CN118039464A - Ion implantation method for reducing silicon carbide surface damage and silicon carbide device - Google Patents
Ion implantation method for reducing silicon carbide surface damage and silicon carbide device Download PDFInfo
- Publication number
- CN118039464A CN118039464A CN202211357785.9A CN202211357785A CN118039464A CN 118039464 A CN118039464 A CN 118039464A CN 202211357785 A CN202211357785 A CN 202211357785A CN 118039464 A CN118039464 A CN 118039464A
- Authority
- CN
- China
- Prior art keywords
- dielectric layer
- mask dielectric
- silicon carbide
- mask
- ion implantation
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910010271 silicon carbide Inorganic materials 0.000 title claims abstract description 109
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 title claims abstract description 101
- 238000005468 ion implantation Methods 0.000 title claims abstract description 48
- 238000000034 method Methods 0.000 title claims abstract description 46
- 239000000463 material Substances 0.000 claims abstract description 26
- 238000000137 annealing Methods 0.000 claims abstract description 23
- 238000001312 dry etching Methods 0.000 claims abstract description 18
- 229920002120 photoresistant polymer Polymers 0.000 claims description 31
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 16
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 13
- 239000005380 borophosphosilicate glass Substances 0.000 claims description 12
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 12
- 229920005591 polysilicon Polymers 0.000 claims description 7
- 229910052731 fluorine Inorganic materials 0.000 claims description 5
- 239000011737 fluorine Substances 0.000 claims description 5
- 238000004528 spin coating Methods 0.000 claims description 5
- 125000001153 fluoro group Chemical group F* 0.000 claims description 3
- 238000005530 etching Methods 0.000 abstract description 35
- 150000002500 ions Chemical class 0.000 abstract description 24
- 239000010410 layer Substances 0.000 description 133
- 235000012431 wafers Nutrition 0.000 description 48
- 230000008569 process Effects 0.000 description 16
- 238000002513 implantation Methods 0.000 description 14
- 239000007789 gas Substances 0.000 description 10
- 238000011161 development Methods 0.000 description 9
- 239000004065 semiconductor Substances 0.000 description 9
- 125000004429 atom Chemical group 0.000 description 7
- 238000004140 cleaning Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 6
- 239000013078 crystal Substances 0.000 description 5
- 238000002347 injection Methods 0.000 description 5
- 239000007924 injection Substances 0.000 description 5
- 238000004518 low pressure chemical vapour deposition Methods 0.000 description 5
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000009792 diffusion process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 230000003746 surface roughness Effects 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 3
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000003486 chemical etching Methods 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 238000000151 deposition Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 238000002161 passivation Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 230000008439 repair process Effects 0.000 description 3
- 239000002356 single layer Substances 0.000 description 3
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000008021 deposition Effects 0.000 description 2
- 238000009616 inductively coupled plasma Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 235000012239 silicon dioxide Nutrition 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011343 solid material Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- -1 fluorine ions Chemical class 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 238000004439 roughness measurement Methods 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 238000004781 supercooling Methods 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 239000013077 target material Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/0445—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising crystalline silicon carbide
- H01L21/0455—Making n or p doped regions or layers, e.g. using diffusion
- H01L21/046—Making n or p doped regions or layers, e.g. using diffusion using ion implantation
- H01L21/0465—Making n or p doped regions or layers, e.g. using diffusion using ion implantation using masks
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/83—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge
- H10D62/832—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials being Group IV materials, e.g. B-doped Si or undoped Ge being Group IV materials comprising two or more elements, e.g. SiGe
- H10D62/8325—Silicon carbide
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
一种减少碳化硅表面损伤的离子注入方法及碳化硅器件,包括:在碳化硅晶圆上依次生长第一掩膜介质层和第二掩膜介质层;在所述第二掩膜介质层上进行干法刻蚀,得到具有预设图案的第二掩膜介质层;对所述第一掩膜介质层进行退火处理,形成致密均匀的第一掩膜介质层;基于所述第一掩膜介质层和第二掩膜介质层对碳化硅晶圆进行离子注入;其中,所述第二掩膜介质层与所述第一掩膜介质层的厚度和材质不同。本发明中采取两层介质膜进行离子注入,由于第一掩膜介质层的存在,在对第二掩膜介质层进行刻蚀时可自截止在第二掩膜介质层刻蚀完成的地方,剩余的第一掩膜介质层可以防止刻蚀离子和注入离子对碳化硅晶圆表面轰击造成损伤。
An ion implantation method and silicon carbide device for reducing damage to the silicon carbide surface include: sequentially growing a first mask dielectric layer and a second mask dielectric layer on a silicon carbide wafer; performing dry etching on the second mask dielectric layer to obtain a second mask dielectric layer with a preset pattern; performing annealing on the first mask dielectric layer to form a dense and uniform first mask dielectric layer; performing ion implantation on the silicon carbide wafer based on the first mask dielectric layer and the second mask dielectric layer; wherein the second mask dielectric layer and the first mask dielectric layer have different thicknesses and materials. In the present invention, two layers of dielectric films are used for ion implantation. Due to the presence of the first mask dielectric layer, when etching the second mask dielectric layer, the etching can be stopped at the place where the etching of the second mask dielectric layer is completed. The remaining first mask dielectric layer can prevent the etching ions and the implanted ions from bombarding the surface of the silicon carbide wafer and causing damage.
Description
技术领域Technical Field
本发明属于SiC半导体功率器件工艺制备技术领域,具体涉及一种减少碳化硅表面损伤的离子注入方法及碳化硅器件。The present invention belongs to the technical field of SiC semiconductor power device process preparation, and in particular relates to an ion implantation method for reducing silicon carbide surface damage and a silicon carbide device.
背景技术Background technique
近二十年来,由于碳化硅(SiC)优秀的材料特性,基于SiC的功率器件在学术研究和技术制造等多方面均得到快速发展。SiC半导体材料是自第一代元素半导体材料(Si)和第二代化合物半导体材料(GaAs、GaP、InP)之后发展起来的第三代宽禁带半导体材料。4H-SiC禁带宽度大,临界击穿场强高,饱和漂移速度大和导热率良好。第三代宽禁带半导体共性是具有较大的禁带宽度,4H-SiC的禁带宽度为3.26eV基本是Si禁带宽度的3倍,300K时Si的本征载流子浓度为1.4x1010cm-3,而同样条件下4H-SiC的本征载流子浓度仅为6.7x10-11cm-3。4H-SiC的临界击穿场强是传统半导体Si的10倍,对于相同的击穿电压,4H-SiC器件漂移区可以使用更高的掺杂浓度和较小的厚度,和Si相比,4H-SiC器件在导通时漂移区有更小的比通态电阻。此外在应用电力电子器件时,减小串联的器件数也能达到所需的阻断电压。4H-SiC的电子饱和速度较大,具有较大的开关速度,相对于Si在高频应用中有明显的优势。较高的导热率对4H-SiC应用于高密度功率器件有跟大的作用,有效的简化了冷却系统,降低了成本。In the past two decades, due to the excellent material properties of silicon carbide (SiC), power devices based on SiC have developed rapidly in many aspects such as academic research and technical manufacturing. SiC semiconductor materials are the third generation of wide bandgap semiconductor materials developed after the first generation of elemental semiconductor materials (Si) and the second generation of compound semiconductor materials (GaAs, GaP, InP). 4H-SiC has a large bandgap width, high critical breakdown field strength, large saturation drift velocity and good thermal conductivity. The commonality of the third generation wide bandgap semiconductors is that they have a large bandgap width. The bandgap width of 4H-SiC is 3.26eV, which is basically three times the bandgap width of Si. At 300K, the intrinsic carrier concentration of Si is 1.4x1010cm-3, while the intrinsic carrier concentration of 4H-SiC under the same conditions is only 6.7x10-11cm-3. The critical breakdown field strength of 4H-SiC is 10 times that of traditional semiconductor Si. For the same breakdown voltage, the drift region of 4H-SiC devices can use a higher doping concentration and a smaller thickness. Compared with Si, 4H-SiC devices have a smaller specific on-state resistance in the drift region when turned on. In addition, when applying power electronic devices, reducing the number of devices in series can also achieve the required blocking voltage. 4H-SiC has a large electron saturation velocity and a large switching speed, which has obvious advantages over Si in high-frequency applications. Higher thermal conductivity has a greater effect on the application of 4H-SiC in high-density power devices, effectively simplifying the cooling system and reducing costs.
在传统的器件工艺中,常见的掺杂方式包括扩散和离子注入。在SiC中,由于其很强的化学键,即使在1600℃以上,掺杂杂质的扩散常数也非常小。由于SiC较强的分子键能和杂质在SiC内极低的扩散常数,用扩散工艺实现区域选择性掺杂是不现实的。因此,离子注入是制备SiC器件的关键工艺,离子注入是碳化硅器件制造工艺中可选择区域掺杂技术中的十分重要的一个步骤。其原理是通过高电场将加速到一定高能量的离子束注入固体材料表面层内,并使得离子在一个特定位置停止。对于每一个射入固体材料内的离子来说,都要和原有材料的原子核及电子发生碰撞,在发生碰撞的同时离子会损失能量,经过几次碰撞后,离子将走过的一段路径停留在衬底内。In traditional device processes, common doping methods include diffusion and ion implantation. In SiC, due to its strong chemical bonds, the diffusion constant of doped impurities is very small even above 1600°C. Due to the strong molecular bond energy of SiC and the extremely low diffusion constant of impurities in SiC, it is unrealistic to achieve regional selective doping using a diffusion process. Therefore, ion implantation is a key process for preparing SiC devices, and ion implantation is a very important step in the selective regional doping technology in the manufacturing process of silicon carbide devices. The principle is to inject an ion beam accelerated to a certain high energy into the surface layer of a solid material through a high electric field, and stop the ions at a specific position. For each ion injected into a solid material, it must collide with the nuclei and electrons of the original material. The ions will lose energy while colliding. After several collisions, the ions will stay in the substrate for a section of the path they have traveled.
然而,离子注入工艺中的掺杂离子在轰击碳化硅时,由于入射离子的碰撞,晶圆晶体结构受到损伤。离子注入产生的常见缺陷是空位-间隙。当注入离子与原物质原子发生碰撞时,能量损失,最终停止在某一深度。与此同时,被撞击的原物质原子也被撞击出本来位置,停留在非晶格位置,空位-间隙缺陷就产生了。当注入剂量较高时,随着离子注入轰击的延续,注入离子与靶原子的碰撞越来越多,注入区域晶格损失的靶原子占比持续增加。当晶格间隙的杂质原子和靶原子占据主体时,错位密集区域可能会变成非晶态。为了使晶格恢复到晶体形态,修复空位等点缺陷,需要引入高温退火工艺。注入剂量越高,越接近表面的靶材料就越容易被轰击成非晶态,甚至不可被高温退火修复。However, when the doped ions in the ion implantation process bombard silicon carbide, the crystal structure of the wafer is damaged due to the collision of the incident ions. A common defect caused by ion implantation is vacancy-interstitial. When the implanted ions collide with the atoms of the original material, energy is lost and eventually stops at a certain depth. At the same time, the atoms of the original material that are hit are also knocked out of their original positions and stay in non-lattice positions, and vacancy-interstitial defects are generated. When the implantation dose is high, as the ion implantation bombardment continues, the implanted ions collide more and more with the target atoms, and the proportion of target atoms lost in the lattice of the implanted area continues to increase. When the impurity atoms and target atoms in the lattice interstitial occupy the main body, the dislocation-intensive area may become amorphous. In order to restore the lattice to the crystal form and repair point defects such as vacancies, a high-temperature annealing process needs to be introduced. The higher the implantation dose, the easier it is for the target material closer to the surface to be bombarded into an amorphous state, and it may even be impossible to repair it by high-temperature annealing.
由于在碳化硅注入后表面容易形成非晶态,且不易修复,造成损伤,导致后续器件制备过程中与之接触的界面异常,工艺不能完整呈现,例如会出现由于界面态密度过大导致栅氧迁移率过低,或者表面粗糙导致金属脱落等问题。因此如何解决注入表面损伤,减少界面所带来的问题成为亟待解决的问题。After silicon carbide is implanted, the surface is prone to form an amorphous state and is difficult to repair, resulting in damage, which leads to abnormal interfaces in the subsequent device preparation process and incomplete process presentation. For example, problems such as low gate oxide mobility due to excessive interface state density or metal shedding due to rough surface may occur. Therefore, how to solve the implantation surface damage and reduce the problems caused by the interface has become an urgent problem to be solved.
发明内容Summary of the invention
为克服上述现有技术的不足,本发明提出一种减少碳化硅表面损伤的离子注入方法,包括:In order to overcome the above-mentioned deficiencies of the prior art, the present invention proposes an ion implantation method for reducing surface damage of silicon carbide, comprising:
在碳化硅晶圆上依次生长第一掩膜介质层和第二掩膜介质层;sequentially growing a first mask dielectric layer and a second mask dielectric layer on the silicon carbide wafer;
在所述第二掩膜介质层上进行干法刻蚀,得到具有预设图案的第二掩膜介质层;Performing dry etching on the second mask dielectric layer to obtain a second mask dielectric layer having a preset pattern;
对所述第一掩膜介质层进行退火处理,形成致密均匀的第一掩膜介质层;Performing annealing treatment on the first mask dielectric layer to form a dense and uniform first mask dielectric layer;
基于所述第一掩膜介质层和第二掩膜介质层对碳化硅晶圆进行离子注入;Performing ion implantation on the silicon carbide wafer based on the first mask dielectric layer and the second mask dielectric layer;
其中,所述第二掩膜介质层与所述第一掩膜介质层的厚度和材质不同。The second mask dielectric layer and the first mask dielectric layer have different thickness and material.
优选的,所述第二掩膜介质层厚度为:1.0um~3.5um。Preferably, the thickness of the second mask dielectric layer is 1.0 um to 3.5 um.
优选的,所述第二掩膜介质层的材料至少为下述中的一种或多种:氧化硅、BPSG和PSG。Preferably, the material of the second mask dielectric layer is at least one or more of the following: silicon oxide, BPSG and PSG.
优选的,对所述第二掩膜介质层进行干法刻蚀采用的气体为含氟基的气体。Preferably, the gas used for dry etching the second mask dielectric layer is a fluorine-based gas.
优选的,对所述第二掩膜介质层进行干法刻蚀的气体流量范围为:10sccm~80sccm。Preferably, the gas flow rate range for dry etching the second mask dielectric layer is 10 sccm to 80 sccm.
优选的,对所述第二掩膜介质层进行干法刻蚀的功率范围为:40W~100W。Preferably, the power range of dry etching the second mask dielectric layer is 40W-100W.
优选的,所述第一掩膜介质层的厚度为:30nm~60nm。Preferably, the thickness of the first mask dielectric layer is 30 nm to 60 nm.
优选的,所述第一掩膜介质层的材料至少为下述中的一种或多种:多晶硅、BPSG和PSG。Preferably, the material of the first mask dielectric layer is at least one or more of the following: polysilicon, BPSG and PSG.
优选的,所述对所述第二掩膜介质层上进行干法刻蚀,得到具有预设图案的第二掩膜介质层,包括:Preferably, the step of dry etching the second mask dielectric layer to obtain the second mask dielectric layer having a preset pattern comprises:
在所述第二掩膜介质层上旋涂光刻胶膜,通过具有预设图案的光刻版对所述光刻胶膜进行曝光、显影和坚膜处理,在所述第二掩膜介质层上形成具有预设图案的光刻胶膜;Spin-coating a photoresist film on the second mask dielectric layer, exposing, developing and hardening the photoresist film through a photomask with a preset pattern, and forming a photoresist film with a preset pattern on the second mask dielectric layer;
通过所述光刻胶膜对所述第二掩膜介质层进行干法刻蚀,得到具有预设图案的第二掩膜介质层。The second mask dielectric layer is dry-etched through the photoresist film to obtain a second mask dielectric layer with a preset pattern.
优选的,所述对所述第一掩膜介质层进行退火处理的温度范围为:900℃~1100℃。Preferably, the temperature range of the annealing treatment on the first mask dielectric layer is 900° C. to 1100° C.
优选的,所述退火处理的时间范围为:10min~1h。Preferably, the annealing treatment time ranges from 10 min to 1 h.
基于同一发明构思,本发明还提供一种减少碳化硅表面损伤的碳化硅器件,所述碳化硅器件包括:碳化硅晶圆、在所述碳化硅晶圆上的第一掩膜介质层、位于所述第一掩膜介质层上的第二掩膜介质层和位于所述碳化硅晶圆上的离子注入区;Based on the same inventive concept, the present invention also provides a silicon carbide device for reducing surface damage of silicon carbide, the silicon carbide device comprising: a silicon carbide wafer, a first mask dielectric layer on the silicon carbide wafer, a second mask dielectric layer located on the first mask dielectric layer, and an ion implantation region located on the silicon carbide wafer;
其中,所述离子注入区根据所述的一种减少碳化硅表面损伤的离子注入方法得到的。Wherein, the ion implantation area is obtained according to the ion implantation method for reducing surface damage of silicon carbide.
优选的,所述第一掩膜介质层的厚度为:30nm~60nm。Preferably, the thickness of the first mask dielectric layer is 30 nm to 60 nm.
优选的,所述第一掩膜介质层的材料至少为下述中的一种或多种:多晶硅、BPSG和PSG。Preferably, the material of the first mask dielectric layer is at least one or more of the following: polysilicon, BPSG and PSG.
优选的,所述第二掩膜介质层厚度为:1.0um~3.5um。Preferably, the thickness of the second mask dielectric layer is 1.0 um to 3.5 um.
优选的,所述第二掩膜介质层的材料至少为下述中的一种或多种:氧化硅、BPSG和PSG。Preferably, the material of the second mask dielectric layer is at least one or more of the following: silicon oxide, BPSG and PSG.
优选的,所述离子注入区为只有所述第一掩膜介质层对应的碳化硅晶圆区域。Preferably, the ion implantation region is a silicon carbide wafer region corresponding only to the first mask dielectric layer.
与最接近的现有技术相比,本发明具有的有益效果如下:Compared with the closest prior art, the present invention has the following beneficial effects:
1、一种减少碳化硅表面损伤的离子注入方法及碳化硅器件,包括:在碳化硅晶圆上依次生长第一掩膜介质层和第二掩膜介质层;在所述第二掩膜介质层上进行干法刻蚀,得到具有预设图案的第二掩膜介质层;对所述第一掩膜介质层进行退火处理,形成致密均匀的第一掩膜介质层;基于所述第一掩膜介质层和第二掩膜介质层对碳化硅晶圆进行离子注入;其中,所述第二掩膜介质层与所述第一掩膜介质层的厚度和材质不同。本发明中采取两层介质膜进行离子注入,由于第一掩膜介质层的存在,在对第二掩膜介质层进行刻蚀时可自截止在第二掩膜介质层刻蚀完成的地方,这样剩余的第一掩膜介质层就可以防止刻蚀离子和注入离子对碳化硅晶圆表面轰击造成损伤,从而减少碳化硅晶圆表面粗糙度,防止后续工艺如钝化层薄膜、金属薄膜生长质量受到影响。1. An ion implantation method and a silicon carbide device for reducing surface damage of silicon carbide, comprising: sequentially growing a first mask dielectric layer and a second mask dielectric layer on a silicon carbide wafer; performing dry etching on the second mask dielectric layer to obtain a second mask dielectric layer with a preset pattern; performing annealing on the first mask dielectric layer to form a dense and uniform first mask dielectric layer; performing ion implantation on the silicon carbide wafer based on the first mask dielectric layer and the second mask dielectric layer; wherein the second mask dielectric layer and the first mask dielectric layer have different thicknesses and materials. In the present invention, two layers of dielectric films are used for ion implantation. Due to the presence of the first mask dielectric layer, when etching the second mask dielectric layer, the etching can be stopped at the place where the etching of the second mask dielectric layer is completed, so that the remaining first mask dielectric layer can prevent the etching ions and the implanted ions from bombarding the surface of the silicon carbide wafer and causing damage, thereby reducing the surface roughness of the silicon carbide wafer and preventing the subsequent processes such as the growth quality of the passivation layer film and the metal film from being affected.
2、本发明采取两层介质膜进行离子注入,可使得离子注入深度与纵向离子浓度可控,且两层介质的存在防止了碳化硅的过刻,离子注入造成的碳化硅表面损伤,在此基础上使得注入工艺可控,增强了工艺的稳定性。2. The present invention adopts two layers of dielectric films for ion implantation, which can make the ion implantation depth and longitudinal ion concentration controllable. The presence of two layers of dielectrics prevents over-etching of silicon carbide and surface damage of silicon carbide caused by ion implantation. On this basis, the implantation process is controllable and the stability of the process is enhanced.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1为本发明提供的一种减少碳化硅表面损伤的离子注入方法流程图;FIG1 is a flow chart of an ion implantation method for reducing surface damage of silicon carbide provided by the present invention;
图2本发明经过预清洗的碳化硅晶圆结构示意图;FIG2 is a schematic diagram of the structure of a pre-cleaned silicon carbide wafer according to the present invention;
图3为本发明中生长第一掩膜介质层的碳化硅晶圆结构示意图;FIG3 is a schematic diagram of the structure of a silicon carbide wafer on which a first mask dielectric layer is grown in the present invention;
图4为本发明中生长第二掩膜介质层的碳化硅晶圆结构示意图;FIG4 is a schematic diagram of the structure of a silicon carbide wafer on which a second mask dielectric layer is grown in the present invention;
图5为本发明中旋涂光刻胶的碳化硅晶圆结构示意图;FIG5 is a schematic diagram of the structure of a silicon carbide wafer with spin-coated photoresist in the present invention;
图6为本发明中经过刻蚀形成具有预设图案的第二掩膜介质层的碳化硅晶圆结构示意图;FIG6 is a schematic diagram of the structure of a silicon carbide wafer after etching to form a second mask dielectric layer with a preset pattern in the present invention;
图7为本发明经过去胶-退火-离子注入形成能够减少碳化硅表面损伤的碳化硅器件结构;FIG7 is a silicon carbide device structure capable of reducing silicon carbide surface damage formed by debonding-annealing-ion implantation according to the present invention;
图8为只有单层掩膜注入后碳化硅晶圆表面结构示意图;FIG8 is a schematic diagram of the surface structure of a silicon carbide wafer after only a single-layer mask is implanted;
图9通过双层掩膜注入且保留第一层掩膜层的碳化硅晶圆表面结构;FIG9 is a surface structure of a silicon carbide wafer implanted through a double mask layer and retaining the first mask layer;
附图说明:Description of the drawings:
1-碳化硅晶圆;2-第一掩膜介质层;3-第二掩膜介质层;4-光刻胶。1-silicon carbide wafer; 2-first mask dielectric layer; 3-second mask dielectric layer; 4-photoresist.
具体实施方式Detailed ways
下面结合附图对本发明的具体实施方式做进一步的详细说明。The specific implementation modes of the present invention are further described in detail below with reference to the accompanying drawings.
实施例1:Embodiment 1:
本发明提供的一种减少碳化硅表面损伤的离子注入方法如图1所示,包括:An ion implantation method for reducing surface damage of silicon carbide provided by the present invention is shown in FIG1 , comprising:
步骤1:在碳化硅晶圆上依次生长第一掩膜介质层和第二掩膜介质层;Step 1: sequentially growing a first mask dielectric layer and a second mask dielectric layer on a silicon carbide wafer;
步骤2:在所述第二掩膜介质层上进行干法刻蚀,得到具有预设图案的第二掩膜介质层;Step 2: performing dry etching on the second mask dielectric layer to obtain a second mask dielectric layer having a preset pattern;
步骤3:对所述第一掩膜介质层进行退火处理,形成致密均匀的第一掩膜介质层;Step 3: performing annealing treatment on the first mask dielectric layer to form a dense and uniform first mask dielectric layer;
步骤4:基于所述第一掩膜介质层和第二掩膜介质层对碳化硅晶圆进行离子注入;Step 4: performing ion implantation on the silicon carbide wafer based on the first mask dielectric layer and the second mask dielectric layer;
其中,所述第二掩膜介质层与所述第一掩膜介质层的厚度和材质不同。The second mask dielectric layer and the first mask dielectric layer have different thickness and material.
具体的,在所述步骤1之前还包括对碳化硅晶圆表面进行预处理,去除所述碳化硅晶圆表面有机沾污和颗粒,清洗后的碳化硅晶圆1如图2所示;Specifically, before step 1, the surface of the silicon carbide wafer is pretreated to remove organic contamination and particles on the surface of the silicon carbide wafer. The cleaned silicon carbide wafer 1 is shown in FIG2 ;
其中,对所述碳化硅晶圆进行预清洗所需要的清洗溶液和对应的清洗时间分别为:3#-10~30min、1#-10~30min和氢氟酸(DHF)-10~30min。The cleaning solutions and corresponding cleaning times required for pre-cleaning the silicon carbide wafer are: 3#-10 to 30 min, 1#-10 to 30 min, and hydrofluoric acid (DHF)-10 to 30 min.
具体的,所述步骤2包括:在碳化硅晶圆上依次生长第一掩膜介质层和第二掩膜介质层;Specifically, the step 2 includes: sequentially growing a first mask dielectric layer and a second mask dielectric layer on a silicon carbide wafer;
通过LPCVD或PECVD在碳化硅晶圆上依次生长第一掩膜介质层和第二掩膜介质层;sequentially growing a first mask dielectric layer and a second mask dielectric layer on a silicon carbide wafer by LPCVD or PECVD;
所述第一掩膜介质层2的厚度为:30nm~60nm,生长第一掩膜介质层的碳化硅晶圆结构如图3所示;The thickness of the first mask dielectric layer 2 is 30 nm to 60 nm, and the silicon carbide wafer structure for growing the first mask dielectric layer is shown in FIG3 ;
所述第一掩膜介质层的材料至少为下述中的一种或多种:多晶硅、BPSG和PSG;The material of the first mask dielectric layer is at least one or more of the following: polysilicon, BPSG and PSG;
所述第二掩膜介质层3厚度为:1.0um~3.5um,生长第一掩膜介质层的碳化硅晶圆结构如图4所示;The thickness of the second mask dielectric layer 3 is 1.0 um to 3.5 um, and the silicon carbide wafer structure for growing the first mask dielectric layer is shown in FIG4 ;
所述第二掩膜介质层的材料至少为下述中的一种或多种:氧化硅、BPSG和PSG;The material of the second mask dielectric layer is at least one or more of the following: silicon oxide, BPSG and PSG;
其中,所述第一掩膜介质层厚度较薄,所述第二掩膜介质层主要起注入掩膜作用,厚度与注入条件有关;The first mask dielectric layer is relatively thin, and the second mask dielectric layer mainly acts as an injection mask, and its thickness is related to the injection conditions;
所述第一掩膜介质层其作用是在第二掩膜介质层进行干法刻蚀中起截止作用,且在高温离子注入中起缓冲作用。The first mask dielectric layer serves as a stopper during dry etching of the second mask dielectric layer and as a buffer during high-temperature ion implantation.
具体的,所述步骤,包括:在所述第二掩膜介质层上旋涂光刻胶膜4,通过具有预设图案的光刻版对所述光刻胶膜进行曝光、显影和坚膜处理,在所述第二掩膜介质层上形成具有预设图案的光刻胶膜,如图5所示;Specifically, the steps include: spin coating a photoresist film 4 on the second mask dielectric layer, exposing, developing and hardening the photoresist film through a photomask having a preset pattern, and forming a photoresist film having a preset pattern on the second mask dielectric layer, as shown in FIG. 5 ;
通过所述光刻胶膜对所述第二掩膜介质层进行干法刻蚀,得到具有预设图案的第二掩膜介质层,如图6所示;The second mask dielectric layer is dry-etched through the photoresist film to obtain a second mask dielectric layer having a preset pattern, as shown in FIG6 ;
对所述第二掩膜介质层进行干法刻蚀采用的气体为含氟基的气体;The gas used for dry etching the second mask dielectric layer is a fluorine-based gas;
对所述第二掩膜介质层进行干法刻蚀的气体流量范围为:10sccm~80sccm;The gas flow rate range for dry etching the second mask dielectric layer is: 10 sccm to 80 sccm;
对所述第二掩膜介质层进行干法刻蚀的功率范围为:40W~100W;The power range of dry etching the second mask dielectric layer is: 40W to 100W;
其中,所述光刻胶膜的厚度范围为1.5um~2.8um;曝光时间的时间范围为280~320mes,曝光时与焦距(Focus)距离范围为0.2~0.2um;显影采用动态显影方式,显影时间范围为60~120s;坚膜时间范围为60~240s,坚膜温度范围为90~120℃。Among them, the thickness range of the photoresist film is 1.5um~2.8um; the exposure time range is 280~320mes, and the exposure distance range is 0.2~0.2um; the development adopts dynamic development method, and the development time range is 60~120s; the hardening time range is 60~240s, and the hardening temperature range is 90~120℃.
由于第一掩膜介质层的存在,在对第二掩膜介质层进行刻蚀时可自截止在第二掩膜介质层刻蚀完成的地方,这样剩余的第一掩膜介质层就可以防止刻蚀离子和注入离子对碳化硅晶圆表面轰击造成损伤,从而减少碳化硅晶圆表面粗糙度,防止后续工艺如钝化层薄膜、金属薄膜生长质量受到影响。Due to the existence of the first mask dielectric layer, when etching the second mask dielectric layer, the etching can be stopped at the place where the second mask dielectric layer is etched. In this way, the remaining first mask dielectric layer can prevent the etching ions and the implanted ions from bombarding the surface of the silicon carbide wafer and causing damage, thereby reducing the surface roughness of the silicon carbide wafer and preventing subsequent processes such as the growth quality of the passivation layer film and the metal film from being affected.
具体的,所述步骤3包括:对所述第一掩膜介质层进行退火处理,形成致密均匀的第一掩膜介质层;Specifically, the step 3 includes: performing annealing treatment on the first mask dielectric layer to form a dense and uniform first mask dielectric layer;
所述对所述第一掩膜介质层进行退火处理的温度范围为:900℃~1100℃;The temperature range of the annealing treatment on the first mask dielectric layer is: 900° C. to 1100° C.;
所述退火处理的时间范围为:10min~1h;The time range of the annealing treatment is: 10min~1h;
具体的,所述步骤4包括:基于所述第一掩膜介质层和第二掩膜介质层对碳化硅晶圆进行离子注入;Specifically, the step 4 includes: performing ion implantation on the silicon carbide wafer based on the first mask dielectric layer and the second mask dielectric layer;
由于单步注入离子浓度与深度呈现高斯分布,因此一般采用多步注入,形成箱式结构。一般P型注入采用Al离子,N型注入采用N离子,可选取不同的能量确定注入深度;Since the single-step implantation ion concentration and depth present a Gaussian distribution, multi-step implantation is generally used to form a box-type structure. Generally, Al ions are used for P-type implantation and N ions are used for N-type implantation. Different energies can be selected to determine the implantation depth;
通过清洗去除光刻胶,然后进行退火和离子注入后的能够减少碳化硅表面损伤的碳化硅器件结构如图7所示。The structure of a silicon carbide device capable of reducing surface damage of silicon carbide after cleaning to remove the photoresist and then annealing and ion implantation is shown in FIG. 7 .
其中,上述方法主要使用了如下耗材和设备:Among them, the above method mainly uses the following consumables and equipment:
耗材:Consumables:
a.光刻胶是一种由感光树脂,增粘剂和溶剂组成的对光敏感的液体有机化合物,它被紫外光曝光后,在显影溶液中的溶解度会发生变化。a. Photoresist is a light-sensitive liquid organic compound composed of photosensitive resin, tackifier and solvent. After it is exposed to ultraviolet light, its solubility in the developing solution will change.
b.显影液的主要成分是显影剂,对曝光与未曝光的光刻胶的溶解度不同。b. The main component of the developer is the developer, which has different solubility in exposed and unexposed photoresists.
c.多晶硅是单质硅的一种形态。熔融的单质硅在过冷条件下凝固时,硅原子以金刚石晶格形态排列成许多晶核,如这些晶核长成晶面取向不同的晶粒,则这些晶粒结合起来,就结晶成多晶硅。多晶硅一般采用含F刻蚀剂,但其刻蚀一般呈现各向同性,为获得良好的各向异性,选择添加O2、H2、氯化物或溴化物等,但H2的刻蚀会造成氧化硅的刻蚀,因此为获得多晶硅刻蚀良好的各向异性和与氧化硅的高刻蚀选择比,一般采用氯化物或溴化物的气体。c. Polycrystalline silicon is a form of elemental silicon. When molten elemental silicon solidifies under supercooling conditions, silicon atoms are arranged in the form of diamond lattices to form many crystal nuclei. If these crystal nuclei grow into grains with different crystal plane orientations, these grains will combine and crystallize into polycrystalline silicon. Polycrystalline silicon generally uses F-containing etchants, but its etching is generally isotropic. In order to obtain good anisotropy, O2 , H2 , chloride or bromide are added. However, H2 etching will cause etching of silicon oxide. Therefore, in order to obtain good anisotropy of polycrystalline silicon etching and a high etching selectivity with silicon oxide, chloride or bromide gas is generally used.
d.氧化硅具有硬度高,耐磨性好,绝热性能好,抗侵蚀能力强的特性。一般二氧化硅的刻蚀采用含氟基或氯基的气体,在辉光放电中产生氟离子或氯离子,与表面二氧化硅发生反应。d. Silicon oxide has the characteristics of high hardness, good wear resistance, good thermal insulation and strong corrosion resistance. Generally, silicon dioxide is etched using fluorine-based or chlorine-based gases, which produce fluorine ions or chloride ions in the glow discharge and react with the surface silicon dioxide.
设备:equipment:
a.LPCVD:低压力化学气相沉积法广泛用于氧化硅、氮化物、多晶硅沉积,过程在管炉中执行,要求也相当高的温度。a.LPCVD: Low pressure chemical vapor deposition is widely used for silicon oxide, nitride, and polysilicon deposition. The process is performed in a tube furnace and requires a fairly high temperature.
b.PECVD:是借助微波或射频等使含有薄膜成分原子的气体电离,在局部形成等离子体,而等离子体化学活性很强,很容易发生反应,在基片上沉积出所期望的薄膜。为了使化学反应能在较低的温度下进行,利用了等离子体的活性来促进反应,因而这种CVD称为等离子体增强化学气相沉积。其成膜质量好,沉积速率块,针孔较小,不易龟裂。b.PECVD: It uses microwaves or radio frequencies to ionize the gas containing the atoms of the film components, forming plasma locally. The plasma has strong chemical activity and is easy to react, depositing the desired film on the substrate. In order to make the chemical reaction proceed at a lower temperature, the activity of the plasma is used to promote the reaction, so this type of CVD is called plasma enhanced chemical vapor deposition. It has good film quality, fast deposition rate, small pinholes, and is not easy to crack.
c.步进式光刻机:曝光系统通过一个狭缝式曝光带(slit)照射在掩模上,载有掩模的工件台在狭缝下沿着一个方向移动,等价于曝光系统对掩模做了扫描。c. Stepper lithography machine: The exposure system irradiates the mask through a slit exposure belt (slit), and the workpiece stage carrying the mask moves in one direction under the slit, which is equivalent to the exposure system scanning the mask.
d.ICP刻蚀机:全称是电感耦合等离子体刻蚀机,是半导体芯片微纳加工过程中必不可少的设备,可加工微米级纳米级的微型图案。刻蚀气体刻蚀半导体材料过程中,存在两类刻蚀:物理刻蚀和化学刻蚀。物理刻蚀是利用离子轰击晶圆片表面进行刻蚀,具有方向性,刻蚀效果太强会形成倒锥台形的刻蚀结果;化学刻蚀是利用离子和晶圆片表面发生化学反应进行刻蚀,不具有方向性,刻蚀效果太强会向掩模下方刻蚀。当物理刻蚀和化学刻蚀平衡后,可以得到理想的和需要的垂直刻蚀效果。d.ICP etcher: The full name is inductively coupled plasma etcher, which is an indispensable equipment in the micro-nano processing of semiconductor chips. It can process micro-patterns at the micron and nano levels. There are two types of etching in the process of etching semiconductor materials with etching gases: physical etching and chemical etching. Physical etching uses ions to bombard the surface of the wafer for etching. It has directionality. If the etching effect is too strong, it will form an inverted frustum-shaped etching result; chemical etching uses ions and the surface of the wafer to react chemically. It has no directionality. If the etching effect is too strong, it will etch under the mask. When physical etching and chemical etching are balanced, the ideal and required vertical etching effect can be obtained.
e.清洗甩干机:用于去除刻蚀后的光刻胶掩膜,由于干法刻蚀会使光刻胶烧焦,因此一般采用酸性溶液进行去除。e. Cleaning and drying machine: used to remove the photoresist mask after etching. Since dry etching will burn the photoresist, acidic solution is generally used for removal.
f.高温离子注入:针对碳化硅的离子掺杂特性,一般采用高温离子注入,因此光刻胶不能作为注入掩膜,需要采用硬掩膜作为掩膜层,高温离子注入机通过在注入时对晶圆进行加热,能够实现具有良好表面特性和电学特性的P型和N型SiC掺杂工艺。f. High-temperature ion implantation: In view of the ion doping characteristics of silicon carbide, high-temperature ion implantation is generally used. Therefore, photoresist cannot be used as an implantation mask, and a hard mask is required as a mask layer. The high-temperature ion implanter heats the wafer during implantation to achieve P-type and N-type SiC doping processes with good surface characteristics and electrical properties.
在一个具体的实施例中,根据上述一种减少碳化硅表面损伤的离子注入方法步骤,在预处理后的碳化硅晶圆上先通过LPCVD生长材质为多晶硅,且厚度范围为30~60nm的第一掩膜介质层;In a specific embodiment, according to the above-mentioned ion implantation method steps for reducing surface damage of silicon carbide, a first mask dielectric layer made of polycrystalline silicon and having a thickness ranging from 30 to 60 nm is first grown on the pretreated silicon carbide wafer by LPCVD;
并在所述第一掩膜介质层上通过PECVD生长材质为氧化硅,且厚度范围为1~3.5um的第二掩膜介质层;And growing a second mask dielectric layer made of silicon oxide and having a thickness ranging from 1 to 3.5 um on the first mask dielectric layer by PECVD;
在所述第二掩膜介质层上旋涂厚度范围为1.5~2.8um的光刻胶,通过具有预设图案的光刻版对所述光刻胶进行曝光、显影和坚膜处理;Spin-coating a photoresist with a thickness ranging from 1.5 to 2.8 um on the second mask dielectric layer, and exposing, developing and hardening the photoresist through a photomask with a preset pattern;
其中,曝光时间的时间范围为280~320mes,曝光时与焦距(Focus)距离范围为0.2~0.2um;显影采用动态显影方式,显影时间范围为60~120s;坚膜时间范围为60~240s,坚膜温度范围为90~120℃;The exposure time ranges from 280 to 320 mes, and the exposure distance ranges from 0.2 to 0.2 um; the development adopts a dynamic development method, and the development time ranges from 60 to 120 s; the film hardening time ranges from 60 to 240 s, and the film hardening temperature ranges from 90 to 120°C;
基于光刻处理后的光刻胶对第二掩膜介质层进行刻蚀,并清洗去除光刻胶;Etching the second mask dielectric layer based on the photoresist after the photolithography process, and cleaning and removing the photoresist;
其中,去除光刻胶的溶液和对应处理时间为:3#-10~30min、1#-10~30min;Among them, the solution for removing the photoresist and the corresponding processing time are: 3#-10~30min, 1#-10~30min;
最后对第一掩膜介质层在退火范围为:900℃~1100℃且对应退火时间为10min~1h进行高温退火;Finally, the first mask dielectric layer is subjected to high temperature annealing in the annealing range of 900° C. to 1100° C. and the corresponding annealing time is 10 min to 1 h;
在完成退火后基于所述第一掩膜介质层和第二掩膜介质层进行Al离子注入,Al离子注入能量和剂量如下表1所示:After annealing, Al ion implantation is performed based on the first mask dielectric layer and the second mask dielectric layer. The Al ion implantation energy and dose are shown in Table 1 below:
表1Table 1
在一个具体的实施例中,根据上述一种减少碳化硅表面损伤的离子注入方法步骤,在预处理后的碳化硅晶圆上先通过LPCVD生长材质为多晶硅,且厚度范围为30~60nm的第一掩膜介质层;In a specific embodiment, according to the above-mentioned ion implantation method steps for reducing surface damage of silicon carbide, a first mask dielectric layer made of polycrystalline silicon and having a thickness ranging from 30 to 60 nm is first grown on the pretreated silicon carbide wafer by LPCVD;
并在所述第一掩膜介质层上通过PECVD生长材质为氧化硅,且厚度范围为1~3.5um的第二掩膜介质层;And growing a second mask dielectric layer made of silicon oxide and having a thickness ranging from 1 to 3.5 um on the first mask dielectric layer by PECVD;
在所述第二掩膜介质层上旋涂厚度范围为1.5~2.8um的光刻胶,通过具有预设图案的光刻版对所述光刻胶进行曝光、显影和坚膜处理;Spin-coating a photoresist with a thickness ranging from 1.5 to 2.8 um on the second mask dielectric layer, and exposing, developing and hardening the photoresist through a photomask with a preset pattern;
其中,曝光时间的时间范围为280~320mes,曝光时与焦距(Focus)距离范围为0.2~0.2um;显影采用动态显影方式,显影时间范围为60~120s;坚膜时间范围为60~240s,坚膜温度范围为90~120℃;The exposure time ranges from 280 to 320 mes, and the exposure distance ranges from 0.2 to 0.2 um; the development adopts a dynamic development method, and the development time ranges from 60 to 120 s; the film hardening time ranges from 60 to 240 s, and the film hardening temperature ranges from 90 to 120°C;
基于光刻处理后的光刻胶对第二掩膜介质层进行刻蚀,并清洗去除光刻胶;Etching the second mask dielectric layer based on the photoresist after the photolithography process, and cleaning and removing the photoresist;
其中,去除光刻胶的溶液和对应处理时间为:3#-10~30min、1#-10~30min;Among them, the solution for removing the photoresist and the corresponding processing time are: 3#-10~30min, 1#-10~30min;
最后对第一掩膜介质层在退火范围为:900℃~1100℃且对应退火时间为10min~1h进行高温退火;Finally, the first mask dielectric layer is subjected to high temperature annealing in the annealing range of 900° C. to 1100° C. and the corresponding annealing time is 10 min to 1 h;
在完成退火后基于所述第一掩膜介质层和第二掩膜介质层进行N离子注入,N离子注入能量和剂量如下表2所示:After the annealing is completed, N ion implantation is performed based on the first mask dielectric layer and the second mask dielectric layer. The N ion implantation energy and dose are shown in Table 2 below:
表2Table 2
在一个具体的实施例中,由于第一掩膜介质层的存在,在对第二掩膜介质层进行刻蚀时可自截止在第二掩膜介质层刻蚀完成的地方,这样剩余的第一掩膜介质层就可以防止刻蚀离子和注入离子对碳化硅晶圆表面轰击造成损伤,从而减少碳化硅晶圆表面粗糙度,防止后续工艺如钝化层薄膜、金属薄膜生长质量受到影响;In a specific embodiment, due to the presence of the first mask dielectric layer, when etching the second mask dielectric layer, the etching can be stopped at the place where the second mask dielectric layer is etched, so that the remaining first mask dielectric layer can prevent the etching ions and the implanted ions from bombarding the surface of the silicon carbide wafer and causing damage, thereby reducing the surface roughness of the silicon carbide wafer and preventing the subsequent processes such as the growth quality of the passivation layer film and the metal film from being affected;
其中,对于在不同注入条件下,单/双层注入掩膜注入后碳化硅晶圆表面粗糙度测量结果如表3所示:Among them, under different implantation conditions, the surface roughness measurement results of silicon carbide wafers after implantation with single/double-layer implantation masks are shown in Table 3:
表3table 3
综上,只有单层掩膜注入后碳化硅晶圆表面更粗糙,通过双层掩膜注入后器件碳化硅晶圆表面保留第一层掩膜层的刻蚀表面平滑,只有单层掩膜注入后碳化硅晶圆表面结构如图8所示;In summary, the surface of the silicon carbide wafer is rougher after only the single-layer mask injection, and the surface of the device silicon carbide wafer retains the smooth etched surface of the first mask layer after the double-layer mask injection. The surface structure of the silicon carbide wafer after only the single-layer mask injection is shown in Figure 8;
通过双层掩膜注入且保留第一层掩膜层的碳化硅晶圆表面结构如图9所示。The surface structure of a silicon carbide wafer implanted through a double-layer mask and retaining the first mask layer is shown in FIG9 .
实施例2:Embodiment 2:
本发明提供的一种减少碳化硅表面损伤的碳化硅器件结构图如图4所示,包括:The structure diagram of a silicon carbide device for reducing silicon carbide surface damage provided by the present invention is shown in FIG4 , and includes:
碳化硅晶圆、在所述碳化硅晶圆上的第一掩膜介质层、位于所述第一掩膜介质层上的第二掩膜介质层和位于所述碳化硅晶圆上的离子注入区;A silicon carbide wafer, a first mask dielectric layer on the silicon carbide wafer, a second mask dielectric layer located on the first mask dielectric layer, and an ion implantation region located on the silicon carbide wafer;
其中,所述离子注入区根据所述的一种减少碳化硅表面损伤的离子注入方法得到的;Wherein, the ion implantation area is obtained according to the ion implantation method for reducing surface damage of silicon carbide;
所述第一掩膜介质层的厚度为:30nm~60nm;The thickness of the first mask dielectric layer is: 30nm-60nm;
所述第一掩膜介质层的材料至少为下述中的一种或多种:多晶硅、BPSG和PSG;The material of the first mask dielectric layer is at least one or more of the following: polysilicon, BPSG and PSG;
所述第二掩膜介质层厚度为:1.0um~3.5um;The thickness of the second mask dielectric layer is: 1.0um to 3.5um;
所述第二掩膜介质层的材料至少为下述中的一种或多种:氧化硅、BPSG和PSG;The material of the second mask dielectric layer is at least one or more of the following: silicon oxide, BPSG and PSG;
所述离子注入区为只有所述第一掩膜介质层对应的碳化硅晶圆区域。The ion implantation region is a silicon carbide wafer region corresponding only to the first mask dielectric layer.
最后应当说明的是:以上实施例仅用于说明本发明的技术方案而非对其保护范围的限制,尽管参照上述实施例对本发明进行了详细的说明,所属领域的普通技术人员应当理解:本领域技术人员阅读本发明后依然可对申请的具体实施方式进行种种变更、修改或者等同替换,但这些变更、修改或者等同替换,均在申请待批的权利要求保护范围之内。Finally, it should be noted that the above embodiments are only used to illustrate the technical solutions of the present invention rather than to limit its protection scope. Although the present invention has been described in detail with reference to the above embodiments, ordinary technicians in the relevant field should understand that after reading the present invention, those skilled in the art can still make various changes, modifications or equivalent substitutions to the specific implementation methods of the application, but these changes, modifications or equivalent substitutions are all within the protection scope of the claims to be approved.
Claims (17)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211357785.9A CN118039464A (en) | 2022-11-01 | 2022-11-01 | Ion implantation method for reducing silicon carbide surface damage and silicon carbide device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202211357785.9A CN118039464A (en) | 2022-11-01 | 2022-11-01 | Ion implantation method for reducing silicon carbide surface damage and silicon carbide device |
Publications (1)
Publication Number | Publication Date |
---|---|
CN118039464A true CN118039464A (en) | 2024-05-14 |
Family
ID=91002841
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211357785.9A Pending CN118039464A (en) | 2022-11-01 | 2022-11-01 | Ion implantation method for reducing silicon carbide surface damage and silicon carbide device |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN118039464A (en) |
-
2022
- 2022-11-01 CN CN202211357785.9A patent/CN118039464A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103107066B (en) | A kind of photoresist minimizing technology and semiconductor manufacturing process | |
JPH08306672A (en) | Method of forming perpendicular sidewall | |
CN103178006B (en) | The method of adjustment threshold voltage of low-temperature polycrystalline silicon transistor valve | |
US4981811A (en) | Process for fabricating low defect polysilicon | |
JP2003163216A (en) | Epitaxial silicon wafer and method for manufacturing the same | |
CN109979829A (en) | Silicon carbide activates method for annealing | |
CN111524796A (en) | A silicon carbide epitaxial wafer in the preparation of a silicon carbide power device and a processing method thereof | |
CN111009464A (en) | Manufacturing method of SiC power device chip gate oxide layer and power device | |
CN118039464A (en) | Ion implantation method for reducing silicon carbide surface damage and silicon carbide device | |
JP4723181B2 (en) | Semiconductor wafer | |
US20200227271A1 (en) | Method of etching a dielectric layer | |
CN116053117A (en) | Method for reducing silicon carbide ion implantation damage | |
US6518150B1 (en) | Method of manufacturing semiconductor device | |
JPS60113472A (en) | Manufacturing method of semiconductor device | |
CN104681416A (en) | Forming method for semiconductor device and grid electrode | |
US20100055888A1 (en) | Semiconductor device fabrication method | |
KR101692119B1 (en) | Improved etching process | |
US7632735B2 (en) | Process for manufacturing silicon-on-insulator substrate | |
JP3260165B2 (en) | Manufacturing method of thin film element | |
KR20070000330A (en) | Method for manufacturing semiconductor device | |
KR20060136300A (en) | Method for manufacturing semiconductor device | |
CN114188213B (en) | Method for solving problem of transmission failure of silicon carbide wafer | |
KR100390909B1 (en) | Method for gettering semiconductor device | |
CN100401470C (en) | Method for Controlling and Eliminating Foggy Micro-defects in Silicon Vapor Phase Epitaxial Layer | |
JP3079656B2 (en) | Dry etching method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication |