步骤实现历史电力负荷数据段中的负荷数据,与对应的历史电网频率数据段中的频率数据之间的相关性的确定:In an exemplary embodiment of the present invention, the correlation between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment can be determined by the following steps:

计算历史电力负荷数据段中的负荷数据,与对应的历史电网频率数据段中的频率数据之间的皮尔逊相关系数,将皮尔逊相关系数,作为历史电力负荷数据段中的负荷数据与对应的历史电网频率数据段中的频率数据之间的相关性。Calculate the Pearson correlation coefficient between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment, and use the Pearson correlation coefficient as the correlation between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment.

具体的,由于相同时间段内采集的负荷数据与频率数据存在一定的负相关性,而皮尔逊相关系数可以很好的衡量各数据集中数据之间的单调关系,因此,可以通过计算历史电力负荷数据段中的负荷数据,与对应的历史电网频率数据段中的频率数据之间的皮尔逊相关系数,衡量该历史电力负荷数据段中的负荷数据,与对应的历史电网频率数据段中的频率数据之间的相关性。计算各数据集中数据之间的皮尔逊相关系数为现有技术,在此不做赘述。Specifically, since there is a certain negative correlation between the load data and the frequency data collected in the same time period, and the Pearson correlation coefficient can well measure the monotonic relationship between the data in each data set, the Pearson correlation coefficient between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment can be calculated to measure the correlation between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment. Calculating the Pearson correlation coefficient between the data in each data set is a prior art and will not be described in detail here.

进一步的,当确定各历史电力负荷数据段对应的历史电网频率数据段的初始噪声程度,以及各历史电力负荷数据段中的负荷数据与对应的历史电网频率数据段中的频率数据之间的相关性之后,可以计算历史电力负荷数据段的最终噪声程度,具体的,历史电力负荷数据段的最终噪声程度,满足如下关系式:Further, after determining the initial noise level of the historical power grid frequency data segment corresponding to each historical power load data segment, and the correlation between the load data in each historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment, the final noise level of the historical power load data segment can be calculated. Specifically, the final noise level of the historical power load data segment satisfies the following relationship:

;

式中,表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的最终噪声程度;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的初始噪声程度;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段对应的历史电网频率数据段的初始噪声程度;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段中的负荷数据与对应的历史电网频率数据段中的频率数据之间的相关性,的取值范围为[-1,0]。In the formula, Indicates the future moment When predicting the power load, The final noise level of each historical power load data segment; Indicates the future moment When predicting the power load, The initial noise level of a historical power load data segment; Indicates the future moment When predicting the power load, The initial noise level of the historical power grid frequency data segment corresponding to the historical power load data segment; Indicates the future moment When predicting the power load, The correlation between the load data in a historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment, The value range is [-1, 0].

其中,反映了第个历史电力负荷数据段的初始噪声程度与对应的历史电网频率数据数据段的初始噪声程度的差异,该值越大,则说明该历史电力负荷数据段中的负荷数据与对应的历史电网频率数据段中的频率数据的变化的相关性越低,则该历史电力负荷数据段中存在噪声数据的可能性越大;反映了第个历史电力负荷数据段中的负荷数据,与对应的历史电网频率数据段中的频率数据之间的皮尔逊相关系数与1之间的和,由于负荷数据与频率数据为负相关关系,因此该值越大,则表征第个历史电力负荷数据段中的负荷数据,与对应的历史电网频率数据段中的频率数据之间的负相关性越差,则该历史电力负荷数据段中存在噪声数据的可能性越大。in, Reflects the The difference between the initial noise level of a historical power load data segment and the initial noise level of the corresponding historical power grid frequency data segment. The larger the value, the lower the correlation between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment, and the greater the possibility that noise data exists in the historical power load data segment. Reflects the The sum of the Pearson correlation coefficient between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment and 1. Since the load data and the frequency data are negatively correlated, the larger the value, the more significant the correlation is. The worse the negative correlation between the load data in a historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment, the greater the possibility that noise data exists in the historical power load data segment.

S4:确定历史负荷数据段对未来时刻的电力负荷量的预测值,利用历史负荷数据的最终噪声程度,对预测值进行加权,得到历史负荷数据段对应预测值的加权值,进而得到每个历史负荷数据段对应预测值的加权值,将各加权值的和作为未来时刻的电力负荷量的最终预测值。S4: Determine the predicted value of the power load at the future time for the historical load data segment, and use the final noise level of the historical load data to weight the predicted value to obtain the weighted value of the predicted value corresponding to the historical load data segment, and then obtain the weighted value of the predicted value corresponding to each historical load data segment, and use the sum of each weighted value as the final predicted value of the power load at the future time.

在本发明的一种示例实施例中,可以通过以下步骤实现历史负荷数据段对未来时刻的电力负荷量的预测值的确定:In an exemplary embodiment of the present invention, the following steps may be used to determine the predicted value of the power load at a future time using the historical load data segment:

当对未来时刻的电力负荷量进行预测时,将历史负荷数据段中的所有历史负荷数据输入到预训练的ARIMA模型中,得到历史负荷数据段对未来时刻的电力负荷量的预测值,进而得到每个历史负荷数据段对应的预测值。When predicting the power load at a future moment, all the historical load data in the historical load data segment are input into the pre-trained ARIMA model to obtain the predicted value of the power load at a future moment by the historical load data segment, and then obtain the predicted value corresponding to each historical load data segment.

需要说明的是,ARIMA模型(Autoregressive Integrated Moving Averagemodel,整合移动平均自回归模型)是一种利用自回归项数,滑动平均项数以及使处理的数据段成为平稳序列所做的差分次数,对未来时刻对应的情况进行预测的模型,可以基于各历史负荷数据段预测未来时刻的电力负荷量。It should be noted that the ARIMA model (Autoregressive Integrated Moving Average model) is a model that uses the number of autoregressive terms, the number of moving average terms, and the number of differences made to make the processed data segment a stationary series to predict the corresponding situation at future times. It can predict the power load at future times based on each historical load data segment.

具体的,可以从采集的未来时刻之前的三十分钟内的所有负荷数据中,任意截取一段按照采集时间顺序排列的历史负荷数据段,并设置对应的标签,然后将该历史负荷数据段以及对应的标签作为样本集,并且按照一定的比例如8:2将样本集划分为训练集和测试集,通过训练集对该进行训练,并通过测试集对训练后的该模型进行评估并完成该模型的参数调优,当该模型的最小化损失函数趋于收敛时,则完成该模型的训练。Specifically, a historical load data segment arranged in the order of collection time can be arbitrarily intercepted from all load data within thirty minutes before the future moment of collection, and corresponding labels can be set. Then, the historical load data segment and the corresponding label can be used as a sample set, and the sample set can be divided into a training set and a test set according to a certain ratio, such as 8:2. The training set is used to train the model, and the trained model is evaluated through the test set to complete the parameter tuning of the model. When the minimization loss function of the model tends to converge, the training of the model is completed.

进一步的,当该模型训练完成后,则可以将任一历史负荷数据段输入到训练好的该模型中,该模型可以根据学习的经验,对该历史负荷数据段进行分析,输出该历史负荷数据段对未来时刻的电力负荷量的预测值,进而得到每个历史负荷数据段对应的预测值。Furthermore, when the model training is completed, any historical load data segment can be input into the trained model. The model can analyze the historical load data segment based on the learning experience, and output the predicted value of the power load at the future time for the historical load data segment, thereby obtaining the predicted value corresponding to each historical load data segment.

更进一步的,利用任一历史负荷数据段的最终噪声程度,对由该历史负荷数据段确定的预测值进行加权,当该历史负荷数据段的最终噪声程度较大时,可以降低该历史负荷数据段对应的预测值在最终预测值中的占比,保证了确定的未来时刻的电力负荷量的最终预测值的准确性。Furthermore, the final noise level of any historical load data segment is used to weight the predicted value determined by the historical load data segment. When the final noise level of the historical load data segment is large, the proportion of the predicted value corresponding to the historical load data segment in the final predicted value can be reduced, thereby ensuring the accuracy of the final predicted value of the power load at a determined future time.

具体的,未来时刻的电力负荷量的最终预测值,满足如下关系式:Specifically, the final predicted value of the power load at the future moment satisfies the following relationship:

;

式中,表示未来时刻的电力负荷量的最终预测值;表示历史电力负荷数据段的数量;表示第个历史电力负荷数据段对未来时刻的电力负荷量的预测值;表示在对未来时刻的电力负荷量进行预测时,第个历史电力负荷数据段的最终噪声程度;表示以自然常数为底的指数函数。In the formula, Indicates future time The final forecast value of the power load; Indicates the number of historical power load data segments; Indicates The historical power load data segment is used for the future time The predicted value of the power load; Indicates the future moment When predicting the power load, The final noise level of each historical power load data segment; Indicated by natural constant An exponential function with base .

其中,反映了在确定未来时刻的电力负荷量时,第个历史电力负荷数据段对应的预测值的权重;该值越大,则该历史电力负荷数据段对应的预测值在最终预测值中的占比越大,从而可以有差别的确定各历史电力负荷数据段对应的预测值,在最终预测值中的占比,保证了预测的未来时刻的电力负荷量的准确性。in, Reflects the importance of determining the power load at a future time. The weight of the predicted value corresponding to each historical power load data segment; the larger the value, the greater the proportion of the predicted value corresponding to the historical power load data segment in the final predicted value, so that the predicted value corresponding to each historical power load data segment can be determined differently, and the proportion in the final predicted value can be guaranteed to ensure the accuracy of the predicted power load at the future moment.

本发明还提供一种基于人工智能的电力负荷预测系统,系统包括存储器和处理器,且存储器上存储有计算机程序,计算机程序集成了一种基于人工智能的电力负荷预测方法的功能,当计算机程序被执行时,通过一种基于人工智能的电力负荷预测方法可以降低噪声数据对预测结果的影响,提高了对电力负荷量预测的准确性。The present invention also provides an artificial intelligence-based power load forecasting system, the system includes a memory and a processor, and a computer program is stored in the memory, the computer program integrates the function of an artificial intelligence-based power load forecasting method, when the computer program is executed, an artificial intelligence-based power load forecasting method can reduce the impact of noise data on the forecasting results, thereby improving the accuracy of power load forecasting.

在本说明书的描述中,“多个”、“若干个”的含义是至少两个,例如两个,三个或更多个等,除非另有明确具体的限定。In the description of this specification, "plurality" or "several" means at least two, such as two, three or more, etc., unless otherwise clearly and specifically defined.

虽然本说明书已经示出和描述了本发明的多个实施例,但对于本领域技术人员显而易见的是,这样的实施例只是以示例的方式提供的。本领域技术人员会在不偏离本发明思想和精神的情况下想到许多更改、改变和替代的方式。应当理解的是在实践本发明的过程中,可以采用对本文所描述的本发明实施例的各种替代方案。Although this specification has shown and described a number of embodiments of the present invention, it will be apparent to those skilled in the art that such embodiments are provided by way of example only. Those skilled in the art will conceive of many modifications, changes and alternatives without departing from the ideas and spirit of the present invention. It should be understood that in the practice of the present invention, various alternatives to the embodiments of the present invention described herein may be employed.

Claims (8)

1. An artificial intelligence based power load prediction method, comprising:
acquiring a plurality of historical power load data segments and corresponding historical power grid frequency data segments;
Fitting the load data in the historical power load data segment, obtaining extreme points of a fitting curve of the historical power load data segment, and calculating initial noise degree of the historical power load data segment, wherein the initial noise degree is positively correlated with the discrete degree of the load data in the historical power load data segment and the number of the extreme points, and is negatively correlated with the average interval time of the extreme points;
Calculating the final noise degree of the historical load data segment, wherein the final noise degree is inversely related to the initial noise degree of the corresponding historical power grid frequency data segment and the correlation between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment;
and determining a predicted value of the historical load data segment on the electric load quantity at the future time, weighting the predicted value by utilizing the final noise degree of the historical load data to obtain a weighted value of the predicted value corresponding to the historical load data segment, further obtaining a weighted value of the predicted value corresponding to each historical load data segment, and taking the sum of the weighted values as the final predicted value of the electric load quantity at the future time.
2. An artificial intelligence based power load prediction method according to claim 1, wherein the final predicted value of the power load amount at the future time satisfies the following relation:
In the method, in the process of the invention, Indicating future time of dayA final predicted value of the electric power load amount of (2); Representing a number of historical power load data segments; Represent the first Historical power load data segment versus future timeA predicted value of the electric power load amount of (a); Indicating at a future time When predicting the power load of (a) a first timeFinal noise level of each historical power load data segment; Expressed in natural constant An exponential function of the base.
3. An artificial intelligence based power load prediction method according to claim 2, wherein the final noise level of the historical power load data segment satisfies the following relation:
In the method, in the process of the invention, Indicating at a future timeWhen predicting the power load of (a) a first timeFinal noise level of each historical power load data segment; Indicating at a future time When predicting the power load of (a) a first timeInitial noise levels of the historical power load data segments; Indicating at a future time When predicting the power load of (a) a first timeInitial noise degrees of historical grid frequency data segments corresponding to the historical power load data segments; Indicating at a future time When predicting the power load of (a) a first timeCorrelation between load data in each historical power load data segment and frequency data in the corresponding historical grid frequency data segment.
4. A method of artificial intelligence based power load prediction according to claim 3, wherein the method of obtaining a correlation between load data in the historical power load data segment and frequency data in the corresponding historical grid frequency data segment comprises:
And calculating a pearson correlation coefficient between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment, and taking the pearson correlation coefficient as the correlation between the load data in the historical power load data segment and the frequency data in the corresponding historical power grid frequency data segment.
5. An artificial intelligence based power load prediction method according to claim 3 wherein the initial noise level of the historical power load data segment satisfies the following relationship:
In the method, in the process of the invention, Indicating at a future timeWhen predicting the power load of (a) a first timeInitial noise levels of the historical power load data segments; Indicating at a future time When predicting the power load of (a) a first timeThe number of extreme points in the fitting curve of the historical power load data segments; representing the first between adjacent extreme points A plurality of intervals; And (3) with Respectively represent the first extreme points between adjacent extreme pointsThe acquisition time of the right extreme point and the acquisition time of the left extreme point corresponding to the intervals; Indicating at a future time When predicting the power load of (a) a first timeThe degree of dispersion of the load data in the historical power load data segment.
6. The artificial intelligence based power load prediction method of claim 5, wherein the degree of dispersion of load data in the historical power load data segment satisfies the following relationship:
In the method, in the process of the invention, Indicating at a future timeWhen predicting the power load of (a) a first timeThe degree of dispersion of the load data in the historical power load data segments; And (3) with Respectively indicate to future timeWhen predicting the power load of (a) a first timeThe upper quartile and the lower quartile of the load data in the historical power load data segments; indicating a preset super parameter.
7. An artificial intelligence based power load prediction method according to claim 1, wherein said determining a predicted value of said historical load data segment for an amount of power load at a future time comprises:
When the electric power load quantity at the future moment is predicted, all the historical load data in the historical load data segments are input into a pre-trained ARIMA model to obtain predicted values of the historical load data segments on the electric power load quantity at the future moment, and further the predicted values corresponding to each historical load data segment are obtained.
8. An artificial intelligence based power load prediction system comprising a memory having a computer program stored thereon and a processor executing the computer program to perform the steps of the method of any of claims 1-7.
CN202410977249.1A 2024-07-22 2024-07-22 A method and system for predicting power load based on artificial intelligence Active CN118520428B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202410977249.1A CN118520428B (en) 2024-07-22 2024-07-22 A method and system for predicting power load based on artificial intelligence

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202410977249.1A CN118520428B (en) 2024-07-22 2024-07-22 A method and system for predicting power load based on artificial intelligence

Publications (2)

Publication Number Publication Date
CN118520428A true CN118520428A (en) 2024-08-20
CN118520428B CN118520428B (en) 2024-10-18

Family

ID=92281154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202410977249.1A Active CN118520428B (en) 2024-07-22 2024-07-22 A method and system for predicting power load based on artificial intelligence

Country Status (1)

Country Link
CN (1) CN118520428B (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336534A1 (en) * 2016-05-19 2017-11-23 The Catholic University Of America System and methods for improving the accuracy of solar energy and wind energy forecasts for an electric utility grid
CN108074015A (en) * 2017-12-25 2018-05-25 中国电力科学研究院有限公司 A kind of ultrashort-term wind power prediction method and system
CN108960520A (en) * 2018-07-12 2018-12-07 南方电网科学研究院有限责任公司 Power load prediction method, system, computer equipment and medium
CN109615117A (en) * 2018-11-22 2019-04-12 国网天津市电力公司 A coal-to-electricity power load forecasting method based on ARIMA model
US20220045509A1 (en) * 2020-08-05 2022-02-10 Wuhan University Method and system of predicting electric system load based on wavelet noise reduction and emd-arima
CN116205359A (en) * 2023-02-28 2023-06-02 国网甘肃省电力公司信息通信公司 A method, device, terminal and storage medium for day-ahead power load forecasting
CN116703183A (en) * 2023-08-04 2023-09-05 国网吉林省电力有限公司经济技术研究院 A new method for evaluating power load in distribution network system
CN117559448A (en) * 2024-01-12 2024-02-13 山东德源电力科技股份有限公司 Power consumption load prediction analysis method and system for special transformer acquisition terminal
CN117650511A (en) * 2023-11-20 2024-03-05 国网山东省电力公司营销服务中心(计量中心) Method for predicting short-term output power of distributed power supply
CN118228069A (en) * 2024-03-07 2024-06-21 南方电网大数据服务有限公司 Method, apparatus, device, medium and program product for predicting electric load

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170336534A1 (en) * 2016-05-19 2017-11-23 The Catholic University Of America System and methods for improving the accuracy of solar energy and wind energy forecasts for an electric utility grid
CN108074015A (en) * 2017-12-25 2018-05-25 中国电力科学研究院有限公司 A kind of ultrashort-term wind power prediction method and system
CN108960520A (en) * 2018-07-12 2018-12-07 南方电网科学研究院有限责任公司 Power load prediction method, system, computer equipment and medium
CN109615117A (en) * 2018-11-22 2019-04-12 国网天津市电力公司 A coal-to-electricity power load forecasting method based on ARIMA model
US20220045509A1 (en) * 2020-08-05 2022-02-10 Wuhan University Method and system of predicting electric system load based on wavelet noise reduction and emd-arima
CN116205359A (en) * 2023-02-28 2023-06-02 国网甘肃省电力公司信息通信公司 A method, device, terminal and storage medium for day-ahead power load forecasting
CN116703183A (en) * 2023-08-04 2023-09-05 国网吉林省电力有限公司经济技术研究院 A new method for evaluating power load in distribution network system
CN117650511A (en) * 2023-11-20 2024-03-05 国网山东省电力公司营销服务中心(计量中心) Method for predicting short-term output power of distributed power supply
CN117559448A (en) * 2024-01-12 2024-02-13 山东德源电力科技股份有限公司 Power consumption load prediction analysis method and system for special transformer acquisition terminal
CN118228069A (en) * 2024-03-07 2024-06-21 南方电网大数据服务有限公司 Method, apparatus, device, medium and program product for predicting electric load

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EWA CHODAKOWSKA等: "ARIMA Models in Electrical Load Forecasting and Their Robustness to Noise", ENERGIES, vol. 14, no. 23, 28 November 2021 (2021-11-28), pages 1 - 22 *
刘侃: "基于智能电表的短期用电量预测方法研究", 中国优秀硕士学位论文全文数据库(工程科技Ⅱ辑), no. 01, 15 January 2023 (2023-01-15), pages 042 - 1960 *
吴润泽等: "基于深度学习的电网短期负荷预测方法研究", 现代电力, no. 02, 22 December 2017 (2017-12-22), pages 43 - 48 *
邱是;: "基于EMD分解与ARMA模型的电力负荷预测", 四川水力发电, no. 01, 15 February 2016 (2016-02-15), pages 112 - 116 *

Also Published As

Publication number Publication date
CN118520428B (en) 2024-10-18

Similar Documents

Publication Publication Date Title
Wang et al. Sequence transfer correction algorithm for numerical weather prediction wind speed and its application in a wind power forecasting system
Yan et al. Reviews on uncertainty analysis of wind power forecasting
CN112215442B (en) Method, system, device and medium for predicting short-term load of power system
CN103279804A (en) Super short-period wind power prediction method
CN113468811B (en) Power grid reserve capacity probabilistic dynamic assessment method and system containing new energy unit
CN105490310A (en) Real-time dynamic economical scheduling method for generally-distributed electric power system containing wind power
CN109447332A (en) A kind of Middle-long Electric Power Load Forecast method suitable for S type load curve
CN116385053A (en) Method, system and medium for predicting daily price of electric power spot market
WO2017049428A1 (en) Spinning reserve capacity optimization method based on cost-performance ratio of reserve object
CN110457821A (en) Wind power curve multi-objective comprehensive evaluation method, device and server
CN118054400A (en) Wind power prediction method and system based on interpretability and model fusion
CN114492923A (en) Long-time scale power prediction method
US20250125616A1 (en) Method for prediction power generation using meta-learning, device and system using the same
CN118520428B (en) A method and system for predicting power load based on artificial intelligence
CN112070320B (en) A method and system for ultra-short-term wind power forecasting based on dynamic harmonic regression
Liao et al. Wind power prediction errors model and algorithm based on non-parametric kernel density estimation
CN119398201A (en) A method and system for predicting power production capacity based on artificial intelligence
CN117932470A (en) A Monthly Runoff Forecasting Method Based on Dynamic Bayesian Network
Wilson et al. Use of meteorological data for improved estimation of risk in capacity adequacy studies
CN110942195A (en) Method and device for forecasting power consumption
CN117557125A (en) Method and system for evaluating flexible resource adjustment capability of power system
JP7508922B2 (en) Prediction system and method for calculating predicted values
CN114330865A (en) Prediction method, system, computer equipment and storage medium for power grid reserve capacity
Bessa et al. Time-adaptive kernel density forecast: A new method for wind power uncertainty modeling
CN118589498B (en) A method and system for electric energy management based on big data

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant