CN118098501A - A calorie analysis and matching system based on IoT devices - Google Patents
A calorie analysis and matching system based on IoT devices Download PDFInfo
- Publication number
- CN118098501A CN118098501A CN202410302758.4A CN202410302758A CN118098501A CN 118098501 A CN118098501 A CN 118098501A CN 202410302758 A CN202410302758 A CN 202410302758A CN 118098501 A CN118098501 A CN 118098501A
- Authority
- CN
- China
- Prior art keywords
- food
- motion
- value
- calories
- analysis
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000004458 analytical method Methods 0.000 title claims abstract description 50
- 235000013305 food Nutrition 0.000 claims abstract description 145
- 230000033001 locomotion Effects 0.000 claims abstract description 100
- 238000012545 processing Methods 0.000 claims abstract description 30
- 239000013598 vector Substances 0.000 claims abstract description 27
- 230000036541 health Effects 0.000 claims abstract description 13
- 230000002452 interceptive effect Effects 0.000 claims abstract description 8
- 238000012544 monitoring process Methods 0.000 claims abstract description 6
- 230000006870 function Effects 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 19
- 238000012549 training Methods 0.000 claims description 12
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 10
- 235000012041 food component Nutrition 0.000 claims description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 8
- 239000008280 blood Substances 0.000 claims description 8
- 210000004369 blood Anatomy 0.000 claims description 8
- 230000008859 change Effects 0.000 claims description 8
- 229910052760 oxygen Inorganic materials 0.000 claims description 8
- 239000001301 oxygen Substances 0.000 claims description 8
- 239000004615 ingredient Substances 0.000 claims description 7
- 230000005540 biological transmission Effects 0.000 claims description 6
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 5
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 5
- 239000011575 calcium Substances 0.000 claims description 5
- 229910052791 calcium Inorganic materials 0.000 claims description 5
- 150000001720 carbohydrates Chemical class 0.000 claims description 5
- 229910052742 iron Inorganic materials 0.000 claims description 5
- 235000016709 nutrition Nutrition 0.000 claims description 5
- 150000007524 organic acids Chemical class 0.000 claims description 5
- 102000004169 proteins and genes Human genes 0.000 claims description 5
- 108090000623 proteins and genes Proteins 0.000 claims description 5
- 239000011734 sodium Substances 0.000 claims description 5
- 229910052708 sodium Inorganic materials 0.000 claims description 5
- 235000019577 caloric intake Nutrition 0.000 claims description 4
- 238000009432 framing Methods 0.000 claims description 3
- 238000013507 mapping Methods 0.000 claims 1
- 230000006855 networking Effects 0.000 claims 1
- 235000015097 nutrients Nutrition 0.000 abstract description 9
- 238000010586 diagram Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000037406 food intake Effects 0.000 description 2
- 235000012631 food intake Nutrition 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 235000021049 nutrient content Nutrition 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 235000004251 balanced diet Nutrition 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000003909 pattern recognition Methods 0.000 description 1
- 238000010200 validation analysis Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/30—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to physical therapies or activities, e.g. physiotherapy, acupressure or exercising
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/50—Information retrieval; Database structures therefor; File system structures therefor of still image data
- G06F16/58—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually
- G06F16/583—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content
- G06F16/5838—Retrieval characterised by using metadata, e.g. metadata not derived from the content or metadata generated manually using metadata automatically derived from the content using colour
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F16/00—Information retrieval; Database structures therefor; File system structures therefor
- G06F16/90—Details of database functions independent of the retrieved data types
- G06F16/903—Querying
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/60—Type of objects
- G06V20/68—Food, e.g. fruit or vegetables
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H20/00—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance
- G16H20/60—ICT specially adapted for therapies or health-improving plans, e.g. for handling prescriptions, for steering therapy or for monitoring patient compliance relating to nutrition control, e.g. diets
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Databases & Information Systems (AREA)
- Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Primary Health Care (AREA)
- Library & Information Science (AREA)
- Medical Informatics (AREA)
- Epidemiology (AREA)
- Data Mining & Analysis (AREA)
- Nutrition Science (AREA)
- Multimedia (AREA)
- Computational Linguistics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biophysics (AREA)
- Physical Education & Sports Medicine (AREA)
- Medical Treatment And Welfare Office Work (AREA)
Abstract
本发明公开了一种基于物联网设备的卡路里分析匹配系统,包括数据库、信息采集单元、处理分析单元和交互规划单元,信息采集单元采集食物图像信息和用户的身体机能参数,先通过构建食物对比模型,实现对不同场景下的食物分类,生成相应的食物种类,进而得到对应的营养成分和体积大小,生成食物的卡路里;还通过对身体机能参数的分析,生成第一体表系数和第一运动系数,并构建四维监测向量并分析以进行对运动消耗程度的判断,进而生成消耗的卡路里;最终对食物的卡路里和消耗的卡路里进行分析,实现健康规划,帮助用户及时调整饮食和运动习惯。
The present invention discloses a calorie analysis and matching system based on an Internet of Things device, comprising a database, an information collection unit, a processing and analysis unit, and an interactive planning unit. The information collection unit collects food image information and a user's body function parameters, firstly constructs a food comparison model to classify food in different scenes, generates corresponding food types, and then obtains corresponding nutrients and volume sizes to generate food calories; further, through analysis of body function parameters, a first body surface coefficient and a first motion coefficient are generated, and a four-dimensional monitoring vector is constructed and analyzed to judge the degree of exercise consumption, thereby generating consumed calories; finally, the food calories and the consumed calories are analyzed to realize health planning, and help users adjust their eating and exercise habits in a timely manner.
Description
技术领域Technical Field
本发明涉及健康管理技术领域,尤其涉及一种基于物联网设备的卡路里分析匹配系统。The present invention relates to the field of health management technology, and in particular to a calorie analysis and matching system based on Internet of Things devices.
背景技术Background technique
随着社会的不断发展,在健康管理方面,人们逐渐追求一种饮食平衡,体重合理的目标,卡路里是衡量人体运动热量消耗的单位,在用户进食时,往往需要通人工计算摄入的卡路里,对于一些食物如菜肴,需要进行识别分辨,这大大增加了计算时间;现有运动提醒功能往往安装于可穿戴设备上,可穿戴设备只按照现有模式算法进行提醒运动,在食物卡路里摄入过多或过少的情况下,未考虑到由于个人体质影响所导致的卡路里差异,无法提供个性化的饮食和运动方案,影响最终的健康效果;With the continuous development of society, people are gradually pursuing a goal of balanced diet and reasonable weight in health management. Calories are the unit for measuring the calorie consumption of human exercise. When users eat, they often need to manually calculate the calories they consume. For some foods such as dishes, they need to be identified and distinguished, which greatly increases the calculation time. Existing exercise reminder functions are often installed on wearable devices. Wearable devices only remind people to exercise according to existing model algorithms. When food calories are consumed too much or too little, the calorie differences caused by personal physique are not taken into account, and personalized diet and exercise plans cannot be provided, affecting the final health effect.
针对上述的技术缺陷,现提出一种解决方案。In view of the above technical defects, a solution is now proposed.
发明内容Summary of the invention
本发明的目的在于:提出一种基于物联网设备的卡路里分析匹配系统,通过对食物进行拍照,可以准确地辨识食物,并根据摄入的食物种类、体积和相应的营养成分表,通过算法计算出食物的卡路里;同时,实时监测用户的摄入和消耗情况,并根据设定的目标提供实时的提醒和建议,帮助用户及时调整饮食和运动习惯。The purpose of the present invention is to propose a calorie analysis and matching system based on Internet of Things devices. By taking pictures of food, the food can be accurately identified, and the calories of the food can be calculated through an algorithm according to the type and volume of the food consumed and the corresponding nutritional composition table; at the same time, the user's intake and consumption can be monitored in real time, and real-time reminders and suggestions can be provided according to the set goals to help users adjust their eating and exercise habits in a timely manner.
为了实现上述目的,本发明采用了如下技术方案:一种基于物联网设备的卡路里分析匹配系统,包括数据库、信息采集单元、处理分析单元和交互规划单元;信息采集单元包括图像采集模块和数据采集模块;图像采集模块采集食物的图像,数据采集模块采集用户的身体机能参数,并均发送给数据库进行存储;处理分析单元与信息采集单元相连接,并与系统后台的数据库相连接并进行相应的数据传输;包括食物识别处理模块和运动数据处理模块,食物识别处理模块,通过获取目标食物储存在数据库中的各项参数信息并分析,建立食物对比模型,计算出食物的卡路里;运动数据处理模块,通过获取储存在数据库中的用户的身体机能参数并分析,建立运动消耗模型,计算出消耗的卡路里;还将食物的卡路里和消耗的卡路里均发送给数据库进行存储;交互规划单元与处理分析单元相连接,并与系统后台的数据库相连接并进行相应的数据传输,通过对食物的卡路里和消耗的卡路里进行分析,实现健康规划。In order to achieve the above-mentioned purpose, the present invention adopts the following technical scheme: a calorie analysis and matching system based on Internet of Things devices, including a database, an information acquisition unit, a processing and analysis unit and an interactive planning unit; the information acquisition unit includes an image acquisition module and a data acquisition module; the image acquisition module acquires images of food, and the data acquisition module acquires the user's body function parameters, and both are sent to the database for storage; the processing and analysis unit is connected to the information acquisition unit, and is connected to the database of the system background and performs corresponding data transmission; it includes a food recognition processing module and a motion data processing module, the food recognition processing module acquires and analyzes the various parameter information of the target food stored in the database, establishes a food comparison model, and calculates the calories of the food; the motion data processing module acquires and analyzes the user's body function parameters stored in the database, establishes a motion consumption model, and calculates the calories consumed; the calories of the food and the calories consumed are also sent to the database for storage; the interactive planning unit is connected to the processing and analysis unit, and is connected to the database of the system background and performs corresponding data transmission, and realizes health planning by analyzing the calories of the food and the calories consumed.
进一步的,食物识别处理模块的具体分析过程为:Furthermore, the specific analysis process of the food identification processing module is as follows:
步骤A1,先建立食物对比模型,并调取数据库中的食物种类判定表,进而对比目标食物与目标食物的食物种类判定表的相似度,且预设食物种类判定表数据包含不同的场景下的食物种类数据,再根据图片对比过程中的匹配相似度,获得目标食物的食物种类;Step A1, first establish a food comparison model, and retrieve the food type determination table in the database, and then compare the similarity between the target food and the food type determination table of the target food, and the preset food type determination table data includes food type data in different scenes, and then obtain the food type of the target food according to the matching similarity in the picture comparison process;
步骤A2,获取目标食物的食物种类,再按照食物种获取对应的营养成分和所占体积,并构建影响分析模型,对营养成分和体积进行分析,分别获取影响系数;其中,营养成分包括每百克每种成分含有的能量(kJ)、钠(mg)、蛋白质(g)、油脂(g)、碳水化合物(g)、钙(mg)、铁(mg)和有机酸(mg)Step A2, obtaining the food type of the target food, and then obtaining the corresponding nutritional components and volume according to the food type, and constructing an impact analysis model to analyze the nutritional components and volume, and obtain the impact coefficients respectively; wherein the nutritional components include energy (kJ), sodium (mg), protein (g), fat (g), carbohydrate (g), calcium (mg), iron (mg) and organic acid (mg) contained in each ingredient per 100 grams
步骤A2-1,先构建影响分析模型:Step A2-1, first build an impact analysis model:
将输入信息标记为参数集合U,集合U中包含N个元素值,将任一元素值标记为Xi,再为N个元素值分别赋予相应的权重系数φi,建立公式输出参数集合U的影响系数Ue;The input information is marked as a parameter set U, which contains N element values. Any element value is marked as Xi, and then the N element values are respectively assigned corresponding weight coefficients φi to establish the influence coefficient Ue of the formula output parameter set U;
步骤A2-2,再将营养成分和体积依次代入到影响分析模型中,分别获得营养成分影响系数和体积影响系数,并分别对应标记为U1和U2;Step A2-2, then substitute the nutrients and volume into the impact analysis model in sequence to obtain the nutrient impact coefficient and volume impact coefficient, and mark them as U1 and U2 respectively;
步骤A3,根据目标食物种类、目标食物种类对应的体积和营养成分,计算得到目标食物的卡路里K0。Step A3, calculating the calories K0 of the target food according to the target food type, the volume corresponding to the target food type and the nutritional components.
进一步的,食物对比模型的具体建立过程为:Furthermore, the specific process of establishing the food comparison model is as follows:
步骤A1-1,获取目标食物的对比场景,通过将目标食物进行区域框定,再获取目标食物和预设判定食物的颜色特征,颜色特征包括红色要素R、绿色要素L和蓝色要素B,以同一基点建立空间直角坐标系,且该空间直角坐标系的横轴为R/G(红色要素/绿色要素)的颜色空间,纵轴为B/G(蓝色要素/绿色要素)的颜色空间;Step A1-1, obtaining a comparison scene of the target food, framing the target food in an area, and then obtaining color features of the target food and the preset judgment food, the color features including the red element R, the green element L and the blue element B, establishing a spatial rectangular coordinate system with the same base point, and the horizontal axis of the spatial rectangular coordinate system is the color space of R/G (red element/green element), and the vertical axis is the color space of B/G (blue element/green element);
步骤A1-2,获取目标食物和预设判定食物在颜色空间上的分布数量m1和分布数量m2,并将分布数量m1和分布数量m2进行对比:Step A1-2, obtaining the distribution quantity m1 and the distribution quantity m2 of the target food and the preset judgment food in the color space, and comparing the distribution quantity m1 with the distribution quantity m2:
当m1=m2时,表示目标食物与预设判定食物完全匹配,且匹配相似度为100%;When m1=m2, it means that the target food completely matches the preset judgment food, and the matching similarity is 100%;
当m1≠m2时,表示目标食物与预设判定食物不完全匹配,则记录分布数量之间的差值数据,再次进行模型训练,并获取差值数据的集合Q,并对应获取集合Q的最小值Qmin,计算此时的匹配相似度;When m1≠m2, it means that the target food does not completely match the preset judgment food, then the difference data between the distribution quantities is recorded, the model is trained again, and the set Q of the difference data is obtained, and the minimum value Qmin of the set Q is obtained accordingly, and the matching similarity at this time is calculated;
步骤A1-3,设定匹配相似度的阈值,将匹配相似度与预设在数据库中的阈值进行对比:Step A1-3, setting a threshold for matching similarity, and comparing the matching similarity with the threshold preset in the database:
当匹配相似度小于设定的阈值,不断改变网络参数,重新进行模型训练;When the matching similarity is less than the set threshold, the network parameters are continuously changed and the model training is re-performed;
当匹配相似度大于设定的阈值,保存采用的模型,生成食物对比模型。When the matching similarity is greater than the set threshold, the adopted model is saved and a food comparison model is generated.
进一步的,运动数据处理模块的具体分析过程为:Furthermore, the specific analysis process of the motion data processing module is as follows:
步骤B1,先获取用户当前时间点的身体机能参数,身体机能参数包括第一机能参数和第二机能参数,再依次对第一机能参数和第二机能参数进行处理分析;Step B1, first obtaining the user's body function parameters at the current time point, the body function parameters including the first function parameters and the second function parameters, and then sequentially processing and analyzing the first function parameters and the second function parameters;
步骤B1-1,第一机能参数包括用户运动速度方向和运动速度值,构建运动姿态分析模型对第一机能参数进行分析:Step B1-1, the first functional parameter includes the user's motion speed direction and motion speed value, and a motion posture analysis model is constructed to analyze the first functional parameter:
先对运动速度方向进行分解:以三维坐标轴线为基准,将运动速度方向与三维坐标轴线X轴方向、Y轴方向和Z轴方向的夹角分别标记为倾角θ1、倾角θ2和倾角θ3(θ1、θ2和θ3均在0°至90°之间);再将运动速度值按照运动速度方向进行映射得到分速度值,并对应标记为速度值v1、速度值v2和速度值v3,将速度值与倾角相结合,生成当前时间点的第一运动系数D1;First, the direction of the motion speed is decomposed: taking the three-dimensional coordinate axis as the reference, the angles between the motion speed direction and the X-axis direction, Y-axis direction and Z-axis direction of the three-dimensional coordinate axis are marked as inclination angle θ1, inclination angle θ2 and inclination angle θ3 (θ1, θ2 and θ3 are all between 0° and 90°); then the motion speed value is mapped according to the motion speed direction to obtain the sub-speed value, and marked as speed value v1, speed value v2 and speed value v3 respectively, and the speed value is combined with the inclination angle to generate the first motion coefficient D1 at the current time point;
步骤B1-2,第二机能参数包括用户的心率、温度和血氧浓度,并对应标记为c1、c2和c3,再赋予心率、温度和血氧浓度对应的权重系数,生成的第一体表系数D2;Step B1-2, the second functional parameters include the user's heart rate, temperature and blood oxygen concentration, which are marked as c1, c2 and c3 respectively, and then the weight coefficients corresponding to the heart rate, temperature and blood oxygen concentration are assigned to generate the first body surface coefficient D2;
步骤B2,将一天划分为多个时间段,并获取第一运动系数D1,第一体表系数D2和运动类别S,以构建四维监测向量<第一运动系数D1,第一体表系数D2,运动类别S,时间Time>,统计每个时间段内第一运动系数D1和第二运动系数D2的平均值和波动值,对于任意一个时间段Ta,标记该时间段Ta的运动类别为Sa,第一运动系数D1和第一体表系数D2的平均值分别为THD1和THD2,波动值分别为TRD1和TRD2,并按照不同的组合构建判断向量;Step B2, divide a day into multiple time periods, and obtain the first motion coefficient D1, the first body surface coefficient D2 and the motion category S to construct a four-dimensional monitoring vector <first motion coefficient D1, first body surface coefficient D2, motion category S, time Time>, count the average value and fluctuation value of the first motion coefficient D1 and the second motion coefficient D2 in each time period, for any time period Ta, mark the motion category of the time period Ta as Sa, the average values of the first motion coefficient D1 and the first body surface coefficient D2 are T HD1 and T HD2 respectively, and the fluctuation values are T RD1 and T RD2 respectively, and construct judgment vectors according to different combinations;
步骤B3,再建立运动消耗模型:将输入信息标记为向量W,向量W中包含N0个分向量,将任一分向量标记为Yj,再为N0个分向量分别赋予相应的消耗系数σj,建立公式输出向量W的判断值Wd;Step B3, establish a motion consumption model: mark the input information as vector W, vector W contains N0 component vectors, mark any component vector as Yj, and then assign corresponding consumption coefficients σj to each of the N0 component vectors, and establish a formula to output the judgment value Wd of the vector W;
再将任意一个判断向量输入运动消耗模型中,得到对应的判断值,并设定判断值的阈值,将判断值与预设阈值进行对比分析,判断运动消耗程度;Then, any judgment vector is input into the motion consumption model to obtain the corresponding judgment value, and a threshold of the judgment value is set, and the judgment value is compared and analyzed with the preset threshold to determine the degree of motion consumption;
步骤B4,获取用户的体重weight,并设定公式进行对消耗的卡路里K1的计算。Step B4, obtaining the user's weight, and setting a formula to calculate the consumed calories K1.
进一步的,运动类别具体的生成过程为:Furthermore, the specific generation process of the motion category is as follows:
获取预设时间内的运动速度值以及分速度值,设定阈值vo1和阈值vo2,将分速度值与预设阈值进行对比分析,生成对应的运动类别S:Get the motion speed value and sub-speed value within the preset time, set the threshold vo1 and threshold vo2, compare and analyze the sub-speed value with the preset threshold, and generate the corresponding motion category S:
当v3>v1且v3>v2时,将此时的运动速度值标记为s2,同时编辑为二级字符,且将s2和二级字符相结合生成二级运动类别;When v3>v1 and v3>v2, the movement speed value at this time is marked as s2, edited as a secondary character, and s2 and the secondary character are combined to generate a secondary movement category;
否则,当v3>预设值vo1且v1>预设值vo2时,将此时的运动速度值标记为s1,同时编辑为一级字符,且将s1和一级字符相结合生成一级运动类别;Otherwise, when v3>preset value vo1 and v1>preset value vo2, the motion speed value at this time is marked as s1, edited as a first-level character, and s1 and the first-level character are combined to generate a first-level motion category;
否则,将此时的运动速度值标记为s3,同时编辑为三级字符,且将s3和三级字符相结合生成三级运动类别。Otherwise, the motion speed value at this time is marked as s3, and edited as a third-level character, and s3 and the third-level character are combined to generate a third-level motion category.
进一步的,健康规划的具体分析过程为:Furthermore, the specific analysis process of health planning is as follows:
步骤C1,以食物的卡路里K0为横坐标,消耗的卡路里K1为纵坐标,建立卡路里消耗变化关系图,并记录下拐点时刻,将其标记为变动点;同时,在坐标系中预设一条理想的阈值曲线;Step C1, using the calories of food K0 as the horizontal coordinate and the calories consumed K1 as the vertical coordinate, establish a calorie consumption change relationship diagram, and record the turning point moment and mark it as a change point; at the same time, preset an ideal threshold curve in the coordinate system;
步骤C2,分别获取食物的卡路里K0-消耗的卡路里K1曲线位于预设阈值曲线上方线段长度以及上方线段与预设预设阈值曲线所围成的面积,和食物的卡路里K0-消耗的卡路里K1曲线位于预设阈值曲线下方线段长度以及下方线段与预设预设阈值曲线所围成的面积;Step C2, respectively obtaining the length of the line segment of the food calorie K0-consumed calorie K1 curve located above the preset threshold curve and the area enclosed by the upper line segment and the preset threshold curve, and the length of the line segment of the food calorie K0-consumed calorie K1 curve located below the preset threshold curve and the area enclosed by the lower line segment and the preset threshold curve;
步骤C3,以变动点为圆心,以r为半径向外画圆,若围成的面积mj1或面积mj2没有完全落在圆内,则生成提醒信号,进行健康规划。Step C3, draw a circle with the change point as the center and r as the radius. If the enclosed area mj1 or area mj2 does not fall completely within the circle, a reminder signal is generated to carry out health planning.
综上所述,由于采用了上述技术方案,本发明的有益效果是:In summary, due to the adoption of the above technical solution, the beneficial effects of the present invention are:
本发明先通过信息采集单元采集食物图像信息和用户的身体机能参数,再通过构建食物对比模型,实现对不同场景下的食物分类,生成相应的食物种类,进而得到对应的营养成分和体积大小,生成食物的卡路里;还通过对身体机能参数的分析,生成第一体表系数和第一运动系数,并构建四维监测向量并分析以进行对运动消耗程度的判断,进而生成消耗的卡路里;最终对食物的卡路里和消耗的卡路里进行分析,实现健康规划,帮助用户及时调整饮食和运动习惯。The present invention first collects food image information and the user's body function parameters through an information collection unit, and then constructs a food comparison model to classify food in different scenarios, generate corresponding food types, and then obtain corresponding nutrients and volume sizes to generate food calories; it also generates a first body surface coefficient and a first motion coefficient through analysis of body function parameters, and constructs and analyzes a four-dimensional monitoring vector to judge the degree of exercise consumption, and then generates consumed calories; finally, the calories of food and the calories consumed are analyzed to achieve health planning, and help users adjust their eating and exercise habits in time.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1示出了本发明的结构示意图;FIG1 shows a schematic structural diagram of the present invention;
图2示出了本发明的系统流程图。FIG. 2 shows a system flow chart of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The following will be combined with the drawings in the embodiments of the present invention to clearly and completely describe the technical solutions in the embodiments of the present invention. Obviously, the described embodiments are only part of the embodiments of the present invention, not all of the embodiments. Based on the embodiments of the present invention, all other embodiments obtained by ordinary technicians in this field without creative work are within the scope of protection of the present invention.
实施例1:如图1-2所示,一种基于物联网设备的卡路里分析匹配系统,包括数据库、信息采集单元、处理分析单元和交互规划单元;信息采集单元包括图像采集模块和数据采集模块;图像采集模块采集食物的图像,数据采集模块采集用户的身体机能参数,并均发送给数据库进行存储;Embodiment 1: As shown in FIG1-2, a calorie analysis and matching system based on an IoT device includes a database, an information acquisition unit, a processing and analysis unit, and an interactive planning unit; the information acquisition unit includes an image acquisition module and a data acquisition module; the image acquisition module acquires images of food, and the data acquisition module acquires body function parameters of the user, and both are sent to the database for storage;
处理分析单元与信息采集单元相连接,并与系统后台的数据库相连接并进行相应的数据传输;包括食物识别处理模块和运动数据处理模块,食物识别处理模块,通过获取目标食物储存在数据库中的各项参数信息并分析,建立食物对比模型,计算出食物的卡路里;运动数据处理模块,通过获取储存在数据库中的用户的身体机能参数并分析,建立运动消耗模型,计算出消耗的卡路里;还将食物的卡路里和消耗的卡路里均发送给数据库进行存储;The processing and analysis unit is connected to the information collection unit and is connected to the database of the system background to perform corresponding data transmission; it includes a food recognition processing module and a motion data processing module. The food recognition processing module acquires and analyzes the various parameter information of the target food stored in the database, establishes a food comparison model, and calculates the calories of the food; the motion data processing module acquires and analyzes the user's body function parameters stored in the database, establishes a motion consumption model, and calculates the calories consumed; and also sends the food calories and the consumed calories to the database for storage;
其中,食物识别处理模块的具体分析过程为:Among them, the specific analysis process of the food identification processing module is as follows:
步骤A1,先建立食物对比模型,并调取数据库中的食物种类判定表,进而对比目标食物与目标食物的食物种类判定表的相似度,且预设食物种类判定表数据包含不同的场景下的食物种类数据,再根据图片对比过程中的匹配相似度,获得目标食物的食物种类;Step A1, first establish a food comparison model, and retrieve the food type determination table in the database, and then compare the similarity between the target food and the food type determination table of the target food, and the preset food type determination table data includes food type data in different scenes, and then obtain the food type of the target food according to the matching similarity in the picture comparison process;
食物对比模型的建立过程为:The process of establishing the food comparison model is as follows:
步骤A1-1,获取目标食物的对比场景,通过将目标食物进行区域框定,再获取目标食物和预设判定食物的颜色特征,颜色特征包括红色要素R、绿色要素L和蓝色要素B,以同一基点建立空间直角坐标系,且该空间直角坐标系的横轴为R/G(红色要素/绿色要素)的颜色空间,纵轴为B/G(蓝色要素/绿色要素)的颜色空间;Step A1-1, obtaining a comparison scene of the target food, framing the target food in an area, and then obtaining color features of the target food and the preset judgment food, the color features including the red element R, the green element L and the blue element B, establishing a spatial rectangular coordinate system with the same base point, and the horizontal axis of the spatial rectangular coordinate system is the color space of R/G (red element/green element), and the vertical axis is the color space of B/G (blue element/green element);
步骤A1-2,获取目标食物和预设判定食物在颜色空间上的分布数量m1和分布数量m2,并将分布数量m1和分布数量m2进行对比:Step A1-2, obtaining the distribution quantity m1 and the distribution quantity m2 of the target food and the preset judgment food in the color space, and comparing the distribution quantity m1 with the distribution quantity m2:
当m1=m2时,表示目标食物与预设判定食物完全匹配,且匹配相似度为100%;When m1=m2, it means that the target food completely matches the preset judgment food, and the matching similarity is 100%;
当m1≠m2时,表示目标食物与预设判定食物不完全匹配,则记录分布数量之间的差值数据,再次进行模型训练,并获取差值数据的集合Q,并对应获取集合Q的最小值Qmin,计算此时的匹配相似度;When m1≠m2, it means that the target food does not completely match the preset judgment food, then the difference data between the distribution quantities is recorded, the model is trained again, and the set Q of the difference data is obtained, and the minimum value Qmin of the set Q is obtained accordingly, and the matching similarity at this time is calculated;
步骤A1-3,设定匹配相似度的阈值,将匹配相似度与预设阈值进行对比:Step A1-3, setting a threshold for matching similarity, and comparing the matching similarity with the preset threshold:
当匹配相似度小于设定的阈值,不断改变网络参数,如:卷积层的核尺寸,核数量,移动步长和填充数,重新进行模型训练;When the matching similarity is less than the set threshold, the network parameters are continuously changed, such as the kernel size, number of kernels, moving step and padding number of the convolution layer, and the model training is re-performed;
当匹配相似度大于设定的阈值,保存采用的模型,生成食物对比模型;When the matching similarity is greater than the set threshold, the adopted model is saved and a food comparison model is generated;
需要说明的是,模型在训练集上学习,往往可以在训练集上实现很高的识别准确率;理想情况下,模型在大量的训练数据上能够很好地收敛,在训练数据上的准确率高,就能很好地适应到测试集上,具有好的测试准确率;事实上,训练集与测试集上的准确率往往有一定的差距,这是因为模型过拟合到训练数据上,对训练数据的学习不再是单个类别的模式识别,而是对单个样本进行了记忆;验证集可以用于设定模型学习过程中的早停机制,在一定程度上能防止模型过拟合到训练数据上;It should be noted that the model can often achieve a high recognition accuracy on the training set when learning on the training set. Ideally, the model can converge well on a large amount of training data. If the accuracy on the training data is high, it can adapt well to the test set and have a good test accuracy. In fact, there is often a certain gap between the accuracy on the training set and the test set. This is because the model is overfitted to the training data. The learning of the training data is no longer a single category of pattern recognition, but a memorization of a single sample. The validation set can be used to set the early stopping mechanism in the model learning process, which can prevent the model from overfitting to the training data to a certain extent.
步骤A2,获取目标食物的食物种类,再按照食物种获取对应的营养成分和所占体积,并构建影响分析模型,对营养成分和体积进行分析,分别获取影响系数;其中,营养成分包括每百克每种成分含有的能量(kJ)、钠(mg)、蛋白质(g)、油脂(g)、碳水化合物(g)、钙(mg)、铁(mg)和有机酸(mg),并分别对应标记为a1、a2、a3、a4、a5、a6、a7和a8;Step A2, obtaining the food type of the target food, and then obtaining the corresponding nutritional components and the volume occupied according to the food type, and constructing an impact analysis model to analyze the nutritional components and the volume, and respectively obtain the impact coefficients; wherein the nutritional components include energy (kJ), sodium (mg), protein (g), fat (g), carbohydrate (g), calcium (mg), iron (mg) and organic acid (mg) contained in each component per 100 grams, and are marked as a1, a2, a3, a4, a5, a6, a7 and a8 respectively;
步骤A2-1,先构建影响分析模型:Step A2-1, first build an impact analysis model:
将输入信息标记为参数集合U,集合U中包含N个元素值,将任一元素值标记为Xi,再为N个元素值分别赋予相应的权重系数φi,建立公式输出参数集合U的影响系数Ue,公式为: The input information is marked as a parameter set U, which contains N element values. Any element value is marked as Xi, and then the N element values are respectively assigned corresponding weight coefficients φi, and the influence coefficient Ue of the formula output parameter set U is established. The formula is:
步骤A2-2,再将营养成分和体积依次代入到影响分析模型中,分别获得营养成分影响系数和体积影响系数,并分别对应标记为U1和U2;Step A2-2, then substitute the nutrients and volume into the impact analysis model in sequence to obtain the nutrient influence coefficient and volume influence coefficient, and mark them as U1 and U2 respectively;
A2-21,将营养成分作为输入信息,建立Ua集合={能量a1,钠a2,蛋白质a3,油脂a4,碳水化合物a5,钙a6,铁a7,有机酸a8},将Ua集合代入到影响分析模型中,获得营养成分影响系数U1,公式为:U1=a1*β1+a2*β2+a3*β3+a4*β4+a5*β5+a6*β6+a7*β7+a8*β8,其中β1、β2、β3、β4、β5、β6、β7、β8分别为每百克每种成分含有的能量,钠,蛋白质,油脂,碳水化合物,钙,铁,有机酸的权重系数,且β1、β2、β3、β4、β5、β6、β7、β8均大于0;A2-21, taking nutrients as input information, establish Ua set = {energy a1, sodium a2, protein a3, fat a4, carbohydrate a5, calcium a6, iron a7, organic acid a8}, substitute Ua set into the impact analysis model, obtain the nutrient impact coefficient U1, the formula is: U1 = a1*β1+a2*β2+a3*β3+a4*β4+a5*β5+a6*β6+a7*β7+a8*β8, where β1, β2, β3, β4, β5, β6, β7, β8 are the weight coefficients of energy, sodium, protein, fat, carbohydrate, calcium, iron, and organic acid per 100 grams of each ingredient, respectively, and β1, β2, β3, β4, β5, β6, β7, β8 are all greater than 0;
A2-22,将目标食物相同种类下对应的体积作为输入信息,建立Ub集合={体积b1,体积b2,……,体积bN},其中,bN表示该食物种类下第N块体积大小,且N为大于0的整数;将Ub集合代入到影响分析模型中,获得体积影响系数U2,公式为:其中i为体积块的数量,i为正整数且i∈[1,N],χi为第i体积块对应的权重系数,且χi大于0;A2-22, take the corresponding volume of the same type of target food as input information, establish Ub set = {volume b1, volume b2, ..., volume bN}, where bN represents the volume of the Nth block of the food type, and N is an integer greater than 0; substitute Ub set into the influence analysis model to obtain the volume influence coefficient U2, the formula is: Where i is the number of volume blocks, i is a positive integer and i∈[1,N], χi is the weight coefficient corresponding to the i-th volume block, and χi is greater than 0;
步骤A3,根据目标食物种类、目标食物种类对应的体积和营养成分,计算得到目标食物的卡路里K0,公式为:K0=∑(U2*U1*Nu),其中U1是营养成分,U2是体积,Nu是食物种类;Step A3, according to the target food type, the volume corresponding to the target food type and the nutrient content, the calorie K0 of the target food is calculated, and the formula is: K0 = ∑(U2*U1*Nu), where U1 is the nutrient content, U2 is the volume, and Nu is the food type;
其中,运动数据处理模块的具体分析过程为:Among them, the specific analysis process of the motion data processing module is:
步骤B1,先获取用户当前时间点的身体机能参数,身体机能参数包括第一机能参数和第二机能参数,再依次对第一机能参数和第二机能参数进行处理分析;Step B1, first obtaining the user's body function parameters at the current time point, the body function parameters including the first function parameters and the second function parameters, and then sequentially processing and analyzing the first function parameters and the second function parameters;
步骤B1-1,第一机能参数包括用户运动速度方向和运动速度值,构建运动姿态分析模型对第一机能参数进行分析:Step B1-1, the first functional parameter includes the user's motion speed direction and motion speed value, and a motion posture analysis model is constructed to analyze the first functional parameter:
先对运动速度方向进行分解:以三维坐标轴线为基准,将运动速度方向与三维坐标轴线X轴方向、Y轴方向和Z轴方向的夹角分别标记为倾角θ1、倾角θ2和倾角θ3(θ1、θ2和θ3均在0°至90°之间);再将运动速度值按照运动速度方向进行映射得到分速度值,并对应标记为速度值v1、速度值v2和速度值v3,将速度值与倾角相结合,生成当前时间点的第一运动系数D1;公式为:D1=v1*cosθ1*η1+v2*cosθ2*η2+v3*cosθ3*η3,其中,η1、η2和η3分别为转化系数,转化系数通过大量数据测算进行预设,且η1、η2和η3均大于0;当速度值越高,倾角越大,对应余弦值越大,第一运动系数就越大;First, the direction of the motion speed is decomposed: taking the three-dimensional coordinate axis as the reference, the angles between the motion speed direction and the X-axis direction, Y-axis direction and Z-axis direction of the three-dimensional coordinate axis are marked as inclination angle θ1, inclination angle θ2 and inclination angle θ3 (θ1, θ2 and θ3 are all between 0° and 90°); then the motion speed value is mapped according to the motion speed direction to obtain the sub-speed value, and marked as speed value v1, speed value v2 and speed value v3 respectively, and the speed value is combined with the inclination angle to generate the first motion coefficient D1 at the current time point; the formula is: D1=v1*cosθ1*η1+v2*cosθ2*η2+v3*cosθ3*η3, wherein η1, η2 and η3 are conversion coefficients respectively, and the conversion coefficients are preset through a large amount of data measurement, and η1, η2 and η3 are all greater than 0; when the speed value is higher, the inclination angle is larger, the corresponding cosine value is larger, and the first motion coefficient is larger;
步骤B1-2,第二机能参数包括用户的心率、温度和血氧浓度,并对应标记为c1、c2和c3,再赋予心率、温度和血氧浓度对应的权重系数,生成的第一体表系数D2;公式为:其中,δ1、δ2和δ3分别是心率、温度和血氧浓度的权重系数,且δ1、δ2和δ3均大于0;当心率越高,温度越高,血氧浓度越低,此时第一体表系数越大,表示当前时间点运动越激烈;Step B1-2, the second functional parameters include the user's heart rate, temperature and blood oxygen concentration, which are marked as c1, c2 and c3 respectively, and then the weight coefficients corresponding to the heart rate, temperature and blood oxygen concentration are assigned to generate the first body surface coefficient D2; the formula is: Among them, δ1, δ2 and δ3 are weight coefficients of heart rate, temperature and blood oxygen concentration, respectively, and δ1, δ2 and δ3 are all greater than 0; when the heart rate is higher, the temperature is higher, and the blood oxygen concentration is lower, the larger the first body surface coefficient is, indicating that the exercise at the current time point is more intense;
需要说明的是,通过耳腔的温湿度传感器检测耳腔的温度值,通过三轴加速度传感器检测用户的运动状态;It should be noted that the ear cavity temperature value is detected by the ear cavity temperature and humidity sensor, and the user's motion state is detected by the three-axis acceleration sensor;
步骤B2,将一天划分为多个时间段,并获取第一运动系数D1,第一体表系数D2和运动类别S,以构建四维监测向量<第一运动系数D1,第一体表系数D2,运动类别S,时间Time>,统计每个时间段内第一运动系数D1和第二运动系数D2的平均值和波动值,对于任意一个时间段Ta,标记该时间段Ta的运动类别为Sa,第一运动系数D1和第一体表系数D2的平均值分别为THD1和THD2,波动值分别为TRD1和TRD2,并按照不同的组合构建4个判断向量;Step B2, dividing a day into multiple time periods, and obtaining the first motion coefficient D1, the first body surface coefficient D2 and the motion category S to construct a four-dimensional monitoring vector <first motion coefficient D1, first body surface coefficient D2, motion category S, time Time>, counting the average value and fluctuation value of the first motion coefficient D1 and the second motion coefficient D2 in each time period, for any time period Ta, marking the motion category of the time period Ta as Sa, the average values of the first motion coefficient D1 and the first body surface coefficient D2 are T HD1 and T HD2 respectively, and the fluctuation values are T RD1 and T RD2 respectively, and four judgment vectors are constructed according to different combinations;
<THD1+THD2,TRD1+TRD2,Sa>;<T HD1 +T HD2 , T RD1 +T RD2 , Sa>;
<THD1+THD2TRD1-TRD2,Sa>;<T HD1 +T HD2 T RD1 -T RD2 , Sa>;
<THD1-THD2,TRD1+TRD2,Sa>;<T HD1 -T HD2 , T RD1 +T RD2 , Sa>;
<THD1-THD2,TRD1-TRD2,Sa>;<T HD1 -T HD2 , T RD1 -T RD2 , Sa>;
其中,运动类别具体的生成过程为:The specific generation process of the motion category is as follows:
获取预设时间内的运动速度值以及分速度值,设定阈值vo1和阈值vo2,将分速度值与预设阈值进行对比分析,生成对应的运动类别S:Get the motion speed value and sub-speed value within the preset time, set the threshold vo1 and threshold vo2, compare and analyze the sub-speed value with the preset threshold, and generate the corresponding motion category S:
在本实施例中,以直立行走为例:In this embodiment, taking upright walking as an example:
当v3>v1且v3>v2时,将此时的运动速度值标记为s2,同时编辑为二级字符,且将s2和二级字符相结合生成二级运动类别,表示在踏步;When v3>v1 and v3>v2, the movement speed value at this time is marked as s2, and edited as a secondary character at the same time, and s2 and the secondary character are combined to generate a secondary movement category, indicating stepping;
否则,当v3>预设值vo1且v1>预设值vo2时,将此时的运动速度值标记为s1,同时编辑为一级字符,且将s1和一级字符相结合生成一级运动类别,表示在跑步;Otherwise, when v3>preset value vo1 and v1>preset value vo2, the movement speed value at this time is marked as s1, edited as a first-level character, and s1 and the first-level character are combined to generate a first-level movement category, indicating running;
否则,将此时的运动速度值标记为s3,同时编辑为三级字符,且将s3和三级字符相结合生成三级运动类别,表示在散步;Otherwise, the movement speed value at this time is marked as s3, and edited as a third-level character, and s3 and the third-level character are combined to generate a third-level movement category, indicating walking;
步骤B3,再建立运动消耗模型:将输入信息标记为向量W,向量W中包含N0个分向量,将任一分向量标记为Yj,再为N0个分向量分别赋予相应的消耗系数σj,建立公式输出向量W的判断值Wd,公式为: Step B3, establish a motion consumption model: mark the input information as vector W, vector W contains N0 sub-vectors, mark any sub-vector as Yj, and then assign corresponding consumption coefficients σj to each of the N0 sub-vectors, and establish a formula to output the judgment value Wd of the vector W, the formula is:
再将任意一个判断向量输入运动消耗模型中,得到对应的判断值,并设定判断值的阈值,将判断值与预设阈值进行对比:Then input any judgment vector into the motion consumption model to obtain the corresponding judgment value, set the threshold of the judgment value, and compare the judgment value with the preset threshold:
当输出的判断值大于预设阈值,表示运动消耗程度过大;When the output judgment value is greater than the preset threshold, it indicates that the degree of exercise consumption is too great;
当输出的判断值小于预设阈值,表示运动消耗程度过小;When the output judgment value is less than the preset threshold, it means that the exercise consumption is too small;
需要说明的是,运动消耗程度随着时间发生变化,因此可以每天重新计算一次运动消耗时段,运动消耗程度过大或者过小都是对人体不利的;It should be noted that the degree of exercise consumption changes over time, so the exercise consumption period can be recalculated once a day. Too much or too little exercise consumption is not good for the human body.
步骤B4,获取用户的体重weight,设定消耗的卡路里K1公式为:K1=∑(weight*Jg);Step B4, obtaining the user's weight, and setting the consumed calories K1 formula as: K1 = ∑ (weight*Jg);
交互规划单元与处理分析单元相连接,并与系统后台的数据库相连接并进行相应的数据传输,通过对食物的卡路里和消耗的卡路里进行分析,实现健康规划;The interactive planning unit is connected to the processing and analysis unit, and is connected to the database of the system background and performs corresponding data transmission, so as to realize health planning by analyzing the calories of food and the calories consumed;
步骤C1,以食物的卡路里K0为横坐标,消耗的卡路里K1为纵坐标,建立卡路里消耗变化关系图,并记录下拐点时刻,将其标记为变动点;同时,在坐标系中预设一条理想的阈值曲线;Step C1, using the calories of food K0 as the horizontal coordinate and the calories consumed K1 as the vertical coordinate, establish a calorie consumption change relationship diagram, and record the turning point moment and mark it as a change point; at the same time, preset an ideal threshold curve in the coordinate system;
步骤C2,分别获取食物的卡路里K0-消耗的卡路里K1曲线位于预设阈值曲线上方线段长度以及上方线段与预设预设阈值曲线所围成的面积,并对应标记为xd1和mj1,和食物的卡路里K0-消耗的卡路里K1曲线位于预设阈值曲线下方线段长度以及下方线段与预设预设阈值曲线所围成的面积,并对应标记为xd2和mj2;Step C2, respectively obtaining the length of the line segment above the preset threshold curve and the area enclosed by the upper line segment and the preset threshold curve of the food calories K0-consumed calories K1 curve, and marking them as xd1 and mj1 respectively, and the length of the line segment below the preset threshold curve and the area enclosed by the lower line segment and the preset threshold curve of the food calories K0-consumed calories K1 curve, and marking them as xd2 and mj2 respectively;
步骤C3,以变动点为圆心,以r为半径向外画圆,若围成的面积mj1或面积mj2没有完全落在圆内,则生成提醒信号,进行健康规划:Step C3, draw a circle with the change point as the center and r as the radius. If the enclosed area mj1 or area mj2 does not completely fall within the circle, a reminder signal is generated to perform health planning:
当围成的面积处于mj1面积区域时,通过编辑提醒信号文本并显示,文本内容为:“此时需要减少进食或者增大运动消耗”;当围成的面积处于mj2面积区域时,通过编辑提醒信号文本并显示,文本内容为:“此时需要增加进食或者减少运动消耗”;When the enclosed area is in the mj1 area, the reminder signal text is edited and displayed, and the text content is: "It is necessary to reduce food intake or increase exercise consumption at this time"; when the enclosed area is in the mj2 area, the reminder signal text is edited and displayed, and the text content is: "It is necessary to increase food intake or reduce exercise consumption at this time";
再将分析得到的用户的提示信息通过显示终端(如:蓝牙耳机的曲面显示屏)进行反馈说明,需要说明的是,蓝牙耳机装置与手机实时通信,用户还可以通过手机APP查看并处理提示信息,进而帮助用户及时调整饮食和运动习惯。The user's prompt information obtained through analysis is then fed back through a display terminal (such as the curved display screen of a Bluetooth headset). It should be noted that the Bluetooth headset device communicates with the mobile phone in real time, and the user can also view and process the prompt information through the mobile phone APP, thereby helping the user to adjust his or her eating and exercise habits in a timely manner.
综合上述技术方案:本发明包括数据库、信息采集单元、处理分析单元和交互规划单元,信息采集单元采集食物图像信息和用户的身体机能参数,先通过构建食物对比模型,实现对不同场景下的食物分类,生成相应的食物种类,进而得到对应的营养成分和体积大小,生成食物的卡路里;还通过对身体机能参数的分析,生成第一体表系数和第一运动系数,并构建四维监测向量并分析以进行对运动消耗程度的判断,进而生成消耗的卡路里;最终对食物的卡路里和消耗的卡路里进行分析,实现健康规划,帮助用户及时调整饮食和运动习惯。In summary of the above technical solutions: the present invention includes a database, an information collection unit, a processing and analysis unit, and an interactive planning unit. The information collection unit collects food image information and the user's body function parameters, and first constructs a food comparison model to classify food in different scenarios, generate corresponding food types, and then obtain corresponding nutrients and volume sizes, and generate food calories; also through the analysis of body function parameters, a first body surface coefficient and a first motion coefficient are generated, and a four-dimensional monitoring vector is constructed and analyzed to judge the degree of exercise consumption, and then the consumed calories are generated; finally, the calories of food and the calories consumed are analyzed to achieve health planning, which helps users adjust their eating and exercise habits in time.
区间、阈值的大小的设定是为了便于比较,关于阈值的大小,取决于样本数据的多少及本领域技术人员对每一组样本数据设定基数数量;只要不影响参数与量化后数值的比例关系即可;The size of the interval and threshold is set for the convenience of comparison. The size of the threshold depends on the amount of sample data and the number of bases set by technicians in this field for each group of sample data; as long as it does not affect the proportional relationship between the parameter and the quantized value;
上述公式均是去量纲取其数值计算,公式是由采集大量数据进行软件模拟得到最近真实情况的一个公式,公式中的预设参数由本领域的技术人员根据实际情况进行设置;The above formulas are all dimensionless and numerical calculations. The formula is a formula obtained by collecting a large amount of data and performing software simulation to obtain the most recent real situation. The preset parameters in the formula are set by technicians in this field according to actual conditions.
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。The above description is only a preferred specific implementation manner of the present invention, but the protection scope of the present invention is not limited thereto. Any technician familiar with the technical field can make equivalent replacements or changes according to the technical scheme and inventive concept of the present invention within the technical scope disclosed by the present invention, which should be covered by the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410302758.4A CN118098501A (en) | 2024-03-18 | 2024-03-18 | A calorie analysis and matching system based on IoT devices |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410302758.4A CN118098501A (en) | 2024-03-18 | 2024-03-18 | A calorie analysis and matching system based on IoT devices |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118098501A true CN118098501A (en) | 2024-05-28 |
Family
ID=91148811
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410302758.4A Pending CN118098501A (en) | 2024-03-18 | 2024-03-18 | A calorie analysis and matching system based on IoT devices |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118098501A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118983053A (en) * | 2024-10-18 | 2024-11-19 | 山东体育学院 | A smart sports park data analysis system based on the Internet of Things |
-
2024
- 2024-03-18 CN CN202410302758.4A patent/CN118098501A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118983053A (en) * | 2024-10-18 | 2024-11-19 | 山东体育学院 | A smart sports park data analysis system based on the Internet of Things |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US12151140B2 (en) | Techniques for providing customized exercise-related recommendations | |
CN108360630B (en) | Intelligent toilet and electrical system | |
Kalantarian et al. | A survey of diet monitoring technology | |
JP6850723B2 (en) | Facial expression identification system, facial expression identification method and facial expression identification program | |
CN107506602A (en) | A kind of big data health forecast system | |
CN106897569A (en) | A kind of method of work of intelligent health terminal system | |
CN109754885A (en) | Near-sighted forecasting system and method | |
TWI829944B (en) | Avatar facial expression generating system and method of avatar facial expression generation | |
KR20100087551A (en) | Apparatus for calculating calorie balance by classfying user's activity | |
CN107491166A (en) | A kind of method and virtual reality device for adjusting virtual reality device parameter | |
US11127181B2 (en) | Avatar facial expression generating system and method of avatar facial expression generation | |
CN118098501A (en) | A calorie analysis and matching system based on IoT devices | |
CN103310092A (en) | Healthcare management system and method | |
CN110584601A (en) | Method for monitoring and evaluating cognitive function of old people | |
WO2021004510A1 (en) | Sensor-based separately deployed human body behavior recognition health management system | |
WO2020207317A1 (en) | User health assessment method and apparatus, and storage medium and electronic device | |
CN115349828A (en) | Neonate pain assessment system based on computer deep learning | |
CN110381833A (en) | Information processing equipment, information processing method and program | |
CN114305418A (en) | A data acquisition system and method for intelligent assessment of depression state | |
CN106657415A (en) | Intelligent health terminal system | |
US20110184898A1 (en) | Weight-Prediction System and Method Thereof | |
CN114504320A (en) | Cognitive quantitative detection machine based on multi-modal emotion artificial intelligence | |
WO2024149011A1 (en) | Glasses system, method for designing glasses frame, and method for flicker detection | |
CN118553017A (en) | Camera and alarm system for network teaching | |
WO2022237526A1 (en) | User behavior feedback method and system based on energy state change |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |