CN117787066B - Method for predicting roll shape of working roll based on thermal convexity of CVC rolling mill - Google Patents
Method for predicting roll shape of working roll based on thermal convexity of CVC rolling mill Download PDFInfo
- Publication number
- CN117787066B CN117787066B CN202410210705.XA CN202410210705A CN117787066B CN 117787066 B CN117787066 B CN 117787066B CN 202410210705 A CN202410210705 A CN 202410210705A CN 117787066 B CN117787066 B CN 117787066B
- Authority
- CN
- China
- Prior art keywords
- roll
- working roll
- cvc
- working
- work roll
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000005096 rolling process Methods 0.000 title claims abstract description 104
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012546 transfer Methods 0.000 claims abstract description 54
- 239000000498 cooling water Substances 0.000 claims abstract description 50
- 238000004088 simulation Methods 0.000 claims abstract description 34
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 23
- 239000010959 steel Substances 0.000 claims abstract description 23
- 238000009826 distribution Methods 0.000 claims abstract description 14
- 238000004364 calculation method Methods 0.000 claims description 12
- 230000008859 change Effects 0.000 claims description 12
- 238000005098 hot rolling Methods 0.000 claims description 11
- 238000004519 manufacturing process Methods 0.000 claims description 11
- 230000008569 process Effects 0.000 claims description 11
- 238000002347 injection Methods 0.000 claims description 10
- 239000007924 injection Substances 0.000 claims description 10
- 238000001816 cooling Methods 0.000 claims description 6
- 238000013461 design Methods 0.000 claims description 6
- 238000006073 displacement reaction Methods 0.000 claims description 6
- 239000000463 material Substances 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 5
- 238000012937 correction Methods 0.000 claims description 3
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000005855 radiation Effects 0.000 claims description 3
- 238000010606 normalization Methods 0.000 claims description 2
- 239000003570 air Substances 0.000 abstract 1
- 238000011160 research Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 4
- 238000005097 cold rolling Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 2
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000013075 data extraction Methods 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 238000013178 mathematical model Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012805 post-processing Methods 0.000 description 1
- 230000033764 rhythmic process Effects 0.000 description 1
- 239000002436 steel type Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 230000001052 transient effect Effects 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Landscapes
- Control Of Metal Rolling (AREA)
Abstract
本发明的一种基于CVC轧机热凸度对工作辊辊形预测的方法,包括:采集带钢参数、轧制工艺参数、冷却水参数、CVC轧机参数和工作辊温度数据;根据CVC轧机参数建立CVC工作辊的三维热凸度有限元模型;计算轧制过程中工作辊与带钢、空气、冷却水的对流换热系数,将对流换热系数施加到三维热凸度有限元模型中,进行有限元仿真实验;调整三维热凸度有限元模型的温度边界条件,使得有限元仿真实验的工作辊温度数据曲线与现场实测的工作辊温度数据曲线一致;基于调整后的三维热凸度有限元模型进行有限元仿真实验,提取不同时间节点的工作辊表面热膨胀量横向分布数据,与初始CVC工作辊辊形曲线拟合得到新的工作辊辊形曲线。
The present invention provides a method for predicting the roll shape of a working roll based on the thermal crown of a CVC rolling mill, comprising: collecting strip steel parameters, rolling process parameters, cooling water parameters, CVC rolling mill parameters and working roll temperature data; establishing a three-dimensional thermal crown finite element model of the CVC working roll according to the CVC rolling mill parameters; calculating the convective heat transfer coefficient between the working roll and the strip steel, air and cooling water during the rolling process, applying the convective heat transfer coefficient to the three-dimensional thermal crown finite element model, and performing a finite element simulation experiment; adjusting the temperature boundary conditions of the three-dimensional thermal crown finite element model so that the working roll temperature data curve of the finite element simulation experiment is consistent with the working roll temperature data curve measured on site; performing a finite element simulation experiment based on the adjusted three-dimensional thermal crown finite element model, extracting the lateral distribution data of the thermal expansion of the working roll surface at different time nodes, and fitting the data with the initial CVC working roll shape curve to obtain a new working roll shape curve.
Description
技术领域Technical Field
本发明属于热轧技术领域,涉及一种基于CVC轧机热凸度对工作辊辊形预测的方法。The invention belongs to the technical field of hot rolling and relates to a method for predicting the roll shape of a working roll based on the thermal crown of a CVC rolling mill.
背景技术Background technique
目前,热轧带钢过程中通过轧机工作辊轴向横移获得所需辊缝凸度己成为一种主要的板形控制手段,具有代表性的轧机为CVC轧机,CVC轧机可以通过工作辊轴向横移达到控制带钢平直度和凸度的目的。工作辊辊型是影响带钢板形控制最直接、最活跃的因素,因此轴向横移变凸度轧机的工作辊原始辊型直接影响其板形的控制能力和效果。以CVC轧机工作辊为例,目前CVC工作辊普遍采用3次曲线设计,3次曲线设计的不同将直接影响工作辊的辊型,进而影响CVC轧机对带钢板形的控制效果,因此结合现场工艺条件给出工作辊辊型曲线优化与设计的具体方法具有重要意义。At present, obtaining the required roll gap convexity by axially shifting the working rolls of the rolling mill during hot strip rolling has become a major means of controlling strip shape. The representative rolling mill is the CVC rolling mill, which can achieve the purpose of controlling the flatness and convexity of the strip by axially shifting the working rolls. The roll shape of the working roll is the most direct and active factor affecting the strip shape control. Therefore, the original roll shape of the working roll of the axially shifting variable convexity rolling mill directly affects its strip shape control ability and effect. Taking the working roll of the CVC rolling mill as an example, the CVC working roll currently generally adopts a cubic curve design. The difference in cubic curve design will directly affect the roll shape of the working roll, and then affect the control effect of the CVC rolling mill on the strip shape. Therefore, it is of great significance to give a specific method for optimizing and designing the working roll roll curve in combination with the on-site process conditions.
在热轧带钢生产中,工作辊热辊形是影响带钢板形重要因素之一。为提高带钢质量必须对工作辊热凸度进行准确计算及预报。在热轧过程中带钢温度不断输入工作辊中,造成工作辊中部和边部温度不均匀,中部膨胀量大于边部膨胀量,使得辊形曲线发生改变,进而辊缝形状也发生改变,带材厚度沿横向分布也发生变化,对板形造成影响。In the production of hot rolled strip steel, the hot roll shape of the working roll is one of the important factors affecting the strip shape. In order to improve the quality of the strip steel, the hot roll crown of the working roll must be accurately calculated and predicted. During the hot rolling process, the temperature of the strip steel is continuously input into the working roll, resulting in uneven temperature in the middle and edge of the working roll. The expansion in the middle is greater than that in the edge, which changes the roll shape curve, and then the roll gap shape also changes. The strip thickness distribution along the lateral direction also changes, which affects the plate shape.
针对热轧生产过程中存在的热辊型问题,国内研究人员进行了许多相关的研究。申请号为CN202210448408.X的中国发明专利申请“一种分析冷连轧过程中热凸度对板形影响的方法”,发明了一种将热凸度数值仿真模型和轧制过程数值仿真模型相结合的方法,该方法可以直观的反映工作辊的热凸度变化情况,工作辊的热膨胀会对板形产生影响,进一步可以得出在不同热凸度情况下的板形情况。中国期刊“热连轧机工作辊热辊形仿真研究”采用差分法建立了轧辊二维瞬态温度场及热辊形的预报模型,研究了工作辊的热辊形在轧制过程中的变化过程,又进一步分析了轧件宽度、窜辊制度等对热辊形的影响,为实际生产和理论研究提供了指导依据。中国期刊论文“1700热连轧机轧辊温度场及热凸度研究”,通过建立热带钢轧机工作辊温度场差分模型,计算了某一轧制周期工作辊温度场及热凸度。对CVC轧辊而言,轧辊表面温度分布及热凸度受轧辊横移的影响。在整个轧制过程中,轧辊表面热变形变化与轧制节奏密切相关。中国期刊论文“CVC轧辊热凸度模型研究”研究分析了CVC轧机的轧辊热凸度模型,通过与板形控制系统中二维轧辊热凸度模型理论计算值的对比,发现现有模型存在的问题,在此基础上对热凸度模型进行改进,改善了轧辊热凸度模型计算精度,改善了带钢板形控制精度。Domestic researchers have conducted many related studies on the hot roll shape problem in the hot rolling production process. The Chinese invention patent application "A method for analyzing the influence of thermal convexity on plate shape during cold rolling" with application number CN202210448408.X invented a method that combines the thermal convexity numerical simulation model with the rolling process numerical simulation model. This method can intuitively reflect the change of the thermal convexity of the working roll. The thermal expansion of the working roll will affect the plate shape, and further the plate shape under different thermal convexities can be obtained. The Chinese journal "Research on the Simulation of the Hot Roll Shape of the Working Roll of the Hot Continuous Rolling Mill" uses the differential method to establish a two-dimensional transient temperature field of the roll and a prediction model of the hot roll shape, and studies the change process of the hot roll shape of the working roll during the rolling process. It further analyzes the influence of the width of the rolled piece, the roll shifting system, etc. on the hot roll shape, providing a guiding basis for actual production and theoretical research. The Chinese journal paper "Research on the Roller Temperature Field and Thermal Convexity of the 1700 Hot Continuous Rolling Mill" calculates the working roll temperature field and thermal convexity of a certain rolling cycle by establishing a differential model of the working roll temperature field of the hot steel rolling mill. For CVC rolls, the surface temperature distribution and thermal crown of the rolls are affected by the roll lateral displacement. During the entire rolling process, the thermal deformation change of the roll surface is closely related to the rolling rhythm. The Chinese journal paper "Research on CVC Roller Thermal Crown Model" studied and analyzed the roll thermal crown model of the CVC rolling mill. By comparing it with the theoretical calculation value of the two-dimensional roll thermal crown model in the plate shape control system, the problems existing in the existing model were found. On this basis, the thermal crown model was improved, the calculation accuracy of the roll thermal crown model was improved, and the strip shape control accuracy was improved.
上述研究所存在不足主要有三个方面:(1)传统工作辊的热凸度模型设置为二维理想模型,但在实际轧制过程中存在复杂的传热过程,若在仿真过程中使用理想的二维理想模型势必与实际轧制过程不相符。二维理想模型忽略了轧辊周向上的温度传递和热膨胀,与实际生产过程中的误差较大,使热凸度仿真模型存在一定局限性;(2)差分模型和数学模型未考虑轧辊轴向上的热传导,且计算过程复杂。(3)热轧过程中工作辊的传热情况比冷轧更加复杂,且热辊形的变化更加剧烈,有些方案只考虑了冷轧板形预测问题,没有考虑到热辊形的影响,所以不适合应用到热轧中。There are three main deficiencies in the above research: (1) The thermal crown model of the traditional working roll is set as a two-dimensional ideal model. However, there is a complex heat transfer process in the actual rolling process. If the ideal two-dimensional ideal model is used in the simulation process, it will inevitably be inconsistent with the actual rolling process. The two-dimensional ideal model ignores the temperature transfer and thermal expansion in the circumferential direction of the roll, and the error with the actual production process is large, which makes the thermal crown simulation model have certain limitations; (2) The differential model and mathematical model do not consider the heat conduction in the axial direction of the roll, and the calculation process is complicated. (3) The heat transfer of the working roll in the hot rolling process is more complicated than that in the cold rolling process, and the change of the hot roll shape is more drastic. Some schemes only consider the problem of cold rolling plate shape prediction, and do not consider the influence of hot roll shape, so they are not suitable for application in hot rolling.
发明内容Summary of the invention
为解决上述技术问题,本发明提供一种基于CVC轧机热凸度对工作辊辊形预测的方法。In order to solve the above technical problems, the present invention provides a method for predicting the roll shape of a working roll based on the thermal crown of a CVC rolling mill.
本发明提供一种基于CVC轧机热凸度对工作辊辊形预测的方法,包括:The present invention provides a method for predicting the roll shape of a working roll based on the thermal crown of a CVC rolling mill, comprising:
步骤1:采集现场实测的带钢参数、轧制工艺参数、冷却水参数、CVC轧机参数和工作辊温度数据;Step 1: Collect the strip parameters, rolling process parameters, cooling water parameters, CVC mill parameters and work roll temperature data measured on site;
步骤2:根据步骤1采集的CVC轧机参数建立CVC工作辊的三维热凸度有限元模型;Step 2: Establish a three-dimensional thermal crown finite element model of the CVC work roll according to the CVC rolling mill parameters collected in step 1;
步骤3:根据步骤1采集的带钢参数、轧制工艺参数、冷却水参数计算轧制过程中工作辊与带钢、工作辊与空气、工作辊与冷却水的对流换热系数,将对流换热系数施加到三维热凸度有限元模型中,进行有限元仿真实验;Step 3: Calculate the convective heat transfer coefficients between the working roll and the strip, the working roll and the air, and the working roll and the cooling water during the rolling process according to the strip parameters, rolling process parameters, and cooling water parameters collected in step 1, apply the convective heat transfer coefficients to the three-dimensional thermal crown finite element model, and conduct a finite element simulation experiment;
步骤4:调整三维热凸度有限元模型的温度边界条件,使得有限元仿真实验的工作辊温度数据曲线与现场实测的工作辊温度数据曲线一致;Step 4: Adjust the temperature boundary conditions of the three-dimensional thermal crown finite element model so that the work roll temperature data curve of the finite element simulation experiment is consistent with the work roll temperature data curve measured on site;
步骤5:基于调整后的三维热凸度有限元模型进行有限元仿真实验,提取有限元仿真实验中不同时间节点的工作辊表面热膨胀量横向分布数据,与初始CVC工作辊辊形曲线拟合得到新的工作辊辊形曲线;Step 5: Perform a finite element simulation experiment based on the adjusted three-dimensional thermal crown finite element model, extract the lateral distribution data of the thermal expansion of the work roll surface at different time nodes in the finite element simulation experiment, and fit it with the initial CVC work roll shape curve to obtain a new work roll shape curve;
步骤6:根据步骤5中得到的新的工作辊辊形曲线,分析不同时间节点工作辊热凸度变化对CVC工作辊辊形曲线的影响。Step 6: Based on the new work roll shape curve obtained in step 5, analyze the influence of the change of the working roll thermal crown at different time nodes on the CVC work roll shape curve.
进一步的,所述步骤1具体为:从热轧产线上获取带钢参数、轧制工艺参数、冷却水参数、CVC轧机参数和工作辊温度场数据;Furthermore, the step 1 specifically includes: obtaining strip parameters, rolling process parameters, cooling water parameters, CVC rolling mill parameters and working roll temperature field data from the hot rolling production line;
所述带钢参数包括:带钢钢种、带钢宽度、带钢厚度和带钢温度;The strip steel parameters include: strip steel grade, strip steel width, strip steel thickness and strip steel temperature;
所述轧制工艺参数包括:轧制速度、摩擦系数、轧制间隙时间和工作辊横移量;The rolling process parameters include: rolling speed, friction coefficient, rolling gap time and working roll lateral displacement;
所述冷却水参数包括:冷却水温度、冷却水流量和冷却水喷射压力;The cooling water parameters include: cooling water temperature, cooling water flow rate and cooling water injection pressure;
所述CVC轧机参数包括:工作辊直径、工作辊辊身长度、工作辊密度、工作辊弹性模量、工作辊泊松比、工作辊热膨胀系数、工作辊比热容、工作辊导热系数和初始CVC工作辊辊形曲线;The CVC rolling mill parameters include: work roll diameter, work roll barrel length, work roll density, work roll elastic modulus, work roll Poisson's ratio, work roll thermal expansion coefficient, work roll specific heat capacity, work roll thermal conductivity and initial CVC work roll roll shape curve;
所述工作辊温度场数据是在下机后的工作辊上沿轴向贴上反光胶带,利用热成像仪拍下工作辊的温度场云图。The working roll temperature field data is obtained by attaching reflective tape to the working roll along the axial direction after the work roll is taken off the machine, and using a thermal imager to take a picture of the temperature field cloud map of the working roll.
进一步的,初始CVC工作辊辊形曲线方程为三次多项式函数,具体为:Furthermore, the initial CVC work roll shape curve equation is a cubic polynomial function, specifically:
; ;
; ;
式中,R U(x)为工作辊的上辊形函数,R L(x)为工作辊的下辊形函数,x为轧辊横向坐标;R 0为工作辊名义半径,单位mm;a 1、a 2和a 3为辊形待定系数;L REF为工作辊设计长度,单位mm。In the formula, RU ( x ) is the upper roll shape function of the working roll, RL ( x ) is the lower roll shape function of the working roll, x is the transverse coordinate of the roll; R0 is the nominal radius of the working roll, in mm; a1 , a2 and a3 are the roll shape coefficients to be determined; LREF is the design length of the working roll, in mm.
进一步的,所述步骤2具体为:Furthermore, the step 2 is specifically as follows:
步骤2.1:根据步骤1采集的CVC轧机参数确立CVC工作辊的三维热凸度有限元模型的建模尺寸参数;Step 2.1: Establishing modeling dimension parameters of the three-dimensional thermal crown finite element model of the CVC work roll according to the CVC rolling mill parameters collected in step 1;
步骤2.2:根据步骤1采集的CVC轧机参数确立CVC工作辊的三维热凸度有限元模型的材料参数;Step 2.2: Establish material parameters of the three-dimensional thermal crown finite element model of the CVC work roll according to the CVC rolling mill parameters collected in step 1;
步骤2.3:建立CVC工作辊的三维热凸度有限元模型,为缩短计算时间取工作辊圆周方向的1/30进行建模;Step 2.3: Establish a three-dimensional thermal crown finite element model of the CVC work roll. To shorten the calculation time, take 1/30 of the circumferential direction of the work roll for modeling;
步骤2.4:简化边界条件。Step 2.4: Simplify boundary conditions.
进一步的,所述步骤2.3具体为:选择SOLID164八节点六面体单元进行建模,定义工作辊材料热物性参数,基于步骤1采集的CVC轧机参数,采用高次B样条曲线绘制工作辊的辊形曲线;在工作辊表面进行网格细化确保计算精度,由外到内逐渐稀疏缩短计算时间,表面网格尺寸为长度方向10mm、宽度方向2mm、深度方向3mm。Furthermore, the step 2.3 is specifically as follows: select SOLID164 eight-node hexahedral unit for modeling, define the thermophysical parameters of the working roll material, and draw the roll shape curve of the working roll using a high-order B-spline curve based on the CVC rolling mill parameters collected in step 1; perform mesh refinement on the surface of the working roll to ensure calculation accuracy, gradually thin out from the outside to the inside to shorten the calculation time, and the surface mesh size is 10 mm in the length direction, 2 mm in the width direction, and 3 mm in the depth direction.
进一步的,所述步骤2.4具体假设和简化内容为:Furthermore, the specific assumptions and simplified contents of step 2.4 are as follows:
(1)轧制过程中任意节点温度呈周期性变化,假设工作辊不旋转,让边界条件反向旋转来模拟工作辊的旋转;(1) The temperature of any node during the rolling process changes periodically. Assuming that the work roll does not rotate, the boundary conditions are rotated in the opposite direction to simulate the rotation of the work roll.
(2)认为上、下工作辊温度场一致,且工作辊处于0蹿辊位置;(2) It is assumed that the temperature fields of the upper and lower working rolls are consistent, and the working rolls are in the 0 roll position;
(3)将工作辊与带钢、工作辊与冷却水、工作辊与空气之间的换热等效为对流换热;(3) The heat exchange between the working roll and the strip, the working roll and the cooling water, and the working roll and the air is equivalent to convection heat exchange;
(4)忽略工作辊与支撑辊之间的摩擦生热;(4) Ignore the frictional heat between the working roll and the support roll;
(5)根据带钢与工作辊之间的接触弧长,将工作辊沿轴向分为30等份,每一份12°,带钢与工作辊接触的为一份。(5) According to the contact arc length between the strip and the working roll, the working roll is divided into 30 equal parts along the axial direction, each part is 12°, and the part where the strip is in contact with the working roll is one part.
进一步的,所述步骤3具体为:Furthermore, the step 3 is specifically as follows:
步骤3.1:将轧制过程中工作辊与带钢的接触传热和变形热和工作辊与空气的辐射换热过程等效为对流换热;Step 3.1: The contact heat transfer and deformation heat between the working roll and the strip and the radiation heat transfer between the working roll and the air during the rolling process are equivalent to convection heat transfer;
步骤3.2:根据对流换热公式和经验值确定带钢与工作辊、工作辊与冷却水、工作辊与空气的对流换热系数;Step 3.2: Determine the convection heat transfer coefficients between the strip and the working roll, between the working roll and the cooling water, and between the working roll and the air according to the convection heat transfer formula and empirical values;
步骤3.3:将步骤3.2计算得到的对流换热系数通过K文件生成时间-换热系数的循环曲线;Step 3.3: Generate a time-heat transfer coefficient cycle curve through the K file using the convective heat transfer coefficient calculated in step 3.2;
步骤3.4:在CVC工作辊的三维热凸度有限元模型的表面创建SEGM,将时间-换热系数曲线施加到SEGM上,实现工作辊加热和冷却过程。Step 3.4: Create SEGM on the surface of the three-dimensional thermal crown finite element model of the CVC work roll, apply the time-heat transfer coefficient curve to the SEGM, and realize the heating and cooling process of the work roll.
进一步的,所述步骤3.2具体为:Furthermore, the step 3.2 is specifically as follows:
工作辊与带钢接触弧内传热系数表达式如下:The expression of heat transfer coefficient in the contact arc between the working roll and the strip is as follows:
; ;
式中:h con 为带钢与工作辊对流换热系数;为平均单位轧制力,单位N;v为轧制速度,单位m/s;Where: hcon is the convection heat transfer coefficient between the strip and the working roll; is the average unit rolling force, in N; v is the rolling speed, in m/s;
工作辊与冷却水的换热系数表达式如下:The heat transfer coefficient between the working roll and cooling water is expressed as follows:
(1)工作辊表面温度Tr小于100℃:(1) The working roll surface temperature T r is less than 100 ° C:
; ;
(2)工作辊表面温度Tr大于200℃:(2) The working roll surface temperature T r is greater than 200 ° C:
; ;
式中:h cw 为工作辊与冷却水的对流换热系数;γ 1、γ 2为冷却传热修正系数;E为工作辊弹性模量;Q为水流密度,Q=V SP/A SP;P SP为喷射压力,单位MPa;T C为冷却水温度,单位℃;V SP为冷却水量,单位l/s;A SP为喷射面积,单位,m2;当Q<10000(l/s/m2),B=(Tc/16)-0.17;当Q≥10000(l/s/m2),B=1.0;Wherein: h cw is the convection heat transfer coefficient between the working roll and the cooling water; γ 1 and γ 2 are the cooling heat transfer correction coefficients; E is the elastic modulus of the working roll; Q is the water flow density , Q = V SP / A SP ; P SP is the injection pressure, unit MPa; TC is the cooling water temperature, unit ℃; V SP is the cooling water volume, unit l/s ; A SP is the injection area, unit, m 2 ; when Q <10000 ( l /s/m 2 ), B =(T c /16) -0.17 ; when Q ≥10000 ( l /s/m 2 ), B =1.0;
工作辊与空气的换热系数表达式如下:The heat exchange coefficient between the working roll and the air is expressed as follows:
; ;
式中:h air 为工作辊与空气的对流换热系数;ΔT为工作辊与周围空气的温差,单位℃。Where: h air is the convection heat transfer coefficient between the working roll and the air; Δ T is the temperature difference between the working roll and the surrounding air, unit: °C.
进一步的,所述步骤5具体为:Furthermore, the step 5 is specifically as follows:
步骤5.1:提取有限元仿真实验不同时间节点工作辊表面热膨胀量横向分布数据;Step 5.1: Extract the lateral distribution data of the thermal expansion of the working roll surface at different time nodes of the finite element simulation experiment;
步骤5.2:将工作辊表面热膨胀量与初始CVC工作辊辊形曲线相加,得到不同热凸度下的多条热凸度工作辊辊形曲线;对不同热凸度下的多条热凸度工作辊辊形曲线的工作辊宽度数据进行归一化处理,将得到的归一化处理后的热凸度工作辊辊形曲线使用三次多项式进行拟合,得到三次拟合多项式如下:Step 5.2: Add the thermal expansion of the work roll surface to the initial CVC work roll shape curve to obtain multiple thermal crown work roll shape curves under different thermal crowns; normalize the work roll width data of the multiple thermal crown work roll shape curves under different thermal crowns, and fit the normalized thermal crown work roll shape curves using a cubic polynomial to obtain a cubic fitting polynomial as follows:
; ;
其中,y为新的工作辊辊形曲线;x为工作辊宽度方向归一化后无量纲坐标,x∈[-1,1];A 1为一次项拟合系数、A 2为二次项拟合系数、A 3为三次项拟合系数;e(x)为拟合误差;Wherein, y is the new working roll shape curve; x is the dimensionless coordinate after normalization in the width direction of the working roll, x ∈ [-1, 1]; A 1 is the first-order fitting coefficient, A 2 is the second-order fitting coefficient, A 3 is the third-order fitting coefficient; e ( x ) is the fitting error;
步骤5.3:基于A 1、A 2、A 3,绘制新的工作辊辊形曲线,计算工作辊部分热凸度c p和整体热凸度c t指标:Step 5.3: Based on A 1 , A 2 , and A 3 , draw a new working roll profile curve and calculate the partial thermal crown c p and overall thermal crown c t indicators of the working roll:
; ;
; ;
其中,h c 是工作辊中心点处的工作辊直径,h i是工作辊操作侧边部处的工作辊直径,h i '是工作辊传动侧边部处的工作辊直径,h j 是带钢操作侧边部对应的工作辊直径,h j '是带钢传动侧边部对应的工作辊直径。Among them, h c is the working roll diameter at the center point of the working roll, h i is the working roll diameter at the operating side of the working roll, h i ' is the working roll diameter at the driving side of the working roll, h j is the working roll diameter corresponding to the strip operating side, and h j ' is the working roll diameter corresponding to the strip driving side.
进一步的,所述步骤6中所述的热凸度对辊形曲线和带钢板形的影响为:Furthermore, the influence of the thermal crown described in step 6 on the roll curve and the strip shape is:
在不同轧制时间节点,CVC工作辊辊形曲线呈S形分布,但随着轧制时间的增加CVC工作辊中部辊形曲线向上增加,相当于在初始CVC工作辊辊形曲线的基础上又增加了二次项、一次项以及常数项系数。At different rolling time nodes, the CVC working roll roll shape curve is distributed in an S shape, but with the increase of rolling time, the CVC working roll middle roll shape curve increases upward, which is equivalent to adding quadratic terms, linear terms and constant term coefficients on the basis of the initial CVC working roll roll shape curve.
本发明的一种基于CVC轧机热凸度对工作辊辊形预测的方法,具有以下有益效果:The method for predicting the roll shape of a working roll based on the thermal crown of a CVC rolling mill of the present invention has the following beneficial effects:
本发明方法根据实测的温度边界条件建立CVC工作辊三维热凸度仿真模型,使得热凸度变化更加贴近实际,对热轧生产的工艺安排、 磨辊制度、窜辊策略等提出了具有实际生产意义的建议;通过将热凸度与原始辊形曲线拟合,可以更直观、准确的预测CVC工作辊辊形的变化,在磨削辊形时把热凸度考虑进去,保证轧辊实际凸度与目标凸度一致,同时能够在实际生产中组合不同的板形执行机构对带钢板形进行更好的调控,可以对提高带材的板形质量提供帮助,进一步提高产品质量,提升企业效益;本发明采用的是基于三维有限元仿真的模拟实验方法,可减少实际实验导致的设备、时间以及成本损耗。The method of the present invention establishes a three-dimensional thermal convexity simulation model of the CVC working roll according to the measured temperature boundary conditions, so that the change of the thermal convexity is closer to reality, and puts forward suggestions with practical production significance for the process arrangement, grinding roll system, and roll shifting strategy of hot rolling production; by fitting the thermal convexity with the original roll shape curve, the change of the CVC working roll roll shape can be predicted more intuitively and accurately, and the thermal convexity is taken into account when grinding the roll shape to ensure that the actual roll roll convexity is consistent with the target convexity, and at the same time, different plate shape actuators can be combined in actual production to better regulate the strip shape, which can help improve the plate shape quality of the strip, further improve product quality, and enhance enterprise benefits; the present invention adopts a simulation experiment method based on three-dimensional finite element simulation, which can reduce equipment, time and cost losses caused by actual experiments.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1是本发明的一种基于CVC轧机热凸度对工作辊辊形预测的方法的流程图;FIG1 is a flow chart of a method for predicting the roll shape of a work roll based on the thermal crown of a CVC rolling mill according to the present invention;
图2是初始CVC工作辊辊形曲线;Figure 2 is the initial CVC work roll profile curve;
图3是工作辊表面的边界条件区域划分情况;Figure 3 shows the boundary condition area division of the working roll surface;
图4是有限元仿真实验的工作辊温度数据曲线与现场实测的工作辊温度数据曲线对比图;FIG4 is a comparison diagram of the working roll temperature data curve of the finite element simulation experiment and the working roll temperature data curve measured on site;
图5是工作辊中部实测热膨胀量与仿真结果对比图;FIG5 is a comparison diagram of the measured thermal expansion of the middle part of the working roll and the simulation result;
图6是不同时间节点工作辊表面热膨胀量曲线图;FIG6 is a graph showing the thermal expansion of the working roll surface at different time points;
图7是工作辊整体热凸度与部分热凸度分布曲线图;FIG7 is a distribution curve diagram of the overall thermal crown and partial thermal crown of the working roll;
图8是不同热膨胀量下的新的工作辊辊形曲线与初始CVC工作辊辊形曲线图。FIG8 is a graph showing the new work roll shape curve and the initial CVC work roll shape curve under different thermal expansion amounts.
具体实施方式Detailed ways
本实施例中以某厂的1780mm CVC四辊热连轧机组为例,对其进行数值模拟研究分析,轧机工作辊为CVC辊形,支撑辊辊为平辊。In this embodiment, a 1780mm CVC four-roller hot rolling mill of a certain factory is taken as an example to conduct numerical simulation research and analysis. The working roll of the rolling mill is a CVC roll shape, and the support roll is a flat roll.
如图1所示,一种基于CVC轧机热凸度对工作辊辊形预测的方法,包括:As shown in FIG1 , a method for predicting the roll shape of a work roll based on the thermal crown of a CVC rolling mill includes:
步骤1:采集现场实测的带钢参数、轧制工艺参数、冷却水参数、CVC轧机参数和工作辊温度数据;Step 1: Collect the strip parameters, rolling process parameters, cooling water parameters, CVC mill parameters and work roll temperature data measured on site;
具体实施时,从热轧产线上获取带钢参数、轧制工艺参数、冷却水参数、CVC轧机参数、工作辊温度场数据。During specific implementation, strip parameters, rolling process parameters, cooling water parameters, CVC rolling mill parameters, and working roll temperature field data are obtained from the hot rolling production line.
所述带钢参数包括:带钢钢种、带钢宽度、带钢厚度、带钢温度。The strip steel parameters include: strip steel type, strip steel width, strip steel thickness, and strip steel temperature.
所述轧制工艺参数包括:轧制速度、摩擦系数、轧制间隙时间、工作辊辊横移量。The rolling process parameters include: rolling speed, friction coefficient, rolling gap time, and lateral displacement of the working rolls.
所述CVC轧机参数包括:工作辊辊径、工作辊辊身长度、工作辊密度、工作辊弹性模量、工作辊泊松比、工作辊热膨胀系数、工作辊比热容、工作辊导热系数和初始CVC工作辊辊形曲线。The CVC rolling mill parameters include: work roll diameter, work roll barrel length, work roll density, work roll elastic modulus, work roll Poisson's ratio, work roll thermal expansion coefficient, work roll specific heat capacity, work roll thermal conductivity and initial CVC work roll roll shape curve.
所述冷却水参数包括:冷却水温度、冷却水流量、冷却水喷射压力。The cooling water parameters include: cooling water temperature, cooling water flow rate, and cooling water injection pressure.
所述工作辊温度场数据是在下机后的工作辊上沿轴向贴上反光胶带,利用热成像仪拍下工作辊的温度场云图。The working roll temperature field data is obtained by attaching reflective tape along the axial direction on the working roll after it is unloaded from the machine, and using a thermal imager to take a picture of the temperature field cloud map of the working roll.
本实例中,获取的带钢参数如表1所示。获取的轧制工艺参数如表2所示。获取的CVC轧机参数如表3所示。获取的冷却水参数如表4所示。In this example, the obtained strip steel parameters are shown in Table 1. The obtained rolling process parameters are shown in Table 2. The obtained CVC rolling mill parameters are shown in Table 3. The obtained cooling water parameters are shown in Table 4.
表1带钢参数。Table 1 Strip steel parameters.
表2轧制工艺参数。Table 2 Rolling process parameters.
表3 CVC轧机参数。Table 3 CVC mill parameters.
表4 冷却水参数。Table 4 Cooling water parameters.
本实施例中,所述CVC轧机的工作辊为CVC辊形,初始CVC工作辊辊形曲线方程为三次多项式函数。In this embodiment, the working rolls of the CVC rolling mill are CVC roll-shaped, and the initial CVC working roll roll shape curve equation is a cubic polynomial function.
将工作辊的上辊和工作辊的下辊放置在平面直角坐标系中,如图2所示,它们的辊形曲线函数分别为:The upper roll and the lower roll of the working roll are placed in a plane rectangular coordinate system, as shown in Figure 2, and their roll curve functions are:
; ;
; ;
式中,R U(x)为工作辊的上辊形函数,R L(x)为工作辊的下辊形函数,x为轧辊横向坐标;R 0为工作辊名义半径,单位mm;a 1、a 2和a 3为辊形待定系数;L REF为工作辊设计长度,单位mm。本实例中工作辊辊形曲线的各项参数如表5所示。Wherein, RU ( x ) is the upper roll shape function of the working roll, RL ( x ) is the lower roll shape function of the working roll, x is the transverse coordinate of the roll; R0 is the nominal radius of the working roll, in mm; a1 , a2 and a3 are the roll shape coefficients to be determined; LREF is the design length of the working roll, in mm. The parameters of the roll shape curve of the working roll in this example are shown in Table 5.
表5 CVC工作辊辊形曲线参数。Table 5 CVC work roll profile parameters.
步骤2:根据步骤1采集的CVC轧机参数建立CVC工作辊的三维热凸度有限元模型,所述步骤2具体为:Step 2: Establish a three-dimensional thermal crown finite element model of the CVC working roll according to the CVC rolling mill parameters collected in step 1. Step 2 is specifically as follows:
步骤2.1:根据步骤1采集的CVC轧机参数确立CVC工作辊的三维热凸度有限元模型的建模尺寸参数;Step 2.1: Establishing modeling dimension parameters of the three-dimensional thermal crown finite element model of the CVC work roll according to the CVC rolling mill parameters collected in step 1;
步骤2.2:根据步骤1采集的CVC轧机参数确立CVC工作辊的三维热凸度有限元模型的材料参数;Step 2.2: Establish material parameters of the three-dimensional thermal crown finite element model of the CVC work roll according to the CVC rolling mill parameters collected in step 1;
步骤2.3:建立CVC工作辊的三维热凸度有限元模型,为缩短计算时间取工作辊圆周方向的1/30进行建模,所述步骤2.3具体为:Step 2.3: Establish a three-dimensional thermal crown finite element model of the CVC work roll. To shorten the calculation time, take 1/30 of the circumferential direction of the work roll for modeling. The specific steps of step 2.3 are as follows:
选择SOLID164八节点六面体单元进行建模,定义工作辊材料热物性参数,基于步骤1采集的CVC轧机参数,采用高次B样条曲线绘制工作辊的辊形曲线;在工作辊表面进行网格细化确保计算精度,由外到内逐渐稀疏缩短计算时间,表面网格尺寸为长度方向10mm、宽度方向2mm、深度方向3mm。Select SOLID164 eight-node hexahedral unit for modeling, define the thermophysical parameters of the working roll material, and use high-order B-spline curves to draw the roll shape curve of the working roll based on the CVC rolling mill parameters collected in step 1; refine the mesh on the surface of the working roll to ensure the calculation accuracy, and gradually thin it out from the outside to the inside to shorten the calculation time. The surface mesh size is 10 mm in length, 2 mm in width, and 3 mm in depth.
步骤2.4:简化边界条件,具体假设和简化内容为:Step 2.4: Simplify the boundary conditions. The specific assumptions and simplifications are as follows:
(1)轧制过程中任意节点温度呈周期性变化,假设工作辊不旋转,让边界条件反向旋转来模拟工作辊的旋转;(1) The temperature of any node during the rolling process changes periodically. Assuming that the work roll does not rotate, the boundary conditions are rotated in the opposite direction to simulate the rotation of the work roll.
(2)认为上、下工作辊温度场一致,且工作辊处于0蹿辊位置;(2) It is assumed that the temperature fields of the upper and lower working rolls are consistent, and the working rolls are in the 0 roll position;
(3)将工作辊与带钢、工作辊与冷却水、工作辊与空气之间的换热等效为对流换热;(3) The heat exchange between the working roll and the strip, the working roll and the cooling water, and the working roll and the air is equivalent to convection heat exchange;
(4)工作辊与支撑辊之间的摩擦生热很小,所以忽略工作辊与支撑辊之间的摩擦生热;(4) The frictional heat generated between the working roll and the support roll is very small, so the frictional heat generated between the working roll and the support roll is ignored;
(5)根据带钢与工作辊之间的接触弧长,将工作辊沿轴向分为三十等份,每一份12°,带钢与工作辊接触的为一份,如图3所示,将工作辊表面共划分为10个边界区域,2区为工作辊与带钢接触的换热区,是工作辊热量的直接来源;3、6、8、1区域为工作辊与空气接触区域,与空气发生对流换热;7区域为工作辊与支撑辊的直接接触区;5、9区域为冷却水与工作辊的强制对流换热区;4、10区域是挡水板间的积水与工作辊之间的对流换热。(5) According to the contact arc length between the strip and the working roll, the working roll is divided into thirty equal parts along the axial direction, each part is 12°, and the contact between the strip and the working roll is one part. As shown in Figure 3, the surface of the working roll is divided into 10 boundary areas. Area 2 is the heat exchange area where the working roll contacts the strip and is the direct source of heat for the working roll; areas 3, 6, 8, and 1 are the areas where the working roll contacts the air and undergoes convective heat exchange with the air; area 7 is the direct contact area between the working roll and the support roll; areas 5 and 9 are the forced convective heat exchange areas between the cooling water and the working roll; areas 4 and 10 are the convective heat exchange between the accumulated water between the water retaining plates and the working roll.
步骤3:根据步骤1采集的带钢参数、轧制工艺参数、冷却水参数计算轧制过程中工作辊与带钢、工作辊与空气、工作辊与冷却水的对流换热系数,将对流换热系数施加到CVC工作辊的三维热凸度有限元模型中,进行有限元仿真实验,所述步骤3具体为:Step 3: Calculate the convective heat transfer coefficients between the working roll and the strip, the working roll and the air, and the working roll and the cooling water during the rolling process according to the strip parameters, rolling process parameters, and cooling water parameters collected in step 1, apply the convective heat transfer coefficients to the three-dimensional thermal crown finite element model of the CVC working roll, and perform a finite element simulation experiment. Step 3 is specifically as follows:
步骤3.1:将轧制过程中工作辊与带钢的接触传热和变形热和工作辊与空气的辐射换热过程等效为对流换热;Step 3.1: The contact heat transfer and deformation heat between the working roll and the strip and the radiation heat transfer between the working roll and the air during the rolling process are equivalent to convection heat transfer;
步骤3.2:根据对流换热公式和经验值确定带钢与工作辊、工作辊与冷却水、工作辊与空气的对流换热系数,所述步骤3.2具体为:Step 3.2: Determine the convection heat transfer coefficients between the strip and the working roll, between the working roll and the cooling water, and between the working roll and the air according to the convection heat transfer formula and empirical values. Step 3.2 is specifically as follows:
工作辊与带钢接触弧内传热系数表达式如下:The expression of heat transfer coefficient in the contact arc between the working roll and the strip is as follows:
; ;
式中:h con 为带钢与工作辊对流换热系数;为平均单位轧制力,单位N;v为轧制速度,单位m/s。Where: hcon is the convection heat transfer coefficient between the strip and the working roll; is the average unit rolling force, unit is N; v is the rolling speed, unit is m/s.
工作辊与冷却水的换热系数表达式如下:The heat transfer coefficient between the working roll and cooling water is expressed as follows:
(1)工作辊表面温度Tr小于100℃:(1) The working roll surface temperature T r is less than 100 ° C:
; ;
(2)工作辊表面温度Tr大于200℃:(2) The working roll surface temperature T r is greater than 200 ° C:
; ;
式中:h cw 为工作辊与冷却水的对流换热系数;γ 1、γ 2为冷却传热修正系数;E为工作辊弹性模量;Q为水流密度,Q=V SP/A SP;P SP为喷射压力,单位MPa;T C为冷却水温度,单位℃;V SP为冷却水量,单位l/s;A SP为喷射面积,单位,m2;当Q<10000(l/s/m2),B=(Tc/16)-0.17;当Q≥10000(l/s/m2),B=1.0。In the formula: h cw is the convection heat transfer coefficient between the working roll and cooling water; γ 1 and γ 2 are cooling heat transfer correction coefficients; E is the elastic modulus of the working roll; Q is the water flow density , Q = V SP / A SP ; P SP is the injection pressure, unit MPa; TC is the cooling water temperature, unit ℃; V SP is the cooling water volume, unit l/s ; A SP is the injection area, unit, m 2 ; when Q <10000 ( l /s/m 2 ), B =(T c /16) -0.17 ; when Q ≥10000 ( l /s/m 2 ), B =1.0.
工作辊与空气的换热系数表达式如下:The heat exchange coefficient between the working roll and the air is expressed as follows:
; ;
式中:h air 为工作辊与空气的对流换热系数;ΔT为工作辊与周围空气的温差,单位℃。Where: h air is the convection heat transfer coefficient between the working roll and the air; Δ T is the temperature difference between the working roll and the surrounding air, unit: °C.
步骤3.3:将步骤3.2计算得到的对流换热系数通过K文件生成时间-换热系数的循环曲线;Step 3.3: Generate a time-heat transfer coefficient cycle curve through the K file using the convective heat transfer coefficient calculated in step 3.2;
步骤3.4:在CVC工作辊的三维热凸度有限元模型的表面创建SEGM,将时间-换热系数曲线时间施加到SEGM上,实现工作辊加热和冷却过程。Step 3.4: Create SEGM on the surface of the three-dimensional thermal crown finite element model of the CVC work roll, and apply the time-heat transfer coefficient curve to the SEGM to realize the heating and cooling process of the work roll.
步骤4:调整三维热凸度有限元模型的温度边界条件,使得有限元仿真实验的工作辊温度数据曲线与现场实测的工作辊温度场数据曲线一致,所述步骤4具体为:Step 4: Adjust the temperature boundary conditions of the three-dimensional thermal crown finite element model so that the working roll temperature data curve of the finite element simulation experiment is consistent with the working roll temperature field data curve measured on site. The specific steps of step 4 are:
提取有限元仿真实验中工作辊沿轴向分布的温度场数据,与现场实测温度场数据对比,通过调整边界条件和对流换热系数使三维热凸度有限元模型精度符合现场实测精度。有限元仿真实验的工作辊温度数据曲线与现场实测的工作辊温度场数据曲线一致,并且仿真结果与实测值之间的绝对误差均小于0.5℃,根据从现场采集的PFC工作日志,选取了F4机架一个换辊周期内的热膨胀量实时变化数据,与仿真结果对比如图5所示,可以从中看出工作辊的热膨胀量随时间推移而上升然后逐渐趋于稳定,最后在250μm左右保持稳定,因为轧制期间存在空载期,导致工作辊辊身温度下降,热膨胀减小,所以有个别点起伏很大。图4是限元仿真实验的工作辊温度数据曲线与现场实测的工作辊温度数据曲线对。图5是工作辊中部实测热膨胀量与仿真结果对比图。The temperature field data of the working roll along the axial distribution in the finite element simulation experiment was extracted and compared with the temperature field data measured on site. The accuracy of the three-dimensional thermal convexity finite element model was made consistent with the accuracy of the on-site measurement by adjusting the boundary conditions and the convection heat transfer coefficient. The working roll temperature data curve of the finite element simulation experiment is consistent with the working roll temperature field data curve measured on site, and the absolute error between the simulation result and the measured value is less than 0.5℃. According to the PFC work log collected from the site, the real-time change data of the thermal expansion amount in a roll change cycle of the F4 frame was selected. The comparison with the simulation result is shown in Figure 5. It can be seen that the thermal expansion amount of the working roll increases with time and then gradually stabilizes, and finally remains stable at about 250μm. Because there is an idle period during rolling, the temperature of the working roll body decreases and the thermal expansion decreases, so some points fluctuate greatly. Figure 4 is a pair of the working roll temperature data curve of the finite element simulation experiment and the working roll temperature data curve measured on site. Figure 5 is a comparison chart of the measured thermal expansion amount in the middle of the working roll and the simulation result.
步骤5:基于调整后的三维热凸度有限元模型进行有限元实验,提取有限元实验中不同时间节点的工作辊表面热膨胀量横向分布数据,与初始CVC工作辊辊形曲线拟合得到新的工作辊辊形曲线,所述步骤5具体为:Step 5: Based on the adjusted three-dimensional thermal crown finite element model, a finite element experiment is performed to extract the lateral distribution data of the thermal expansion of the work roll surface at different time nodes in the finite element experiment, and the new work roll shape curve is obtained by fitting with the initial CVC work roll shape curve. The specific steps of step 5 are:
步骤5.1:提取有限元仿真实验不同时间节点工作辊表面热膨胀量横向分布数据;Step 5.1: Extract the lateral distribution data of the thermal expansion of the working roll surface at different time nodes of the finite element simulation experiment;
具体实施时,利用后处理软件提取不同时间节点工作辊沿轴向的热膨胀量。如图6所示为不同时间节点工作辊表面热膨胀量曲线图。In the specific implementation, the post-processing software is used to extract the thermal expansion of the working roll along the axial direction at different time nodes. As shown in Figure 6, it is a curve diagram of the thermal expansion of the working roll surface at different time nodes.
步骤5.2:将工作辊表面热膨胀量与初始CVC工作辊辊形曲线相加,得到不同时间节点,即不同热凸度下的多条热凸度工作辊辊形曲线;对不同热凸度下的多条热凸度工作辊辊形曲线的工作辊宽度数据进行归一化处理,将得到的归一化处理后的热凸度工作辊辊形曲线使用三次多项式进行拟合,得到三次拟合多项式如下:Step 5.2: Add the thermal expansion of the work roll surface to the initial CVC work roll shape curve to obtain multiple thermal crown work roll shape curves at different time nodes, that is, different thermal crowns; normalize the work roll width data of the multiple thermal crown work roll shape curves at different thermal crowns, and fit the normalized thermal crown work roll shape curves using a cubic polynomial to obtain a cubic fitting polynomial as follows:
; ;
其中,y为新的工作辊辊形分布曲线;x为工作辊宽度方向归一化后无量纲坐标,x∈[-1,1];A 1为一次项拟合系数、A 2为二次项拟合系数、A 3为三次项拟合系数;e(x)为拟合误差。Among them, y is the new working roll shape distribution curve; x is the normalized dimensionless coordinate in the width direction of the working roll, x ∈ [-1,1]; A1 is the linear fitting coefficient, A2 is the quadratic fitting coefficient, A3 is the cubic fitting coefficient; e ( x ) is the fitting error.
步骤5.3:基于A 1、A 2、A 3,绘制新的工作辊辊形曲线,计算工作辊部分热凸度c p和整体热凸度c t指标:Step 5.3: Based on A 1 , A 2 , and A 3 , draw a new working roll profile curve and calculate the partial thermal crown c p and overall thermal crown c t indicators of the working roll:
; ;
; ;
其中,h c 是工作辊中心点处的工作辊直径,h i是工作辊操作侧边部处的工作辊直径,h i '是工作辊传动侧边部处的工作辊直径,h j是带钢操作侧边部对应的工作辊直径,h j '是带钢传动侧边部对应的工作辊直径。在本实例中,根据以上公式进行数据提取,绘制图7和8,图7是工作辊整体热凸度与部分热凸度分布曲线图。图8是不同热膨胀量下的新的工作辊辊形曲线与初始CVC工作辊辊形曲线图。Wherein, h c is the diameter of the work roll at the center point of the work roll, h i is the diameter of the work roll at the operating side of the work roll, h i ' is the diameter of the work roll at the driving side of the work roll, h j is the diameter of the work roll corresponding to the strip operating side, and h j ' is the diameter of the work roll corresponding to the strip driving side. In this example, data extraction is performed according to the above formula to draw Figures 7 and 8. Figure 7 is a distribution curve of the overall thermal crown and partial thermal crown of the work roll. Figure 8 is a new work roll roll shape curve and an initial CVC work roll roll shape curve under different thermal expansion amounts.
步骤6:根据步骤5中得到的新的工作辊辊形曲线数据,分析不同时间节点工作辊热凸度变化对CVC工作辊形曲线的影响。Step 6: Based on the new work roll shape curve data obtained in step 5, analyze the influence of the change of the work roll thermal crown at different time nodes on the CVC work roll shape curve.
在轧制初期工作辊与带钢接触,温度迅速增加,膨胀量也迅速增加,轧制时间由1000s增加到5000s时,工作辊中部直径增加139.23μm,在5000s之后工作辊中部直径增加缓慢,增加了3.59μm,随后趋于平缓,工作辊边部热膨胀量随着轧制时间一直增加,从1.24μm增加到26.88μm。工作辊的热膨胀变化形成工作辊的热凸度,轧制时间1000s增加到5000s时,工作辊整体热凸度和局部热凸度在5000s之前迅速增加,分别增加了472.28μm和170.01μm,在5000s之后增加缓慢,工作辊热凸度趋于稳定。轧制时间由1000s增加到5000s时,随着轧制时间的增加CVC工作辊中部辊形曲线向上增加,相当于在原始辊形曲线的基础上又增加了二次项、一次项以及常数项系数,但是所有辊形曲线还是呈S形分布,5000s之后随后随着时间的增加,热凸度不在变化,辊形曲线也不再变化,达到稳定。At the beginning of rolling, the working roll contacts the strip, the temperature increases rapidly, and the expansion also increases rapidly. When the rolling time increases from 1000s to 5000s, the diameter of the middle part of the working roll increases by 139.23μm. After 5000s, the diameter of the middle part of the working roll increases slowly, increasing by 3.59μm, and then tends to be gentle. The thermal expansion of the edge of the working roll increases with the rolling time, from 1.24μm to 26.88μm. The thermal expansion change of the working roll forms the thermal crown of the working roll. When the rolling time increases from 1000s to 5000s, the overall thermal crown and local thermal crown of the working roll increase rapidly before 5000s, increasing by 472.28μm and 170.01μm respectively. After 5000s, it increases slowly, and the thermal crown of the working roll tends to be stable. When the rolling time increases from 1000s to 5000s, the roll shape curve in the middle of the CVC working roll increases upward with the increase of rolling time, which is equivalent to adding quadratic terms, linear terms and constant term coefficients on the basis of the original roll shape curve, but all roll shape curves still present an S-shaped distribution. After 5000s, as time increases, the thermal convexity no longer changes, and the roll shape curve no longer changes, reaching stability.
本发明的一种基于CVC轧机热凸度对板形预测的方法,利用热轧产线实测参数,利用有限元平台建立CVC轧机热凸度仿真模型,分析热凸度对轧机辊形曲线的影响。制定科学合理的验证计划,保证模型稳定性和准确度。依托于现场工艺参数,确定工作辊横移量后,根据所得后处理数据分析其影响规律。The present invention provides a method for predicting the plate shape based on the thermal crown of a CVC rolling mill. The method uses the measured parameters of the hot rolling production line and the finite element platform to establish a CVC rolling mill thermal crown simulation model to analyze the influence of the thermal crown on the mill roll curve. A scientific and reasonable verification plan is formulated to ensure the stability and accuracy of the model. Based on the on-site process parameters, after determining the lateral displacement of the working roll, the influence law is analyzed according to the obtained post-processing data.
以上所述仅为本发明的较佳实施例,并不用以限制本发明的思想,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。The above description is only a preferred embodiment of the present invention and is not intended to limit the concept of the present invention. Any modifications, equivalent substitutions, improvements, etc. made within the spirit and principle of the present invention should be included in the protection scope of the present invention.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410210705.XA CN117787066B (en) | 2024-02-27 | 2024-02-27 | Method for predicting roll shape of working roll based on thermal convexity of CVC rolling mill |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410210705.XA CN117787066B (en) | 2024-02-27 | 2024-02-27 | Method for predicting roll shape of working roll based on thermal convexity of CVC rolling mill |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117787066A CN117787066A (en) | 2024-03-29 |
CN117787066B true CN117787066B (en) | 2024-06-07 |
Family
ID=90396627
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410210705.XA Active CN117787066B (en) | 2024-02-27 | 2024-02-27 | Method for predicting roll shape of working roll based on thermal convexity of CVC rolling mill |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117787066B (en) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102847721A (en) * | 2011-06-29 | 2013-01-02 | 宝山钢铁股份有限公司 | Method for determining thermal crown of hot rolled strip roller |
CN102921741A (en) * | 2012-10-25 | 2013-02-13 | 苏州有色金属研究院有限公司 | Modeling method of finite element model for calculating roll gap crown of special roll shape of rolling mill |
CN103008360A (en) * | 2012-10-30 | 2013-04-03 | 中冶南方(武汉)信息技术工程有限公司 | Method for determining temperature field and thermal expansion of cold rolling mill working roll |
CN105127214A (en) * | 2015-09-23 | 2015-12-09 | 东北大学 | Mill elastic deformation prediction method in rolling process of four-high mill |
CN111438199A (en) * | 2020-04-08 | 2020-07-24 | 鞍钢股份有限公司 | Method for compensating original roll gap shape of roller |
CN113857265A (en) * | 2021-09-13 | 2021-12-31 | 北京科技大学 | Roll shape design method of hot-rolled ultra-thin strip work roll based on multi-objective collaborative control |
CN115121612A (en) * | 2022-05-30 | 2022-09-30 | 北京科技大学 | A kind of asymmetric work roll shape based on endless rolling process and its control method |
WO2023087676A1 (en) * | 2021-11-19 | 2023-05-25 | 东北大学 | Three-dimensional model based method for predicting critical vibration speed of six-roller cold rolling mill |
CN117131767A (en) * | 2023-08-22 | 2023-11-28 | 燕山大学 | Method for predicting thermal convexity of working roll of hot rolling four-high mill based on random forest algorithm |
-
2024
- 2024-02-27 CN CN202410210705.XA patent/CN117787066B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102847721A (en) * | 2011-06-29 | 2013-01-02 | 宝山钢铁股份有限公司 | Method for determining thermal crown of hot rolled strip roller |
CN102921741A (en) * | 2012-10-25 | 2013-02-13 | 苏州有色金属研究院有限公司 | Modeling method of finite element model for calculating roll gap crown of special roll shape of rolling mill |
CN103008360A (en) * | 2012-10-30 | 2013-04-03 | 中冶南方(武汉)信息技术工程有限公司 | Method for determining temperature field and thermal expansion of cold rolling mill working roll |
CN105127214A (en) * | 2015-09-23 | 2015-12-09 | 东北大学 | Mill elastic deformation prediction method in rolling process of four-high mill |
CN111438199A (en) * | 2020-04-08 | 2020-07-24 | 鞍钢股份有限公司 | Method for compensating original roll gap shape of roller |
CN113857265A (en) * | 2021-09-13 | 2021-12-31 | 北京科技大学 | Roll shape design method of hot-rolled ultra-thin strip work roll based on multi-objective collaborative control |
WO2023087676A1 (en) * | 2021-11-19 | 2023-05-25 | 东北大学 | Three-dimensional model based method for predicting critical vibration speed of six-roller cold rolling mill |
CN115121612A (en) * | 2022-05-30 | 2022-09-30 | 北京科技大学 | A kind of asymmetric work roll shape based on endless rolling process and its control method |
CN117131767A (en) * | 2023-08-22 | 2023-11-28 | 燕山大学 | Method for predicting thermal convexity of working roll of hot rolling four-high mill based on random forest algorithm |
Non-Patent Citations (3)
Title |
---|
"板带轧制中工作辊热变形的有限元模拟";董瑞红;《中国优秀硕士学位论文全文数据库 工程科技Ι辑》;20100715;第2章-第5章 * |
"热轧宽带钢CVC连轧机组辊型配置研究与应用";夏小明;《中国博士学位论文全文数据库 工程科技Ι辑》;20150715;第1章-第8章 * |
"热轧带钢精轧机工作辊热变形行为的研究";高建红;《中国优秀硕士学位论文全文数据库 工程科技Ι辑》;20091215;第二章-第五章 * |
Also Published As
Publication number | Publication date |
---|---|
CN117787066A (en) | 2024-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107066737B (en) | A kind of two-dimentional staggered difference method for predicting hot rolling process plate belt temperature field | |
CN101221416A (en) | Finite Element Method for On-line Calculation of Strip Temperature in Hot Rolling Process | |
CN101178746A (en) | A Finite Element Method for Predicting the Temperature Field of Strip in Hot Rolling Process | |
CN103761370B (en) | A kind of Forecasting Methodology of process of plate belt hot rolling surface film thermal conductance | |
CN111438199A (en) | Method for compensating original roll gap shape of roller | |
CN104298884A (en) | Finite element and finite difference coupling method for fast calculating rolled piece section temperature | |
CN103008360B (en) | A kind of method determining cold rolling mill work roller temperature field and thermal expansion | |
CN101178747A (en) | Prediction of Transient Temperature Field by S-Type Variable Step Size Method in Hot Strip Rolling Process | |
CN101178748A (en) | A Lumped Heat Capacity Matrix Method for Solving Temperature Field in Rolling Process by Finite Element | |
CN115846423B (en) | A Calculation Method of Roller Temperature in Strip Rolling Process | |
CN110852007B (en) | Bloom rolling temperature field calculation method considering non-uniform deformation heat | |
CN114798755B (en) | Method for analyzing influence of hot crown on plate shape in cold continuous rolling process | |
CN111079275A (en) | Rolled piece temperature obtaining method and device for strip hot rolling production line | |
CN117787066B (en) | Method for predicting roll shape of working roll based on thermal convexity of CVC rolling mill | |
CN118395606A (en) | A method for analyzing the influence of thermal crown of CVC rolling mill on plate shape based on digital twin | |
Han et al. | Prediction and control of profile for silicon steel strip in the whole tandem cold rolling based on PSO-BP algorithm | |
CN102921741A (en) | Modeling method of finite element model for calculating roll gap crown of special roll shape of rolling mill | |
CN115709223A (en) | Method for acquiring plate shape regulation and control efficacy based on cold rolling process digital twins | |
CN105013835A (en) | Original roller seam setting method based on thermal crown in ultra-thin strip rolling conducted by cold continuous rolling unit | |
CN106874591A (en) | A kind of computational methods of square billet heating process temperature distribution | |
CN115016578B (en) | Strip steel quality regulation and control method based on edge temperature control | |
Liu et al. | Transfer matrix method of flatness control for strip mills | |
CN118162485A (en) | Method for determining roll shape of roll | |
Jia et al. | FEM analysis for asymmetric bending roll of roll process in four-high mill | |
CN115026136B (en) | A method for predicting flatness during wedge transition in endless rolling |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant |