CN117778386A - A crRNA and CRISPR diagnostic kit for single-base mutation RNA detection - Google Patents
A crRNA and CRISPR diagnostic kit for single-base mutation RNA detection Download PDFInfo
- Publication number
- CN117778386A CN117778386A CN202311668466.4A CN202311668466A CN117778386A CN 117778386 A CN117778386 A CN 117778386A CN 202311668466 A CN202311668466 A CN 202311668466A CN 117778386 A CN117778386 A CN 117778386A
- Authority
- CN
- China
- Prior art keywords
- crrna
- rna
- crispr
- base mutation
- bases
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108091032973 (ribonucleotides)n+m Proteins 0.000 title claims abstract description 79
- 238000001514 detection method Methods 0.000 title claims abstract description 66
- 230000035772 mutation Effects 0.000 title claims abstract description 60
- 108091033409 CRISPR Proteins 0.000 title claims abstract description 27
- 238000010354 CRISPR gene editing Methods 0.000 title claims abstract description 26
- 238000009007 Diagnostic Kit Methods 0.000 title claims abstract description 16
- 238000000034 method Methods 0.000 claims abstract description 38
- 125000006850 spacer group Chemical group 0.000 claims abstract description 35
- 238000013461 design Methods 0.000 claims abstract description 25
- 108020004414 DNA Proteins 0.000 claims description 40
- 108090000623 proteins and genes Proteins 0.000 claims description 16
- 239000002063 nanoring Substances 0.000 claims description 13
- 239000002773 nucleotide Substances 0.000 claims description 11
- 239000000203 mixture Substances 0.000 claims description 10
- 125000003729 nucleotide group Chemical group 0.000 claims description 10
- 230000003321 amplification Effects 0.000 claims description 9
- 239000000872 buffer Substances 0.000 claims description 9
- 238000003199 nucleic acid amplification method Methods 0.000 claims description 9
- 108020004707 nucleic acids Proteins 0.000 claims description 8
- 102000039446 nucleic acids Human genes 0.000 claims description 8
- 230000000295 complement effect Effects 0.000 claims description 7
- 150000007523 nucleic acids Chemical class 0.000 claims description 7
- 239000000980 acid dye Substances 0.000 claims description 5
- 230000000694 effects Effects 0.000 claims description 5
- 108020004638 Circular DNA Proteins 0.000 claims description 4
- 102000009609 Pyrophosphatases Human genes 0.000 claims description 4
- 108010009413 Pyrophosphatases Proteins 0.000 claims description 4
- 238000003776 cleavage reaction Methods 0.000 claims description 4
- 239000011535 reaction buffer Substances 0.000 claims description 4
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 claims description 3
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 claims description 3
- 229920001213 Polysorbate 20 Polymers 0.000 claims description 3
- 238000009396 hybridization Methods 0.000 claims description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 claims description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 claims description 3
- 125000000896 monocarboxylic acid group Chemical group 0.000 claims description 2
- 238000003745 diagnosis Methods 0.000 abstract description 6
- 238000011160 research Methods 0.000 abstract description 3
- 238000012742 biochemical analysis Methods 0.000 abstract description 2
- 108091079001 CRISPR RNA Proteins 0.000 description 88
- 241001493065 dsRNA viruses Species 0.000 description 24
- 238000005580 one pot reaction Methods 0.000 description 22
- 239000000523 sample Substances 0.000 description 20
- 241000711573 Coronaviridae Species 0.000 description 16
- 241001112090 Pseudovirus Species 0.000 description 13
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000004458 analytical method Methods 0.000 description 10
- 239000000243 solution Substances 0.000 description 10
- 238000002474 experimental method Methods 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 238000010586 diagram Methods 0.000 description 7
- 239000013612 plasmid Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 6
- 241000700605 Viruses Species 0.000 description 5
- 238000002405 diagnostic procedure Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000005284 excitation Effects 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 238000012070 whole genome sequencing analysis Methods 0.000 description 4
- 208000025721 COVID-19 Diseases 0.000 description 3
- 102000012410 DNA Ligases Human genes 0.000 description 3
- 108010061982 DNA Ligases Proteins 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 102000004169 proteins and genes Human genes 0.000 description 3
- 238000012163 sequencing technique Methods 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- 238000012795 verification Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 2
- 208000001528 Coronaviridae Infections Diseases 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 108060002716 Exonuclease Proteins 0.000 description 2
- 101000860104 Leptotrichia wadei (strain F0279) CRISPR-associated endoribonuclease Cas13a Proteins 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 208000025370 Middle East respiratory syndrome Diseases 0.000 description 2
- 101150045515 O gene Proteins 0.000 description 2
- 230000006819 RNA synthesis Effects 0.000 description 2
- 238000011529 RT qPCR Methods 0.000 description 2
- 201000003176 Severe Acute Respiratory Syndrome Diseases 0.000 description 2
- 108020000999 Viral RNA Proteins 0.000 description 2
- 230000004069 differentiation Effects 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 108010052305 exodeoxyribonuclease III Proteins 0.000 description 2
- 102000013165 exonuclease Human genes 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012544 monitoring process Methods 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 238000012123 point-of-care testing Methods 0.000 description 2
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 2
- 238000003762 quantitative reverse transcription PCR Methods 0.000 description 2
- 102220098936 rs763547482 Human genes 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- 241001678559 COVID-19 virus Species 0.000 description 1
- 108010040467 CRISPR-Associated Proteins Proteins 0.000 description 1
- 108091028075 Circular RNA Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- 241000450599 DNA viruses Species 0.000 description 1
- 101150013191 E gene Proteins 0.000 description 1
- 238000002965 ELISA Methods 0.000 description 1
- 241001115402 Ebolavirus Species 0.000 description 1
- 108010007577 Exodeoxyribonuclease I Proteins 0.000 description 1
- 102100029075 Exonuclease 1 Human genes 0.000 description 1
- 101150001779 ORF1a gene Proteins 0.000 description 1
- 101150010882 S gene Proteins 0.000 description 1
- CGNLCCVKSWNSDG-UHFFFAOYSA-N SYBR Green I Chemical compound CN(C)CCCN(CCC)C1=CC(C=C2N(C3=CC=CC=C3S2)C)=C2C=CC=CC2=[N+]1C1=CC=CC=C1 CGNLCCVKSWNSDG-UHFFFAOYSA-N 0.000 description 1
- -1 SYBR Green I Nucleic Acid Chemical class 0.000 description 1
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000001962 electrophoresis Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 244000309457 enveloped RNA virus Species 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 206010022000 influenza Diseases 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 238000000386 microscopy Methods 0.000 description 1
- 238000002715 modification method Methods 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 230000007918 pathogenicity Effects 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001915 proofreading effect Effects 0.000 description 1
- 238000010223 real-time analysis Methods 0.000 description 1
- 230000007363 regulatory process Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000011895 specific detection Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Landscapes
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
Abstract
Description
技术领域Technical field
本发明属于分子诊断和生化分析方法研究领域,具体涉及一种用于单碱基突变RNA检测的crRNA及CRISPR诊断试剂盒。The invention belongs to the research field of molecular diagnosis and biochemical analysis methods, and specifically relates to a crRNA and CRISPR diagnostic kit for single-base mutation RNA detection.
背景技术Background technique
RNA病毒是一种单链RNA病毒,其遗传物质是RNA。与DNA病毒相比,RNA病毒更容易突变,这是因为RNA的复制过程中缺乏校对机制,导致错误率较高。RNA病毒的突变率较高,但每个突变株的适应性可能不同。这种特性使得RNA病毒具有较高的多样性和适应性,但也使其难以预防和治疗。常见的RNA病毒包括流感病毒、艾滋病病毒、埃博拉病毒和冠状病毒等。RNA virus is a single-stranded RNA virus whose genetic material is RNA. Compared with DNA viruses, RNA viruses are more prone to mutation. This is because the RNA replication process lacks a proofreading mechanism, resulting in a higher error rate. RNA viruses have a higher mutation rate, but the adaptability of each mutant strain may be different. This characteristic makes RNA viruses highly diverse and adaptable, but also makes them difficult to prevent and treat. Common RNA viruses include influenza viruses, HIV, Ebola viruses, and coronaviruses.
冠状病毒是自然界中广泛存在的一类具囊膜RNA病毒,可引起流感、中东呼吸综合征(MERS)和严重急性呼吸综合征(SARS)等疾病,给人类健康、社会稳定和全球经济带来巨大压力。冠状病毒的快速变异对病毒的传播性、致病性及治疗干预措施的疗效都有重要影响。由于冠状病毒具有传播速度快、临床症状较严重等特点,需要发展经济高效的快速检测策略对冠状病毒的变异株进行即时的分析监控。此外,许多冠状病毒的变异株含有独立出现的优势基因型,这表明特定突变位点测定可能是预测危险病毒株进化方向的有效策略。然而,目前较为缺乏快速即时的冠状病毒变异株监测方法,严重阻碍了相关的流行病学和临床研究。因此,发展新型的快速冠状病毒变异株分析检测方法有助于追踪特定变异株在人群中的演化趋势,提高对相关疾病的预测和防控能力。Coronavirus is a type of enveloped RNA virus widely found in nature. It can cause diseases such as influenza, Middle East Respiratory Syndrome (MERS) and Severe Acute Respiratory Syndrome (SARS), bringing serious consequences to human health, social stability and the global economy. huge stress. The rapid mutation of coronavirus has an important impact on the transmissibility and pathogenicity of the virus and the efficacy of therapeutic interventions. Because coronavirus has the characteristics of rapid transmission and severe clinical symptoms, it is necessary to develop a cost-effective and rapid detection strategy to conduct real-time analysis and monitoring of coronavirus mutant strains. In addition, many coronavirus mutant strains contain independently emerging dominant genotypes, suggesting that specific mutation site determination may be an effective strategy for predicting the evolutionary direction of dangerous virus strains. However, there is currently a lack of rapid and immediate methods for monitoring coronavirus variants, which seriously hinders related epidemiological and clinical research. Therefore, the development of new rapid coronavirus mutant strain analysis and detection methods can help track the evolution trend of specific mutant strains in the population and improve the prediction and prevention and control capabilities of related diseases.
目前针对冠状病毒等RNA病毒的变异株检测的金标准方法是全基因组测序,可获得病毒株的全序列信息,用于不同类别病毒的精准分型。然而,测序相关实验的高成本限制了测序方法在人群范围病毒实时监测方面的应用。基于聚合酶链式反应(PolymeraseChain Reaction,PCR)的核酸检测也已被广泛用于诊断冠状病毒的多种突变亚型,但受限于需要精准控温的仪器和专业的实验人员、较为复杂的探针设计及PCR反应本身的核酸扩增偏差等问题,目前主要用于中心实验室的检测应用,较难用于简单、快速的point-of-care test(POCT)分子诊断。因此,开发具有单碱基特异性的快速、灵敏、低成本、便携、易操作的检测系统对于冠状病毒变异株的检测研究至关重要。The current gold standard method for detecting mutant strains of RNA viruses such as coronavirus is whole-genome sequencing, which can obtain the full sequence information of virus strains and be used for accurate typing of different types of viruses. However, the high cost of sequencing-related experiments limits the application of sequencing methods for real-time surveillance of viruses at a population scale. Nucleic acid detection based on polymerase chain reaction (Polymerase Chain Reaction, PCR) has also been widely used to diagnose multiple mutant subtypes of coronavirus, but it is limited by the need for precise temperature control instruments, professional laboratory personnel, and more complex Problems such as probe design and nucleic acid amplification bias in the PCR reaction itself are currently mainly used for detection applications in central laboratories, and are difficult to use for simple and rapid point-of-care test (POCT) molecular diagnosis. Therefore, the development of a rapid, sensitive, low-cost, portable, and easy-to-operate detection system with single-base specificity is crucial for the detection of coronavirus mutant strains.
CRISPR诊断(CRISPR-Dx)技术可以通过CRISPR RNA(crRNA)特异性地识别目标序列,并通过激活CRISPR相关蛋白(Cas)裂解DNA或RNA 报告来输出检测信号。基于CRISPR-Dx的商业检测平台,如特异性高灵敏度酶报告解(SHERLOCK)和DNA内切酶靶向CRISPR反式报告(DETECTR),已被成功开发用于检测SARS-CoV-2等RNA病毒。无扩增CRISPR-Dx技术的进步,包括超活性LwaCas13a效应子、CRISPR-手机显微镜、基于gFET的LwaCas13a系统、和ECRISPR,有效避免了繁琐的实验室设置,缩短了检测时间,从而促进了CRISPR-Dx在病原体筛查和传染病诊断中的应用。CRISPR diagnostic (CRISPR-Dx) technology can specifically recognize target sequences through CRISPR RNA (crRNA) and output detection signals by activating CRISPR-associated proteins (Cas) to cleave DNA or RNA reporters. Commercial detection platforms based on CRISPR-Dx, such as specific high-sensitivity enzyme reporter solution (SHERLOCK) and DNA endonuclease-targeted CRISPR trans reporter (DETECTR), have been successfully developed for the detection of RNA viruses such as SARS-CoV-2 . Advances in amplification-free CRISPR-Dx technology, including superactive LwaCas13a effectors, CRISPR-mobile microscopy, gFET-based LwaCas13a systems, and ECRISPR, have effectively avoided cumbersome laboratory setups and shortened detection times, thus promoting CRISPR- Application of Dx in pathogen screening and infectious disease diagnosis.
然而,CRISPR-Dx在RNA病毒变异体鉴定中的应用仍面临挑战。一般来说,Cas蛋白,尤其是Cas9和Cas13a,能容忍crRNA和目标序列之间的单碱基错配。因此,CRISPR-Dx在识别RNA病毒变体基因组中的单碱基突变方面的鉴别能力有限。探索高灵敏度的、无靶标预扩增的CRISPR-Dx技术,以单核苷酸分辨率快速检测和识别RNA病毒及其变体是非常必要的,同时也是一个巨大的挑战。However, the application of CRISPR-Dx in the identification of RNA virus variants still faces challenges. In general, Cas proteins, especially Cas9 and Cas13a, can tolerate single-base mismatches between crRNA and target sequences. Therefore, CRISPR-Dx has limited discriminatory power in identifying single-base mutations in the genomes of RNA virus variants. Exploring highly sensitive, target-free pre-amplification CRISPR-Dx technology to rapidly detect and identify RNA viruses and their variants with single-nucleotide resolution is very necessary and also a huge challenge.
发明内容Contents of the invention
针对现有技术的问题,本发明提供一种用于单碱基突变RNA病毒检测的crRNA及CRISPR诊断试剂盒。In view of the problems of the prior art, the present invention provides a crRNA and CRISPR diagnostic kit for detecting single-base mutation RNA viruses.
一种用于单碱基突变RNA检测的crRNA,用于识别所述单碱基突变的位点位于所述crRNA间隔区5’端第3位;A crRNA for single base mutation RNA detection, the site used to identify the single base mutation is located at the 3rd position of the 5' end of the crRNA spacer region;
所述crRNA还具有如下任一种的设计:The crRNA also has any of the following designs:
1)crRNA间隔区5’端的第2、4或5位包括1-3个错配;1) Positions 2, 4 or 5 at the 5’ end of the crRNA spacer region include 1-3 mismatches;
2)在crRNA3’端增加n个碱基,与crRNA间隔区5’端的前n个碱基互补配对,以形成发夹结构;n取值为8-10。2) Add n bases to the 3' end of crRNA, which complementarily pair with the first n bases at the 5' end of the crRNA spacer to form a hairpin structure; the value of n is 8-10.
优选的,所述crRNA具有如下任一种的设计:Preferably, the crRNA has any of the following designs:
所述crRNA间隔区5’端第2位和第4位为错配,所述crRNA的核苷酸序列如SEQ IDNO.1所示;The 2nd and 4th positions at the 5' end of the crRNA spacer region are mismatched, and the nucleotide sequence of the crRNA is as shown in SEQ ID NO.1;
或,所述crRNA间隔区5’端第5位为错配,所述crRNA的核苷酸序列如SEQ ID NO.6所示;Or, the 5th position at the 5' end of the crRNA spacer is mismatched, and the nucleotide sequence of the crRNA is shown in SEQ ID NO.6;
或,所述crRNA间隔区5’端第2、4、5位为错配,所述crRNA的核苷酸序列如SEQ IDNO.4所示;Or, positions 2, 4, and 5 at the 5' end of the crRNA spacer region are mismatched, and the nucleotide sequence of the crRNA is as shown in SEQ ID NO. 4;
或,所述crRNA 3’端增加8个碱基,与crRNA间隔区5’端的前8个碱基互补配对,以形成发夹结构;所述crRNA的核苷酸序列如SEQ ID NO.2、SEQ ID NO.3或SEQ ID NO.5任一项所示。Alternatively, 8 bases are added to the 3' end of the crRNA, which are complementary to the first 8 bases at the 5' end of the crRNA spacer to form a hairpin structure; the nucleotide sequence of the crRNA is shown in any one of SEQ ID NO.2, SEQ ID NO.3 or SEQ ID NO.5.
本发明还提供上述用于单碱基突变RNA检测的crRNA的设计方法,包括如下步骤:The present invention also provides the above-mentioned design method of crRNA for single-base mutation RNA detection, which includes the following steps:
步骤1,根据待识别的单碱基突变RNA的序列,将用于识别所述单碱基突变的位点设置于所述crRNA间隔区5’端的第3位;Step 1, according to the sequence of the single-base mutation RNA to be identified, setting the site for identifying the single-base mutation at the third position of the 5' end of the crRNA spacer region;
步骤2,按照如下方式中的任一种设计所述crRNA:Step 2, design the crRNA in any of the following ways:
1)crRNA间隔区5’端的第2、4或5位包括1-3个错配;1) Positions 2, 4 or 5 at the 5’ end of the crRNA spacer region include 1-3 mismatches;
2)在crRNA 3’端增加n个碱基,与crRNA间隔区5’端的前n个碱基互补配对,以形成发夹结构;n取值为8-10;2) Add n bases to the 3’ end of the crRNA and complementary pair with the first n bases at the 5’ end of the crRNA spacer to form a hairpin structure; the value of n is 8-10;
步骤3,根据待识别的单碱基突变RNA的序列设计所述crRNA的剩余部分的序列。Step 3: Design the sequence of the remaining part of the crRNA based on the sequence of the single-base mutant RNA to be identified.
本发明还提供上述用于单碱基突变RNA检测的crRNA在制备用于单碱基突变RNA检测的CRISPR诊断试剂盒中的用途。The present invention also provides the use of the above crRNA for single base mutation RNA detection in preparing a CRISPR diagnostic kit for single base mutation RNA detection.
本发明还提供一种用于单碱基突变RNA检测的CRISPR诊断试剂盒,所述试剂盒中包括Cas13a和上述用于单碱基突变RNA检测的crRNA。The present invention also provides a CRISPR diagnostic kit for detecting single-base mutation RNA, wherein the kit comprises Cas13a and the above-mentioned crRNA for detecting single-base mutation RNA.
优选的,所述试剂盒还包括:拓扑DNA/RNA纳米套环、T4PNK、phi29DNA聚合酶、核酸染料、焦磷酸酶和反应缓冲液。Preferably, the kit also includes: topological DNA/RNA nanothread, T4PNK, phi29 DNA polymerase, nucleic acid dye, pyrophosphatase and reaction buffer.
优选的,所述拓扑DNA/RNA纳米套环用于响应Cas13a的反式切割活性和信号放大,所述拓扑DNA/RNA纳米套环为两个环状DNA链拓扑杂交形成,其中一个DNA环上含有2-4个连续的RNA碱基U。Preferably, the topological DNA/RNA nanoloop is used to respond to the trans-cutting activity and signal amplification of Cas13a, and the topological DNA/RNA nanoloop is formed by topological hybridization of two circular DNA chains, wherein one DNA loop contains 2-4 consecutive RNA bases U.
优选的,所述核酸染料选自1×SYBRGreenI。Preferably, the nucleic acid dye is selected from 1×SYBRGreenI.
优选的,所述反应缓冲液的组成为:Preferably, the composition of the reaction buffer is:
0.5~1×phi29 buffer、0.5~1×phi29 buffer,
5~8mM Mg(COOH)2、5~8mM Mg(COOH) 2 ,
30~35mM KCOOH、30~35mM KCOOH,
0.01~0.1%v/v Tween 20、0.01~0.1%v/v Tween 20,
0.4~1mM DTT、0.4~1mM DTT,
0.5~1×HOLMES Buffer 2、0.5~1×HOLMES Buffer 2.
0.5~1mMdTNP mix。0.5~1mMdTNP mix.
优选的,所述试剂盒还包括待检基因合成样本。Preferably, the kit also includes a synthetic sample of the gene to be tested.
本发明中,所检测的RNA是与疾病发生发展高度相关、可动态反映细胞状态和调控过程的RNA分子,例如:mRNA、非编码RNA、环状RNA及RNA病毒等。In the present invention, the RNA detected is an RNA molecule that is highly related to the occurrence and development of diseases and can dynamically reflect cell status and regulatory processes, such as: mRNA, non-coding RNA, circular RNA, and RNA viruses.
所述“crRNA”是CRISPR/Cas13a系统中用于指导Cas13a蛋白定位和切割靶RNA的RNA分子,其序列包括两个部分:骨架序列和间隔区(spacer)序列。本发明的crRNA对间隔区进行了设计。The "crRNA" is an RNA molecule used in the CRISPR/Cas13a system to guide the Cas13a protein to locate and cleave target RNA. Its sequence includes two parts: a backbone sequence and a spacer sequence. The crRNA of the present invention has a spacer region designed.
针对Cas13a/crRNA往往可以容忍靶标的单个错配,导致CRISPR-Dx检测单碱基突变RNA(例如RNA病毒)的特异性不足的问题,本发明提供了一种新的crRNA设计思路。具体的,将待识别位点放在crRNA间隔区5’端的第3位,然后在crRNA间隔区5’端第2位添加单个错配,使crRNA识别突变型为1个错配,识别野生型为2个错配,通过两者对Cas13a不同程度的激活效果来进行区分。若不能区分突变型与野生型,则添加不同数量或位置的错配,或者将crRNA改造为发夹状结构。当待检测的单碱基突变不存在时,这种不同数量的合成错配的crRNA在靶向识别过程中会产生凸起,从而在目标位置产生更严格的区分,以此来增强Cas13a/crRNA探针识别单碱基突变的能力。其具体的原理为:Cas13a/crRNA探针对野生型和突变型靶标的识别是通过crRNA的spacer区域与靶标碱基互补配对实现的。当二者的吉布斯自由能越小,其结合越稳定,Cas13a的反式切割活性越强。但存在单碱基突变时,crRNA与野生型和突变型靶标的结合力类似,因此不能区分。通过增加不同数量或位置的错配,或者将crRNA改造为发夹状结构,可以提高野生型靶标与crRNA的之间的吉布斯自由能,使二者结合更不稳定,从而实现野生型和突变型的显著区分。Aiming at the problem that Cas13a/crRNA can often tolerate a single mismatch of the target, resulting in insufficient specificity of CRISPR-Dx in detecting single-base mutant RNA (such as RNA viruses), the present invention provides a new crRNA design idea. Specifically, the site to be recognized is placed at the 3rd position at the 5' end of the crRNA spacer, and then a single mismatch is added at the 2nd position at the 5' end of the crRNA spacer, so that the crRNA recognizes the mutant type as 1 mismatch and recognizes the wild type. There are two mismatches, and they are distinguished by their different degrees of activation effects on Cas13a. If the mutant cannot be distinguished from the wild type, then add different numbers or positions of mismatches, or modify the crRNA into a hairpin-like structure. When the single-base mutation to be detected is not present, this different number of synthetic mismatched crRNAs will create a bulge during the target recognition process, resulting in tighter discrimination at the target position, thereby enhancing Cas13a/crRNA The ability of a probe to identify single base mutations. The specific principle is: the identification of wild-type and mutant targets by the Cas13a/crRNA probe is achieved through complementary pairing of the spacer region of crRNA with the target base. When the Gibbs free energy of the two is smaller, their combination is more stable, and the trans-cleavage activity of Cas13a is stronger. However, in the presence of single-base mutations, crRNA binds to wild-type and mutant targets similarly and therefore cannot be distinguished. By adding different numbers or positions of mismatches, or transforming crRNA into a hairpin-like structure, the Gibbs free energy between the wild-type target and crRNA can be increased, making the combination between the two more unstable, thereby achieving wild-type and crRNA Significant differentiation of mutant forms.
基于上述原理,通过本发明的技术方案,实现了如下有益效果:Based on the above principles, the following beneficial effects are achieved through the technical solution of the present invention:
1、按照本发明的方法设计的crRNA可特异性识别多种RNA单碱基突变位点,能够有效提高CRISPR-Dx技术对单碱基突变RNA检测的灵敏度。1. The crRNA designed according to the method of the present invention can specifically identify a variety of RNA single-base mutation sites, and can effectively improve the sensitivity of CRISPR-Dx technology for detecting single-base mutation RNA.
2、采用本发明的crRNA进行CRISPR-Dx检测时,不需要靶标预扩增步骤、全程闭管的一锅法分析避免了气溶胶污染引起的生物安全和假阳性问题。2. When using the crRNA of the present invention for CRISPR-Dx detection, the target pre-amplification step is not required, and the one-pot analysis with closed tubes throughout the entire process avoids biosafety and false positive problems caused by aerosol contamination.
3、本发明提供的Cas13a/crRNA探针设计原则,可适用于多种RNA单碱基突变位点的crRNA工程化设计。3. The Cas13a/crRNA probe design principles provided by the present invention can be applied to the engineering design of crRNA at a variety of RNA single base mutation sites.
4、在优选方案中,本发明提供了CRISPR-Dx检测试剂盒,能够通过一锅法进行检测,检测过程相当简单,省去了分离和控温过程。4. In a preferred embodiment, the present invention provides a CRISPR-Dx detection kit that can be used for detection in a one-pot method. The detection process is quite simple and the separation and temperature control processes are omitted.
5、在优选方案中,本发明构建了拓扑DNA/RNA纳米套环作为Cas13a的报告及信号放大体系,通过拓扑DNA/RNA纳米套环介导的滚环扩增策略,作为高效的信号扩增模块,能够实现低丰度突变型位点的超灵敏检测。5. In the preferred solution, the present invention constructs a topological DNA/RNA nano-loop as a reporting and signal amplification system for Cas13a, and uses a rolling circle amplification strategy mediated by a topological DNA/RNA nano-loop as an efficient signal amplification system. module, capable of ultra-sensitive detection of low-abundance mutant sites.
6、本发明提供的方法可设计多种不同突变位点的crRNA,实现多种不同的突变位点的检测,通过组合编码的方式,可适用于多种病原体亚型的准确鉴定。6. The method provided by the present invention can design a variety of crRNAs with different mutation sites, realize the detection of a variety of different mutation sites, and can be applied to the accurate identification of multiple pathogen subtypes through combined encoding.
显然,根据本发明的上述内容,按照本领域的普通技术知识和惯用手段,在不脱离本发明上述基本技术思想前提下,还可以做出其它多种形式的修改、替换或变更。Obviously, according to the above content of the present invention, according to the common technical knowledge and common means in the field, without departing from the above basic technical idea of the present invention, various other forms of modifications, replacements or changes can also be made.
以下通过实施例形式的具体实施方式,对本发明的上述内容再作进一步的详细说明。但不应将此理解为本发明上述主题的范围仅限于以下的实例。凡基于本发明上述内容所实现的技术均属于本发明的范围。The above contents of the present invention will be further described in detail below through specific implementation methods in the form of examples. However, this should not be understood to mean that the scope of the above subject matter of the present invention is limited to the following examples. All technologies implemented based on the above contents of the present invention belong to the scope of the present invention.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1:本发明提出的Cas13a/crRNA探针设计原则及实施例1中以新冠病毒高频率突变位点为靶标探究Cas13a识别SNP的能力。其中图1A为Cas13a识别单碱基突变的改造流程。图1B为crRNA改造类别示意图。图1C-H为6种crRNA的改造及识别情况。Figure 1: Cas13a/crRNA probe design principles proposed by the present invention and Example 1 uses the high-frequency mutation site of the new coronavirus as a target to explore the ability of Cas13a to recognize SNP. Figure 1A shows the transformation process for Cas13a to recognize single base mutations. Figure 1B is a schematic diagram of crRNA modification categories. Figure 1C-H shows the transformation and recognition of 6 crRNAs.
图2:本发明实施例2中拓扑DNA/RNA纳米套环设计与制备示意图。Figure 2: Schematic diagram of the design and preparation of topological DNA/RNA nano-rings in Example 2 of the present invention.
图3:本发明实施例2中拓扑DNA/RNA纳米套环的合成。其中图3A为拓扑DNA/RNA纳米套环的制备步骤与纯化过程,需通过聚丙烯酰胺凝胶纯化除去同分异构体,获得具有强互锁能力的拓扑双环。图3B为通过12%聚丙烯酰胺凝胶电泳电泳分析合成的拓扑DNA/RNA纳米套环。图3C为拓扑DNA/RNA纳米套环的拓扑互锁结构考察。Figure 3: Synthesis of topological DNA/RNA nanothrust in Example 2 of the present invention. Figure 3A shows the preparation steps and purification process of topological DNA/RNA nano-rings. It is necessary to remove isomers through polyacrylamide gel purification to obtain topological double rings with strong interlocking ability. Figure 3B shows the synthesized topological DNA/RNA nanothrust analyzed by 12% polyacrylamide gel electrophoresis. Figure 3C shows the investigation of the topological interlocking structure of topological DNA/RNA nano-rings.
图4:本发明实施例2中一锅法检测限。图4A为合成样品(N基因)检测限。图4B-C为假病毒(N基因)检测限。图4D为低拷贝样品20次重复实验结果。统计结果显示为平均值±SD(n=3)。Figure 4: Detection limit of one-pot method in Example 2 of the present invention. Figure 4A shows the detection limit of the synthetic sample (N gene). Figure 4B-C shows the detection limit of pseudovirus (N gene). Figure 4D shows the results of 20 repeated experiments on low-copy samples. Statistical results are shown as mean±SD (n=3).
图5:本发明实施例3中一锅法判断不同变异株的可行性。图5A为突变位点组合编码示意图。图5B-H为9种crRNA识别不同变体的组合。Figure 5: The feasibility of one-pot method to determine different mutant strains in Example 3 of the present invention. Figure 5A is a schematic diagram of the combination coding of mutation sites. Figure 5B-H shows the combination of nine crRNA recognition variants.
图6:本发明实施例4中一锅法用于临床样品的分析。图6A三例临床变体测序样本的组合编码分析。图6B为便捷式小仪器示意图。图6C为便捷式小仪器目视分析临床变体,图6D-E为便携式小仪器分析的结果。Figure 6: The one-pot method used in the analysis of clinical samples in Example 4 of the present invention. Figure 6A Combinatorial coding analysis of three clinical variant sequencing samples. Figure 6B is a schematic diagram of a portable small instrument. Figure 6C shows the visual analysis of clinical variants with a portable small instrument, and Figures 6D-E show the results of analysis with a portable small instrument.
具体实施方式Detailed ways
除特殊说明,实施例中各实验材料、试剂及设备均可通过常规购买渠道所得;实施例中所使用的实验方法如无特殊说明,均为常规方法。Unless otherwise specified, all experimental materials, reagents and equipment in the examples can be obtained through conventional purchasing channels; unless otherwise specified, the experimental methods used in the examples are conventional methods.
实施例1用于单碱基突变RNA病毒检测的crRNAExample 1 crRNA for detection of single base mutant RNA viruses
本实施例提供用于单碱基突变RNA病毒检测的crRNA,其设计方法如图1A所示,具体步骤包括:This embodiment provides crRNA for detection of single-base mutant RNA viruses. The design method is shown in Figure 1A. The specific steps include:
步骤1,根据待识别的单碱基突变RNA病毒的序列,将用于识别所述单碱基突变的位点设置于所述crRNA 3’端的第3位;Step 1, according to the sequence of the single-base mutation RNA virus to be identified, set the site for identifying the single-base mutation at position 3 of the 3’ end of the crRNA;
步骤2,按照如下方式中的任一种设计所述crRNA:Step 2, design the crRNA in any of the following ways:
1)crRNA间隔区5’端的第2、4或5位包括1-3个错配;1) The 2nd, 4th or 5th position of the 5' end of the crRNA spacer contains 1-3 mismatches;
2)在crRNA 3’端增加n个碱基,与crRNA间隔区5’端的前n个碱基互补配对,以形成发夹结构;n取值为8-10;2) Add n bases to the 3’ end of the crRNA and complementary pair with the first n bases at the 5’ end of the crRNA spacer to form a hairpin structure; the value of n is 8-10;
步骤3,根据待识别的单碱基突变RNA病毒的序列设计所述crRNA的剩余部分的序列。Step 3: Design the sequence of the remaining part of the crRNA based on the sequence of the single-base mutant RNA virus to be identified.
按照上述方法,本实施例以COVID-19不同奥密克戎变体的特征突变(如图1B所示,Q493R,K444T,W152R,V83A,F486S,Δ69/70,N501Y)为例,设计了可特异性识别突变株的crRNA探针,按照如图1C所示的方式(SM1:crRNA间隔区5’端第2位为错配;SM2:crRNA间隔区5’端第5位为错配;DM:crRNA间隔区5’端第2位和第4位为错配;TM:crRNA间隔区5’端第2、4、5位为错配;Hairpin-spacer:crRNA3’端增加8个碱基,与crRNA间隔区5’端的前8个碱基互补配对,以形成发夹结构),设计6种crRNA序列如下:According to the above method, this example takes the characteristic mutations of different COVID-19 Omicron variants (as shown in FIG. 1B , Q493R, K444T, W152R, V83A, F486S, Δ69/70, N501Y) as an example, and designs a crRNA probe that can specifically identify the mutant strain. According to the method shown in FIG. 1C (SM1: the second position at the 5' end of the crRNA spacer is a mismatch; SM2: the fifth position at the 5' end of the crRNA spacer is a mismatch; DM: the second and fourth positions at the 5' end of the crRNA spacer are mismatches; TM: the second, fourth, and fifth positions at the 5' end of the crRNA spacer are mismatches; Hairpin-spacer: 8 bases are added to the 3' end of the crRNA, which are complementary to the first 8 bases at the 5' end of the crRNA spacer to form a hairpin structure), 6 crRNA sequences are designed as follows:
此外,本实施例还检测N基因和O基因的保守区序列作为新冠病毒的验证。2种crRNA序列如下:In addition, this example also detects the conserved region sequences of the N gene and O gene as a verification of the new coronavirus. The 2 crRNA sequences are as follows:
上述9种基因及其突变型(其中,MT为突变型,WT为野生型)的序列如下表所示:The sequences of the above 9 genes and their mutant types (MT is the mutant type and WT is the wild type) are shown in the following table:
对上述crRNA构成的Cas13a/crRNA复合物识别SNP的能力进行验证,方法如下:To verify the ability of the Cas13a/crRNA complex composed of the above crRNA to recognize SNP, the method is as follows:
(1)crRNA的制备:根据筛选的不同突变靶标RNA序列设计对应的crRNA(SEQ IDNO.1-SEQ ID NO.9),然后订购含T7启动子的转录模板、T7正引和反引进行PCR反应,作为转录crRNA的双链DNA模板。使用HiscribeTM T7快速高效RNA体外合成试剂盒(Hiscribe T7Quick High Yield RNA Synthesis)在37℃条件下过夜孵育(8h以上)进行体外转录合成。最后用TRlzon法进行crRNA的纯化,得到的crRNA溶液使用Nanodrop核酸定量仪进行浓度测定,并保存在-80℃冰箱,防止降解。(1) Preparation of crRNA: Design the corresponding crRNA (SEQ ID NO.1-SEQ ID NO.9) according to the screened different mutant target RNA sequences, then order the transcription template containing the T7 promoter, T7 forward primer and reverse primer for PCR reaction, serving as a double-stranded DNA template for transcribing crRNA. Use HiscribeTM T7 Quick High Yield RNA Synthesis Kit (Hiscribe T7 Quick High Yield RNA Synthesis) and incubate overnight (more than 8 hours) at 37°C for in vitro transcription synthesis. Finally, crRNA was purified using the TRlzon method. The concentration of the obtained crRNA solution was measured using a Nanodrop nucleic acid quantifier and stored in a -80°C refrigerator to prevent degradation.
(2)Cas13a/crRNA对单碱基突变位点的识别:将2μL 100nM Cas13a、1μL 100nMcrRNA(SEQ ID NO.1-SEQ ID NO.9)、2μL 100nM Target RNA、2μL 1μM ssRNA reporter、2μL 10×HOLMES Buffer 2和11μL DEPC处理水在冰上混匀。将反应体系置于37℃孵育30分钟,然后使用酶标仪检测荧光信号(激发波长:488nm,发射波长:520nm)。其中,ssRNAreporter的核苷酸序列为:U(FAM)UUUU(BHQ-1)。(2) Recognition of single base mutation sites by Cas13a/crRNA: Mix 2μL 100nM Cas13a, 1μL 100nMcrRNA (SEQ ID NO.1-SEQ ID NO.9), 2μL 100nM Target RNA, 2μL 1μM ssRNA reporter, 2μL 10× Mix HOLMES Buffer 2 and 11 μL DEPC-treated water on ice. The reaction system was incubated at 37°C for 30 minutes, and then a microplate reader was used to detect the fluorescence signal (excitation wavelength: 488nm, emission wavelength: 520nm). Among them, the nucleotide sequence of ssRNAreporter is: U(FAM)UUUU(BHQ-1).
图1D-H为不同突变位点的crRNA筛选,横坐标标红代表该crRNA改造方式可以有效区分该位点的突变型和野生型。Figure 1D-H shows the screening of crRNA at different mutation sites. The abscissa marked in red indicates that the crRNA modification method can effectively distinguish the mutant type and wild type of this site.
上述实验结果表明,针对新冠病毒的不同突变靶点,可以通过改造crRNA的结构包括添加错配、改造为发夹状等方式实现对突变位点和野生型位点的单碱基突变的有效区分。The above experimental results show that for different mutation targets of the new coronavirus, the structure of crRNA can be modified by adding mismatches, transforming it into a hairpin shape, etc. to effectively distinguish single-base mutations at the mutation site and the wild-type site. .
实施例2用于单碱基突变RNA病毒检测的CRISPR诊断试剂盒及CRISPR诊断方法Example 2 CRISPR diagnostic kit and CRISPR diagnostic method for detection of single-base mutation RNA viruses
本实施例提供一种进行单碱基突变RNA病毒检测的试剂盒,以及利用该试剂盒进行单碱基突变RNA病毒检测的CRISPR诊断方法。本实施例中所用的crRNA按照实施例1的方法进行设计。例如,以COVID-19不同奥密克戎变体的特征突变(Q493R,K444T,W152R,V83A,F486S,Δ69/70,N501Y)为例,设计的crRNA序列如SEQ ID NO.1-SEQ ID NO.7所示。This embodiment provides a kit for detecting single-base mutation RNA viruses, and a CRISPR diagnostic method for detecting single-base mutation RNA viruses using the kit. The crRNA used in this embodiment is designed according to the method of Example 1. For example, taking the characteristic mutations (Q493R, K444T, W152R, V83A, F486S, Δ69/70, N501Y) of different Omicron variants of COVID-19 as an example, the designed crRNA sequences are shown in SEQ ID NO.1-SEQ ID NO.7.
一、试剂盒的组成(10人份)1. Composition of the test kit (10 servings)
拓扑DNA/RNA纳米套环用于响应Cas13a的反式切割活性和信号放大,所述拓扑DNA/RNA纳米套环为两个环状DNA链拓扑杂交形成。拓扑DNA/RNA纳米套环中,一个作为识别环,含有2-4个连续的RNA碱基U,供Cas13a反式剪切;一个作为报告环,功能是作为RCA的模板。在识别环被Cas13a剪切后,变为链状作为引物以报告环为RCA的模板发生RCA反应。The topological DNA/RNA nanothrust is used to respond to the trans-cleavage activity and signal amplification of Cas13a. The topological DNA/RNA nanothrust is formed by the topological hybridization of two circular DNA chains. Among the topological DNA/RNA nano-rings, one serves as a recognition loop, containing 2-4 consecutive RNA bases U, for trans-cleavage by Cas13a; the other serves as a reporter loop, functioning as a template for RCA. After the recognition loop is cleaved by Cas13a, it becomes a chain and serves as a primer to use the reporter loop as a template for RCA to initiate the RCA reaction.
本实施例中,两个环状DNA链的序列如下:In this example, the sequences of the two circular DNA strands are as follows:
1.CDNAR(SEQ ID NO.26):1. C DNA R (SEQ ID NO.26):
ATACAATAGGACTCAATTCTGCTTGACAACTACTGCGTCTATTTTCA CCTCGCATACAGTCCGGGGATACAATAGGACTCAATTCTGCTTGACAACTACTGCGTCTATTTTCA CCTCGCATACAGTCCGGGG
2.CDNAu(SEQ ID NO.27):2. C DNA u (SEQ ID NO.27):
CTCCCACTTGAGTTCCTGACTTTCCTATTGTATCCCCGGACTGTTTTAUUUUTCATCATTTTCATCACGCGCTCCCACTTGAGTTCCTGACTTTCCTATTGTATCCCGGACTGTTTTAUUUUTCATCATTTTCCATCACGCG
拓扑DNA/RNA纳米套环的合成过程示意图如图2A所示,包括以下步骤:The schematic diagram of the synthesis process of topological DNA/RNA nano-rings is shown in Figure 2A, which includes the following steps:
(1)拓扑DNA/RNA纳米套环的制备:首先将2μL 10μM CDNAu环(含有4个碱基“U”,可被Cas13a/crRNA反式剪切),3μL 10μM 5’磷酸化的CDNAR在1×T4 DNA连接酶缓冲液中混匀,最终体积为19.5μL。95℃加热5分钟,再以0.1℃/s的速度降至16℃,然后加入0.5μL T4 DNA连接酶,置于室温中反应8小时,得到拓扑DNA/RNA纳米套环。1×T4 DNA连接酶缓冲液:40mMTris-HCl,10mM MgCl2,10mM DTT,0.5mM ATP,pH 7.8,25℃。(1) Preparation of topological DNA/RNA nano-rings: First, mix 2 μL 10 μM C DNA u- ring (containing 4 bases "U" and can be trans-cleaved by Cas13a/crRNA), 3 μL 10 μM 5' phosphorylated C DNA R was mixed in 1×T4 DNA ligase buffer to a final volume of 19.5 μL. Heating at 95°C for 5 minutes, then lowering to 16°C at a speed of 0.1°C/s, then adding 0.5 μL T4 DNA ligase and leaving it to react at room temperature for 8 hours to obtain topological DNA/RNA nano-rings. 1×T4 DNA ligase buffer: 40mM Tris-HCl, 10mM MgCl 2 , 10mM DTT, 0.5mM ATP, pH 7.8, 25°C.
(2)拓扑DNA/RNA纳米套环的纯化:使用核酸外切酶I(Exonuclease I,Exo I)和核酸外切酶Ⅲ(ExonucleaseⅢ,ExoⅢ)处理连接反应产物,置于37℃温度中反应8小时,反应结束后,70℃孵育5分钟,得到拓扑DNA/RNA纳米套环,于-20℃保存待用。(2) Purification of topological DNA/RNA nano-rings: Use Exonuclease I (Exo I) and Exonuclease III (Exonuclease III, Exo III) to treat the ligation reaction product, and place it at 37°C for reaction 8 hours, after the reaction is completed, incubate at 70°C for 5 minutes to obtain topological DNA/RNA nano-rings, and store them at -20°C for later use.
对合成的拓扑DNA/RNA纳米套环进行表征,拓扑DNA/RNA纳米套环的制备及纯化的聚丙烯酰胺凝胶电泳结果见图3A,对左图最后一个泳道(外切酶处理后的双环)的两个条带进行切胶回收并验证,其中上层条带(红色箭头)在Phi29酶作用下不会发生RCA发生,只有在RNaseA处理后才会发生RCA,表明其是本研究的目的双环。The synthesized topological DNA/RNA nanothreads were characterized. The polyacrylamide gel electrophoresis results of the preparation and purification of topological DNA/RNA nanothreads are shown in Figure 3A. For the last lane on the left (double loop after exonuclease treatment) ) were extracted and verified. The upper band (red arrow) will not undergo RCA under the action of Phi29 enzyme. RCA will only occur after RNaseA treatment, indicating that it is the double ring intended for this study. .
拓扑DNA/RNA纳米套环电泳结果见图3B,泳道5:经外切酶处理后切胶回收上层条带得到本实验的双环产物。拓扑DNA/RNA纳米套环的拓扑结构验证见图3C,在给予两个单环的特异性引物时,单环可以发生RCA反应,而双环对两个引物都不会发生RCA,证明双环结构的稳定性。上述实验结果表明,拓扑DNA/RNA纳米套环成功合成,并具有结构稳定性。The results of topological DNA/RNA nano-ring electrophoresis are shown in Figure 3B, lane 5: After exonuclease treatment, the upper band was recovered by cutting the gel to obtain the double-ring product of this experiment. The topological structure verification of the topological DNA/RNA nanoloop is shown in Figure 3C. When two specific primers for a single loop are given, the single loop can undergo RCA reaction, while the double loop will not undergo RCA with both primers, proving that the double loop structure is stability. The above experimental results show that the topological DNA/RNA nano-ring was successfully synthesized and has structural stability.
二、CRISPR诊断方法2. CRISPR diagnostic method
按照以下溶液制备一锅法检测液体系:9.1μL DEPC处理水,1μL 10×HOLMESBuffer 2,1μL 10×Phi29 buffer和1μL 10mM dNTP mix,然后依次加入2μL 300pM DNA/RNA纳米套环,2μL 100nM Cas13a,1μL 100nMcrRNA,0.5μL T4 PNK,0.2μL Phi29 DNA聚合酶,0.2μL焦磷酸酶和2μL10×SYBR Green I,反应体系全程在冰上制备并吹打混匀,即制得检测液。10×Phi29缓冲液配方为:330mM Tris-HCl,100mM MgCl2,660mMKCl,1%(v/v)Tween 20,10mM DTT,pH 7.9,25℃Prepare a one-pot detection solution system according to the following solution: 9.1μL DEPC treated water, 1μL 10×HOLMESBuffer 2, 1μL 10×Phi29 buffer and 1μL 10mM dNTP mix, then add 2μL 300pM DNA/RNA nanothread, 2μL 100nM Cas13a, 1 μL 100 nMcrRNA, 0.5 μL T4 PNK, 0.2 μL Phi29 DNA polymerase, 0.2 μL pyrophosphatase and 2 μL 10×SYBR Green I. The reaction system was prepared on ice throughout the entire process and pipetted to mix to prepare the detection solution. The formula of 10×Phi29 buffer is: 330mM Tris-HCl, 100mM MgCl2, 660mMKCl, 1% (v/v) Tween 20, 10mM DTT, pH 7.9, 25℃
将待检测样本加入检测液,将反应体系置于37℃孵育1小时,然后使用酶标仪检测荧光信号(激发波长:488nm,发射波长:520nm),即可进行待检测样本的检测。Add the sample to be tested into the detection solution, incubate the reaction system at 37°C for 1 hour, and then use a microplate reader to detect the fluorescence signal (excitation wavelength: 488nm, emission wavelength: 520nm) to detect the sample to be tested.
将系列浓度梯度稀释的待检基因合成样本(检测终浓度分别设置为10nM,1nM,100pM,10pM,1pM,100fM,10fM,1fM,100aM,10aM,1aM,0.1aM)加入检测液,将反应体系置于37℃孵育1小时,然后使用酶标仪检测荧光信号(激发波长:488nm,发射波长:520nm),即可进行标准曲线的绘制。Add the synthetic sample of the gene to be tested in a series of concentration gradient dilutions (the final concentration of the test is set to 10nM, 1nM, 100pM, 10pM, 1pM, 100fM, 10fM, 1fM, 100aM, 10aM, 1aM, 0.1aM) into the detection solution, and add the reaction system Incubate at 37°C for 1 hour, then use a microplate reader to detect the fluorescence signal (excitation wavelength: 488nm, emission wavelength: 520nm) to draw a standard curve.
实施例3CRISPR诊断方法的检测限考察Example 3 Investigation of detection limit of CRISPR diagnostic method
本实施例采用假病毒考察实施例2的一锅法检测体系的检测限,具体步骤如下:This example uses a pseudovirus to investigate the detection limit of the one-pot detection system of Example 2, and the specific steps are as follows:
1、假病毒RNA的制备:将假病毒(订购于复百澳(苏州)生物医药科技有限公司,货号:FNRV2593,假病毒为逆转录病毒外膜包裹部分ORF1a/b基因序列、S基因1.3kb序列、E基因、M基因和N基因的全序列,无突变位点)从-20℃冰箱中取出,置于冰上融化或4℃条件下自然融化,待其完全融化后可进行相关的实验操作;取当次实验所需量的假病毒于EP管中,置于56℃条件下灭活30min;然后使用病毒RNA快速提取试剂盒从假病毒样本中快速制备病毒RNA。1. Preparation of pseudovirus RNA: Place the pseudovirus (ordered from Fubaiao (Suzhou) Biomedical Technology Co., Ltd., item number: FNRV2593). The pseudovirus is a retrovirus outer membrane wrapping part of the ORF1a/b gene sequence and S gene 1.3kb. sequence, the complete sequence of E gene, M gene and N gene, without mutation sites), take it out from the -20℃ refrigerator and place it on ice to melt or melt naturally at 4℃. After it is completely melted, relevant experiments can be carried out. Operation: Put the amount of pseudovirus required for the current experiment into an EP tube and place it at 56°C for inactivation for 30 minutes; then use the viral RNA rapid extraction kit to quickly prepare viral RNA from the pseudovirus sample.
2、标准曲线的绘制:订购假病毒标准质粒并使用RT-qPCR进行定量检测实验,得到假病毒标准质粒的Ct值与拷贝数的标准曲线。然后,将制备的假病毒RNA进行RT-qPCR得到其Ct值,代入标准曲线中得到假病毒的拷贝数。2. Drawing of the standard curve: Order the pseudovirus standard plasmid and use RT-qPCR to conduct a quantitative detection experiment to obtain a standard curve of the Ct value and copy number of the pseudovirus standard plasmid. Then, the prepared pseudovirus RNA was subjected to RT-qPCR to obtain its Ct value, which was then substituted into the standard curve to obtain the copy number of the pseudovirus.
所述标准质粒的核苷酸序列(SEQ ID NO.28)为:The nucleotide sequence of the standard plasmid (SEQ ID NO.28) is:
ATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAGTAACCAGAATGGAGAACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCCAAGGTTTACCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTCAACATGGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAA。ATGTCTGATAATGGACCCCAAAATCAGCGAAATGCACCCCGCATTACGTTTGGTGGACCCTCAGATTCAACTGGCAGTAACCAGAATGGAGAACGCAGTGGGGCGCGATCAAAACAACGTCGGCCCCAAGGTTTACCCAATAATACTGCGTCTTGGTTCACCGCTCTCACTCAACATGGCAAGGAAGACCTTAAATTCCCTCGAGGACAAGGCGTTCCAA.
3、假病毒RNA检测限:将已知拷贝数的假病毒RNA进行系列浓度梯度稀释(检测终浓度分别设置为5.3,4.3,3.3,2.3,1.3,0.3,单位为lg(拷贝/微升))。然后参照“第二部分”的方法,制备检测液。其中,采用N-gene(SEQ ID NO.24)合成样本作为待检基因合成样本,crRNA序列如SEQ ID NO.8所示。加入不同浓度的假病毒RNA,将反应体系置于37℃孵育1小时,然后使用酶标仪检测荧光信号(激发波长:488nm,发射波长:520nm)。3. Pseudovirus RNA detection limit: Perform serial concentration gradient dilutions of pseudoviral RNA with known copy numbers (the final concentrations of the detection are set to 5.3, 4.3, 3.3, 2.3, 1.3, 0.3 respectively, the unit is lg (copy/microliter) ). Then refer to the method in "Part 2" to prepare the detection solution. Among them, N-gene (SEQ ID NO. 24) synthetic sample was used as the synthetic sample of the gene to be tested, and the crRNA sequence is shown in SEQ ID NO. 8. Add different concentrations of pseudoviral RNA, incubate the reaction system at 37°C for 1 hour, and then use a microplate reader to detect the fluorescence signal (excitation wavelength: 488nm, emission wavelength: 520nm).
一锅法对合成样品N基因的检测限见图4A,检测限为0.1aM;一锅法对假病毒的提取及检测限见图4B,检测限为10^0.3copies/μL,即1.99copies/μL;一锅法对低拷贝样品的检测稳定性见图4C,对低拷贝的样本进行20次重复检测以考察方法的稳定性和可重复性,20次重复实验表明对于低拷贝的样本也能保持出色的检测分析。The detection limit of the N gene of the synthetic sample by the one-pot method is shown in Figure 4A, and the detection limit is 0.1aM; the extraction and detection limit of the pseudovirus by the one-pot method is shown in Figure 4B, and the detection limit is 10 ^0.3 copies/μL, that is, 1.99copies/ μL; the detection stability of the one-pot method for low-copy samples is shown in Figure 4C. The low-copy samples were tested repeatedly 20 times to examine the stability and reproducibility of the method. The 20 repeated experiments showed that low-copy samples can also be detected. Keep up the great detection analysis.
上述实验结果表明,该方法提供的一锅法检测体系配方具有高灵敏度、稳健性的检测优点。The above experimental results show that the one-pot detection system formula provided by this method has the detection advantages of high sensitivity and robustness.
实施例4基于Cas13a探针和拓扑DNA/RNA纳米套环的一锅法检测体系鉴定不同变异株的可行性考察Example 4 Feasibility study of identifying different mutant strains using a one-pot detection system based on Cas13a probe and topological DNA/RNA nanoloops
本实施例考察实施例2的一锅法检测体系鉴定RNA病毒变异株的可行性,包括以下步骤:This example examines the feasibility of identifying RNA virus mutant strains using the one-pot detection system of Example 2, which includes the following steps:
设计不同变体质粒的序列:根据A图不同变体在9种位点的突变情况进行不同变体质粒的序列设计(SEQ ID NO.29-SEQ ID NO.37),将9种位点插入PUC57质粒中,每个位点前后各加10nt序列,并在插入序列的最首端添加T7启动子序列以构建不同的变体,然后通过T7体外转录试剂盒进行转录及纯化得到不同变体RNA靶标。纯化得到的变体RNA通过超微量分光光度计进行定量,并保存于-20度待用。Design the sequences of different variant plasmids: Design the sequences of different variant plasmids (SEQ ID NO.29-SEQ ID NO.37) based on the mutations of different variants at 9 sites in Figure A, and insert the 9 sites In the PUC57 plasmid, add 10nt sequences before and after each site, and add the T7 promoter sequence at the very beginning of the inserted sequence to construct different variants, and then use the T7 in vitro transcription kit for transcription and purification to obtain different variant RNAs. target. The purified variant RNA was quantified using an ultramicro-volume spectrophotometer and stored at -20 degrees until use.
7种不同变体质粒的序列如下:The sequences of the 7 different variant plasmids are as follows:
wild(SEQ ID NO.29):wild(SEQ ID NO.29):
TAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGCTAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGC
TGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCTTGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCT
GAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAAGAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAA
CCCACTAATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCTCCCACTAATGGTGTGGTTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCT
TTACAATCATATGGTTTCTTGGTTCCATGCTATACATGTCTCTGGGACCATTACAATCATATGGTTTCTTGGTTCCATGCTATACATGTCTCTGGGACCA
ATGGTACTAAGAGGTCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAATGGTACTAAGAGGTCGTTATAGCTTGGAATTCTAACAATCTTGATTCTA
AGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTAGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTT
GGATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTGGATGGAAAGTGTGGACCAATGGTACTAAGAGGTTTGATAACCCTGT
CCTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT;CCTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT;
BA.2(SEQ ID NO.30):BA.2(SEQ ID NO.30):
TAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGCTAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGC
TGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCTTGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCT
GAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAAGAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAA
CCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCTCCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCT
TTACGATCATATGGTTTCTTGGTTCCATGCTATACATGTCTCTGGGACCATTACGATCATATGGTTTCTTGGTTCCATGCTATACATGTCTCTGGGACCA
ATGGTACTAAGAGGTCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAATGGTACTAAGAGGTCGTTATAGCTTGGAATTCTAACAATCTTGATTCTA
AGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTAGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTT
GGATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTGGATGGAAAGTGTGGACCAATGGTACTAAGAGGTTTGATAACCCTGT
CCTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT;CCTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT;
BA.5(SEQ ID NO.31):BA.5(SEQ ID NO.31):
TAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGCTAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGC
TGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCTTGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCT
GAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAAGAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAA
CCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCTCCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCT
TTACAATCATATGGTTTCTTTTCCAATGTTACTTGGTTCCATGCTATATCTTTACAATCATATGGTTTCTTTTCCAATGTTACTTGGTTCCATGCTATATCT
GGGACCAATGGTACCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAAGGGACCAATGGTACCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAA
GGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTGGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTG
GATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCGATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTC
CTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT;CTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT;
BQ.1(SEQ ID NO.32):BQ.1(SEQ ID NO.32):
TAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGCTAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGC
TGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCTTGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCT
GAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAAGAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAA
CCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCTCCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCT
TTACAATCATATGGTTTCTTTTCCAATGTTACTTGGTTCCATGCTATATCTTTACAATCATATGGTTTCTTTTCCAATGTTACTTGGTTCCATGCTATATCT
GGGACCAATGGTACCGTTATAGCTTGGAATTCTAACAATCTTGATTCTACGGGACCAATGGTACCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAC
GGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTGGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTG
GATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTCGATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTC
CTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT;CTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT;
CH1.1(SEQ ID NO.33):CH1.1(SEQ ID NO.33):
TAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGCTAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGC
TGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCTTGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCT
GAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAAGAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAA
CCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCTCCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCT
TTACAATCATATGGTTTCTTGGTTCCATGCTATACATGTCTCTGGGACCATTACAATCATATGGTTTCTTGGTTCCATGCTATACATGTCTCTGGGACCA
ATGGTACTAAGAGGTCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAATGGTACTAAGAGGTCGTTATAGCTTGGAATTCTAACAATCTTGATTCTA
AGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTCAGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTC
GGATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGTGGATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGT
CCTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT;CCTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT;
XBB.1(SEQ ID NO.34):XBB.1 (SEQ ID NO.34):
TAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGCTAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGC
TGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCTTGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCT
GAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAAGAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAA
CCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCTCCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCT
TTACAATCATATGGTTTCTTGGTTCCATGCTATACATGTCTCTGGGACCATTACAATCATATGGTTTCTTGGTTCCATGCTATACATGTCTCTGGGACCA
ATGGTACTAAGAGGTCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAATGGTACTAAGAGGTCGTTATAGCTTGGAATTCTAACAATCTTGATTCTA
AGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTAGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTT
GGATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGCGGATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGC
CCTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTCTAATTGTTACTT;CCTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTCTAATTGTTACTT;
XBB1.5(SEQ ID NO.35):XBB1.5(SEQ ID NO.35):
TAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGCTAATACGACTCACTATAGGGAGCCTAAAAAGGACAAAAAGAAGAAGGC
TGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCTTGATGAAACTCAAGCCTTACTTGGTGCCACTTCTGCTGCTCTTCAACCT
GAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAAGAAGAAGAGCAAGAAGAAGACTTTCCTTTACAATCATATGGTTTCCAA
CCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCTCCCACTTATGGTGTTGGTTTGGTGTTGAAGGTTTTAATTGTTACTTTCCT
TTACAATCATATGGTTTCTTGGTTCCATGCTATACATGTCTCTGGGACCATTACAATCATATGGTTTCTTGGTTCCATGCTATACATGTCTCTGGGACCA
ATGGTACTAAGAGGTCGTTATAGCTTGGAATTCTAACAATCTTGATTCTAATGGTACTAAGAGGTCGTTATAGCTTGGAATTCTAACAATCTTGATTCTA
AGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTTAGGTTGGTGGTAATTTTGGGTGTTTATTACCACAAAAACAACAAAAGTT
GGATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGCGGATGGAAAGTGTGGGACCAATGGTACTAAGAGGTTTGATAACCCTGC
CCTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT。CCTACCATTTAAGGCCGGTAGCACACCTTGTAATGGTGTTGAAGGTTTTAATTGTTACTT.
不同变异株的检测:9种crRNA(SEQ ID NO.1-9)分别识别转录得到的不同变体RNA靶标,考察是否可以区分变体中的不同位点,以及不同变体间野生型和突变型位点的区分。检测体系见实施例2第二部分中CRISPR诊断方法。Detection of different mutant strains: 9 crRNAs (SEQ ID NO. 1-9) recognize different variant RNA targets transcribed, and examine whether different sites in the variants can be distinguished, as well as wild type and mutations between different variants. Differentiation of type sites. For the detection system, see the CRISPR diagnostic method in the second part of Example 2.
组合编码鉴定不同变异株的示意图见图5A;基于Cas13a探针和拓扑DNA/RNA纳米套环的一锅法检测体系鉴定不同变异株的结果见图5b-h,图中每一种柱形颜色代表一种crRNA(参考A图右图)。以BA.2为例对结果进行解释说明,首先N gene,O gene作为保守区序列,可以被一锅法识别和检测;对于其他7个位点,BA.2在N501Y、Q493R两个位点处单碱基突变,其他5个位点为野生型,检测结果也表明在N501Y、Q493R两个位点产生高于阈值的信号,其他5个野生型位点为背景信号。The schematic diagram of the combined coding to identify different mutant strains is shown in Figure 5A; the results of the one-pot detection system based on Cas13a probe and topological DNA/RNA nanoloop to identify different mutant strains are shown in Figure 5b-h, each column color in the figure Represents a type of crRNA (refer to the right image of Figure A). Take BA.2 as an example to explain the results. First, N gene and O gene, as conserved region sequences, can be identified and detected by the one-pot method; for the other 7 sites, BA.2 has two sites: N501Y and Q493R. There is a single base mutation, and the other five sites are wild-type. The detection results also show that the two sites N501Y and Q493R produce signals above the threshold, and the other five wild-type sites are background signals.
上述实验结果表明,该方法具有鉴定不同的变异株的能力。The above experimental results show that this method has the ability to identify different variants.
实施例5使用基于Cas13a探针和拓扑DNA/RNA纳米套环的一锅法检测体系鉴定临床样品中的不同变异株Example 5 Identification of different mutant strains in clinical samples using a one-pot detection system based on Cas13a probe and topological DNA/RNA nanoloop
本实施例考察实施例2的一锅法检测体系鉴定RNA病毒变异株的可行性,对临床来源的3例新型冠状病毒样品进行一锅法检测,分别使用酶标仪和便携式小仪器(MajorScience Co.,Ltd,BluViewTransilluminator,MBE-300)进行结果分析。使用9种crRNA(SEQID NO.1-9)分别对临床样本进行一锅法识别验证,实验结果参考组合编码示意图进行判定该样本属于哪一类变异株;同时,对3例临床样本进行新冠病毒RNA全基因组测序,进一步验证变体类型。This example examines the feasibility of the one-pot detection system in Example 2 to identify RNA virus mutant strains. Three new coronavirus samples from clinical sources were tested using a one-pot method using a microplate reader and a portable small instrument (MajorScience Co. ., Ltd, BluViewTransilluminator, MBE-300) for result analysis. Nine kinds of crRNA (SEQID NO. 1-9) were used to conduct one-pot identification and verification of clinical samples. The experimental results were determined with reference to the combined coding diagram to determine which type of variant the sample belonged to. At the same time, 3 clinical samples were tested for new coronavirus. RNA whole genome sequencing to further verify variant types.
对3例样品使用酶标仪分析的结果见图6A-C,右上角S1、S2、S3对应的变体类型为经全基因组测序鉴定的结果,一锅法判定结果与其一致。对3例样品使用便携式小仪器分析的结果见图6D-E,小仪器通过蓝光照射直接目视读出结果,仪器大小与手机大小类似;蓝光照射结果(E左)和凝胶成像仪紫外拍摄结果(右),一锅法识别到的突变位点均在全基因组测序中检测到在该位点处的突变,其中3*3位置与图5A右图一致。The results of the analysis of the three samples using an ELISA instrument are shown in Figure 6A-C. The variant types corresponding to S1, S2, and S3 in the upper right corner are the results identified by whole genome sequencing, and the results of the one-pot method are consistent with them. The results of the analysis of the three samples using a portable small instrument are shown in Figure 6D-E. The small instrument directly reads the results visually through blue light irradiation, and the size of the instrument is similar to that of a mobile phone; the blue light irradiation results (E left) and the gel imager UV shooting results (right), the mutation sites identified by the one-pot method are all detected in the mutation at the site in the whole genome sequencing, and the 3*3 position is consistent with the right picture of Figure 5A.
上述实验结果表明,基于Cas13a探针和拓扑DNA/RNA纳米套环的一锅法检测体系能够鉴定临床样品中的不同变异株。The above experimental results show that the one-pot detection system based on Cas13a probe and topological DNA/RNA nanoloop can identify different mutant strains in clinical samples.
通过上述实施例可以看到,本发明提供了新的crRNA和CRISPR诊断试剂盒,能够克服CRISPR诊断对单碱基突变检测能力不足的问题,实现对COVID-19等单碱基突变RNA病毒的特异性、高灵敏的检测,具有很好的应用前景。As can be seen from the above examples, the present invention provides a new crRNA and CRISPR diagnostic kit, which can overcome the problem of insufficient single-base mutation detection capability of CRISPR diagnosis and achieve specific detection of single-base mutation RNA viruses such as COVID-19. The detection is highly sensitive and has good application prospects.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311668466.4A CN117778386A (en) | 2023-12-06 | 2023-12-06 | A crRNA and CRISPR diagnostic kit for single-base mutation RNA detection |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311668466.4A CN117778386A (en) | 2023-12-06 | 2023-12-06 | A crRNA and CRISPR diagnostic kit for single-base mutation RNA detection |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117778386A true CN117778386A (en) | 2024-03-29 |
Family
ID=90384326
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311668466.4A Pending CN117778386A (en) | 2023-12-06 | 2023-12-06 | A crRNA and CRISPR diagnostic kit for single-base mutation RNA detection |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117778386A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118389648A (en) * | 2024-04-30 | 2024-07-26 | 湖南师范大学 | Method for identifying single nucleotide polymorphism based on crRNA spacer cleavage and application thereof |
-
2023
- 2023-12-06 CN CN202311668466.4A patent/CN117778386A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118389648A (en) * | 2024-04-30 | 2024-07-26 | 湖南师范大学 | Method for identifying single nucleotide polymorphism based on crRNA spacer cleavage and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022037623A1 (en) | Kit and method for isothermal rapid detection of sars-cov-2 virus nucleic acid | |
WO2022257659A1 (en) | Crispr/cas system-based sars-cov-2 double-target rapid detection method and kit | |
CN114058679B (en) | CRISPR cascade nucleic acid detection system and detection method and application thereof | |
Palaz et al. | CRISPR-based tools: Alternative methods for the diagnosis of COVID-19 | |
JP2020521486A (en) | Single cell transcriptome amplification method | |
JP2021517469A (en) | Nucleic acid detection method based on prokaryotic argonaute protein and its use | |
CN112501254A (en) | Application of Cas protein, and detection method and kit of target nucleic acid molecule | |
US11118206B2 (en) | Multiple stage isothermal enzymatic amplification | |
CN110886021B (en) | Construction method of single-cell DNA library | |
CN107208137A (en) | Detect the composition and method of RNA virus | |
US10519484B2 (en) | Lytic composition and application thereof, kit, method for preparing nucleic acid by utilizing lytic composition, and nucleic acid analysis method | |
Huang et al. | CRISPR-Cas13: A new technology for the rapid detection of pathogenic microorganisms | |
KR102648647B1 (en) | Improved detection of short homopolymeric repeat sequences | |
WO2022257664A1 (en) | Method and kit for detecting and screening n439k mutation of novel coronavirus | |
KR102030244B1 (en) | Oligonucleotide set for detection of dengue virus and uses thereof | |
CN113046453A (en) | Method and kit for detecting DNA point mutation based on padlock probe mediated stem-loop connection amplification technology | |
CN114807431A (en) | An improved nucleic acid visualization detection technology mediated by CRISPR system and its application | |
Wang et al. | A ligation/recombinase polymerase amplification assay for rapid detection of SARS-CoV− 2 | |
CN117778386A (en) | A crRNA and CRISPR diagnostic kit for single-base mutation RNA detection | |
CN114592097A (en) | Primer and probe for identifying novel coronavirus Omicron strain BA.1 and/or BA.3 sublines and application thereof | |
CN116694816A (en) | SARS-CoV-2, Influenza A virus and Influenza B virus nucleic acid isothermal multiple detection reagent and detection method | |
CN113897416A (en) | CRISPR/Cas12f detection system and application thereof | |
CN114790579A (en) | Method for constructing new coronavirus sequencing library, method for determining new coronavirus nucleic acid sequence, sequencing library and kit | |
CN117947211A (en) | Amplicon-free CRISPR-based one-pot assay for point-of-care diagnosis of viral pathogens using loop-mediated isothermal amplification | |
CN117143978A (en) | Neck ring oligonucleotides and their use in a method of preparation comprising Z bases |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |