CN117767765B - Resonant circuit, charging control method and charger - Google Patents
Resonant circuit, charging control method and charger Download PDFInfo
- Publication number
- CN117767765B CN117767765B CN202410114949.8A CN202410114949A CN117767765B CN 117767765 B CN117767765 B CN 117767765B CN 202410114949 A CN202410114949 A CN 202410114949A CN 117767765 B CN117767765 B CN 117767765B
- Authority
- CN
- China
- Prior art keywords
- submodule
- gain
- charging
- mode
- capacitor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 239000003990 capacitor Substances 0.000 claims description 77
- 238000002955 isolation Methods 0.000 claims description 24
- 230000005540 biological transmission Effects 0.000 claims description 10
- 238000001514 detection method Methods 0.000 claims description 10
- 238000010586 diagram Methods 0.000 description 15
- 230000008569 process Effects 0.000 description 9
- 238000005516 engineering process Methods 0.000 description 8
- 230000010355 oscillation Effects 0.000 description 8
- 238000011161 development Methods 0.000 description 5
- 238000005259 measurement Methods 0.000 description 3
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 2
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 2
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 239000000696 magnetic material Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
Landscapes
- Dc-Dc Converters (AREA)
Abstract
本申请实施例提供了一种谐振电路、充电控制方法及充电器,电路包括DC‑DC原边模块及DC‑DC次边模块;DC‑DC次边模块包括第一次边震荡子模块、第二次边震荡子模块及第二切换开关子模块;在第二切换开关子模块导通的情况下,第一次边震荡子模块、第二次边震荡子模块处于使能状态,谐振电路工作在PFM模式下;在第二切换开关子模块断开的情况下,第二次边震荡子模块处于使能状态,谐振电路工作在PWM模式下。利用第二切换开关子模块控制第一次边震荡子模块的使能,从而实现谐振电路在PFM模式及PWM模式之间的切换,可以在充电增益或输出功率较小时,采用PWM模式进行充电,以降低负载较轻时充电系统的损耗。
The embodiment of the present application provides a resonant circuit, a charging control method and a charger, wherein the circuit includes a DC-DC primary module and a DC-DC secondary module; the DC-DC secondary module includes a first side oscillator submodule, a second side oscillator submodule and a second switching switch submodule; when the second switching switch submodule is turned on, the first side oscillator submodule and the second side oscillator submodule are in an enabled state, and the resonant circuit operates in a PFM mode; when the second switching switch submodule is disconnected, the second side oscillator submodule is in an enabled state, and the resonant circuit operates in a PWM mode. The second switching switch submodule is used to control the enabling of the first side oscillator submodule, thereby realizing the switching of the resonant circuit between the PFM mode and the PWM mode. When the charging gain or output power is small, the PWM mode can be used for charging to reduce the loss of the charging system when the load is light.
Description
技术领域Technical Field
本申请涉及电子技术领域,特别是涉及谐振电路、充电控制方法及充电器。The present application relates to the field of electronic technology, and in particular to a resonant circuit, a charging control method and a charger.
背景技术Background technique
随着移动终端技术的发展,各类可穿戴设备竞相涌现,使得人们的生产和生活变得更加方便。快充技术作为移动终端行业关键技术竞争点之一,越来越受到人们的关注。当前主流的快充协议包括PD(power delivery,能量传输)、QC(Quick Charge,快速充电)、UFCS(Universal Fast Charging Specification,通用快速充电规范)等,上述协议均对快充技术有了具体指标要求:充电器输出电压连续可调。With the development of mobile terminal technology, various wearable devices have emerged, making people's production and life more convenient. As one of the key technical competition points in the mobile terminal industry, fast charging technology has attracted more and more attention. The current mainstream fast charging protocols include PD (power delivery), QC (Quick Charge), UFCS (Universal Fast Charging Specification), etc. The above protocols all have specific indicator requirements for fast charging technology: the charger output voltage is continuously adjustable.
快充类充电器要求具备效率高、功率大、体积小等特点。当前主流技术仍集中在反激、及反激变形拓扑,转换效率低,输出功率拓展性差,无法进一步支撑未来技术发展,新拓扑适应性研究为未来发展方向;LLC电路是由2个电感和1个电容构成的谐振电路,故称之为LLC,LLC电路拥有50%定占空比,变压器工作在1、3象限,磁材利用率提升1倍,器件应力低,损耗小等优点,逐渐成为快充类技术的发展方向。Fast charging chargers are required to have the characteristics of high efficiency, high power and small size. The current mainstream technology is still concentrated on flyback and flyback deformation topology, with low conversion efficiency and poor output power scalability, which cannot further support future technological development. The research on the adaptability of new topologies is the future development direction; LLC circuit is a resonant circuit composed of 2 inductors and 1 capacitor, so it is called LLC. LLC circuit has a 50% fixed duty cycle, the transformer works in quadrants 1 and 3, the utilization rate of magnetic materials is increased by 1 times, the device stress is low, and the loss is small. It has gradually become the development direction of fast charging technology.
相关技术中,LLC电路均采用PFM(Pulse Frequency Modulation,脉冲频率调制)方式进行供电,通过改变脉冲频率的方式来改变功率的大小,PFM的充电增益呈非线性,负载越轻,其所需的充电增益越小,开关频率越高,从而在负载较轻时,造成充电系统的损耗越大。In related technologies, LLC circuits all use PFM (Pulse Frequency Modulation) for power supply, which changes the power by changing the pulse frequency. The charging gain of PFM is nonlinear. The lighter the load, the smaller the required charging gain and the higher the switching frequency. As a result, when the load is light, the loss of the charging system is greater.
发明内容Summary of the invention
本申请实施例的目的在于提供一种谐振电路、充电控制方法及充电器,以实现降低LLC电路中充电系统的损耗。具体技术方案如下:The purpose of the embodiments of the present application is to provide a resonant circuit, a charging control method and a charger to reduce the loss of the charging system in the LLC circuit. The specific technical solution is as follows:
根据本申请实施例的第一方面,提供一种谐振电路,包括:According to a first aspect of an embodiment of the present application, a resonant circuit is provided, comprising:
DC-DC原边模块及DC-DC次边模块;DC-DC primary side module and DC-DC secondary side module;
所述DC-DC次边模块包括第一次边震荡子模块、第二次边震荡子模块及第二切换开关子模块;所述第一次边震荡子模块分别与所述第二次边震荡子模块、所述第二切换开关子模块连接;The DC-DC secondary side module includes a first side oscillator submodule, a second side oscillator submodule and a second switch submodule; the first side oscillator submodule is connected to the second side oscillator submodule and the second switch submodule respectively;
其中,在所述第二切换开关子模块导通的情况下,所述第一次边震荡子模块、第二次边震荡子模块处于使能状态,所述谐振电路工作在PFM模式下;Wherein, when the second switching switch submodule is turned on, the first side oscillation submodule and the second side oscillation submodule are in an enabled state, and the resonant circuit operates in the PFM mode;
在所述第二切换开关子模块断开的情况下,所述第二次边震荡子模块处于使能状态,所述谐振电路工作在PWM模式下。When the second switch submodule is disconnected, the second side oscillation submodule is in an enabled state, and the resonant circuit operates in a PWM mode.
在本申请实施例中,利用第二切换开关子模块控制第一次边震荡子模块的使能,从而实现谐振电路在PFM模式及PWM模式之间的切换,可以在充电增益或输出功率较小时,采用PWM模式进行充电,以降低负载较轻时充电系统的损耗。In an embodiment of the present application, the second switching switch submodule is used to control the enabling of the first side oscillation submodule, thereby realizing the switching of the resonant circuit between the PFM mode and the PWM mode. When the charging gain or output power is small, the PWM mode can be used for charging to reduce the loss of the charging system when the load is light.
在一种可能的实施方式中,所述DC-DC原边模块包括第一原边震荡子模块、第二原边震荡子模块及第一切换开关子模块;所述第一原边震荡子模块分别与所述第二原边震荡子模块、所述第一切换开关子模块连接;所述第二原边震荡子模块与所述第一切换开关子模块连接;In a possible implementation, the DC-DC primary module includes a first primary oscillator module, a second primary oscillator module and a first switch submodule; the first primary oscillator module is connected to the second primary oscillator module and the first switch submodule respectively; the second primary oscillator module is connected to the first switch submodule;
其中,在所述第一切换开关子模块断开,所述第二切换开关子模块导通的情况下,所述第一原边震荡子模块、所述第一次边震荡子模块、第二次边震荡子模块处于使能状态,所述谐振电路工作在PFM模式下;Wherein, when the first switching switch submodule is disconnected and the second switching switch submodule is turned on, the first primary oscillator submodule, the first primary oscillator submodule, and the second primary oscillator submodule are in an enabled state, and the resonant circuit operates in the PFM mode;
在所述第一切换开关子模块导通,所述第二切换开关子模块断开的情况下,所述第一原边震荡子模块、所述第二原边震荡子模块、所述第二次边震荡子模块处于使能状态,所述谐振电路工作在PWM模式下。When the first switching switch submodule is turned on and the second switching switch submodule is turned off, the first primary oscillator submodule, the second primary oscillator submodule and the secondary oscillator submodule are in an enabled state, and the resonant circuit operates in a PWM mode.
在本申请实施例中,利用第一切换开关子模块控制第二原边震荡子模块的使能,以及利用第二切换开关子模块控制第一次边震荡子模块的使能,从而实现谐振电路在PFM模式及PWM模式之间的切换,可以在充电增益或输出功率较小时,采用PWM模式进行充电,以降低负载较轻时充电系统的损耗。In an embodiment of the present application, a first switching switch submodule is used to control the enabling of the second primary side oscillator submodule, and a second switching switch submodule is used to control the enabling of the first primary side oscillator submodule, thereby realizing the switching of the resonant circuit between the PFM mode and the PWM mode. When the charging gain or output power is small, the PWM mode can be used for charging to reduce the loss of the charging system when the load is light.
在一种可能的实施方式中,所述第一原边震荡子模块包括第一电容、第一晶体管、第二晶体管、第二电容、第三电容、第一电感、第三电感、第五电容;In a possible implementation manner, the first primary oscillator module includes a first capacitor, a first transistor, a second transistor, a second capacitor, a third capacitor, a first inductor, a third inductor, and a fifth capacitor;
所述第五电容的第一端分别与所述第一晶体管的第一端、所述一电容的第一端连接;所述第五电容的第二端分别与所述第二晶体管的第二端、所述第二电容的第二端、所述第三电容的第二端连接;The first end of the fifth capacitor is respectively connected to the first end of the first transistor and the first end of the first capacitor; the second end of the fifth capacitor is respectively connected to the second end of the second transistor, the second end of the second capacitor, and the second end of the third capacitor;
所述第一晶体管的第二端分别与所述第一电容的第二端、所述第一电感的第一端、所述第二晶体管的第一端、所述第二电容的第一端连接;The second end of the first transistor is respectively connected to the second end of the first capacitor, the first end of the first inductor, the first end of the second transistor, and the first end of the second capacitor;
所述第一电感的第二端与所述第三电感的第一端连接,所述第三电感的第二端与所述第三电容的第一端连接。The second end of the first inductor is connected to the first end of the third inductor, and the second end of the third inductor is connected to the first end of the third capacitor.
在本申请实施例中,给出了第一原边震荡子模块的具体电路结构,实现了DC-DC原边模块在PFM驱动方式与PWM驱动方式之间的切换,从而实现了谐振电路在PFM模式及PWM模式之间的切换。In the embodiment of the present application, a specific circuit structure of the first primary oscillator submodule is given, which realizes the switching of the DC-DC primary module between the PFM drive mode and the PWM drive mode, thereby realizing the switching of the resonant circuit between the PFM mode and the PWM mode.
在一种可能的实施方式中,所述第二原边震荡子模块包括第四电容、第二电感,所述第一切换开关子模块包括第一开关及第二开关;In a possible implementation manner, the second primary oscillator submodule includes a fourth capacitor and a second inductor, and the first switch submodule includes a first switch and a second switch;
所述第二电感的第一端与所述第一电感的第一端连接,所述第二电感的第二端与所述第一开关的第一端连接,所述第一开关的第二端与所述第三电感的第一端连接;The first end of the second inductor is connected to the first end of the first inductor, the second end of the second inductor is connected to the first end of the first switch, and the second end of the first switch is connected to the first end of the third inductor;
所述第四电容的第一端与所述第二开关的第一端连接,所述第四电容的第二端与所述第三电容的第二端连接,所述第二开关的第二端与所述第三电容的第一端连接。The first end of the fourth capacitor is connected to the first end of the second switch, the second end of the fourth capacitor is connected to the second end of the third capacitor, and the second end of the second switch is connected to the first end of the third capacitor.
在本申请实施例中,给出了第二原边震荡子模块与第一切换开关子模块的具体电路结构,实现了DC-DC原边模块在PFM驱动方式与PWM驱动方式之间的切换,从而实现了谐振电路在PFM模式及PWM模式之间的切换。In the embodiment of the present application, a specific circuit structure of the second primary oscillator submodule and the first switching switch submodule is given, which realizes the switching of the DC-DC primary module between the PFM drive mode and the PWM drive mode, thereby realizing the switching of the resonant circuit between the PFM mode and the PWM mode.
在一种可能的实施方式中,所述第二次边震荡子模块包括第五电感、第四晶体管、第六电容,In a possible implementation manner, the second side oscillator module includes a fifth inductor, a fourth transistor, and a sixth capacitor.
所述第五电感的第一端与所述第六电容的第一端连接,所述第五电感的第二端与所述第四晶体管的第一端连接,所述第四晶体管的第二端与所述第六电容的第二端连接。The first end of the fifth inductor is connected to the first end of the sixth capacitor, the second end of the fifth inductor is connected to the first end of the fourth transistor, and the second end of the fourth transistor is connected to the second end of the sixth capacitor.
在本申请实施例中,给出了第二次边震荡子模块的具体电路结构,实现了DC-DC次边模块在PFM驱动方式与PWM驱动方式之间的切换,从而实现了谐振电路在PFM模式及PWM模式之间的切换。In the embodiment of the present application, a specific circuit structure of the second side oscillator module is given, which realizes the switching of the DC-DC secondary side module between the PFM drive mode and the PWM drive mode, thereby realizing the switching of the resonant circuit between the PFM mode and the PWM mode.
在一种可能的实施方式中,所述第一次边震荡子模块包括第四电感、第三晶体管,所述第二切换开关子模块包括第五晶体管;In a possible implementation manner, the first side oscillator submodule includes a fourth inductor and a third transistor, and the second switch submodule includes a fifth transistor;
所述第四电感的第一端与所述第五晶体管的第一端连接,所述第四电感的第二端与所述第六电容的第一端连接;The first end of the fourth inductor is connected to the first end of the fifth transistor, and the second end of the fourth inductor is connected to the first end of the sixth capacitor;
所述第五晶体管的第二端与所述第三晶体管的第一端连接,第三晶体管的第二端与所述第六电容的第二端连接。The second end of the fifth transistor is connected to the first end of the third transistor, and the second end of the third transistor is connected to the second end of the sixth capacitor.
在本申请实施例中,给出了第一次边震荡子模块与第二切换开关子模块的具体电路结构,实现了DC-DC次边模块在PFM驱动方式与PWM驱动方式之间的切换,从而实现了谐振电路在PFM模式及PWM模式之间的切换。In the embodiment of the present application, a specific circuit structure of the first side oscillator submodule and the second switching switch submodule is given, which realizes the switching of the DC-DC secondary side module between the PFM drive mode and the PWM drive mode, thereby realizing the switching of the resonant circuit between the PFM mode and the PWM mode.
在一种可能的实施方式中,将所述第三晶体管替换为第一二极管,将所述第四晶体管替换为第二二极管,和/或,将所述第五晶体管替换为第三开关。In a possible implementation manner, the third transistor is replaced by a first diode, the fourth transistor is replaced by a second diode, and/or the fifth transistor is replaced by a third switch.
在本申请实施例中,给出了DC-DC次边模块的具体电路结构,实现了DC-DC次边模块在PFM驱动方式与PWM驱动方式之间的切换,从而实现了谐振电路在PFM模式及PWM模式之间的切换。In the embodiment of the present application, a specific circuit structure of the DC-DC secondary side module is given, which realizes the switching of the DC-DC secondary side module between the PFM driving mode and the PWM driving mode, thereby realizing the switching of the resonant circuit between the PFM mode and the PWM mode.
在一种可能的实施方式中,所述电路还包括:隔离模块;In a possible implementation, the circuit further includes: an isolation module;
DC-DC原边模块还包括原边切换控制子模块,DC-DC次边模块包括次边切换控制子模块;The DC-DC primary side module also includes a primary side switching control submodule, and the DC-DC secondary side module includes a secondary side switching control submodule;
所述隔离模块分别与所述原边切换控制子模块、所述次边切换控制子模块连接;The isolation module is connected to the primary side switching control submodule and the secondary side switching control submodule respectively;
所述原边切换控制子模块,用于控制所述第一切换开关子模块的断开及导通;The primary side switching control submodule is used to control the disconnection and conduction of the first switching switch submodule;
所述次边切换控制子模块,用于控制所述第二切换开关子模块的断开及导通;The secondary side switching control submodule is used to control the disconnection and conduction of the second switching switch submodule;
所述隔离模块,用于实现所述原边切换控制子模块与所述次边切换控制子模块之间的信号隔离传递。The isolation module is used to implement signal isolation and transmission between the primary-side switching control submodule and the secondary-side switching control submodule.
本申请实施例中,实现了DC-DC原边模块与DC-DC次边模块之间的信号隔离传递,从而DC-DC原边模块与DC-DC次边模可以通过信号隔离传递的方式进行通信,即保证了原、次边之间的电气安全,又可以协调实现PFM模式与PWM模式之间的切换。In the embodiment of the present application, signal isolation transmission between the DC-DC primary module and the DC-DC secondary module is realized, so that the DC-DC primary module and the DC-DC secondary module can communicate through signal isolation transmission, which ensures the electrical safety between the primary and secondary sides and can coordinate the switching between PFM mode and PWM mode.
根据本申请实施例的第二方面,提供了一种充电控制方法,所述方法包括:According to a second aspect of an embodiment of the present application, a charging control method is provided, the method comprising:
获取当前的充电增益;Get the current charging gain;
在当前的充电模式为PFM模式的情况下,若当前的充电增益小于预设第二增益阈值,和/或当前的输出功率不大于预设功率阈值,则将充电模式切换为PWM模式。When the current charging mode is the PFM mode, if the current charging gain is less than a preset second gain threshold, and/or the current output power is not greater than a preset power threshold, the charging mode is switched to the PWM mode.
在本申请实施例中,在充电增益或输出功率较小时,将充电模式由PFM模式切换为PWM模式,而在低负载情况下PWM模式的充电损耗低于PFM模式的充电损耗,从而可以降低负载较轻时充电系统的损耗。In an embodiment of the present application, when the charging gain or output power is small, the charging mode is switched from PFM mode to PWM mode. Under low load conditions, the charging loss of the PWM mode is lower than the charging loss of the PFM mode, thereby reducing the loss of the charging system when the load is light.
在一种可能的实施方式中,所述方法还包括:In a possible implementation, the method further includes:
判断当前的充电增益是否大于预设第一增益阈值;其中,所述预设第二增益阈值小于所述预设第一增益阈值;Determine whether the current charging gain is greater than a preset first gain threshold; wherein the preset second gain threshold is less than the preset first gain threshold;
在当前的充电模式为PFM模式,且当前的充电增益大于预设第一增益阈值的情况下,则将充电模式切换为PWM模式。When the current charging mode is the PFM mode and the current charging gain is greater than a preset first gain threshold, the charging mode is switched to the PWM mode.
当充电系统增益大于LLC电路的最大增益时,PFM模式下LLC电路会进入容性区,无法正常工作,此种情况下,可以采用PFM模式进行充电,以扩展可充电的增益区间。When the charging system gain is greater than the maximum gain of the LLC circuit, the LLC circuit will enter the capacitive region in PFM mode and cannot work normally. In this case, PFM mode can be used for charging to expand the chargeable gain range.
在一种可能的实施方式中,所述方法还包括:In a possible implementation, the method further includes:
在当前的充电增益不大于预设第一增益阈值的情况下,判断当前的充电增益是否小于预设第二增益阈值;When the current charging gain is not greater than the preset first gain threshold, determining whether the current charging gain is less than the preset second gain threshold;
在当前的充电模式为PFM模式的情况下,若当前的充电增益不小于预设第二增益阈值,且当前的输出功率大于预设功率阈值,则维持充电模式为PFM模式。When the current charging mode is the PFM mode, if the current charging gain is not less than the preset second gain threshold and the current output power is greater than the preset power threshold, the charging mode is maintained as the PFM mode.
在本申请实施例中,在当前的充电增益不小于预设第二增益阈值,且当前的输出功率大于预设功率阈值,维持充电模式为PFM模式,可以维持较高的充电功率。In the embodiment of the present application, when the current charging gain is not less than the preset second gain threshold and the current output power is greater than the preset power threshold, the charging mode is maintained in the PFM mode to maintain a higher charging power.
在一种可能的实施方式中,所述方法还包括:In a possible implementation, the method further includes:
在当前的充电模式为PWM模式,且当前的充电增益不大于预设第一增益阈值的情况下,判断当前的充电增益是否小于预设第二增益阈值,其中,所述预设第二增益阈值小于所述预设第一增益阈值;When the current charging mode is the PWM mode and the current charging gain is not greater than a preset first gain threshold, determining whether the current charging gain is less than a preset second gain threshold, wherein the preset second gain threshold is less than the preset first gain threshold;
在当前的充电增益不小于预设第二增益阈值的情况下,获取当前的输出功率,并判断当前的输出功率是否大于预设功率阈值;When the current charging gain is not less than the preset second gain threshold, obtaining the current output power, and determining whether the current output power is greater than the preset power threshold;
若当前的输出功率大于预设功率阈值,则将充电模式切换为PFM模式;If the current output power is greater than the preset power threshold, the charging mode is switched to PFM mode;
若当前的输出功率不大于预设功率阈值,则维持充电模式为PWM模式。If the current output power is not greater than the preset power threshold, the charging mode is maintained in the PWM mode.
在本申请实施例中,给出了由PWM模式切换为PFM模式的情况,在充电增益不小于预设第二增益阈值、且输出功率大于预设功率阈值的情况下,将充电模式由PWM模式切换为PFM模式,从而可以提高充电效率,减少损耗。In an embodiment of the present application, a case of switching from PWM mode to PFM mode is given. When the charging gain is not less than a preset second gain threshold and the output power is greater than a preset power threshold, the charging mode is switched from PWM mode to PFM mode, thereby improving charging efficiency and reducing losses.
在一种可能的实施方式中,在所述获取当前的充电增益的步骤之后,所述方法还包括:In a possible implementation manner, after the step of obtaining the current charging gain, the method further includes:
判断当前的充电增益与上一次得到的充电增益是否相同;Determine whether the current charging gain is the same as the charging gain obtained last time;
若相同,则丢弃当前的充电增益,等待下一检测周期。If they are the same, the current charging gain is discarded and the next detection cycle is waited for.
在本申请实施例中,在当前检测周期的充电增益不变时,则说明无需进行充电模式的调整,因此本周期无需进行后续的判断过程,丢弃当前的充电增益,等待下一检测周期重新获取;从而可以减少没有必要的判断过程,节约计算资源。In an embodiment of the present application, when the charging gain of the current detection cycle remains unchanged, it means that there is no need to adjust the charging mode. Therefore, there is no need to perform a subsequent judgment process in this cycle, and the current charging gain is discarded and waits for the next detection cycle to be re-acquired; thereby reducing unnecessary judgment processes and saving computing resources.
根据本申请实施例的第三方面,提供了一种充电器,包括本申请中任一所述的谐振电路及充电控制芯片;所述充电控制芯片用于在运行时,通过本申请中任一所述的充电控制方法控制所述谐振电路进行充电模式的切换。According to a third aspect of an embodiment of the present application, a charger is provided, comprising a resonant circuit and a charging control chip as described in any one of the present application; the charging control chip is used to control the resonant circuit to switch the charging mode during operation through any one of the charging control methods described in the present application.
本申请实施例提供的谐振电路、充电控制方法及充电器,谐振电路包括DC-DC原边模块及DC-DC次边模块;DC-DC次边模块包括第一次边震荡子模块、第二次边震荡子模块及第二切换开关子模块;第一次边震荡子模块分别与第二次边震荡子模块、第二切换开关子模块连接;其中,在第二切换开关子模块导通的情况下,第一次边震荡子模块、第二次边震荡子模块处于使能状态,谐振电路工作在PFM模式下;在第二切换开关子模块断开的情况下,第二次边震荡子模块处于使能状态,谐振电路工作在PWM模式下。利用第二切换开关子模块控制第一次边震荡子模块的使能,从而实现谐振电路在PFM模式及PWM模式之间的切换,可以在充电增益或输出功率较小时,采用PWM模式进行充电,以降低负载较轻时充电系统的损耗。The resonant circuit, charging control method and charger provided by the embodiment of the present application, the resonant circuit includes a DC-DC primary module and a DC-DC secondary module; the DC-DC secondary module includes a first side oscillator submodule, a second side oscillator submodule and a second switching switch submodule; the first side oscillator submodule is connected to the second side oscillator submodule and the second switching switch submodule respectively; wherein, when the second switching switch submodule is turned on, the first side oscillator submodule and the second side oscillator submodule are in an enabled state, and the resonant circuit operates in the PFM mode; when the second switching switch submodule is disconnected, the second side oscillator submodule is in an enabled state, and the resonant circuit operates in the PWM mode. The second switching switch submodule is used to control the enabling of the first side oscillator submodule, so as to realize the switching of the resonant circuit between the PFM mode and the PWM mode, and the PWM mode can be used for charging when the charging gain or output power is small, so as to reduce the loss of the charging system when the load is light.
当然,实施本申请的任一产品或方法并不一定需要同时达到以上所述的所有优点。Of course, implementing any product or method of the present application does not necessarily require achieving all of the advantages described above at the same time.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,还可以根据这些附图获得其他的实施例。In order to more clearly illustrate the embodiments of the present application or the technical solutions in the prior art, the drawings required for use in the embodiments or the description of the prior art will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application, and for ordinary technicians in this field, other embodiments can also be obtained based on these drawings.
图1是现有技术中谐振电路的一种示意图;FIG1 is a schematic diagram of a resonant circuit in the prior art;
图2是本申请实施例提供的谐振电路的第一种示意图;FIG2 is a first schematic diagram of a resonant circuit provided in an embodiment of the present application;
图3是本申请实施例提供的谐振电路的第二种示意图;FIG3 is a second schematic diagram of a resonant circuit provided in an embodiment of the present application;
图4是本申请实施例提供的谐振电路的第三种示意图;FIG4 is a third schematic diagram of a resonant circuit provided in an embodiment of the present application;
图5是本申请实施例提供的谐振电路的第四种示意图;FIG5 is a fourth schematic diagram of a resonant circuit provided in an embodiment of the present application;
图6是本申请实施例提供的谐振电路的第五种示意图;FIG6 is a fifth schematic diagram of a resonant circuit provided in an embodiment of the present application;
图7是本申请实施例提供的充电控制方法的第一种示意图;FIG7 is a first schematic diagram of a charging control method provided in an embodiment of the present application;
图8是本申请实施例提供的充电控制方法的第二种示意图;FIG8 is a second schematic diagram of a charging control method provided in an embodiment of the present application;
图9是本申请实施例中PFM模式下谐振电路的一种示意图;FIG9 is a schematic diagram of a resonant circuit in a PFM mode in an embodiment of the present application;
图10是本申请实施例中PFM模式下谐振电路中各关键点位的波形图;FIG10 is a waveform diagram of key points in the resonant circuit in the PFM mode in an embodiment of the present application;
图11是本申请实施例中PWM模式下谐振电路的一种示意图;FIG11 is a schematic diagram of a resonant circuit in PWM mode in an embodiment of the present application;
图12是本申请实施例中PWM模式下谐振电路中各关键点位的波形图。FIG. 12 is a waveform diagram of key points in the resonant circuit in PWM mode in an embodiment of the present application.
具体实施方式Detailed ways
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员基于本申请所获得的所有其他实施例,都属于本申请保护的范围。The following will be combined with the drawings in the embodiments of the present application to clearly and completely describe the technical solutions in the embodiments of the present application. Obviously, the described embodiments are only part of the embodiments of the present application, not all of the embodiments. Based on the embodiments in the present application, all other embodiments obtained by ordinary technicians in this field based on the present application belong to the scope of protection of the present application.
LLC电路是由2个电感和1个电容构成的谐振电路,故称之为LLC。其拓扑结构根据晶体管(例如MOS管)的配列可以分为半桥或全桥类型。LLC电路通过谐振能够实现晶体管的软开(soft switching),减少开关损耗,全功率范围内原边开关管实现ZVS(Zero VoltageSwitch,零电压开关),SR(同步整流器)开关管实现ZCS(Zero Current Switch,零电流开关),器件应力低,损耗小;变压器漏感参与谐振回路,漏感能量通过谐振传递到Vbus(供电管脚)和次边,能量损失小。另外晶体管的通态损耗也很低,即产生的焦耳热也少,这样也可以不额外使用散热片进行散热。因为这些优点,LLC电路逐渐成为快充类技术的发展方向。The LLC circuit is a resonant circuit composed of two inductors and one capacitor, so it is called LLC. Its topology can be divided into half-bridge or full-bridge types according to the arrangement of transistors (such as MOS tubes). The LLC circuit can realize soft switching of transistors through resonance, reduce switching losses, realize ZVS (Zero Voltage Switch) of the primary switch tube in the full power range, and realize ZCS (Zero Current Switch) of the SR (synchronous rectifier) switch tube. The device stress is low and the loss is small; the leakage inductance of the transformer participates in the resonant circuit, and the leakage inductance energy is transferred to Vbus (power supply pin) and the secondary side through resonance, and the energy loss is small. In addition, the on-state loss of the transistor is also very low, that is, the Joule heat generated is also small, so there is no need to use an additional heat sink for heat dissipation. Because of these advantages, the LLC circuit has gradually become the development direction of fast charging technology.
相关技术中,LLC电路均采用PFM(Pulse Frequency Modulation,脉冲频率调制)方式进行供电,其电路图如图1所示,其中,Vin表示功率输入端,Vout表示功率输出端,MA、MB、MC、MD均为MOS管,LA、LB、LC、LD均为电感,CA及CB均为电容。PFM是一种模拟信号调制方式,它通过改变脉冲频率的方式来改变功率的大小。PFM的充电增益呈非线性,负载越轻,其所需的充电增益越小,开关频率越高,从而在负载较轻时,造成充电系统的损耗越大。In the related art, LLC circuits all use PFM (Pulse Frequency Modulation) for power supply. The circuit diagram is shown in Figure 1, where Vin represents the power input end, Vout represents the power output end, MA, MB, MC, and MD are all MOS tubes, LA, LB, LC, and LD are all inductors, and CA and CB are all capacitors. PFM is an analog signal modulation method that changes the power by changing the pulse frequency. The charging gain of PFM is nonlinear. The lighter the load, the smaller the required charging gain and the higher the switching frequency. As a result, when the load is light, the loss of the charging system is greater.
有鉴于此,本申请实施例提供了一种谐振电路,包括:DC-DC原边模块及DC-DC次边模块;In view of this, an embodiment of the present application provides a resonant circuit, including: a DC-DC primary module and a DC-DC secondary module;
所述DC-DC次边模块包括第一次边震荡子模块、第二次边震荡子模块及第二切换开关子模块;所述第一次边震荡子模块分别与所述第二次边震荡子模块、所述第二切换开关子模块连接;The DC-DC secondary side module includes a first side oscillator submodule, a second side oscillator submodule and a second switch submodule; the first side oscillator submodule is connected to the second side oscillator submodule and the second switch submodule respectively;
其中,在所述第二切换开关子模块导通的情况下,所述第一次边震荡子模块、第二次边震荡子模块处于使能状态,所述谐振电路工作在PFM模式下;Wherein, when the second switching switch submodule is turned on, the first side oscillation submodule and the second side oscillation submodule are in an enabled state, and the resonant circuit operates in the PFM mode;
在所述第二切换开关子模块断开的情况下,所述第二次边震荡子模块处于使能状态,所述谐振电路工作在PWM模式下。When the second switch submodule is disconnected, the second side oscillation submodule is in an enabled state, and the resonant circuit operates in a PWM mode.
在本申请实施例中,利用第二切换开关子模块控制第一次边震荡子模块的使能,从而实现谐振电路在PFM模式及PWM模式之间的切换,可以在充电增益或输出功率较小时,采用PWM模式进行充电,以降低负载较轻时充电系统的损耗。In an embodiment of the present application, the second switching switch submodule is used to control the enabling of the first side oscillation submodule, thereby realizing the switching of the resonant circuit between the PFM mode and the PWM mode. When the charging gain or output power is small, the PWM mode can be used for charging to reduce the loss of the charging system when the load is light.
在一种可能的实施方式中,本申请实施例中的谐振电路可以如图2所示,包括:In a possible implementation manner, the resonant circuit in the embodiment of the present application may be as shown in FIG. 2 , including:
DC-DC原边模块01及DC-DC次边模块02;DC-DC primary module 01 and DC-DC secondary module 02;
所述DC-DC原边模块01包括第一原边震荡子模块011、第二原边震荡子模块012及第一切换开关子模块013;所述第一原边震荡子模块011分别与所述第二原边震荡子模块012、所述第一切换开关子模块013连接;所述第二原边震荡子模块012与所述第一切换开关子模块013连接;The DC-DC primary module 01 includes a first primary oscillator module 011, a second primary oscillator module 012 and a first switch submodule 013; the first primary oscillator module 011 is connected to the second primary oscillator module 012 and the first switch submodule 013 respectively; the second primary oscillator module 012 is connected to the first switch submodule 013;
所述DC-DC次边模块02包括第一次边震荡子模块021、第二次边震荡子模块022及第二切换开关子模块023;所述第一次边震荡子模块021分别与所述第二次边震荡子模块022、所述第二切换开关子模块023连接;The DC-DC secondary side module 02 includes a first side oscillator submodule 021, a second side oscillator submodule 022 and a second switch submodule 023; the first side oscillator submodule 021 is connected to the second side oscillator submodule 022 and the second switch submodule 023 respectively;
其中,在所述第一切换开关子模块013断开,所述第二切换开关子模块023导通的情况下,所述第一原边震荡子模块011、所述第一次边震荡子模块021、第二次边震荡子模块022处于使能状态,所述谐振电路工作在PFM模式下,Among them, when the first switching switch submodule 013 is disconnected and the second switching switch submodule 023 is turned on, the first primary oscillator submodule 011, the first primary oscillator submodule 021, and the second primary oscillator submodule 022 are in an enabled state, and the resonant circuit operates in the PFM mode.
在所述第一切换开关子模块013导通,所述第二切换开关子模块023断开的情况下,所述第一原边震荡子模块011、所述第二原边震荡子模块012、所述第二次边震荡子模块022处于使能状态,所述谐振电路工作在PWM(Pulse width modulation,脉冲宽度调制)模式下。When the first switching switch submodule 013 is turned on and the second switching switch submodule 023 is turned off, the first primary oscillator submodule 011, the second primary oscillator submodule 012 and the secondary oscillator submodule 022 are in an enabled state, and the resonant circuit operates in a PWM (Pulse width modulation) mode.
PWM模式通过对改变脉冲时间宽度的方式,来实现功率的调整;PWM在负载较轻时,开关频率不变,通过减少脉冲宽度的方式,实现负载的减轻,从而与PFM模式相比,能够降低充电系统的损耗,提高充电效率。The PWM mode adjusts power by changing the pulse time width. When the load is light, the switching frequency remains unchanged and the load is reduced by reducing the pulse width. Compared with the PFM mode, it can reduce the loss of the charging system and improve the charging efficiency.
第一切换开关子模块013用于控制第二原边震荡子模块012的使能,当第一切换开关子模块013导通时,第二原边震荡子模块012工作;当第一切换开关子模块013断开时,第二原边震荡子模块012不工作。针对于DC-DC原边模块01,当第一原边震荡子模块011与第二原边震荡子模块012均工作时,DC-DC原边模块01为PWM驱动方式;当第一原边震荡子模块011工作、第二原边震荡子模块012不工作时,DC-DC原边模块01为PFM驱动方式。The first switching switch submodule 013 is used to control the enabling of the second primary oscillator submodule 012. When the first switching switch submodule 013 is turned on, the second primary oscillator submodule 012 works; when the first switching switch submodule 013 is turned off, the second primary oscillator submodule 012 does not work. For the DC-DC primary module 01, when the first primary oscillator submodule 011 and the second primary oscillator submodule 012 are both working, the DC-DC primary module 01 is in PWM driving mode; when the first primary oscillator submodule 011 is working and the second primary oscillator submodule 012 is not working, the DC-DC primary module 01 is in PFM driving mode.
第二切换开关子模块023用于控制第一次边震荡子模块021的使能,当第二切换开关子模块023导通时,第一次边震荡子模块021工作;当第二切换开关子模块023断开时,第一次边震荡子模块021不工作。针对于DC-DC次边模块02,当第一次边震荡子模块021与第二次边震荡子模块022均工作时,DC-DC次边模块02为PFM驱动方式;当第二次边震荡子模块022工作、第一次边震荡子模块021不工作时,DC-DC次边模块02为PWM驱动方式。The second switching switch submodule 023 is used to control the enabling of the first side oscillator submodule 021. When the second switching switch submodule 023 is turned on, the first side oscillator submodule 021 works; when the second switching switch submodule 023 is turned off, the first side oscillator submodule 021 does not work. For the DC-DC secondary side module 02, when both the first side oscillator submodule 021 and the second side oscillator submodule 022 work, the DC-DC secondary side module 02 is in PFM driving mode; when the second side oscillator submodule 022 works and the first side oscillator submodule 021 does not work, the DC-DC secondary side module 02 is in PWM driving mode.
在本申请实施例中,利用第一切换开关子模块控制第二原边震荡子模块的使能,使得DC-DC原边模块能够适用于PWM模式下的频率;以及利用第二切换开关子模块控制第一次边震荡子模块的使能,从而能够实现谐振电路在PFM模式及PWM模式之间的切换,从而在充电增益或输出功率较小时,可以采用PWM模式进行充电,以降低负载较轻时充电系统的损耗。In an embodiment of the present application, a first switching switch submodule is used to control the enabling of a second primary oscillator submodule, so that the DC-DC primary module can be suitable for the frequency in the PWM mode; and a second switching switch submodule is used to control the enabling of the first primary oscillator submodule, so that the resonant circuit can be switched between the PFM mode and the PWM mode. Therefore, when the charging gain or output power is small, the PWM mode can be used for charging to reduce the loss of the charging system when the load is light.
在一种可能的实施方式中,参见图3,所述第一原边震荡子模块包括第一电容C1、第一晶体管M1、第二晶体管M2、第二电容C2、第三电容C3、第一电感L1、第三电感L3、第五电容C5;In a possible implementation, referring to FIG3 , the first primary oscillator module includes a first capacitor C1, a first transistor M1, a second transistor M2, a second capacitor C2, a third capacitor C3, a first inductor L1, a third inductor L3, and a fifth capacitor C5;
所述第五电容C5的第一端分别与所述第一晶体管M1的第一端、所述一电容C1的第一端连接;所述第五电容C5的第二端分别与所述第二晶体管M2的第二端、所述第二电容C2的第二端、所述第三电容C3的第二端连接;The first end of the fifth capacitor C5 is respectively connected to the first end of the first transistor M1 and the first end of the first capacitor C1; the second end of the fifth capacitor C5 is respectively connected to the second end of the second transistor M2, the second end of the second capacitor C2, and the second end of the third capacitor C3;
所述第一晶体管M1的第二端分别与所述第一电容C1的第二端、所述第一电感L1的第一端、所述第二晶体管M2的第一端、所述第二电容C2的第一端连接;The second end of the first transistor M1 is respectively connected to the second end of the first capacitor C1, the first end of the first inductor L1, the first end of the second transistor M2, and the first end of the second capacitor C2;
所述第一电感L1的第二端与所述第三电感L3的第一端连接,所述第三电感L3的第二端与所述第三电容C3的第一端连接。The second end of the first inductor L1 is connected to the first end of the third inductor L3 , and the second end of the third inductor L3 is connected to the first end of the third capacitor C3 .
第二原边震荡子模块分别与第一电感L1的第一端、第二电容的第二端连接,第一切换开关子模块分别与第三电感L3的第一端、第三电容C3的第一端连接。The second primary oscillator submodule is respectively connected to the first end of the first inductor L1 and the second end of the second capacitor, and the first switch submodule is respectively connected to the first end of the third inductor L3 and the first end of the third capacitor C3.
在一种可能的实施方式中,所述第二原边震荡子模块包括第四电容C4、第二电感L2,所述第一切换开关子模块包括第一开关S1及第二开关S2;In a possible implementation manner, the second primary oscillator submodule includes a fourth capacitor C4 and a second inductor L2, and the first switch submodule includes a first switch S1 and a second switch S2;
所述第二电感L2的第一端与所述第一电感L1的第一端连接,所述第二电感L2的第二端与所述第一开关S1的第一端连接,所述第一开关S1的第二端与所述第三电感L3的第一端连接;The first end of the second inductor L2 is connected to the first end of the first inductor L1, the second end of the second inductor L2 is connected to the first end of the first switch S1, and the second end of the first switch S1 is connected to the first end of the third inductor L3;
所述第四电容C4的第一端与所述第二开关S2的第一端连接,所述第四电容C4的第二端与所述第三电容C3的第二端连接,所述第二开关S2的第二端与所述第三电容C3的第一端连接。A first end of the fourth capacitor C4 is connected to a first end of the second switch S2 , a second end of the fourth capacitor C4 is connected to a second end of the third capacitor C3 , and a second end of the second switch S2 is connected to a first end of the third capacitor C3 .
在一种可能的实施方式中,所述第二次边震荡子模块包括第五电感L5、第四晶体管M4、第六电容C6;In a possible implementation manner, the second side oscillator module includes a fifth inductor L5, a fourth transistor M4, and a sixth capacitor C6;
所述第五电感L5的第一端与所述第六电容C6的第一端连接,所述第五电感L5的第二端与所述第四晶体管M4的第一端连接,所述第四晶体管M4的第二端与所述第六电容C6的第二端连接。The first end of the fifth inductor L5 is connected to the first end of the sixth capacitor C6, the second end of the fifth inductor L5 is connected to the first end of the fourth transistor M4, and the second end of the fourth transistor M4 is connected to the second end of the sixth capacitor C6.
第一次边震荡子模块分别与第六电容C6的第一端、第二端连接。在一种可能的实施方式中,所述第一次边震荡子模块包括第四电感L4、第三晶体管M3,所述第二切换开关子模块包括第五晶体管M5;The first side oscillator submodule is connected to the first end and the second end of the sixth capacitor C6 respectively. In a possible implementation, the first side oscillator submodule includes a fourth inductor L4 and a third transistor M3, and the second switch submodule includes a fifth transistor M5;
所述第四电感L4的第一端与所述第五晶体管M5的第一端连接,所述第四电感L4的第二端与所述第六电容C6的第一端连接;A first end of the fourth inductor L4 is connected to a first end of the fifth transistor M5, and a second end of the fourth inductor L4 is connected to a first end of the sixth capacitor C6;
所述第五晶体管M5的第二端与所述第三晶体管M3的第一端连接,第三晶体管M3的第二端与所述第六电容C6的第二端连接。The second end of the fifth transistor M5 is connected to the first end of the third transistor M3 , and the second end of the third transistor M3 is connected to the second end of the sixth capacitor C6 .
可以理解的是,电容并没有极性之分,本申请实施例中电容的第一端与电容的第二端仅用于区别电容的两端。类似的,本申请实施例中电感的第一端与电感的第二端也仅用于区别电感的两端,开关的第一端与开关的第二端也仅用于区别开关的两端。晶体管的第一端可以为晶体管的源极,对应的则晶体管的第二端可以为晶体管的漏极;晶体管的第一端可以为晶体管的漏极,对应的则晶体管的第二端可以为晶体管的源极;具体可以根据实际情况进行设置,本申请中不做具体限定。It is understandable that capacitors do not have polarity distinctions, and the first end of the capacitor and the second end of the capacitor in the embodiment of the present application are only used to distinguish between the two ends of the capacitor. Similarly, the first end of the inductor and the second end of the inductor in the embodiment of the present application are also only used to distinguish between the two ends of the inductor, and the first end of the switch and the second end of the switch are also only used to distinguish between the two ends of the switch. The first end of the transistor can be the source of the transistor, and the corresponding second end of the transistor can be the drain of the transistor; the first end of the transistor can be the drain of the transistor, and the corresponding second end of the transistor can be the source of the transistor; it can be set according to actual conditions, and is not specifically limited in this application.
可以理解的是,第五晶体管为开关作用,在一些例子中,可以所述第五晶体管替换为第三开关S3。第三晶体管与第四晶体管主要用于防止电流倒灌,因此,在一些例子中,可以将所述第三晶体管替换为第一二极管D1,和/或将所述第四晶体管替换为第二二极管D2。第一二极管的阴极与第二二极管的阴极直接或间接的连接Vout(功率输出端),例如,图4所示,第一二极管的阴极与第二二极管的阴极连接Vout,例如,图5所示,第一二极管的阴极通过第五晶体管间接连接Vout。It can be understood that the fifth transistor acts as a switch, and in some examples, the fifth transistor can be replaced by a third switch S3. The third transistor and the fourth transistor are mainly used to prevent current backflow, so in some examples, the third transistor can be replaced by a first diode D1, and/or the fourth transistor can be replaced by a second diode D2. The cathode of the first diode is directly or indirectly connected to the cathode of the second diode Vout (power output end), for example, as shown in FIG4, the cathode of the first diode is connected to the cathode of the second diode Vout, for example, as shown in FIG5, the cathode of the first diode is indirectly connected to Vout through the fifth transistor.
在本申请实施例中,给出了DC-DC原边模块及DC-DC次边模块的具体电路结构,实现了谐振电路在PFM模式及PWM模式之间的切换,从而在充电增益或输出功率较小时,可以采用PWM模式进行充电,以降低负载较轻时充电系统的损耗。In the embodiment of the present application, the specific circuit structure of the DC-DC primary module and the DC-DC secondary module are given, and the switching of the resonant circuit between the PFM mode and the PWM mode is realized. Therefore, when the charging gain or output power is small, the PWM mode can be used for charging to reduce the loss of the charging system when the load is light.
在一种可能的实施方式中,参见图6,所述电路还包括:隔离模块03;In a possible implementation, referring to FIG6 , the circuit further includes: an isolation module 03;
DC-DC原边模块01还包括原边切换控制子模块014,DC-DC次边模块02包括次边切换控制子模块024;The DC-DC primary module 01 further includes a primary switching control submodule 014, and the DC-DC secondary module 02 includes a secondary switching control submodule 024;
所述隔离模块03分别与所述原边切换控制子模块014、所述次边切换控制子模块024连接;The isolation module 03 is connected to the primary side switching control submodule 014 and the secondary side switching control submodule 024 respectively;
所述原边切换控制子模块014,用于控制所述第一切换开关子模块013的断开及导通;The primary side switching control submodule 014 is used to control the disconnection and conduction of the first switching switch submodule 013;
所述次边切换控制子模块024,用于控制所述第二切换开关子模块023的断开及导通;The secondary side switching control submodule 024 is used to control the disconnection and conduction of the second switching switch submodule 023;
所述隔离模块03,用于实现所述原边切换控制子模块014与所述次边切换控制子模块024之间的信号隔离传递。The isolation module 03 is used to implement signal isolation and transmission between the primary-side switching control submodule 014 and the secondary-side switching control submodule 024 .
一个例子中,初始状态下谐振电路工作在PWM模式下,或者说谐振电路在上电后首先以PWM模式进行充电。In an example, the resonant circuit operates in a PWM mode in an initial state, or in other words, the resonant circuit is first charged in a PWM mode after being powered on.
为了实现PFM模式与PWM模式之间的切换,DC-DC原边模块与DC-DC次边模块之间需要通过信号进行通信,以实现DC-DC原边模块与DC-DC次边模块各自驱动模式的切换。为了实现DC-DC原边模块与DC-DC次边模块的电气隔离,可以利用隔离模块实现DC-DC原边模块与DC-DC次边模块之间的信号隔离传递。本申请实施例中的隔离模块可以通过采用变压器载波的方式实现信息隔离传递;或,原、次边通过电容隔离方案实现信息隔离传递;或,原、次边通过光耦实现信号隔离传递;或,原、次边通过磁隔离方案实现信号隔离传递等,均在本申请的保护范围内。In order to achieve the switching between PFM mode and PWM mode, the DC-DC primary module and the DC-DC secondary module need to communicate through signals to achieve the switching of the driving modes of the DC-DC primary module and the DC-DC secondary module. In order to achieve the electrical isolation of the DC-DC primary module and the DC-DC secondary module, an isolation module can be used to achieve the signal isolation and transmission between the DC-DC primary module and the DC-DC secondary module. The isolation module in the embodiment of the present application can achieve information isolation and transmission by adopting a transformer carrier; or, the primary and secondary sides achieve information isolation and transmission through a capacitive isolation scheme; or, the primary and secondary sides achieve signal isolation and transmission through an optical coupler; or, the primary and secondary sides achieve signal isolation and transmission through a magnetic isolation scheme, etc., all within the protection scope of the present application.
以下,对本申请实施例中PFM模式与PWM模式下谐振电路的工作过程进行具体说明,PFM模式下,谐振电路的示意图如图9所示,其关键点波形如图10所示。其中,Vg1为第一晶体管M1控制端(栅极)的电压,Vg2为第二晶体管M2控制端(栅极)的电压,Ip为原边谐振电流(第一电感L1的电流),VA为第一晶体管M1第二端的电压,ID1为第三晶体管的电流,ID2为第四晶体管的电流。The following is a detailed description of the working process of the resonant circuit in the PFM mode and the PWM mode in the embodiment of the present application. In the PFM mode, the schematic diagram of the resonant circuit is shown in FIG9 , and the key waveform thereof is shown in FIG10 . Among them, Vg1 is the voltage of the control terminal (gate) of the first transistor M1, Vg2 is the voltage of the control terminal (gate) of the second transistor M2, Ip is the primary resonant current (the current of the first inductor L1), VA is the voltage of the second terminal of the first transistor M1, ID1 is the current of the third transistor, and ID2 is the current of the fourth transistor.
PWM模式下,谐振电路的示意图如图11所示,其关键点波形如图12所示。其中,Vg1为第一晶体管M1控制端(栅极)的电压,Vg2为第二晶体管M2控制端(栅极)的电压,Ip为原边谐振电流(第一电感L1与第二电感L2的电流之和),Id为第四晶体管的电流。In PWM mode, the schematic diagram of the resonant circuit is shown in FIG11, and the key waveforms thereof are shown in FIG12. Among them, Vg1 is the voltage of the control terminal (gate) of the first transistor M1, Vg2 is the voltage of the control terminal (gate) of the second transistor M2, Ip is the primary resonant current (the sum of the currents of the first inductor L1 and the second inductor L2), and Id is the current of the fourth transistor.
可见,本申请实施例中的谐振电路能够实现以PFM模式及PWM模式进行充电。此外,PFM模式及PWM模式下,需要保证变压器变比N一致,从而在PFM模式和PWM模式切换时,确保输出电压的稳定。It can be seen that the resonant circuit in the embodiment of the present application can realize charging in PFM mode and PWM mode. In addition, in PFM mode and PWM mode, it is necessary to ensure that the transformer ratio N is consistent, so as to ensure the stability of the output voltage when switching between PFM mode and PWM mode.
其中,PWM模式下:Among them, in PWM mode:
D=N2×Vo/(N1×Vin)×(Lm+Lr)/Lm≈N2×Vo/(N1×Vin) (1)D = N2 × Vo / (N1 × Vin) × (Lm + Lr) / Lm ≈ N2 × Vo / (N1 × Vin) (1)
Vcr=N× Vo (2)Vcr=N×Vo (2)
(Vin- Vcr)×D=N× Vo×(1-D) (3)(Vin-Vcr)×D=N×Vo×(1-D) (3)
其中,D为占空比,N1为原边变压器匝数,N2为次边变压器匝数,Vo为次边输出电压,Vin为原边输入电压,Lm为原边变压器电感,Lr为原边谐振电感,N=N1/N2,Vcr为原边中晶体管并联电容的电压(例如,图11中C1的电压)。Where D is the duty cycle, N1 is the number of turns of the primary transformer, N2 is the number of turns of the secondary transformer, Vo is the secondary output voltage, Vin is the primary input voltage, Lm is the primary transformer inductance, Lr is the primary resonant inductance, N=N1/N2, and Vcr is the voltage of the parallel capacitor of the transistor in the primary side (for example, the voltage of C1 in Figure 11).
因为Lm远远大于Lr因此公式1可以变形为:Because Lm is much larger than Lr, formula 1 can be transformed into:
D=N2×Vo/(N1×Vin)×(Lm+Lr)/Lm≈N2×Vo/(N1×Vin) (4)D = N2 × Vo / (N1 × Vin) × (Lm + Lr) / Lm ≈ N2 × Vo / (N1 × Vin) (4)
由公式(2)-(4)可知:From formulas (2)-(4), we can know that:
Kv= Vo/ Vin=D/N (5)Kv= Vo/ Vin=D/N (5)
其中,Kv即为充电增益。Among them, Kv is the charging gain.
当Vin为380V,D=0.5,Vo=20V时,变压器变比N=380V/20V×0.5=9.5。When Vin is 380V, D=0.5, Vo=20V, the transformer ratio N=380V/20V×0.5=9.5.
PFM模式下,当LLC电路工作在谐振频率点,充电增益为1,LLC电路为半桥拓扑,变压器变比如下公式所示:In PFM mode, when the LLC circuit operates at the resonant frequency, the charging gain is 1, the LLC circuit is a half-bridge topology, and the transformer transformation ratio is shown in the following formula:
N=Vin/2/Vo (6)N=Vin/2/Vo (6)
当Vin=380V,Vo=20V时,变压器变比N=9.5。When Vin=380V, Vo=20V, the transformer ratio N=9.5.
可见,在PFM模式和PWM模式切换时,变压器变比N一致,输出电压稳定。It can be seen that when switching between PFM mode and PWM mode, the transformer ratio N is consistent and the output voltage is stable.
以下对PFM模式与PWM模式之间的切换方法进行说明,参见图7,本申请实施例提供了一种充电控制方法,所述方法包括:The following describes a method for switching between the PFM mode and the PWM mode. Referring to FIG. 7 , an embodiment of the present application provides a charging control method, the method comprising:
S101,获取当前的充电增益;S101, obtaining the current charging gain;
充电增益的获取方式可以参见现有技术,例如,可以计算原、次边电感线圈的比值从而得到充电增益;或者计算输入电压与输出电压的比值得到充电增益等。The method of obtaining the charging gain can refer to the prior art. For example, the ratio of the primary and secondary inductance coils can be calculated to obtain the charging gain; or the ratio of the input voltage to the output voltage can be calculated to obtain the charging gain, etc.
S102,在当前的充电模式为PFM模式的情况下,若当前的充电增益小于预设第二增益阈值,和/或当前的输出功率不大于预设功率阈值,则将充电模式切换为PWM模式。S102, when the current charging mode is the PFM mode, if the current charging gain is less than a preset second gain threshold, and/or the current output power is not greater than a preset power threshold, the charging mode is switched to the PWM mode.
第二增益阈值可以根据实验测量得到,例如,针对一种充电系统,预先实验测量不同增益下PFM模式与PWM模式的充电系统损耗,从而得到第二增益阈值。其中,第二增益阈值满足:在充电系统的充电增益小于第二增益阈值时,PFM模式下充电系统的损耗大于PWM模式下充电系统的损耗,而在充电系统的充电增益大于第二增益阈值时,PFM模式下充电系统的损耗小于PWM模式下充电系统的损耗。The second gain threshold can be obtained based on experimental measurements. For example, for a charging system, the charging system losses in PFM mode and PWM mode under different gains are measured in advance to obtain the second gain threshold. The second gain threshold satisfies: when the charging gain of the charging system is less than the second gain threshold, the loss of the charging system in PFM mode is greater than the loss of the charging system in PWM mode, and when the charging gain of the charging system is greater than the second gain threshold, the loss of the charging system in PFM mode is less than the loss of the charging system in PWM mode.
一个例子中,第二增益阈值可以设置为0.8,即当前的充电增益小于0.8时,调整硬件电路进入PWM模式,PWM模式下同样可以实现ZVS,获得相对较高充电效率。In an example, the second gain threshold can be set to 0.8, that is, when the current charging gain is less than 0.8, the hardware circuit is adjusted to enter the PWM mode. ZVS can also be achieved in the PWM mode to obtain relatively high charging efficiency.
预设功率阈值可以根据实验测量得到,例如,针对一种充电系统,预先实验测量不同功率下PFM模式与PWM模式的充电系统损耗,从而得到预设功率阈值。其中,预设功率阈值满足:在充电系统的功率小于预设功率阈值时,PFM模式下充电系统的损耗大于PWM模式下充电系统的损耗,而在充电系统的功率大于预设功率阈值时,PFM模式下充电系统的损耗小于PWM模式下充电系统的损耗。或者,预设功率阈值也可以为经验值,认为当充电系统的功率小于预设功率阈值时,充电效率较低,损耗较大,不能接受。The preset power threshold can be obtained based on experimental measurements. For example, for a charging system, the charging system losses in PFM mode and PWM mode under different powers are measured in advance to obtain the preset power threshold. The preset power threshold satisfies: when the power of the charging system is less than the preset power threshold, the loss of the charging system in PFM mode is greater than the loss of the charging system in PWM mode, and when the power of the charging system is greater than the preset power threshold, the loss of the charging system in PFM mode is less than the loss of the charging system in PWM mode. Alternatively, the preset power threshold can also be an empirical value, which is considered that when the power of the charging system is less than the preset power threshold, the charging efficiency is low and the loss is large, which is unacceptable.
输出功率的获取方式可以参见现有技术中的输出功率计算方法,一个例子中,可以根据输出侧(次边)的输出电压及输出电流计算得到输出功率,本申请中并不对输出功率的获取方式做具体限定。The method for obtaining the output power can refer to the output power calculation method in the prior art. In one example, the output power can be calculated based on the output voltage and output current of the output side (secondary side). The present application does not specifically limit the method for obtaining the output power.
一个例子中,初始状态下以PWM模式进行供电,或者说充电器在上电后首先以PWM模式进行充电。In an example, the power is supplied in PWM mode in the initial state, or the charger first charges in PWM mode after being powered on.
在本申请实施例中,在充电增益或输出功率较小时,将充电模式由PFM模式切换为PWM模式,而在低负载情况下PWM模式的充电损耗低于PFM模式的充电损耗,从而可以降低负载较轻时充电系统的损耗。In an embodiment of the present application, when the charging gain or output power is small, the charging mode is switched from PFM mode to PWM mode. Under low load conditions, the charging loss of the PWM mode is lower than the charging loss of the PFM mode, thereby reducing the loss of the charging system when the load is light.
在一种可能的实施方式中,所述方法还包括:In a possible implementation, the method further includes:
判断当前的充电增益是否大于预设第一增益阈值;其中,所述预设第二增益阈值小于所述预设第一增益阈值;Determine whether the current charging gain is greater than a preset first gain threshold; wherein the preset second gain threshold is less than the preset first gain threshold;
在当前的充电模式为PFM模式,且当前的充电增益大于预设第一增益阈值的情况下,则将充电模式切换为PWM模式。When the current charging mode is the PFM mode and the current charging gain is greater than a preset first gain threshold, the charging mode is switched to the PWM mode.
当充电系统增益大于LLC电路的最大增益时,PFM模式下LLC电路会进入容性区,无法正常工作,此种情况下,可以采用PFM模式进行充电,以扩展可充电的增益区间。预设第一增益阈值可以根据实验测量得到,可以根据PFM模式下LLC电路进入容性区的增益确定。例如,针对每一型号的LLC电路,在PFM模式下,当增充电益为X时,LLC电路进入容性区,则预设第一增益阈值可以为X或略小于X。When the charging system gain is greater than the maximum gain of the LLC circuit, the LLC circuit in PFM mode will enter the capacitive region and cannot work normally. In this case, the PFM mode can be used for charging to expand the chargeable gain range. The preset first gain threshold can be obtained based on experimental measurements and can be determined based on the gain of the LLC circuit entering the capacitive region in PFM mode. For example, for each model of LLC circuit, in PFM mode, when the charging gain is X, the LLC circuit enters the capacitive region, and the preset first gain threshold can be X or slightly less than X.
在一种可能的实施方式中,所述方法还包括:In a possible implementation, the method further includes:
在当前的充电增益不大于预设第一增益阈值的情况下,判断当前的充电增益是否小于预设第二增益阈值;When the current charging gain is not greater than the preset first gain threshold, determining whether the current charging gain is less than the preset second gain threshold;
在当前的充电模式为PFM模式的情况下,若当前的充电增益不小于预设第二增益阈值,且当前的输出功率大于预设功率阈值,则维持充电模式为PFM模式。When the current charging mode is the PFM mode, if the current charging gain is not less than the preset second gain threshold and the current output power is greater than the preset power threshold, the charging mode is maintained as the PFM mode.
在本申请实施例中,在当前的充电增益不小于预设第二增益阈值,且当前的输出功率大于预设功率阈值,维持充电模式为PFM模式,可以维持较高的充电功率。In the embodiment of the present application, when the current charging gain is not less than the preset second gain threshold and the current output power is greater than the preset power threshold, the charging mode is maintained in the PFM mode to maintain a higher charging power.
在一种可能的实施方式中,所述方法还包括:In a possible implementation, the method further includes:
在当前的充电模式为PWM模式,且当前的充电增益不大于预设第一增益阈值的情况下,判断当前的充电增益是否小于预设第二增益阈值,其中,所述预设第二增益阈值小于所述预设第一增益阈值;When the current charging mode is the PWM mode and the current charging gain is not greater than a preset first gain threshold, determining whether the current charging gain is less than a preset second gain threshold, wherein the preset second gain threshold is less than the preset first gain threshold;
在当前的充电增益小于预设第二增益阈值的情况下,维持充电模式为PWM模式;在当前的充电增益不小于预设第二增益阈值的情况下,获取当前的输出功率,并判断当前的输出功率是否大于预设功率阈值;When the current charging gain is less than the preset second gain threshold, the charging mode is maintained in the PWM mode; when the current charging gain is not less than the preset second gain threshold, the current output power is obtained, and it is determined whether the current output power is greater than the preset power threshold;
若当前的输出功率大于预设功率阈值,则将充电模式切换为PFM模式;If the current output power is greater than the preset power threshold, the charging mode is switched to PFM mode;
若当前的输出功率不大于预设功率阈值,则维持充电模式为PWM模式。If the current output power is not greater than the preset power threshold, the charging mode is maintained in the PWM mode.
在本申请实施例中,给出了由PWM模式切换为PFM模式的情况,在充电增益不小于预设第二增益阈值、且输出功率大于预设功率阈值的情况下,将充电模式由PWM模式切换为PFM模式,从而可以提高充电效率,减少损耗。In an embodiment of the present application, a case of switching from PWM mode to PFM mode is given. When the charging gain is not less than a preset second gain threshold and the output power is greater than a preset power threshold, the charging mode is switched from PWM mode to PFM mode, thereby improving charging efficiency and reducing losses.
在一种可能的实施方式中,在所述获取当前的充电增益的步骤之后,所述方法还包括:In a possible implementation manner, after the step of obtaining the current charging gain, the method further includes:
获取当前周期谐振电路的输入电压及输出电压;Obtain the input voltage and output voltage of the resonant circuit in the current cycle;
与上一周期相比,在当前周期的输入电压及输出电压中的至少一项发生变化时,执行步骤:获取当前的充电增益;否则,等待下一检测周期。When at least one of the input voltage and the output voltage in the current cycle changes compared to the previous cycle, the step of obtaining the current charging gain is performed; otherwise, waiting for the next detection cycle is performed.
可以按照预设的检测周期,周期性的获取实时的充电增益。首先获取当前周期中谐振电路原边的输入电压及次边的输出电压;与上一周期相比,若本周期的输入电压及输出电压中的至少一项发生变化时,则执行步骤S101,否则跳过当前周期,等待下一检测周期再次进行判断。若输入电压及输出电压均为发生变化,则说明充电增益也未发生变化,即当前周期的充电情况与上一周期的充电情况相比并未发生改变,或者说变化很小。因此当前周期内并不需要调整充电模式,丢弃当前的充电增益,等待下一检测周期。The real-time charging gain can be obtained periodically according to the preset detection cycle. First, the input voltage of the primary side of the resonant circuit and the output voltage of the secondary side in the current cycle are obtained; compared with the previous cycle, if at least one of the input voltage and output voltage of this cycle changes, then execute step S101, otherwise skip the current cycle and wait for the next detection cycle to make another judgment. If both the input voltage and the output voltage have changed, it means that the charging gain has not changed, that is, the charging situation of the current cycle has not changed compared with the charging situation of the previous cycle, or the change is very small. Therefore, there is no need to adjust the charging mode in the current cycle, discard the current charging gain, and wait for the next detection cycle.
在本申请实施例中,在当前检测周期的充电增益不变时,则说明无需进行充电模式的调整,因此本周期无需进行后续的判断过程,丢弃当前的充电增益,等待下一检测周期重新获取;从而可以减少没有必要的判断过程,节约计算资源。In an embodiment of the present application, when the charging gain of the current detection cycle remains unchanged, it means that there is no need to adjust the charging mode. Therefore, there is no need to perform a subsequent judgment process in this cycle, and the current charging gain is discarded and waits for the next detection cycle to be re-acquired; thereby reducing unnecessary judgment processes and saving computing resources.
参见图8,图8为本申请实施例的充电控制方法的另一种流程示意图,包括:Referring to FIG. 8 , FIG. 8 is another flow chart of a charging control method according to an embodiment of the present application, including:
S201,获取当前的充电增益。S201, obtaining the current charging gain.
计算当前系统的等效充电整理,计算充电增益的具体过程可以参见现有技术,例如,可以根据原边的输入电压、次边的输出电压、变压器变比等参数计算充电增益。一个例子中,首先获取当前周期的原边的输入电压及次边的输出电压;当与上一周期相比,本周期的输入电压及输出电压中的至少一项发生变化时,执行S201,否则跳过当前周期。若输入电压及输出电压均为发生变化,则说明充电增益也未发生变化,因此本周期无线调整充电模式。Calculate the equivalent charging arrangement of the current system, and the specific process of calculating the charging gain can refer to the prior art. For example, the charging gain can be calculated based on the input voltage of the primary side, the output voltage of the secondary side, the transformer ratio and other parameters. In one example, first obtain the input voltage of the primary side and the output voltage of the secondary side of the current cycle; when at least one of the input voltage and the output voltage of the current cycle changes compared with the previous cycle, execute S201, otherwise skip the current cycle. If both the input voltage and the output voltage have changed, it means that the charging gain has not changed, so the charging mode is adjusted wirelessly in this cycle.
S202,获取当前的充电模式。S202, obtaining the current charging mode.
在当前的充电模式为PWM模式的情况下,执行步骤S203;在当前的充电模式为PFM模式的情况下,执行步骤S207。When the current charging mode is the PWM mode, step S203 is executed; when the current charging mode is the PFM mode, step S207 is executed.
S203,判断当前的充电增益是否大于预设第一增益阈值。S203: Determine whether the current charging gain is greater than a preset first gain threshold.
若当前的充电增益大于预设第一增益阈值,则执行步骤S204;若当前的充电增益不大于预设第一增益阈值,则执行步骤S205。If the current charging gain is greater than the preset first gain threshold, step S204 is executed; if the current charging gain is not greater than the preset first gain threshold, step S205 is executed.
S204,维持充电模式为PWM模式。S204, maintaining the charging mode as the PWM mode.
S205,判断当前的充电增益是否大于预设第二增益阈值以及当前的输出功率是否大于预设功率阈值。S205, determining whether the current charging gain is greater than a preset second gain threshold and whether the current output power is greater than a preset power threshold.
若当前的充电增益大于预设第二增益阈值,且当前的输出功率大于预设功率阈值,则执行步骤S206,否则执行步骤S204。If the current charging gain is greater than the preset second gain threshold, and the current output power is greater than the preset power threshold, then step S206 is executed; otherwise, step S204 is executed.
S206,将充电模式切换为PFM模式。S206, switching the charging mode to the PFM mode.
硬件电路退出PWM模式,进入PFM模式进行充电。The hardware circuit exits the PWM mode and enters the PFM mode for charging.
S207,判断当前的充电增益是否大于预设第一增益阈值。S207: Determine whether the current charging gain is greater than a preset first gain threshold.
若当前的充电增益大于预设第一增益阈值,则执行步骤S208;若当前的充电增益不大于预设第一增益阈值,则执行步骤S209。If the current charging gain is greater than the preset first gain threshold, step S208 is executed; if the current charging gain is not greater than the preset first gain threshold, step S209 is executed.
S208,将充电模式切换为PWM模式。S208, switching the charging mode to the PWM mode.
退出PFM模式,进入PWM模式进行充电。Exit PFM mode and enter PWM mode for charging.
S209,判断当前的充电增益是否大于预设第二增益阈值以及当前的输出功率是否大于预设功率阈值。S209, determining whether the current charging gain is greater than a preset second gain threshold and whether the current output power is greater than a preset power threshold.
若当前的充电增益大于预设第二增益阈值,且当前的输出功率大于预设功率阈值,则执行步骤S210,否则执行步骤S208。If the current charging gain is greater than the preset second gain threshold, and the current output power is greater than the preset power threshold, then step S210 is executed; otherwise, step S208 is executed.
S210,维持充电模式为PFM模式。S210, maintaining the charging mode as the PFM mode.
在本申请实施例中,在充电增益或输出功率较小时,将充电模式由PFM模式切换为PWM模式,而在低负载情况下PWM模式的充电损耗低于PFM模式的充电损耗,从而可以降低负载较轻时充电系统的损耗。此外,当充电系统增益大于LLC电路的最大增益时,PFM模式下LLC电路会进入容性区,无法正常工作,此种情况下,可以采用PFM模式进行充电,以扩展可充电的增益区间。In the embodiment of the present application, when the charging gain or output power is small, the charging mode is switched from the PFM mode to the PWM mode, and the charging loss of the PWM mode is lower than the charging loss of the PFM mode under low load conditions, thereby reducing the loss of the charging system when the load is light. In addition, when the charging system gain is greater than the maximum gain of the LLC circuit, the LLC circuit in the PFM mode will enter the capacitive region and cannot work normally. In this case, the PFM mode can be used for charging to expand the chargeable gain range.
为了保证充电模式转换前后输出电压的稳定,无论是切换为PFM模式,还是切换为PWM模式,均需要选择合适的切换时间。在一种可能的实施方式中,可以选择晶体管关闭时刻作为切换为PFM模式或切换为PWM模式的时间点,此处的晶体管关闭时刻是指原边变压器对应的晶体管(对应图3中的M2)的关闭时刻。In order to ensure the stability of the output voltage before and after the charging mode conversion, whether switching to the PFM mode or switching to the PWM mode, it is necessary to select a suitable switching time. In a possible implementation, the transistor closing time can be selected as the time point for switching to the PFM mode or switching to the PWM mode. The transistor closing time here refers to the closing time of the transistor corresponding to the primary transformer (corresponding to M2 in Figure 3).
本申请实施例还提供了一种充电器,包括本申请中任一所述的谐振电路及充电控制芯片;所述充电控制芯片用于在运行时,通过本申请中任一所述的充电控制方法控制所述谐振电路进行充电模式的切换。An embodiment of the present application also provides a charger, comprising a resonant circuit and a charging control chip as described in any one of the present application; the charging control chip is used to control the resonant circuit to switch the charging mode during operation through any one of the charging control methods described in the present application.
在本申请实施例提供的充电器中,充电控制芯片执行本申请实施例中的充电控制方法,并通过本申请实施例中的谐振电路,从而实现PWM模式与PFM模式的切换。In the charger provided in the embodiment of the present application, the charging control chip executes the charging control method in the embodiment of the present application, and realizes the switching between the PWM mode and the PFM mode through the resonant circuit in the embodiment of the present application.
本申请实施例中的谐振电路、充电控制方法及充电器,能够适用于输出电压为0V~1000V连续调压场景,功率范围条件范围可以为100W~1000W,并且能够适用于PD、UFCS、QC、SCP(Super Charge Protocol,超级充电协议)等快充协议要求。The resonant circuit, charging control method and charger in the embodiments of the present application can be applicable to scenarios where the output voltage is continuously adjusted from 0V to 1000V, the power range condition can range from 100W to 1000W, and can be applicable to fast charging protocol requirements such as PD, UFCS, QC, and SCP (Super Charge Protocol).
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。It should be noted that, in this article, relational terms such as first and second, etc. are only used to distinguish one entity or operation from another entity or operation, and do not necessarily require or imply any such actual relationship or order between these entities or operations. Moreover, the terms "include", "comprise" or any other variants thereof are intended to cover non-exclusive inclusion, so that a process, method, article or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, article or device. In the absence of further restrictions, the elements defined by the sentence "comprise a ..." do not exclude the presence of other identical elements in the process, method, article or device including the elements.
本说明书中的各个实施例均采用相关的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似的部分互相参见即可。Each embodiment in this specification is described in a related manner. Each embodiment focuses on the differences from other embodiments, and the same or similar parts between the embodiments can be referenced to each other.
以上所述仅为本申请的较佳实施例,并非用于限定本申请的保护范围。凡在本申请的精神和原则之内所作的任何修改、等同替换、改进等,均包含在本申请的保护范围内。The above description is only a preferred embodiment of the present application and is not intended to limit the protection scope of the present application. Any modification, equivalent replacement, improvement, etc. made within the spirit and principle of the present application are included in the protection scope of the present application.
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410114949.8A CN117767765B (en) | 2024-01-29 | 2024-01-29 | Resonant circuit, charging control method and charger |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410114949.8A CN117767765B (en) | 2024-01-29 | 2024-01-29 | Resonant circuit, charging control method and charger |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117767765A CN117767765A (en) | 2024-03-26 |
CN117767765B true CN117767765B (en) | 2024-06-21 |
Family
ID=90320202
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410114949.8A Active CN117767765B (en) | 2024-01-29 | 2024-01-29 | Resonant circuit, charging control method and charger |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117767765B (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207926445U (en) * | 2018-02-05 | 2018-09-28 | 池州学院 | A LLC Resonant Converter Combining PWM and PFM Control |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7821239B2 (en) * | 2004-02-03 | 2010-10-26 | Murata Manufacturing Co., Ltd. | Switching power supply |
US7382114B2 (en) * | 2005-06-07 | 2008-06-03 | Intersil Americas Inc. | PFM-PWM DC-DC converter providing DC offset correction to PWM error amplifier and equalizing regulated voltage conditions when transitioning between PFM and PWM modes |
JP4232845B1 (en) * | 2007-10-19 | 2009-03-04 | サンケン電気株式会社 | DC converter |
JP5691137B2 (en) * | 2008-05-14 | 2015-04-01 | 富士電機株式会社 | Switching power supply |
CN112087147B (en) * | 2020-09-28 | 2022-05-20 | 广州金升阳科技有限公司 | Converter wide gain control method and application thereof |
CN116207972A (en) * | 2023-01-31 | 2023-06-02 | 广州金升阳科技有限公司 | Control method of resonant converter |
-
2024
- 2024-01-29 CN CN202410114949.8A patent/CN117767765B/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN207926445U (en) * | 2018-02-05 | 2018-09-28 | 池州学院 | A LLC Resonant Converter Combining PWM and PFM Control |
Also Published As
Publication number | Publication date |
---|---|
CN117767765A (en) | 2024-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110932557B (en) | High-gain quasi-resonant DC-DC converter based on voltage doubling rectifying circuit | |
TWI683522B (en) | High frequency time-division multi-phase power converter | |
CN108696140A (en) | Full-bridge resonance DC-DC converter with wide output voltage range and modulator approach | |
CN103887976B (en) | The imported resonant type soft-switch DC/DC converters of current source | |
WO2012100740A1 (en) | Quasi resonant push-pull converter and control method thereof | |
CN111030462B (en) | Active clamp flyback converter and control method | |
TW202247587A (en) | Converter for a wide range of output voltage and control method thereof | |
CN108418434A (en) | High-frequency isolated soft-switching DC-DC converter and modulation method for high voltage and high power | |
CN106961220A (en) | A kind of efficient LLC resonant converter in parallel with equal properties of flow | |
CN113890375B (en) | Bi-polar output bi-directional LLC resonant converter topology | |
CN110165895A (en) | A kind of wide gain FB-HB LLC resonant converter circuit structure of realization and control method | |
CN114337344A (en) | Control method based on self-adaptive hybrid rectification multi-switch resonant LLC converter | |
CN115864855A (en) | Control method for wide voltage range CLLLC resonant converter of energy storage system | |
CN115955119A (en) | A Novel Modular Resonant DC Converter Topology | |
CN104901550A (en) | Bidirectional full-bridge DC/DC converter based on variable inductor network | |
TWI797813B (en) | Converter for a wide range of output voltage and control method thereof | |
CN104467439A (en) | LLC soft switching method for improving switching power supply efficiency | |
CN117767765B (en) | Resonant circuit, charging control method and charger | |
WO2024179076A1 (en) | Control method and apparatus, and switch power source | |
CN115580107B (en) | Novel soft switch impedance network | |
CN114665720A (en) | A bidirectional series resonant converter and its improved intermittent sinusoidal modulation method | |
CN210444179U (en) | Buck current feed push-pull topology series resonance circuit | |
CN108695995B (en) | High-efficiency resonant wireless power transmission system | |
CN114649856B (en) | High-efficiency charging circuit | |
CN116937993B (en) | ZVS partial power converter with bipolar voltage regulation function and application method thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CP03 | Change of name, title or address |
Address after: Unit 3401, unit a, building 6, Shenye Zhongcheng, No. 8089, Hongli West Road, Donghai community, Xiangmihu street, Futian District, Shenzhen, Guangdong 518040 Patentee after: Honor Terminal Co.,Ltd. Country or region after: China Address before: 3401, unit a, building 6, Shenye Zhongcheng, No. 8089, Hongli West Road, Donghai community, Xiangmihu street, Futian District, Shenzhen, Guangdong Patentee before: Honor Device Co.,Ltd. Country or region before: China |