CN117690163A - A method and system for 3D human skeleton key point data enhancement - Google Patents
A method and system for 3D human skeleton key point data enhancement Download PDFInfo
- Publication number
- CN117690163A CN117690163A CN202311739082.7A CN202311739082A CN117690163A CN 117690163 A CN117690163 A CN 117690163A CN 202311739082 A CN202311739082 A CN 202311739082A CN 117690163 A CN117690163 A CN 117690163A
- Authority
- CN
- China
- Prior art keywords
- key point
- missing
- bone
- point data
- data
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000000034 method Methods 0.000 title claims abstract description 31
- 210000000988 bone and bone Anatomy 0.000 claims abstract description 189
- 238000009499 grossing Methods 0.000 claims abstract description 17
- 238000012216 screening Methods 0.000 claims abstract description 10
- 230000002708 enhancing effect Effects 0.000 claims abstract description 9
- 238000004458 analytical method Methods 0.000 claims abstract description 4
- 238000010276 construction Methods 0.000 claims abstract 2
- 230000002159 abnormal effect Effects 0.000 claims description 19
- 238000005457 optimization Methods 0.000 claims description 9
- 210000003557 bones of lower extremity Anatomy 0.000 claims description 8
- 230000014509 gene expression Effects 0.000 claims description 8
- 238000012545 processing Methods 0.000 claims description 8
- 238000013507 mapping Methods 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 4
- 238000009826 distribution Methods 0.000 abstract description 5
- 238000002372 labelling Methods 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 8
- 238000013434 data augmentation Methods 0.000 description 3
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000037237 body shape Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 230000037396 body weight Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/10—Human or animal bodies, e.g. vehicle occupants or pedestrians; Body parts, e.g. hands
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/20—Image preprocessing
- G06V10/34—Smoothing or thinning of the pattern; Morphological operations; Skeletonisation
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/74—Image or video pattern matching; Proximity measures in feature spaces
- G06V10/75—Organisation of the matching processes, e.g. simultaneous or sequential comparisons of image or video features; Coarse-fine approaches, e.g. multi-scale approaches; using context analysis; Selection of dictionaries
- G06V10/757—Matching configurations of points or features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/766—Arrangements for image or video recognition or understanding using pattern recognition or machine learning using regression, e.g. by projecting features on hyperplanes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V10/00—Arrangements for image or video recognition or understanding
- G06V10/70—Arrangements for image or video recognition or understanding using pattern recognition or machine learning
- G06V10/77—Processing image or video features in feature spaces; using data integration or data reduction, e.g. principal component analysis [PCA] or independent component analysis [ICA] or self-organising maps [SOM]; Blind source separation
- G06V10/80—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level
- G06V10/806—Fusion, i.e. combining data from various sources at the sensor level, preprocessing level, feature extraction level or classification level of extracted features
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V20/00—Scenes; Scene-specific elements
- G06V20/40—Scenes; Scene-specific elements in video content
- G06V20/41—Higher-level, semantic clustering, classification or understanding of video scenes, e.g. detection, labelling or Markovian modelling of sport events or news items
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06V—IMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
- G06V40/00—Recognition of biometric, human-related or animal-related patterns in image or video data
- G06V40/20—Movements or behaviour, e.g. gesture recognition
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Multimedia (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computing Systems (AREA)
- Medical Informatics (AREA)
- Evolutionary Computation (AREA)
- Databases & Information Systems (AREA)
- Artificial Intelligence (AREA)
- Human Computer Interaction (AREA)
- Computational Linguistics (AREA)
- Psychiatry (AREA)
- Social Psychology (AREA)
- Image Analysis (AREA)
Abstract
Description
技术领域Technical field
本发明涉及计算机视觉技术领域,尤其涉及一种3D人体骨骼关键点数据增强方法及系统。The invention relates to the field of computer vision technology, and in particular to a 3D human skeleton key point data enhancement method and system.
背景技术Background technique
人体骨骼关键点数据是一些计算机视觉任务的必要基础,如动作分类、行为识别、以及人体重识别等等。目前,人体骨骼关键点数据主要是从完整人体图像或视频序列中检测获取的(例如目前研究较为广泛的NTU-RGB+D和NTU-RGB+D 120数据集)。现有的计算机视觉算法使用完整的人体骨骼关键点数据作为输入,不能够很好地适应缺失肢体的人体骨骼关键点数据;对于缺失身体肢体的图像,现有的人体骨骼关键点检测算法无法对缺失肢体部位的关键点进行有效的补全和数据增强。Human skeleton key point data is the necessary basis for some computer vision tasks, such as action classification, behavior recognition, and human body weight recognition, etc. At present, human skeleton key point data is mainly detected and obtained from complete human body images or video sequences (such as the NTU-RGB+D and NTU-RGB+D 120 data sets that are currently widely studied). Existing computer vision algorithms use complete human skeleton key point data as input and cannot adapt well to human skeleton key point data with missing limbs; for images with missing body limbs, existing human skeleton key point detection algorithms cannot Effective completion and data enhancement of key points of missing limb parts.
发明内容Contents of the invention
为了解决上述技术问题,本发明的目标是提供一种3D人体骨骼关键点数据增强方法及系统,能够保持缺失肢体人体关键点数据和完整人体骨骼关键点数据特征分布的一致性,增强算法的鲁棒性和改善算法的泛化能力。In order to solve the above technical problems, the goal of the present invention is to provide a 3D human skeleton key point data enhancement method and system, which can maintain the consistency of the feature distribution of missing limb human body key point data and complete human skeleton key point data, and enhance the robustness of the algorithm. stickiness and improve the generalization ability of the algorithm.
本发明所采用的第一技术方案是:一种3D人体骨骼关键点数据增强方法,包括以下步骤:The first technical solution adopted by the present invention is: a 3D human skeleton key point data enhancement method, which includes the following steps:
获取缺失肢体视频帧图像中人物的2D骨骼关键点数据;Obtain the 2D bone key point data of the character in the missing limb video frame image;
基于缺失肢体视频帧图像的2D骨骼关键点数据和完整的2D骨骼关键点数据确定缺失肢体边缘连接的2D骨骼关键点索引和缺失骨骼关键点的数量;Determine the 2D bone key point index of the missing limb edge connection and the number of missing bone key points based on the 2D bone key point data of the missing limb video frame image and the complete 2D bone key point data;
基于所述缺失骨骼关键点的数量、所述缺失肢体边缘连接的2D骨骼关键点索引和视频行为类别构建缺失肢体的姿势先验约束和数据增强算法;Construct posture prior constraints and data enhancement algorithms for missing limbs based on the number of missing bone key points, the 2D bone key point index of edge connections of the missing limb, and video behavior categories;
将缺失肢体视频帧图像的2D骨骼关键点数据作为输入,通过缺失肢体的姿势先验约束和数据增强算法对SMPLify-X模型进行迭代,得到最优3D骨架SMPL-X模型。Taking the 2D skeleton key point data of the missing limb video frame image as input, the SMPLify-X model is iterated through the posture prior constraints of the missing limb and the data enhancement algorithm to obtain the optimal 3D skeleton SMPL-X model.
进一步,还包括获取最优3D骨架SMPL-X模型的3D骨骼关键点数据,并生成对应的数据标注文件。Further, it also includes obtaining the 3D skeleton key point data of the optimal 3D skeleton SMPL-X model and generating the corresponding data annotation file.
进一步,所述基于缺失肢体视频帧图像的2D骨骼关键点数据和完整的2D骨骼关键点数据确定缺失肢体边缘连接的2D骨骼关键点索引和缺失骨骼关键点的数量这一步骤之后,还包括:对缺失肢体视频帧图像的2D骨骼关键点数据进行帧筛选和平滑处理,得到平滑后的2D骨骼关键点数据。Further, after the step of determining the 2D bone key point index of the missing limb edge connection and the number of missing bone key points based on the 2D bone key point data of the missing limb video frame image and the complete 2D bone key point data, it also includes: Perform frame screening and smoothing processing on the 2D skeletal key point data of the missing limb video frame image to obtain smoothed 2D skeletal key point data.
进一步,所述对缺失肢体视频帧图像的2D骨骼关键点数据进行帧筛选和平滑处理,得到平滑后的2D骨骼关键点数据这一步骤,其具体包括:Further, the step of performing frame screening and smoothing processing on the 2D skeletal key point data of the missing limb video frame image to obtain the smoothed 2D skeletal key point data specifically includes:
对缺失肢体视频所有帧中相同的2D骨骼关键点进行多项式回归,并计算2D骨骼关键点回归值与2D骨骼关键点初始值的偏差;Perform polynomial regression on the same 2D bone key points in all frames of the missing limb video, and calculate the deviation between the regression value of the 2D bone key point and the initial value of the 2D bone key point;
基于偏差与最小阈值、最大阈值的对比结果确定异常骨骼点,并对2D骨骼关键点的值进行更新,得到第一2D骨骼关键点数据;Determine abnormal bone points based on the comparison results between the deviation and the minimum threshold and maximum threshold, and update the values of the 2D bone key points to obtain the first 2D bone key point data;
根据同一帧图像的异常骨骼点数量和最大异常骨骼点数量的对比结果对第一2D骨骼关键点数据进行筛选,得到平滑后的2D骨骼关键点数据。The first 2D bone key point data is filtered based on the comparison result between the number of abnormal bone points and the maximum number of abnormal bone points in the same frame image to obtain smoothed 2D bone key point data.
通过该优选步骤,筛除了部分异常骨骼点数据,使得平滑后的2D骨骼关键点数据能够保持缺失肢体人体关键点的完整特征。Through this optimization step, some abnormal bone point data are filtered out, so that the smoothed 2D bone key point data can maintain the complete characteristics of the missing limb human body key points.
进一步,所述基于所述缺失骨骼关键点的数量、所述缺失肢体边缘连接的2D骨骼关键点索引和视频行为类别构建缺失肢体的姿势先验约束和数据增强算法这一步骤,其具体包括:Further, the step of constructing the posture prior constraints and data enhancement algorithm of the missing limb based on the number of the missing limb key points, the 2D skeletal key point index of the missing limb edge connection and the video behavior category specifically includes:
获取完整人体姿态参数,并根据缺失肢体边缘连接的2D骨骼关键点索引进行人体姿态参数映射,得到缺失骨骼关键点对应的人体姿态参数;Obtain the complete human posture parameters, and perform human posture parameter mapping based on the 2D bone key point index connected to the missing limb edge, and obtain the human posture parameters corresponding to the missing bone key points;
基于完整人体姿态参数和缺失骨骼关键点对应的人体姿态参数计算缺失肢体视频帧图像的2D骨骼关键点数据对应的人体姿态参数;Calculate the human posture parameters corresponding to the 2D bone key point data of the missing limb video frame image based on the complete human posture parameters and the human posture parameters corresponding to the missing bone key points;
根据视频行为类别、所述缺失骨骼关键点的数量和所述缺失肢体边缘连接的2D骨骼关键点索引对缺失骨骼关键点对应的人体姿态参数进行约束,得到缺失骨骼关键点的姿态先验约束参数;Constrain the human posture parameters corresponding to the missing bone key points according to the video behavior category, the number of the missing bone key points and the 2D bone key point index connected to the missing limb edge, and obtain the posture prior constraint parameters of the missing bone key points. ;
基于缺失骨骼关键点的姿态先验约束参数构建缺失肢体先验知识的约束项;Constraint terms for missing limb prior knowledge are constructed based on the posture prior constraint parameters of missing bone key points;
基于完整人体姿态参数构建全身姿态的约束项;Construct the constraints of the whole body posture based on the complete human posture parameters;
基于缺失肢体视频帧图像的2D骨骼关键点数据对应的人体姿态参数构建身体部位姿态约束项;Construct body part posture constraints based on the human posture parameters corresponding to the 2D skeletal key point data of the missing limb video frame image;
结合缺失肢体先验知识的约束项、全身姿态的约束项和身体部位姿态约束项,得到缺失肢体的姿势先验约束和数据增强算法。Combining the constraints of the missing limb's prior knowledge, the constraints of the whole body posture and the posture constraints of the body parts, the posture prior constraints of the missing limb and the data enhancement algorithm are obtained.
通过该优选步骤,对缺失肢体的人体骨骼点进行姿势先验约束补全和数据增强,保持缺失肢体人体关键点数据和完整人体骨骼关键点数据特征分布的一致性,能够很好地增强基于人体骨骼关键点计算机视觉算法的鲁棒性,改善其算法的泛化性能。Through this optimization step, pose prior constraint completion and data enhancement are performed on human skeleton points with missing limbs, and the consistency of feature distribution of human key point data of missing limbs and complete human skeleton key point data is maintained, which can well enhance human body-based key point data. The robustness of the computer vision algorithm for bone key points improves the generalization performance of its algorithm.
进一步,所述缺失肢体的姿势先验约束和数据增强算法,其表达式如下:Furthermore, the expression of the posture prior constraint and data enhancement algorithm of the missing limb is as follows:
θ‘m,t=Z(θm,t,Nm,t,Ie,t,C)θ' m, t = Z (θ m, t , N m, t , I e, t , C)
θd,t=θb,t-θm,t θ d,t =θ b,t -θ m,t
其中,E(βt,θb,t,θd,t,θ′m,t,Kt,J′est,t)表示基于缺失肢体的姿势先验约束和数据增强算法的目标优化函数,表示全身姿态的约束项,/>表示身体部位姿态约束项,/>表示缺失肢体先验知识的约束项,/>表示全身姿态的约束项的权重值,/>表示身体部位姿态约束项的权重值,/>表示缺失肢体先验知识的约束项的权重值,βt表示第t帧视频帧图像对应的体型参数,θb,t表示第t帧视频帧图像对应的完整人体姿态参数,Kt表示第t帧视频帧图像对应的相机参数,J′est,t表示平滑后的2D骨骼关键点数据,θd,t表示缺失肢体视频帧图像的2D骨骼关键点数据对应的人体姿态参数,θ’m,t表示第t帧视频帧图像对应的缺失骨骼关键点的姿态先验约束参数,θm,t表示缺失骨骼关键点对应的人体姿态参数,Nm,t表示第t帧时缺失肢体总的骨骼关键点数量,Ie,t表示第t帧所有缺失肢体骨骼的的边缘连接骨骼点的索引值的集合,C表示视频序列的行为类别。Among them, E(β t , θ b,t , θ d,t , θ′ m,t , K t , J′ est,t ) represents the objective optimization function of the posture prior constraint and data augmentation algorithm based on the missing limb, Constraint items representing the whole body posture,/> Represents body part posture constraints,/> Constraints representing missing prior knowledge of limbs,/> The weight value of the constraint item representing the whole body posture,/> Represents the weight value of the body part posture constraint item,/> Represents the weight value of the constraint item with missing limb prior knowledge, β t represents the body shape parameter corresponding to the t-th video frame image, θ b, t represents the complete human posture parameter corresponding to the t-th video frame image, K t represents the t-th video frame image The camera parameters corresponding to the frame video frame image, J′ est, t represents the smoothed 2D skeleton key point data, θ d, t represents the human posture parameter corresponding to the 2D skeleton key point data of the missing limb video frame image, θ' m, t represents the posture prior constraint parameter of the missing bone key point corresponding to the t-th video frame image, θ m, t represents the human posture parameter corresponding to the missing bone key point, N m, t represents the total bones of the missing limb in the t-th frame The number of key points, I e,t represents the set of index values of the edge connection bone points of all missing limb bones in the tth frame, and C represents the behavior category of the video sequence.
进一步,将缺失肢体视频帧图像的2D骨骼关键点数据作为输入,通过缺失肢体的姿势先验约束和数据增强算法对SMPLify-X模型进行迭代,得到最优3D骨架SMPL-X模型这一步骤,其具体包括:Furthermore, the 2D skeleton key point data of the missing limb video frame image is used as input, and the SMPLify-X model is iterated through the posture prior constraints of the missing limb and the data enhancement algorithm to obtain the optimal 3D skeleton SMPL-X model. It specifically includes:
基于SMPLify-X模型和缺失肢体的姿势先验约束和数据增强算法对缺失肢体视频帧图像的2D骨骼关键点数据进行3D人体姿态估计,得到2D骨骼关键点数据的SMPL-X模型;Based on the SMPLify-X model and the pose prior constraints of the missing limb and the data enhancement algorithm, 3D human pose estimation is performed on the 2D skeletal key point data of the missing limb video frame image, and the SMPL-X model of the 2D skeletal key point data is obtained;
基于2D骨骼关键点数据的SMPL-X模型获取3D骨骼关键点数据,并通过相机参数将3D骨骼关键点数据映射为图像平面上的2D骨骼关键点数据;The SMPL-X model based on 2D bone key point data obtains 3D bone key point data, and maps the 3D bone key point data to 2D bone key point data on the image plane through camera parameters;
将图像平面上的2D骨骼关键点数据与缺失肢体视频帧图像的2D骨骼关键点数据进行匹配,得到匹配结果;Match the 2D bone key point data on the image plane with the 2D bone key point data of the missing limb video frame image to obtain the matching result;
基于匹配结果对缺失肢体的姿势先验约束和数据增强算法的权重进行优化迭代,得到最优3D骨架SMPL-X模型。Based on the matching results, the pose prior constraints of the missing limbs and the weights of the data enhancement algorithm are optimized and iterated to obtain the optimal 3D skeleton SMPL-X model.
通过该优选步骤,实现了原有骨骼点和缺失肢体骨骼点的特征融合,原有骨骼点和缺失肢体骨骼点的匹配度更高,缺失肢体部位姿态和三维人体模型的整体姿态更加准确。Through this optimization step, the feature fusion of the original bone points and the missing limb bone points is achieved. The matching degree between the original bone points and the missing limb bone points is higher, and the posture of the missing limb part and the overall posture of the three-dimensional human body model are more accurate.
本发明所采用的第二技术方案是:一种3D人体骨骼关键点数据增强系统,包括:The second technical solution adopted by the present invention is: a 3D human skeleton key point data enhancement system, including:
数据获取模块,用于获取缺失肢体视频帧图像中人物的2D骨骼关键点数据;The data acquisition module is used to obtain the 2D skeletal key point data of the character in the video frame image of the missing limb;
数据对比分析模块,基于缺失肢体视频帧图像的2D骨骼关键点数据和完整的2D骨骼关键点数据确定缺失肢体边缘连接的2D骨骼关键点索引和缺失骨骼关键点的数量;The data comparison analysis module determines the 2D bone key point index of the missing limb edge connection and the number of missing bone key points based on the 2D bone key point data of the missing limb video frame image and the complete 2D bone key point data;
数据平滑模块,用于对缺失肢体视频帧图像的2D骨骼关键点数据进行帧筛选和平滑处理,得到平滑后的2D骨骼关键点数据;The data smoothing module is used to perform frame screening and smoothing processing on the 2D skeletal key point data of missing limb video frame images to obtain smoothed 2D skeletal key point data;
算法构建模块,基于所述缺失骨骼关键点的数量、所述缺失肢体边缘连接的2D骨骼关键点索引和视频行为类别构建缺失肢体的姿势先验约束和数据增强算法An algorithm building module that constructs a priori constraints on the posture of the missing limb and a data enhancement algorithm based on the number of missing bone key points, the 2D bone key point index of the missing limb edge connection, and the video behavior category.
最优模型生成模块,将平滑后的2D骨骼关键点数据作为输入,通过缺失肢体的姿势先验约束和数据增强算法对SMPLify-X模型进行迭代,得到最优3D骨架SMPL-X模型;The optimal model generation module takes the smoothed 2D skeleton key point data as input, and iterates the SMPLify-X model through the posture prior constraints of the missing limbs and the data enhancement algorithm to obtain the optimal 3D skeleton SMPL-X model;
标注数据获取模块,用于获取最优3D骨架SMPL-X模型的3D骨骼关键点数据,并生成对应的数据标注文件。The annotation data acquisition module is used to obtain the 3D skeleton key point data of the optimal 3D skeleton SMPL-X model and generate the corresponding data annotation file.
本发明方法及系统的有益效果是:本发明通过构建缺失肢体的姿势先验约束和数据增强算法,对缺失肢体的人体骨骼点进行姿势先验约束补全和数据增强,保持完整人体骨骼关键点数据和缺失肢体人体关键点数据特征分布的一致性,帮助计算机视觉任务算法和模型更好地理解和捕捉输入数据的关键特征,并减轻数据偏移带来的问题,使算法更好地适应未见过的数据,从而增强算法的鲁棒性,改善算法在不同数据分布下的泛化性能;在保证原有缺失肢体视频帧图像的骨骼点特征不丢失的前提下,实现了原有骨骼点和缺失肢体骨骼点的特征融合。原有骨骼点和缺失肢体骨骼点的匹配度更高,缺失肢体部位姿态和三维人体模型的整体姿态更加准确。The beneficial effects of the method and system of the present invention are: by constructing the posture prior constraint and data enhancement algorithm of the missing limb, the present invention performs posture prior constraint completion and data enhancement on the human skeleton points of the missing limb, and maintains the key points of the complete human skeleton. The consistency of data feature distribution with missing limb key point data helps computer vision task algorithms and models better understand and capture the key features of input data, and alleviates problems caused by data offset, allowing the algorithm to better adapt to the future. seen data, thereby enhancing the robustness of the algorithm and improving the generalization performance of the algorithm under different data distributions; on the premise of ensuring that the bone point features of the original missing limb video frame image are not lost, the original bone point is realized and feature fusion of missing limb bone points. The matching degree between the original bone points and the missing limb bone points is higher, and the posture of the missing limb part and the overall posture of the three-dimensional human body model are more accurate.
附图说明Description of the drawings
图1是本发明一种3D人体骨骼关键点数据增强方法的步骤流程图;Figure 1 is a step flow chart of a 3D human skeleton key point data enhancement method of the present invention;
图2是本发明一种3D人体骨骼关键点数据增强系统的结构框图;Figure 2 is a structural block diagram of a 3D human skeleton key point data enhancement system of the present invention;
图3是本发明一种3D人体骨骼关键点数据增强方法的总体步骤结构示意图;Figure 3 is a schematic diagram of the overall step structure of a 3D human skeleton key point data enhancement method of the present invention;
图4是本发明一种3D人体骨骼关键点数据增强方法的完整的2D骨骼关键点连接关系示意图;Figure 4 is a schematic diagram of the complete 2D skeleton key point connection relationship of a 3D human skeleton key point data enhancement method of the present invention;
图5是本发明一种3D人体骨骼关键点数据增强方法的缺失肢体的2D骨骼关键点连接关系示意图;Figure 5 is a schematic diagram of the connection relationship between the 2D skeleton key points of the missing limb in a 3D human skeleton key point data enhancement method of the present invention;
图6是本发明一种3D人体骨骼关键点数据增强方法与现有技术的效果对比示意图,图6(a)表示原缺失肢体图像(缺失腿部肢体);图6(b)表示OpenPose检测器检测出的2D骨骼关键点及连接示意图;图6(c)表示直接利用SMPLify-X模型得到的SMPL-X人体3D模型图;图6(d)表示通过本发明得到的SMPL-X人体3D模型图;图6(e)表示从直接利用SMPLify-X模型得到的SMPL-X人体3D模型中提取的3D骨骼关键点示意图;图6(f)表示从本发明得到的SMPL-X人体3D模型中提取的3D骨骼关键点示意图。Figure 6 is a schematic diagram comparing the effects of a 3D human skeleton key point data enhancement method of the present invention and the prior art. Figure 6(a) shows the original missing limb image (missing leg limb); Figure 6(b) shows the OpenPose detector Detected 2D skeleton key points and connection diagram; Figure 6(c) shows the SMPL-X human body 3D model obtained directly using the SMPLify-X model; Figure 6(d) shows the SMPL-X human body 3D model obtained through the present invention Figure; Figure 6(e) shows a schematic diagram of 3D bone key points extracted from the SMPL-X human body 3D model obtained directly using the SMPLify-X model; Figure 6(f) shows the SMPL-X human body 3D model obtained from the present invention. Schematic diagram of extracted 3D skeleton key points.
具体实施方式Detailed ways
下面结合附图和具体实施例对本发明做进一步的详细说明。对于以下实施例中的步骤编号,其仅为了便于阐述说明而设置,对步骤之间的顺序不做任何限定,实施例中的各步骤的执行顺序均可根据本领域技术人员的理解来进行适应性调整。The present invention will be further described in detail below in conjunction with the accompanying drawings and specific embodiments. The step numbers in the following embodiments are only set for the convenience of explanation. The order between the steps is not limited in any way. The execution order of each step in the embodiments can be adapted according to the understanding of those skilled in the art. sexual adjustment.
参照图1及图3,本发明提供了一种3D人体骨骼关键点数据增强方法,该方法包括以下步骤:Referring to Figures 1 and 3, the present invention provides a 3D human skeleton key point data enhancement method, which method includes the following steps:
S1、获取缺失肢体视频帧图像中人物的2D骨骼关键点数据;S1. Obtain the 2D skeletal key point data of the character in the missing limb video frame image;
具体地,将缺失肢体视频按照300×256的分辨率,帧率为30fps的设置处理成T张缺失肢体视频帧图像。利用OpenPose算法提取每一帧中缺失肢体人物的2D骨骼关键点坐标数据,在第t帧时提取到的2D骨骼关键点坐标数据为Jest,t。Jest,t为一个25×2的矩阵,行表示OpenPose提取出来的25个不同的关节点,节点编号为0-24,列表示关节点的x坐标和y坐标,完整的2D骨骼关键点连接关系如图4所示。Specifically, the missing limb video is processed into T missing limb video frame images according to the resolution of 300×256 and the frame rate of 30fps. The OpenPose algorithm is used to extract the 2D skeletal key point coordinate data of the character with missing limbs in each frame. The 2D skeletal key point coordinate data extracted at the tth frame is J est, t . J est, t is a 25×2 matrix. The rows represent 25 different joint points extracted by OpenPose. The node numbers are 0-24. The columns represent the x-coordinates and y-coordinates of the joint points. The complete 2D skeleton key point connection The relationship is shown in Figure 4.
S2、基于缺失肢体视频帧图像的2D骨骼关键点数据和完整的2D骨骼关键点数据确定缺失肢体边缘连接的2D骨骼关键点索引和缺失骨骼关键点的数量;S2. Determine the 2D bone key point index of the missing limb edge connection and the number of missing bone key points based on the 2D bone key point data of the missing limb video frame image and the complete 2D bone key point data;
具体地,将缺失肢体视频帧图像的2D骨骼关键点数据和完整的2D骨骼关键点数据进行比对,通过边缘连接索引函数得到现有骨骼与缺失肢体连接处2D骨骼关键点索引,其表达式如下:Specifically, the 2D bone key point data of the missing limb video frame image is compared with the complete 2D bone key point data, and the 2D bone key point index at the connection between the existing bone and the missing limb is obtained through the edge connection index function, and its expression is as follows:
Ie,t={nt|nt=Eage(Jk,t);k=1,...,N;t=1,...,T}I e, t = {n t |n t = Eage (J k, t ); k = 1,..., N; t = 1,..., T}
其中,Eage(Jk,t)表示边缘连接索引函数,Jk,t表示第t帧图像检测到的第k个骨骼关键点,nt表示现有骨骼关键点与缺失肢体骨骼的边缘连接骨骼关键点的索引值,Ie,t表示在t帧时所有缺失骨骼的边缘连接骨骼关键点的索引值的集合,N=25,表示OpenPose检测出的人体25个不同关节点,T表示缺失肢体视频序列的总帧数。Among them, Eage(J k,t ) represents the edge connection index function, J k,t represents the k-th bone key point detected in the t-th frame image, n t represents the edge connection bone between the existing bone key point and the missing limb bone. The index value of the key point, I e,t represents the set of index values of the edge connecting bone key points of all missing bones at frame t, N=25, represents the 25 different joint points of the human body detected by OpenPose, T represents the missing limb The total number of frames in the video sequence.
通过统计函数得到缺失骨骼关键点的数量,其表达式如下:The number of missing bone key points is obtained through a statistical function, and its expression is as follows:
Nm,t=CountBlank(Jk,t)Nm ,t =CountBlank(Jk ,t )
Jk,t=Jest,t={(xk,t,yk,t)|k=1,...,N;t=1,...,T}J k, t = J est, t = {(x k, t , y k, t )|k=1,...,N; t=1,...,T}
其中,Nm,t表示第t帧时缺失骨骼关键点的数量,CountBlank(Jk,t)表示骨骼关键点序列中缺失骨骼关键点个数的统计函数,xk,t、yk,t分别表示第t帧时骨骼关键点的x坐标和y坐标。Among them, N m, t represents the number of missing bone key points in the t-th frame, CountBlank(J k, t ) represents the statistical function of the number of missing bone key points in the bone key point sequence, x k, t , y k, t Respectively represent the x coordinate and y coordinate of the bone key point at the tth frame.
参照图5,其中,黑点表示OpenPose检测出的骨骼关键点,即缺失肢体视频帧图像的2D骨骼关键点;灰点表示缺失肢体对应的骨骼关键点,8、9和12三个点表示缺失肢体对应的骨骼关键点与检测出的骨骼关键点的边缘连接骨骼点,8、9和12即为该点位的索引值。Refer to Figure 5, in which the black dots represent the key points of the bones detected by OpenPose, that is, the 2D key points of the bones in the missing limb video frame image; the gray points represent the key points of the bones corresponding to the missing limbs, and the three points 8, 9 and 12 represent the missing limbs. The edge of the bone key point corresponding to the limb and the detected bone key point connects the bone point. 8, 9 and 12 are the index values of the point.
S3、对缺失肢体视频帧图像的2D骨骼关键点数据进行帧筛选和平滑处理,得到平滑后的2D骨骼关键点数据;S3. Perform frame screening and smoothing processing on the 2D skeletal key point data of the missing limb video frame image to obtain smoothed 2D skeletal key point data;
具体地,所述帧筛选和平滑处理的表达式如下:Specifically, the expressions of the frame filtering and smoothing processing are as follows:
J′est,t=Y(Jest,t,L,H,Nmax)J′ est, t = Y (J est, t , L, H, N max )
其中,J′est,t表示平滑后的2D骨骼关键点数据,Jest,t表示OpenPose算法检测出来的缺失肢体视频帧图像的2D骨骼关键点数据,L表示最小阈值,H表示最大阈值,Nmax表示每一帧中允许丢弃的最大异常骨骼点数量,Y(Jest,t,L,H,Nmax)表示基于多项式回归的帧筛选和平滑处理函数。Among them, J′ est, t represents the smoothed 2D bone key point data, J est, t represents the 2D bone key point data of the missing limb video frame image detected by the OpenPose algorithm, L represents the minimum threshold, H represents the maximum threshold, N max represents the maximum number of abnormal bone points allowed to be discarded in each frame, and Y(J est, t , L, H, N max ) represents the frame filtering and smoothing function based on polynomial regression.
多项式回归的帧筛选和平滑处理函数具体的操作如下:The specific operations of the frame filtering and smoothing functions of polynomial regression are as follows:
S3.1、对缺失肢体视频所有帧中相同的2D骨骼关键点进行多项式回归,得到回归值,接着计算每一帧中2D骨骼关键点回归值与2D骨骼关键点初始值的偏差;S3.1. Perform polynomial regression on the same 2D bone key points in all frames of the missing limb video to obtain the regression value, and then calculate the deviation between the regression value of the 2D bone key point in each frame and the initial value of the 2D bone key point;
S3.2、基于偏差与最小阈值、最大阈值的对比结果确定异常骨骼点,并对2D骨骼关键点的值进行更新,得到第一2D骨骼关键点数据;S3.2. Determine abnormal bone points based on the comparison results between the deviation and the minimum threshold and maximum threshold, and update the values of the 2D bone key points to obtain the first 2D bone key point data;
具体地,如果偏差大于最大阈值H,则该时间帧下的该骨骼点视为允许丢弃的异常骨骼点,将该异常骨骼点丢弃;如果偏差在最大阈值H和最小阈值L之间,则该骨骼点为不允许丢弃的非正常骨骼点,此时需要将该非正常骨骼点的回归值代替初始值,以减小偏差;如果偏差小于最小阈值L,则该骨骼点为正常骨骼点,保留该骨骼点的初始值,最终得到第一2D骨骼关键点数据。Specifically, if the deviation is greater than the maximum threshold H, the bone point in this time frame is regarded as an abnormal bone point that is allowed to be discarded, and the abnormal bone point is discarded; if the deviation is between the maximum threshold H and the minimum threshold L, then the abnormal bone point is discarded. The bone points are abnormal bone points that are not allowed to be discarded. At this time, the regression value of the abnormal bone point needs to be replaced by the initial value to reduce the deviation; if the deviation is less than the minimum threshold L, the bone point is a normal bone point and should be retained. The initial value of the bone point finally obtains the first 2D bone key point data.
S3.3、根据同一帧图像的异常骨骼点数量和最大异常骨骼点数量的对比结果对第一2D骨骼关键点数据进行筛选,得到平滑后的2D骨骼关键点数据。S3.3. Filter the first 2D bone key point data based on the comparison results between the number of abnormal bone points and the maximum number of abnormal bone points in the same frame image to obtain smoothed 2D bone key point data.
具体地,如果统计同一帧中允许丢弃的异常骨骼点数量超过每一帧中允许丢弃的最大异常骨骼点数量Nmax,则将该帧的骨骼点数据均视作异常数据,对其进行删除,得到平滑后的2D骨骼关键点数据J′est,t。Specifically, if the statistics of the number of abnormal bone points allowed to be discarded in the same frame exceeds the maximum number of abnormal bone points allowed to be discarded in each frame N max , then all the bone point data of the frame will be regarded as abnormal data and deleted. Obtain the smoothed 2D skeleton key point data J′ est,t .
S4、基于所述缺失骨骼关键点的数量、所述缺失肢体边缘连接的2D骨骼关键点索引和视频行为类别构建缺失肢体的姿势先验约束和数据增强算法;S4. Construct posture prior constraints and data enhancement algorithms for missing limbs based on the number of missing bone key points, the 2D bone key point index of the missing limb edge connection, and the video behavior category;
S4.1、获取完整人体姿态参数,并根据缺失肢体边缘连接的2D骨骼关键点索引进行人体姿态参数映射,得到缺失骨骼关键点对应的人体姿态参数;S4.1. Obtain the complete human posture parameters, and perform human posture parameter mapping based on the 2D bone key point index of the missing limb edge connection to obtain the human posture parameters corresponding to the missing bone key points;
具体地,所述缺失骨骼关键点对应的人体姿态参数,其表达式如下:Specifically, the expression of the human posture parameters corresponding to the missing bone key points is as follows:
θm,t=F(θb,t,Ie,t)θ m, t = F (θ b, t , I e, t )
其中,θm,t表示缺失骨骼关键点对应的人体姿态参数,Ie,t表示缺失骨骼的边缘连接骨骼点的索引值的集合,θb,t表示SMPL-X人体模型中的完整人体姿态参数,F表示映射函数,利用完整人体姿态参数和缺失骨骼的边缘连接骨骼点的索引进行人体姿态参数映射,得到缺失骨骼关键点对应的人体姿态参数。Among them, θ m, t represents the human posture parameters corresponding to the missing bone key points, I e, t represents the set of index values of the edge connecting bone points of the missing bones, θ b, t represents the complete human posture in the SMPL-X human body model Parameter, F represents the mapping function, which uses the complete human posture parameters and the index of the edge connecting bone points of the missing bones to perform human posture parameter mapping, and obtains the human posture parameters corresponding to the missing bone key points.
S4.2、基于完整人体姿态参数和缺失骨骼关键点对应的人体姿态参数计算缺失肢体视频帧图像的2D骨骼关键点数据对应的人体姿态参数;S4.2. Calculate the human posture parameters corresponding to the 2D bone key point data of the missing limb video frame image based on the complete human posture parameters and the human posture parameters corresponding to the missing bone key points;
具体地,所述缺失肢体视频帧图像的2D骨骼关键点数据对应的人体姿态参数,其计算表达式如下:Specifically, the calculation expression of the human posture parameters corresponding to the 2D skeletal key point data of the missing limb video frame image is as follows:
θd,t=θb,t-θm,t θ d,t =θ b,t -θ m,t
其中,θd,t表示OpenPose检测出来的缺失肢体视频帧图像的2D骨骼关键点数据对应的人体姿态参数。Among them, θ d, t represents the human posture parameters corresponding to the 2D skeletal key point data of the missing limb video frame image detected by OpenPose.
S4.3、根据视频行为类别、所述缺失骨骼关键点的数量和所述缺失肢体边缘连接的2D骨骼关键点索引对缺失骨骼关键点对应的人体姿态参数进行约束,得到缺失骨骼关键点的姿态先验约束参数;S4.3. Constrain the human posture parameters corresponding to the missing bone key points according to the video behavior category, the number of the missing bone key points and the 2D bone key point index connected to the missing limb edge, and obtain the posture of the missing bone key point. A priori constraint parameters;
具体地,所述缺失骨骼关键点的姿态先验约束参数,其表达式如下:Specifically, the posture prior constraint parameters of the missing bone key points are expressed as follows:
θ‘m,t=Z(θm,t,Nm,t,Ie,t,C)θ' m, t = Z (θ m, t , N m, t , I e, t , C)
其中,θ‘m,t表示缺失骨骼关键点的姿态先验约束参数,θm,t表示缺失骨骼关键点对应的人体姿态参数,Nm,t表示第t帧时缺失肢体总的骨骼关键点数量,Ie,t表示在第t帧所有缺失肢体骨骼的的边缘连接骨骼点的索引值的集合,C表示视频序列的行为类别,Z表示缺失肢体的姿势先验约束函数。Among them, θ' m, t represents the posture prior constraint parameters of the missing bone key points, θ m, t represents the human posture parameters corresponding to the missing bone key points, and N m, t represents the total bone key points of the missing limb in the tth frame. The quantity, I e,t represents the set of index values of the edge connection bone points of all missing limb bones in the tth frame, C represents the behavior category of the video sequence, and Z represents the posture prior constraint function of the missing limb.
S4.4、基于缺失骨骼关键点的姿态先验约束参数构建缺失肢体先验知识的约束项,所述缺失肢体先验知识的约束项表示为 S4.4. Construct a constraint term for missing limb prior knowledge based on the posture prior constraint parameters of missing skeletal key points. The constraint term for missing limb prior knowledge is expressed as
S4.5、基于完整人体姿态参数构建全身姿态的约束项,所述全身姿态的约束项表示为 S4.5. Construct the constraint term of the whole body posture based on the complete human body posture parameters. The constraint term of the whole body posture is expressed as
S4.6、基于缺失肢体视频帧图像的2D骨骼关键点数据对应的人体姿态参数构建身体部位姿态约束项,所述身体部位姿态约束项中的身体部位在本实施例中指的是缺失肢体视频帧图像中的身体部位,所述身体部位姿态约束项表示为 S4.6. Construct a body part posture constraint item based on the human posture parameters corresponding to the 2D skeletal key point data of the missing limb video frame image. The body part in the body part posture constraint item refers to the missing limb video frame in this embodiment. The body part in the image, the body part pose constraint is expressed as
S4.7、结合缺失肢体先验知识的约束项、全身姿态的约束项和身体部位姿态约束项,得到缺失肢体的姿势先验约束和数据增强算法。S4.7. Combining the constraints of the missing limb’s prior knowledge, the constraints of the whole body posture and the posture constraints of the body parts, obtain the posture prior constraints of the missing limb and the data enhancement algorithm.
具体地,所述缺失肢体的姿势先验约束和数据增强算法,其表达式如下:Specifically, the expression of the posture prior constraint and data enhancement algorithm of the missing limb is as follows:
其中,E(βt,θb,t,θd,t,θ′m,t,Kt,J′est,t)表示基于缺失肢体的姿势先验约束和数据增强算法的目标优化函数,表示全身姿态的约束项,/>表示身体部位姿态约束项,/>表示缺失肢体先验知识的约束项,/>表示全身姿态的约束项的权重值,/>表示身体部位姿态约束项的权重值,/>表示缺失肢体先验知识的约束项的权重值,βt表示第t帧视频帧图像对应的体型参数,θb,t表示第t帧视频帧图像对应的完整人体姿态参数,Kt表示第t帧视频帧图像对应的相机参数,J′est,t表示平滑后的2D骨骼关键点数据,θd,t表示缺失肢体视频帧图像的2D骨骼关键点数据对应的人体姿态参数,θ’m,t表示第t帧视频帧图像对应的缺失骨骼关键点的姿态先验约束参数。Among them, E(β t , θ b,t , θ d,t , θ′ m,t , K t , J′ est,t ) represents the objective optimization function of the posture prior constraint and data augmentation algorithm based on the missing limb, Constraint items representing the whole body posture,/> Represents body part posture constraints,/> Constraints representing missing prior knowledge of limbs,/> The weight value of the constraint item representing the whole body posture,/> Represents the weight value of the body part posture constraint item,/> Represents the weight value of the constraint item with missing limb prior knowledge, β t represents the body shape parameter corresponding to the t-th video frame image, θ b, t represents the complete human posture parameter corresponding to the t-th video frame image, K t represents the t-th video frame image The camera parameters corresponding to the frame video frame image, J′ est, t represents the smoothed 2D skeleton key point data, θ d, t represents the human posture parameter corresponding to the 2D skeleton key point data of the missing limb video frame image, θ' m, t represents the posture prior constraint parameter of the missing bone key point corresponding to the t-th video frame image.
通过全身姿态的约束项能够在优化过程中很好地避免模型中各部分融合相互穿透的问题;身体部位姿态约束项能够在优化过程中很好地保留和进一步优化现有身体部位对应的骨骼点;缺失肢体先验知识的约束项能够很好地基于缺失肢体先验知识对缺失肢体部位的3D骨骼点进行补全和数据增强。The whole body posture constraint can well avoid the problem of mutual penetration of various parts of the model during the optimization process; the body part posture constraint can well retain and further optimize the bones corresponding to existing body parts during the optimization process. point; the constraint term of the missing limb prior knowledge can well complete and data enhance the 3D skeletal points of the missing limb part based on the missing limb prior knowledge.
S5、将缺失肢体视频帧图像的2D骨骼关键点数据作为输入,通过缺失肢体的姿势先验约束和数据增强算法对SMPLify-X模型进行迭代,得到最优3D骨架SMPL-X模型;S5. Take the 2D skeleton key point data of the missing limb video frame image as input, and iterate the SMPLify-X model through the posture prior constraints of the missing limb and the data enhancement algorithm to obtain the optimal 3D skeleton SMPL-X model;
具体地,对缺失肢体视频帧图像的2D骨骼关键点数据进行进行帧筛选和平滑处理后,输入数据改为平滑后的2D骨骼关键点数据;基于SMPLify-X模型和缺失肢体的姿势先验约束和数据增强算法对平滑后的2D骨骼关键点数据进行3D人体姿态估计,得到2D骨骼关键点数据的SMPL-X模型;基于2D骨骼关键点数据的SMPL-X模型获取3D骨骼关键点数据,并通过相机参数将3D骨骼关键点数据映射为图像平面上的2D骨骼关键点数据;将图像平面上的2D骨骼关键点数据与平滑后的2D骨骼关键点数据进行匹配,得到匹配结果;基于匹配结果对缺失肢体的姿势先验约束和数据增强算法的权重进行优化迭代,得到最优3D骨架SMPL-X模型。Specifically, after frame screening and smoothing processing of the 2D skeletal key point data of the missing limb video frame image, the input data is changed to the smoothed 2D skeletal key point data; based on the SMPLify-X model and the pose prior constraints of the missing limb and data enhancement algorithm to perform 3D human pose estimation on the smoothed 2D skeletal key point data, and obtain the SMPL-X model of the 2D skeletal key point data; the SMPL-X model based on the 2D skeletal key point data obtains the 3D skeletal key point data, and Map 3D bone key point data to 2D bone key point data on the image plane through camera parameters; match the 2D bone key point data on the image plane with the smoothed 2D bone key point data to obtain the matching result; based on the matching result The optimal 3D skeleton SMPL-X model was obtained by optimizing and iterating the pose prior constraints of the missing limbs and the weights of the data augmentation algorithm.
S6、获取最优3D骨架SMPL-X模型的3D骨骼关键点数据,并生成对应的数据标注文件。S6. Obtain the 3D skeleton key point data of the optimal 3D skeleton SMPL-X model and generate the corresponding data annotation file.
参照图6,将本发明方法与未使用本发明方法的现有技术进行效果比对,图6(a)表示原缺失肢体图像(缺失腿部肢体);图6(b)表示OpenPose检测器检测出的2D骨骼关键点及连接骨骼;经过本发明提出的缺失肢体的姿势先验约束和数据增强算法结合SMPLify-X模型得到的SMPL-X人体3D模型如图6(d)所示,而未采用本发明提出的缺失肢体的姿势先验约束和数据增强算法,直接利用SMPLify-X模型得到的SMPL-X人体3D模型如图6(c)所示,对比图6(c)和图6(d),可以发现使用本发明方法得到的SMPL-X人体3D模型对人体姿态的预测更加准确,更能还原图像中缺失肢体的姿态。从图6(c)所示模型中提取的3D骨骼关键点如图6(e)所示,从图6(d)所示模型中提取的3D骨骼关键点如图6(f)所示,对比图6(e)和图6(f),可以发现本发明的提出的缺失肢体的姿势先验约束和数据增强算法在对缺失肢体的3D骨骼关键点数据的补全和数据增强方面实现了卓越的性能。Referring to Figure 6, the effect of the method of the present invention is compared with the existing technology that does not use the method of the present invention. Figure 6(a) shows the original missing limb image (missing leg limb); Figure 6(b) shows the OpenPose detector detection The 2D skeleton key points and connecting bones are obtained; the SMPL-X human body 3D model obtained by combining the posture prior constraint and data enhancement algorithm of the missing limbs proposed by the present invention with the SMPLify-X model is shown in Figure 6(d). Using the posture prior constraints and data enhancement algorithms for missing limbs proposed by the present invention, the SMPL-X human body 3D model obtained directly using the SMPLify-X model is shown in Figure 6(c). Compare Figure 6(c) and Figure 6( d), it can be found that the SMPL-X human body 3D model obtained using the method of the present invention is more accurate in predicting human body posture and can better restore the posture of missing limbs in the image. The 3D bone key points extracted from the model shown in Figure 6(c) are shown in Figure 6(e), and the 3D bone key points extracted from the model shown in Figure 6(d) are shown in Figure 6(f). Comparing Figure 6(e) and Figure 6(f), it can be found that the posture prior constraints and data enhancement algorithm of the missing limb proposed by the present invention have been achieved in the completion and data enhancement of the 3D skeleton key point data of the missing limb. Excellent performance.
如图2所示,本发明提供一种3D人体骨骼关键点数据增强系统,该系统包括:As shown in Figure 2, the present invention provides a 3D human skeleton key point data enhancement system, which includes:
数据获取模块,用于获取缺失肢体视频帧图像中人物的2D骨骼关键点数据;The data acquisition module is used to obtain the 2D skeletal key point data of the character in the video frame image of the missing limb;
数据对比分析模块,基于缺失肢体视频帧图像的2D骨骼关键点数据和完整的2D骨骼关键点数据确定缺失肢体边缘连接的2D骨骼关键点索引和缺失骨骼关键点的数量;The data comparison analysis module determines the 2D bone key point index of the missing limb edge connection and the number of missing bone key points based on the 2D bone key point data of the missing limb video frame image and the complete 2D bone key point data;
数据平滑模块,用于对缺失肢体视频帧图像的2D骨骼关键点数据进行帧筛选和平滑处理,得到平滑后的2D骨骼关键点数据;The data smoothing module is used to perform frame screening and smoothing processing on the 2D skeletal key point data of missing limb video frame images to obtain smoothed 2D skeletal key point data;
算法构建模块,基于所述缺失骨骼关键点的数量、所述缺失肢体边缘连接的2D骨骼关键点索引和视频行为类别构建缺失肢体的姿势先验约束和数据增强算法An algorithm building module that constructs a priori constraints on the posture of the missing limb and a data enhancement algorithm based on the number of missing bone key points, the 2D bone key point index of the missing limb edge connection, and the video behavior category.
最优模型生成模块,将平滑后的2D骨骼关键点数据作为输入,通过缺失肢体的姿势先验约束和数据增强算法对SMPLify-X模型进行迭代,得到最优3D骨架SMPL-X模型;The optimal model generation module takes the smoothed 2D skeleton key point data as input, and iterates the SMPLify-X model through the posture prior constraints of the missing limbs and the data enhancement algorithm to obtain the optimal 3D skeleton SMPL-X model;
标注数据获取模块,用于获取最优3D骨架SMPL-X模型的3D骨骼关键点数据,并生成对应的数据标注文件。The annotation data acquisition module is used to obtain the 3D skeleton key point data of the optimal 3D skeleton SMPL-X model and generate the corresponding data annotation file.
上述方法实施例中的内容均适用于本系统实施例中,本系统实施例所具体实现的功能与上述方法实施例相同,并且达到的有益效果与上述方法实施例所达到的有益效果也相同。The contents in the above method embodiments are applicable to this system embodiment. The specific functions implemented by this system embodiment are the same as those in the above method embodiments, and the beneficial effects achieved are also the same as those achieved by the above method embodiments.
以上是对本发明的较佳实施进行了具体说明,但本发明创造并不限于所述实施例,熟悉本领域的技术人员在不违背本发明精神的前提下还可做作出种种的等同变形或替换,这些等同的变形或替换均包含在本申请权利要求所限定的范围内。The above is a detailed description of the preferred implementation of the present invention, but the present invention is not limited to the embodiments. Those skilled in the art can also make various equivalent modifications or substitutions without violating the spirit of the present invention. , these equivalent modifications or substitutions are included in the scope defined by the claims of this application.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311739082.7A CN117690163A (en) | 2023-12-18 | 2023-12-18 | A method and system for 3D human skeleton key point data enhancement |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311739082.7A CN117690163A (en) | 2023-12-18 | 2023-12-18 | A method and system for 3D human skeleton key point data enhancement |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117690163A true CN117690163A (en) | 2024-03-12 |
Family
ID=90135048
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311739082.7A Pending CN117690163A (en) | 2023-12-18 | 2023-12-18 | A method and system for 3D human skeleton key point data enhancement |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117690163A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118411764A (en) * | 2024-07-02 | 2024-07-30 | 江西格如灵科技股份有限公司 | Dynamic bone recognition method, system, storage medium and electronic equipment |
-
2023
- 2023-12-18 CN CN202311739082.7A patent/CN117690163A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118411764A (en) * | 2024-07-02 | 2024-07-30 | 江西格如灵科技股份有限公司 | Dynamic bone recognition method, system, storage medium and electronic equipment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107491726B (en) | A real-time expression recognition method based on multi-channel parallel convolutional neural network | |
CN112800903B (en) | Dynamic expression recognition method and system based on space-time diagram convolutional neural network | |
CN109815826B (en) | Method and device for generating face attribute model | |
CN113128424B (en) | Method for identifying action of graph convolution neural network based on attention mechanism | |
CN112434655B (en) | A Gait Recognition Method Based on Adaptive Confidence Graph Convolutional Network | |
CN100520807C (en) | Face Recognition Method Based on Independent Component Analysis of Multi-scale Total Variation Quotient Images | |
CN111507182A (en) | Skeleton point fusion cyclic cavity convolution-based littering behavior detection method | |
CN114882493B (en) | A 3D hand pose estimation and recognition method based on image sequences | |
CN112598587B (en) | Image processing system and method combining face mask removal and super-resolution | |
WO2022148379A1 (en) | Image processing method and apparatus, electronic device, and readable storage medium | |
CN112819951A (en) | Three-dimensional human body reconstruction method with shielding function based on depth map restoration | |
CN112837215A (en) | An Image Shape Transformation Method Based on Generative Adversarial Networks | |
CN111445426A (en) | Target garment image processing method based on generation countermeasure network model | |
CN117690163A (en) | A method and system for 3D human skeleton key point data enhancement | |
CN106127193A (en) | A kind of facial image recognition method | |
CN112446253A (en) | Skeleton behavior identification method and device | |
CN109522865A (en) | A kind of characteristic weighing fusion face identification method based on deep neural network | |
CN115018989B (en) | Three-dimensional dynamic reconstruction method, training device and electronic equipment based on RGB-D sequence | |
CN109165551B (en) | An expression recognition method based on adaptive weighted fusion of saliency structure tensor and LBP features | |
CN114708654A (en) | Figure identification method for mapping skeleton information into image | |
CN117894072B (en) | A method and system for hand detection and three-dimensional posture estimation based on diffusion model | |
CN111274901B (en) | A Continuous Depth Image Detection Method for Gestures Based on Depth Gating Recurrent Unit | |
CN111523406B (en) | Deflection face correcting method based on generation confrontation network improved structure | |
CN117853750A (en) | Training method of action migration model, action migration method and electronic equipment | |
CN116386137A (en) | A mobile terminal design method for lightweight recognition of Tai Chi movements |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |