CN117552106B - Rare earth-based zero-dimensional perovskite halide scintillating single crystal and preparation method and application thereof - Google Patents
Rare earth-based zero-dimensional perovskite halide scintillating single crystal and preparation method and application thereof Download PDFInfo
- Publication number
- CN117552106B CN117552106B CN202410034956.7A CN202410034956A CN117552106B CN 117552106 B CN117552106 B CN 117552106B CN 202410034956 A CN202410034956 A CN 202410034956A CN 117552106 B CN117552106 B CN 117552106B
- Authority
- CN
- China
- Prior art keywords
- crucible
- single crystal
- rare earth
- earth ion
- crystal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000013078 crystal Substances 0.000 title claims abstract description 207
- 150000004820 halides Chemical class 0.000 title claims abstract description 100
- 229910052761 rare earth metal Inorganic materials 0.000 title claims abstract description 43
- 150000002910 rare earth metals Chemical class 0.000 title claims abstract description 21
- 238000002360 preparation method Methods 0.000 title abstract description 19
- 239000000203 mixture Substances 0.000 claims abstract description 39
- 238000001514 detection method Methods 0.000 claims abstract description 18
- 238000002059 diagnostic imaging Methods 0.000 claims abstract description 11
- 238000007689 inspection Methods 0.000 claims abstract description 10
- 229910052701 rubidium Inorganic materials 0.000 claims abstract description 5
- 229910052700 potassium Inorganic materials 0.000 claims abstract description 4
- 239000002994 raw material Substances 0.000 claims description 52
- 238000000034 method Methods 0.000 claims description 49
- 229910052693 Europium Inorganic materials 0.000 claims description 48
- 239000010453 quartz Substances 0.000 claims description 44
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 44
- 238000010438 heat treatment Methods 0.000 claims description 18
- 238000001816 cooling Methods 0.000 claims description 16
- 239000000155 melt Substances 0.000 claims description 16
- 238000003466 welding Methods 0.000 claims description 16
- 230000005251 gamma ray Effects 0.000 claims description 14
- 150000001875 compounds Chemical class 0.000 claims description 9
- 238000003384 imaging method Methods 0.000 claims description 9
- 150000003839 salts Chemical class 0.000 claims description 9
- 238000003746 solid phase reaction Methods 0.000 claims description 9
- 238000007711 solidification Methods 0.000 claims description 5
- 230000008023 solidification Effects 0.000 claims description 5
- 229910052716 thallium Inorganic materials 0.000 claims description 5
- 230000005855 radiation Effects 0.000 abstract description 6
- 238000005516 engineering process Methods 0.000 abstract description 4
- 229910052738 indium Inorganic materials 0.000 abstract description 3
- 229910052744 lithium Inorganic materials 0.000 abstract description 3
- 229910052709 silver Inorganic materials 0.000 abstract description 3
- 239000010949 copper Substances 0.000 description 120
- -1 rare earth ion Chemical class 0.000 description 23
- 238000004020 luminiscence type Methods 0.000 description 22
- 239000000126 substance Substances 0.000 description 18
- 238000010521 absorption reaction Methods 0.000 description 13
- 239000000306 component Substances 0.000 description 13
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 12
- 238000001228 spectrum Methods 0.000 description 12
- 230000007547 defect Effects 0.000 description 9
- 150000002500 ions Chemical class 0.000 description 9
- 239000000463 material Substances 0.000 description 9
- 238000005303 weighing Methods 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 229910052706 scandium Inorganic materials 0.000 description 8
- 229910052769 Ytterbium Inorganic materials 0.000 description 7
- 229910052765 Lutetium Inorganic materials 0.000 description 6
- 229910052777 Praseodymium Inorganic materials 0.000 description 6
- 229910052786 argon Inorganic materials 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000005284 excitation Effects 0.000 description 6
- 229910052746 lanthanum Inorganic materials 0.000 description 6
- 238000007789 sealing Methods 0.000 description 6
- 239000000969 carrier Substances 0.000 description 5
- 238000001748 luminescence spectrum Methods 0.000 description 5
- 238000002844 melting Methods 0.000 description 5
- 230000008018 melting Effects 0.000 description 5
- 229910052684 Cerium Inorganic materials 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 229910052772 Samarium Inorganic materials 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000295 emission spectrum Methods 0.000 description 3
- 238000000695 excitation spectrum Methods 0.000 description 3
- 230000006872 improvement Effects 0.000 description 3
- 229910001507 metal halide Inorganic materials 0.000 description 3
- 150000005309 metal halides Chemical class 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000005424 photoluminescence Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000005395 radioluminescence Methods 0.000 description 3
- 239000008358 core component Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000002189 fluorescence spectrum Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000005865 ionizing radiation Effects 0.000 description 2
- 238000009206 nuclear medicine Methods 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 239000012190 activator Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000005693 optoelectronics Effects 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- KRIJWFBRWPCESA-UHFFFAOYSA-L strontium iodide Chemical compound [Sr+2].[I-].[I-] KRIJWFBRWPCESA-UHFFFAOYSA-L 0.000 description 1
- 229910001643 strontium iodide Inorganic materials 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B29/00—Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
- C30B29/10—Inorganic compounds or compositions
- C30B29/12—Halides
-
- C—CHEMISTRY; METALLURGY
- C30—CRYSTAL GROWTH
- C30B—SINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
- C30B11/00—Single-crystal growth by normal freezing or freezing under temperature gradient, e.g. Bridgman-Stockbarger method
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01T—MEASUREMENT OF NUCLEAR OR X-RADIATION
- G01T1/00—Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
- G01T1/16—Measuring radiation intensity
- G01T1/20—Measuring radiation intensity with scintillation detectors
- G01T1/202—Measuring radiation intensity with scintillation detectors the detector being a crystal
- G01T1/2023—Selection of materials
Landscapes
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Physics & Mathematics (AREA)
- High Energy & Nuclear Physics (AREA)
- Molecular Biology (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Measurement Of Radiation (AREA)
- Luminescent Compositions (AREA)
Abstract
本申请属于辐射探测技术领域,涉及稀土基零维钙钛矿卤化物闪烁单晶及其制备方法和应用,提供了一种稀土离子掺杂零维钙钛矿卤化物闪烁单晶,具有如下组成通式:(Cs1‑xAx)3(Cu1‑ yBy)2(I1‑zXz)5:m at%RE,其中:A=Rb、K、Na、Tl和In中的一种或多种的组合;B=Ag和Li中的一种或它们的组合;X=Cl和Br中的一种或它们的组合;RE为选自下组的稀土离子:Eu2+、Yb2+、Sc3+、Y3+、La3+、Ce3+、Pr3+、Nd3+、Sm3+、Eu3+、Gd3+和Tb3+;且0≤x≤0.1、0≤y≤0.25、0≤z≤1和0<m≤5。该闪烁单晶具有低制备成本、高稳定性、高光产额、高能量分辨率等性能优势,在医学成像、安全检查、高能物理等领域具有很大的应用前景。
The present application belongs to the field of radiation detection technology, relates to a rare earth-based zero-dimensional perovskite halide scintillating single crystal and a preparation method and application thereof, and provides a rare earth ion-doped zero-dimensional perovskite halide scintillating single crystal having the following general composition formula: ( Cs1- xAx ) 3 ( Cu1 -yBy ) 2 ( I1-zXz ) 5 :mat % RE, wherein: A=a combination of one or more of Rb, K, Na, Tl and In; B=a combination of one or more of Ag and Li; X=a combination of one or more of Cl and Br; RE is a rare earth ion selected from the group consisting of Eu2 + , Yb2 + , Sc3 + , Y3 +, La3 + , Ce3 + , Pr3 + , Nd3 + , Sm3 + , Eu3 + , Gd3 + and Tb3 + ; and 0≤x≤0.1, 0≤y≤0.25, 0≤z≤1 and 0<m≤5. The scintillation single crystal has the advantages of low preparation cost, high stability, high light yield, high energy resolution and other performances, and has great application prospects in the fields of medical imaging, security inspection, high energy physics and so on.
Description
技术领域Technical Field
本申请属于辐射探测技术领域,涉及一类新型稀土离子掺杂低维卤化物闪烁单晶的组成、制备方法和应用,具体涉及一种稀土离子掺杂零维钙钛矿卤化物闪烁单晶及其制备方法和应用。The present application belongs to the field of radiation detection technology, and relates to the composition, preparation method and application of a new type of rare earth ion-doped low-dimensional halide scintillating single crystal, and specifically to a rare earth ion-doped zero-dimensional perovskite halide scintillating single crystal and its preparation method and application.
背景技术Background technique
闪烁晶体能将高能电离辐射转换为低能量发光,其作为辐射探测器的核心部件在诸多领域广泛应用。在核医学影像中,高性能闪烁晶体是实现高分辨成像的核心部件;在国土和社会安全领域,闪烁晶体被广泛应用于危险核素识别和公共安检设备;高能物理和深空探测应用也需要大量闪烁晶体对高能射线和粒子进行探测。随着应用空间的不断增长和技术要求的快速提升,闪烁晶体的光产额、能量分辨率、闪烁衰减时间和稳定性等关键参数的进一步优化已引起广泛关注。Scintillator crystals can convert high-energy ionizing radiation into low-energy luminescence. As the core component of radiation detectors, they are widely used in many fields. In nuclear medicine imaging, high-performance scintillator crystals are the core components for achieving high-resolution imaging; in the field of land and social security, scintillator crystals are widely used in dangerous nuclide identification and public security inspection equipment; high-energy physics and deep space exploration applications also require a large number of scintillator crystals to detect high-energy rays and particles. With the continuous growth of application space and the rapid improvement of technical requirements, the further optimization of key parameters such as light yield, energy resolution, scintillation decay time and stability of scintillator crystals has attracted widespread attention.
近期,具有低维分子结构的金属卤化物材料因存在强量子限域效应被广泛关注。作为闪烁或者发光材料,这些低维卤化物通过限域效应获得强电声子耦合作用,同时减少了缺陷对载流子的俘获概率,从而具有低自吸收和高量子效率的发光特性。此外,这些低维金属卤化物也往往可以获得较低的熔点和较好的稳定性,对于低成本的生产和应用有重要意义。其中,铜基的低维卤化物是一类具有高效限域激子发光的优秀闪烁晶体。以零维的Cs3Cu2I5为例,其具有无潮解性、低自吸收、低熔点、高光产额(28,000 ph./MeV)和高能量分辨率(4.8%@662 keV),且已发现Tl离子掺杂可以显著优化光产额(87,000 ph./MeV)和能量分辨率(3.4%@662 keV)的,具有极大的应用前景。Recently, metal halide materials with low-dimensional molecular structures have attracted extensive attention due to their strong quantum confinement effect. As scintillation or luminescent materials, these low-dimensional halides obtain strong electron-phonon coupling through the confinement effect, while reducing the probability of defect capture of carriers, thus having the luminescence characteristics of low self-absorption and high quantum efficiency. In addition, these low-dimensional metal halides can also often obtain lower melting points and better stability, which is of great significance for low-cost production and application. Among them, copper-based low-dimensional halides are a class of excellent scintillating crystals with efficient confined exciton luminescence. Taking zero-dimensional Cs 3 Cu 2 I 5 as an example, it has non-deliquescent, low self-absorption, low melting point, high light yield (28,000 ph./MeV) and high energy resolution (4.8%@662 keV), and it has been found that Tl ion doping can significantly optimize the light yield (87,000 ph./MeV) and energy resolution (3.4%@662 keV), which has great application prospects.
另一方面,稀土离子激活剂发光是目前高性能闪烁晶体的主要发光形式。稀土离子多样且高效的发光特性为辐射探测应用提供了多样的闪烁晶体,但同时也面临着多样的问题。例如,SrI2:Eu、LiI:Eu等铕离子(Eu2+)掺杂闪烁晶体由于5d-4f允许跃迁可以获得极高的光产额和优越的能量分辨率,但由于发光的强自吸收作用而存在性能随尺寸放大的严重劣化。铈离子(Ce3+)掺杂的闪烁晶体,如LaBr3:Ce、LYSO:Ce等,能兼具高光产额和快衰减等优势,但因为自由载流子会被缺陷俘获使得晶体的性能存在瓶颈。On the other hand, rare earth ion activator luminescence is the main luminescence form of high-performance scintillation crystals. The diverse and efficient luminescence properties of rare earth ions provide a variety of scintillation crystals for radiation detection applications, but they also face a variety of problems. For example, europium ion (Eu 2+ ) doped scintillation crystals such as SrI 2 :Eu and LiI:Eu can obtain extremely high light yield and excellent energy resolution due to the 5d-4f allowed transition, but due to the strong self-absorption of luminescence, there is a serious degradation of performance with the size enlargement. Cerium ion (Ce 3+ ) doped scintillation crystals, such as LaBr 3 :Ce and LYSO:Ce, can have the advantages of high light yield and fast decay, but because free carriers will be captured by defects, the performance of the crystal has a bottleneck.
此外,镱离子(Yb2+)掺杂CsPbI3钙钛矿闪烁体近期也被发现可以通过量子剪裁效应产生极高的光产额;钐离子(Sm2+)可以将发光波长转换到近红外波段来匹配高探测效率的硅基光电探测器;非发光中心的钪钇镧等离子(Sc3+、Y3+、La3+等)掺杂也可以通过缺陷调控提高闪烁晶体的发光效率或获得更快的闪烁衰减时间。但是,迄今为止,本领域尚未提出能够满足医学成像、安全检查、高能物理等领域更高性能要求的闪烁探测材料。In addition, ytterbium ion (Yb 2+ ) doped CsPbI 3 perovskite scintillator has recently been found to produce extremely high light yields through quantum tailoring effects; samarium ion (Sm 2+ ) can convert the luminescence wavelength to the near-infrared band to match the high detection efficiency of silicon-based photodetectors; doping with scandium yttrium lanthanum ions (Sc 3+ , Y 3+ , La 3+ , etc.) in non-luminescent centers can also improve the luminescence efficiency of scintillating crystals or obtain faster scintillation decay time through defect regulation. However, to date, this field has not yet proposed scintillation detection materials that can meet the higher performance requirements of medical imaging, security inspection, high-energy physics and other fields.
因此,本领域亟需研发新型高性能闪烁材料,以克服上述现有技术的缺陷,从而满足医学成像、安全检查、高能物理等领域对闪烁探测材料提出的更高性能要求。Therefore, there is an urgent need to develop new high-performance scintillation materials in this field to overcome the defects of the above-mentioned existing technologies and meet the higher performance requirements for scintillation detection materials in the fields of medical imaging, security inspection, high-energy physics, etc.
发明内容Summary of the invention
本申请提供了一种可在X射线、γ射线及中子探测和成像中广泛应用的稀土离子掺杂零维钙钛矿卤化物闪烁单晶及其制备方法,从而解决了现有技术中存在的问题。The present application provides a rare earth ion doped zero-dimensional perovskite halide scintillating single crystal and a preparation method thereof which can be widely used in X-ray, gamma ray and neutron detection and imaging, thereby solving the problems existing in the prior art.
根据本申请的第一方面,提供了一种稀土离子掺杂零维钙钛矿卤化物闪烁单晶,具有如下组成通式:According to the first aspect of the present application, a rare earth ion doped zero-dimensional perovskite halide scintillating single crystal is provided, having the following general composition formula:
(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE,其中:(Cs 1-x A x ) 3 (Cu 1-y B y ) 2 (I 1-z X z ) 5 : m at%RE, where:
A = Rb、K、Na、Tl和In中的一种或多种的组合;A = a combination of one or more of Rb, K, Na, Tl and In;
B = Ag和Li中的一种或它们的组合;B = Ag and Li or a combination thereof;
X = Cl和Br中的一种或它们的组合;X = one of Cl and Br or a combination thereof;
RE为选自下组的稀土离子:Eu2+、Yb2+、Sc3+、Y3+、La3+、Ce3+、Pr3+、Nd3+、Sm3+、Eu3+、Gd3 +、Tb3+和Lu3+;且RE is a rare earth ion selected from the group consisting of Eu 2+ , Yb 2+ , Sc 3+ , Y 3+ , La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ and Lu 3+ ; and
0≤x≤0.1、0≤y≤0.25、0≤z≤1和0<m≤5。0≤x≤0.1, 0≤y≤0.25, 0≤z≤1 and 0<m≤5.
在一个优选的实施方式中,x = y = z = 0且RE = Eu2+,即Cs3Cu2I5:mat%Eu2+。In a preferred embodiment, x = y = z = 0 and RE = Eu 2+ , ie Cs 3 Cu 2 I 5 : m at% Eu 2+ .
在另一个优选的实施方式中,A = Tl,y = z = 0且RE = Eu2+,即(Cs1-xTlx)3Cu2I5:mat%Eu2+。In another preferred embodiment, A = Tl, y = z = 0 and RE = Eu 2+ , ie (Cs 1-x Tl x ) 3 Cu 2 I 5 : m at% Eu 2+ .
根据本申请的第二方面,提供了一种上述稀土离子掺杂零维钙钛矿卤化物闪烁单晶的制备方法,该方法包括以下步骤:According to the second aspect of the present application, a method for preparing the above-mentioned rare earth ion-doped zero-dimensional perovskite halide scintillating single crystal is provided, the method comprising the following steps:
使用纯度为≥99.9%的卤化物为原料,按照组成通式摩尔配比出目标组分并装入密封容器,利用固相反应法或熔盐降温法得到满足组成通式的化合物,然后利用布里奇曼下降法或水平定向凝固法得到目标稀土离子掺杂零维钙钛矿卤化物闪烁单晶。Using a halide with a purity of ≥99.9% as a raw material, the target components are molar-proportioned according to the general composition formula and loaded into a sealed container, and a compound satisfying the general composition formula is obtained by a solid-phase reaction method or a molten salt cooling method. Then, a Bridgman descent method or a horizontal directional solidification method is used to obtain a target rare earth ion-doped zero-dimensional perovskite halide scintillating single crystal.
在一个优选的实施方式中,该方法包括以下步骤:In a preferred embodiment, the method comprises the following steps:
(1)按组成通式称取各种原料;(1) Weigh various raw materials according to the general composition formula;
(2)在惰性环境中,将混合后的原料置于带有毛细底的坩埚中,然后把坩埚内抽为真空并焊封,利用固相反应法或熔盐降温法得到满足组成通式的化合物;(2) In an inert environment, the mixed raw materials are placed in a crucible with a capillary bottom, and then the crucible is evacuated to a vacuum and sealed with welding, and a compound satisfying the general composition formula is obtained by a solid phase reaction method or a molten salt cooling method;
(3)将焊封好的坩埚竖直置于晶体生长炉的中间位置;对晶体生长炉进行升温至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚底部温度达到预定值,再使坩埚在炉体内下降,晶体从坩埚毛细底开始成核并生长,直至熔体完全结晶;然后进行降温,直至降到室温;(3) placing the sealed crucible vertically in the middle of the crystal growth furnace; heating the crystal growth furnace until the raw materials are completely melted and mixed evenly; adjusting the crucible position and furnace temperature so that the temperature at the bottom of the crucible reaches a predetermined value, and then lowering the crucible in the furnace body, so that the crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely crystallized; then cooling down until it reaches room temperature;
(4)在干燥环境中从坩埚中取出制备得到的稀土离子掺杂零维钙钛矿卤化物闪烁单晶。(4) Taking out the prepared rare earth ion-doped zero-dimensional perovskite halide scintillating single crystal from the crucible in a dry environment.
在另一个优选的实施方式中,该方法包括以下步骤:In another preferred embodiment, the method comprises the following steps:
(1)按组成通式称取各种原料;(1) Weigh various raw materials according to the general composition formula;
(2)在惰性环境中,将混合后的原料置于带有毛细底的坩埚中,然后把坩埚内抽为真空并焊封,利用固相反应法或熔盐降温法得到满足组成通式的化合物;(2) In an inert environment, the mixed raw materials are placed in a crucible with a capillary bottom, and then the crucible is evacuated to a vacuum and sealed with welding, and a compound satisfying the general composition formula is obtained by a solid phase reaction method or a molten salt cooling method;
(3)将焊封好的坩埚水平置于水平定向生长炉的中间位置;对水平定向生长炉进行升温至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚底部温度达到预定值,再使坩埚在炉体内匀速水平移动,晶体从坩埚毛细底开始成核并生长,直至熔体完全结晶;然后进行降温,直至降到室温;(3) placing the sealed crucible horizontally in the middle of a horizontal directional growth furnace; heating the horizontal directional growth furnace until the raw materials are completely melted and evenly mixed; adjusting the crucible position and furnace temperature so that the temperature at the bottom of the crucible reaches a predetermined value, and then moving the crucible horizontally at a uniform speed in the furnace body, so that the crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely crystallized; and then cooling down until it reaches room temperature;
(4)在干燥环境中从坩埚中取出制备得到的稀土离子掺杂零维钙钛矿卤化物闪烁单晶。(4) Taking out the prepared rare earth ion-doped zero-dimensional perovskite halide scintillating single crystal from the crucible in a dry environment.
在另一个优选的实施方式中,在步骤(2)中,所述惰性环境包括手套箱。In another preferred embodiment, in step (2), the inert environment includes a glove box.
在另一个优选的实施方式中,在步骤(2)中,所述坩埚包括石英坩埚。In another preferred embodiment, in step (2), the crucible comprises a quartz crucible.
在另一个优选的实施方式中,在步骤(3)中,升温至400-600℃;使坩埚底部温度达到330-400℃。In another preferred embodiment, in step (3), the temperature is raised to 400-600°C; and the temperature of the bottom of the crucible reaches 330-400°C.
根据本申请的第三方面,提供了一种上述稀土离子掺杂零维钙钛矿卤化物闪烁单晶在X射线、γ射线及中子探测和成像中的应用,其中,所述应用包括在医学成像、安全检查和高能物理中的应用。According to the third aspect of the present application, there is provided an application of the above-mentioned rare earth ion doped zero-dimensional perovskite halide scintillating single crystal in X-ray, gamma ray and neutron detection and imaging, wherein the application includes application in medical imaging, security inspection and high energy physics.
有益效果:本申请的稀土离子掺杂零维钙钛矿卤化物闪烁单晶具有低原料成本、较高的化学稳定性、低熔点、易于制备的优点,同时通过稀土离子掺杂或者优化改进获得高效的闪烁发光,实现了更高的探测效率,可用于X射线、γ射线及中子探测和成像,在医学成像、安全检查和高能物理等领域有重要应用前景。Beneficial effects: The rare earth ion doped zero-dimensional perovskite halide scintillating single crystal of the present application has the advantages of low raw material cost, high chemical stability, low melting point, and easy preparation. At the same time, efficient scintillation luminescence is obtained through rare earth ion doping or optimization and improvement, achieving higher detection efficiency, and can be used for X-ray, gamma ray and neutron detection and imaging, and has important application prospects in medical imaging, security inspection and high-energy physics.
通过阅读下面的详细描述并参考相关联的附图,这些及其他特点和优点将变得显而易见。应该理解,前面的概括说明和下面的详细描述只是说明性的,不会对所要求保护的各方面形成限制。These and other features and advantages will become apparent by reading the following detailed description and by reference to the associated drawings.It is to be understood that the foregoing general description and the following detailed description are illustrative only and are not restrictive of the aspects as claimed.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
图1示出了本申请实施例1中得到的卤化物闪烁单晶Cs3Cu2I5:0.5%Eu2+以及实施例2中得到的卤化物闪烁单晶Cs3Cu2I5:0.5%Pr3+和Cs3Cu2I5:0.5%Yb2+在自然光下的样品照片。FIG1 shows sample photographs of the halide scintillating single crystal Cs 3 Cu 2 I 5 :0.5%Eu 2+ obtained in Example 1 of the present application and the halide scintillating single crystals Cs 3 Cu 2 I 5 :0.5%Pr 3+ and Cs 3 Cu 2 I 5 :0.5%Yb 2+ obtained in Example 2 under natural light.
图2示出了本申请实施例3中得到的卤化物闪烁单晶(Cs0.99Tl0.01)3Cu2I5:0.5%Eu2+在自然光下的样品照片。FIG2 shows a sample photo of the halide scintillating single crystal (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Eu 2+ obtained in Example 3 of the present application under natural light.
图3示出了本申请实施例4中得到的卤化物闪烁单晶(Cs0.99Tl0.01)3Cu2I5:0.5%Sc3 +、(Cs0.99Tl0.01)3Cu2I5:0.5%Y3+、(Cs0.99Tl0.01)3Cu2I5:0.5%La3+和(Cs0.99Tl0.01)3Cu2I5:0.5%Lu3 +在自然光下的样品照片。3 shows sample photographs of the halide scintillating single crystals (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Sc 3 + , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Y 3+ , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%La 3+ , and (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Lu 3 + obtained in Example 4 of the present application under natural light.
图4示出了本申请实施例5中得到的卤化物闪烁单晶Cs3Cu2(I0.8Br0.2)5:0.5%Eu2+以及实施例6中得到的卤化物闪烁单晶(Cs0.99Tl0.01)3Cu2(I0.8Br0.2)5:0.5%Eu2+在自然光下的样品照片。4 shows sample photographs of the halide scintillating single crystal Cs 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ obtained in Example 5 of the present application and the halide scintillating single crystal (Cs 0.99 Tl 0.01 ) 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ obtained in Example 6 under natural light.
图5示出了本申请实施例1中得到的卤化物闪烁单晶Cs3Cu2I5:0.5%Eu2+的辐射发光光谱。FIG5 shows the radiative luminescence spectrum of the halide scintillating single crystal Cs 3 Cu 2 I 5 :0.5%Eu 2+ obtained in Example 1 of the present application.
图6示出了本申请实施例3中得到的卤化物闪烁单晶(Cs0.99Tl0.01)3Cu2I5:0.5%Eu2+的辐射发光光谱。FIG6 shows the radioluminescence spectrum of the halide scintillating single crystal (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Eu 2+ obtained in Example 3 of the present application.
图7示出了本申请实施例4中得到的卤化物闪烁单晶(Cs0.99Tl0.01)3Cu2I5:0.5%Sc3 +、(Cs0.99Tl0.01)3Cu2I5:0.5%Y3+、(Cs0.99Tl0.01)3Cu2I5:0.5%La3+和(Cs0.99Tl0.01)3Cu2I5:0.5%Lu3 +的辐射发光光谱(相比未掺杂的(Cs0.99Tl0.01)3Cu2I5晶体)。Figure 7 shows the radioluminescence spectra of the halide scintillating single crystals (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 : 0.5%Sc 3 + , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 : 0.5%Y 3+ , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 : 0.5%La 3+ and (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 : 0.5%Lu 3 + obtained in Example 4 of the present application (compared to the undoped (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 crystal).
图8示出了本申请实施例1中得到的卤化物闪烁单晶Cs3Cu2I5:0.5%Eu2+以及对比例2中得到的卤化物闪烁单晶SrI2:Eu2+的荧光光谱。FIG8 shows the fluorescence spectra of the halide scintillating single crystal Cs 3 Cu 2 I 5 :0.5%Eu 2+ obtained in Example 1 of the present application and the halide scintillating single crystal SrI 2 :Eu 2+ obtained in Comparative Example 2. FIG.
图9示出了本申请实施例1中得到的卤化物闪烁单晶Cs3Cu2I5:0.5%Eu2+以及对比例1中得到的卤化物闪烁单晶Cs3Cu2I5的γ射线能谱。FIG. 9 shows the gamma-ray energy spectra of the halide scintillating single crystal Cs 3 Cu 2 I 5 :0.5%Eu 2+ obtained in Example 1 of the present application and the halide scintillating single crystal Cs 3 Cu 2 I 5 obtained in Comparative Example 1. FIG.
图10示出了本申请实施例4中得到的卤化物闪烁单晶(Cs0.99Tl0.01)3Cu2I5:0.5%Sc3 +和(Cs0.99Tl0.01)3Cu2I5:0.5%Y3+的γ射线能谱。FIG. 10 shows the γ-ray energy spectra of the halide scintillating single crystals (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5% Sc 3 + and (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5% Y 3+ obtained in Example 4 of the present application.
图11示出了本申请实施例1中得到的卤化物闪烁单晶Cs3Cu2I5:0.5%Eu2+的闪烁衰减曲线。FIG. 11 shows the scintillation decay curve of the halide scintillating single crystal Cs 3 Cu 2 I 5 :0.5%Eu 2+ obtained in Example 1 of the present application.
图12示出了本申请实施例2中得到的卤化物闪烁单晶Cs3Cu2I5:0.5%Pr3+和Cs3Cu2I5:0.5%Yb2+的闪烁衰减曲线。FIG. 12 shows the scintillation decay curves of the halide scintillating single crystals Cs 3 Cu 2 I 5 :0.5% Pr 3+ and Cs 3 Cu 2 I 5 :0.5% Yb 2+ obtained in Example 2 of the present application.
图13示出了根据本申请一个优选实施方式的闪烁单晶耦合光电探测器示意图。FIG13 shows a schematic diagram of a scintillation single crystal coupled photodetector according to a preferred embodiment of the present application.
具体实施方式Detailed ways
下面结合附图详细描述本申请,本申请的特点将在以下的具体描述中得到进一步的显现。The present application is described in detail below in conjunction with the accompanying drawings, and the features of the present application will be further revealed in the following specific description.
本文所公开的“范围”以下限和上限的形式来限定,给定范围是通过选定一个下限和一个上限进行限定的,选定的下限和上限限定了特别范围的边界。这种方式进行限定的范围可以是包括端值或不包括端值的,并且可以进行任意地组合,即任何下限可以与任何上限组合形成一个范围。例如,如果针对特定参数列出了60-120和80-110的范围,理解为60-110和80-120的范围也是预料到的。此外,如果列出的最小范围值1和2,和如果列出了最大范围值3,4和5,则下面的范围可全部预料到:1-3、1-4、1-5、2-3、2-4和2-5。在本申请中,除非有其他说明,数值范围“a-b”表示a到b之间的任意实数组合的缩略表示,其中a和b都是实数。例如数值范围“0-5”表示本文中已经全部列出了“0-5”之间的全部实数,“0-5”只是这些数值组合的缩略表示。另外,当表述某个参数为≥2的整数,则相当于公开了该参数为例如整数2、3、4、5、6、7、8、9、10、11、12等。"Range" disclosed herein is defined in the form of lower limit and upper limit, and a given range is defined by selecting a lower limit and an upper limit, and the selected lower limit and upper limit define the boundary of a particular range. The range defined in this way can be inclusive or exclusive of end values, and can be arbitrarily combined, that is, any lower limit can be combined with any upper limit to form a range. For example, if the range of 60-120 and 80-110 is listed for a particular parameter, it is understood that the range of 60-110 and 80-120 is also expected. In addition, if the minimum range values 1 and 2 are listed, and if the maximum range values 3, 4 and 5 are listed, the following ranges can all be expected: 1-3, 1-4, 1-5, 2-3, 2-4 and 2-5. In this application, unless otherwise specified, the numerical range "a-b" represents the abbreviation of any real number combination between a and b, wherein a and b are real numbers. For example, the numerical range "0-5" represents that all real numbers between "0-5" have been fully listed herein, and "0-5" is just the abbreviation of these numerical combinations. In addition, when a parameter is expressed as an integer ≥ 2, it is equivalent to disclosing that the parameter is, for example, an integer of 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, etc.
在本申请中,如果没有特别的说明,本文所提到的所有实施方式以及优选实施方式可以相互组合形成新的技术方案。在本申请中,如果没有特别的说明,本文所提到的所有技术特征以及优选特征可以相互组合形成新的技术方案。In this application, unless otherwise specified, all embodiments and preferred embodiments mentioned herein can be combined with each other to form a new technical solution. In this application, unless otherwise specified, all technical features and preferred features mentioned herein can be combined with each other to form a new technical solution.
在本申请中,如果没有特别的说明,本文所提到的“包括”和“包含”表示开放式,也可以是封闭式。例如,所述“包括”和“包含”可以表示还可以包括或包含没有列出的其他组分,也可以仅包括或包含列出的组分。In this application, unless otherwise specified, the terms "include" and "comprising" mentioned herein may be open-ended or closed-ended. For example, the terms "include" and "comprising" may mean that other components not listed may also be included or only the listed components may be included or only the listed components may be included.
在本文的描述中,除非另有说明,术语“或”是包括性的。举例来说,短语“A或B”表示“A,B,或A和B两者”。更具体地,以下任一条件均满足条件“A或B”:A为真(或存在)并且B为假(或不存在);A为假(或不存在)而B为真(或存在);或A和B都为真(或存在)。In the description herein, unless otherwise specified, the term "or" is inclusive. For example, the phrase "A or B" means "A, B, or both A and B". More specifically, any of the following conditions satisfies the condition "A or B": A is true (or exists) and B is false (or does not exist); A is false (or does not exist) and B is true (or exists); or both A and B are true (or exist).
针对现有的低维结构卤化物闪烁晶体在载流子利用效率和闪烁效率,以及传统的稀土离子掺杂卤化物闪烁晶体在稳定性、自吸收和放射性本底等存在局限性,限制了其在核医学影像、国土和社会安全、高能物理和深空探测等领域中的进一步应用的缺陷,现有技术中尚未有解决方案。There is no solution in the existing technology to the defects of existing low-dimensional structured halide scintillator crystals in carrier utilization efficiency and scintillation efficiency, and the limitations of traditional rare earth ion-doped halide scintillator crystals in stability, self-absorption and radioactive background, which restrict their further application in the fields of nuclear medicine imaging, homeland and social security, high energy physics and deep space exploration.
从零维结构的Cs3Cu2I5晶体出发,其发光机制为强量子限域效应提供的自陷激子复合发光,理论上可获得~150,000 ph./MeV的高光产额,但由于激子之间相互作用导致的非辐射猝灭未能获得理想性能。以Eu2+离子为代表的发光离子掺杂,在晶体中提供了一种新的稀土离子相关的辐射发光通道,从而提高电离产生的载流子利用率。从稀土发光离子的特性出发,低维结构及软晶格提供的能量弛豫能改善发光的自吸收效应,同时限域效应可以减少热载流子在晶格中输运到发光中心过程中被缺陷俘获的概率。而非发光中心离子如Y3+离子等掺杂可以在限域激子能级之间增加新的缺陷能级,将非辐射过程损耗的载流子“暂时存放”到浅缺陷能级,并很快重新进入限域激子态参与闪烁发光。Starting from the zero-dimensional structure of Cs 3 Cu 2 I 5 crystal, its luminescence mechanism is the self-trapped exciton recombination luminescence provided by the strong quantum confinement effect. Theoretically, a high light yield of ~150,000 ph./MeV can be obtained, but the non-radiative quenching caused by the interaction between excitons fails to achieve ideal performance. Luminescent ion doping represented by Eu 2+ ions provides a new rare earth ion-related radiative luminescence channel in the crystal, thereby improving the utilization rate of carriers generated by ionization. Starting from the characteristics of rare earth luminescent ions, the energy relaxation provided by the low-dimensional structure and soft lattice can improve the self-absorption effect of luminescence, and the confinement effect can reduce the probability of hot carriers being captured by defects during the process of transporting to the luminescent center in the lattice. Doping with non-luminescent center ions such as Y 3+ ions can add new defect energy levels between the confined exciton energy levels, "temporarily store" the carriers lost in the non-radiative process in the shallow defect energy level, and quickly re-enter the confined exciton state to participate in the flashing luminescence.
将低维金属卤化物闪烁晶体的强量子限域效应和稀土掺杂闪烁晶体的高效率多样性发光相结合,有望获得低自吸收、低缺陷俘获概率、高发光效率等性能结合的新型闪烁晶体。相比现有的低维结构卤化物闪烁晶体能获得更高的载流子利用效率和闪烁效率,相比传统的稀土离子掺杂卤化物闪烁晶体具有更高稳定性、低自吸收和低放射性本底的特点。稀土离子掺杂低维卤化物闪烁晶体可为核医学影像、国土和社会安全、高能物理和深空探测等领域提供更佳的闪烁晶体候选方案。Combining the strong quantum confinement effect of low-dimensional metal halide scintillating crystals with the high-efficiency and diverse luminescence of rare earth-doped scintillating crystals, it is expected that a new type of scintillating crystal with low self-absorption, low defect capture probability, and high luminescence efficiency can be obtained. Compared with existing low-dimensional structured halide scintillating crystals, it can achieve higher carrier utilization efficiency and scintillation efficiency. Compared with traditional rare earth ion-doped halide scintillating crystals, it has the characteristics of higher stability, low self-absorption and low radioactive background. Rare earth ion-doped low-dimensional halide scintillating crystals can provide better scintillating crystal candidate solutions for nuclear medical imaging, homeland and social security, high energy physics, and deep space exploration.
本申请提供了一种新颖的稀土离子掺杂零维钙钛矿卤化物闪烁单晶及其制备方法,该卤化物闪烁单晶可在X射线、γ射线及中子探测和成像中广泛应用,从而解决了现有技术中存在的问题。The present application provides a novel rare earth ion doped zero-dimensional perovskite halide scintillating single crystal and a preparation method thereof. The halide scintillating single crystal can be widely used in X-ray, gamma ray and neutron detection and imaging, thereby solving the problems existing in the prior art.
本发明的特点在于提出了一种新型稀土离子掺杂的低维结构卤化物闪烁晶体的策略,结合了低维卤化物材料和稀土离子掺杂的优势。提供了一种稀土离子掺杂的低维结构卤化物闪烁晶体(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE的组成、制备方法及应用。最重要的提出了一种稀土掺杂优化Cs3Cu2I5基闪烁晶体性能的策略。The invention is characterized in that a novel rare earth ion doped low-dimensional structure halide scintillating crystal strategy is proposed, which combines the advantages of low-dimensional halide materials and rare earth ion doping. A rare earth ion doped low-dimensional structure halide scintillating crystal (Cs 1-x A x ) 3 (Cu 1-y B y ) 2 (I 1-z X z ) 5 : m at%RE composition, preparation method and application are provided. Most importantly, a rare earth doping strategy is proposed to optimize the performance of Cs 3 Cu 2 I 5 -based scintillating crystals.
在本申请的第一方面,提供了一种稀土离子掺杂零维钙钛矿卤化物闪烁单晶,具有如下组成通式:In the first aspect of the present application, a rare earth ion doped zero-dimensional perovskite halide scintillating single crystal is provided, having the following general composition formula:
(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%(原子%)RE,其中:(Cs 1-x A x ) 3 (Cu 1-y B y ) 2 (I 1-z X z ) 5 : m at% (atomic %) RE, where:
A = Rb、K、Na、Tl、In中的一种或多种的组合;A = a combination of one or more of Rb, K, Na, Tl, In;
B = Ag和Li中的一种或它们的组合;B = Ag and Li or a combination thereof;
X = Cl和Br中的一种或它们的组合;X = one of Cl and Br or a combination thereof;
RE为Eu2+、Yb2+、Sc3+、Y3+、La3+、Ce3+、Pr3+、Nd3+、Sm3+、Eu3+、Gd3+、Tb3+、Lu3+等稀土离子,且RE is a rare earth ion such as Eu 2+ , Yb 2+ , Sc 3+ , Y 3+ , La 3+ , Ce 3+ , Pr 3+ , Nd 3+ , Sm 3+ , Eu 3+ , Gd 3+ , Tb 3+ , Lu 3+ , and
0≤x≤0.1、0≤y≤0.25、0≤z≤1、0<m≤5。0≤x≤0.1, 0≤y≤0.25, 0≤z≤1, 0<m≤5.
在本申请中,所述稀土离子掺杂零维钙钛矿卤化物闪烁单晶具有以下两种优选组成:Cs3Cu2I5:mat%Eu2+和(Cs1-xTlx)3Cu2I5:mat%Eu2+,其中:0≤x≤0.1,0<m≤5。In the present application, the rare earth ion doped zero-dimensional perovskite halide scintillating single crystal has the following two preferred compositions: Cs 3 Cu 2 I 5 : m at% Eu 2+ and (Cs 1-x Tl x ) 3 Cu 2 I 5 : m at% Eu 2+ , wherein: 0≤x≤0.1, 0<m≤5.
在本申请的第二方面,提供了一种稀土离子掺杂零维钙钛矿卤化物闪烁单晶的制备方法,该方法包括以下步骤:In a second aspect of the present application, a method for preparing a rare earth ion-doped zero-dimensional perovskite halide scintillating single crystal is provided, the method comprising the following steps:
使用纯度为(≥99.9%)的高纯卤化物为原料,按照组成通式摩尔配比出目标组分并装入密封容器,利用固相反应法或熔盐降温法得到满足组成通式的化合物,然后利用布里奇曼下降法或水平定向凝固法得到目标稀土离子掺杂零维钙钛矿卤化物闪烁单晶。Using high-purity halide with a purity of (≥99.9%) as raw material, the target components are molar-proportioned according to the general composition formula and loaded into a sealed container, and the compound satisfying the general composition formula is obtained by solid-phase reaction method or molten salt cooling method, and then the target rare earth ion-doped zero-dimensional perovskite halide scintillating single crystal is obtained by Bridgman descent method or horizontal directional solidification method.
在本申请中,所述方法包括以下步骤:In the present application, the method comprises the following steps:
(1)按上述组成通式(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE称取各种原料;(1) Weigh various raw materials according to the above general composition formula (Cs1 -xAx ) 3 (Cu1 -yBy ) 2 (I1 -zXz ) 5 : mat %RE;
(2)在惰性环境(例如充满惰性气体的手套箱)中,将混合后的原料置于带有毛细底的石英坩埚或其它材质的坩埚中,然后把坩埚内抽为真空并焊封;(2) In an inert environment (e.g., a glove box filled with inert gas), place the mixed raw materials in a quartz crucible with a capillary bottom or a crucible made of other materials, then evacuate the crucible and seal it with welding;
(3)将焊封好的坩埚置于管式炉或其它加热炉中;利用固相反应法或熔盐降温法(该方法将温度升高到满足组成通式的化合物熔点以上,如400-600℃,以获得更高的产物均匀度和反应效率)使得原料充分反应合成目标组分多晶;随后将其放入布里奇曼生长炉中;调节坩埚位置与炉温,使坩埚底部温度达到预定值(如330-400℃),再使坩埚在炉体内下降,晶体从坩埚毛细底开始成核并生长,直至熔体完全结晶;然后进行降温,直至降到室温;(3) placing the sealed crucible in a tubular furnace or other heating furnace; using a solid phase reaction method or a molten salt cooling method (this method raises the temperature to above the melting point of the compound satisfying the general composition formula, such as 400-600°C, to obtain higher product uniformity and reaction efficiency) to allow the raw materials to fully react and synthesize the target component polycrystal; then placing it in a Bridgman growth furnace; adjusting the crucible position and furnace temperature so that the crucible bottom temperature reaches a predetermined value (such as 330-400°C), and then lowering the crucible in the furnace body, and the crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely crystallized; then cooling it down to room temperature;
(4)在干燥环境中从坩埚中取出制备得到的稀土离子掺杂零维钙钛矿卤化物闪烁单晶。(4) Taking out the prepared rare earth ion-doped zero-dimensional perovskite halide scintillating single crystal from the crucible in a dry environment.
在本申请中,所述方法包括以下步骤:In the present application, the method comprises the following steps:
(1)按上述组成通式(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE称取各种原料;(1) Weigh various raw materials according to the above general composition formula (Cs1 -xAx ) 3 (Cu1 -yBy ) 2 (I1 -zXz ) 5 : mat %RE;
(2)在惰性环境(例如充满惰性气体的手套箱)中,将混合后的原料置于带有毛细底的石英坩埚或其它材质的坩埚中,然后把坩埚内抽为真空并焊封;(2) In an inert environment (e.g., a glove box filled with inert gas), place the mixed raw materials in a quartz crucible with a capillary bottom or a crucible made of other materials, then evacuate the crucible and seal it with welding;
(3)将焊封好的坩埚置于管式炉或其它加热炉中;利用固相反应法或熔盐降温法(该方法将温度升高到满足组成通式的化合物熔点以上,如400-600℃,以获得更高的产物均匀度和反应效率)使得原料充分反应合成目标组分多晶;随后将其水平放入水平定向生长炉中;调节坩埚位置与炉温,使坩埚底部温度达到预定值(如330-400℃),再使坩埚在炉体内匀速水平移动,晶体从坩埚毛细底开始成核并生长,直至熔体完全结晶;然后进行降温,直至降到室温;(3) Place the sealed crucible in a tubular furnace or other heating furnace; use a solid phase reaction method or a molten salt cooling method (this method raises the temperature to above the melting point of the compound that meets the general composition formula, such as 400-600°C, to obtain higher product uniformity and reaction efficiency) to allow the raw materials to fully react and synthesize the target component polycrystal; then place it horizontally in a horizontal directional growth furnace; adjust the crucible position and furnace temperature so that the crucible bottom temperature reaches a predetermined value (such as 330-400°C), and then move the crucible horizontally at a uniform speed in the furnace body, and the crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely crystallized; then cool it down until it reaches room temperature;
(4)在干燥环境中从坩埚中取出制备得到的稀土离子掺杂零维钙钛矿卤化物闪烁单晶。(4) Taking out the prepared rare earth ion-doped zero-dimensional perovskite halide scintillating single crystal from the crucible in a dry environment.
在本申请的第三方面,提供了上述稀土离子掺杂零维钙钛矿卤化物闪烁单晶在X射线、γ射线及中子探测和成像中的应用,其中,所述应用包括在医学成像、安全检查和高能物理中的应用。In the third aspect of the present application, there is provided an application of the above-mentioned rare earth ion doped zero-dimensional perovskite halide scintillating single crystal in X-ray, gamma ray and neutron detection and imaging, wherein the application includes application in medical imaging, security inspection and high energy physics.
在本申请中,上述方法制备的单晶材料经过切割、研磨、抛光处理后可直接耦合光电器件用于高能电离辐射探测,最典型的应用是γ能谱探测,也适合根据具体需求通过对X射线、α粒子、β粒子、中子等探测在医学成像、国土安全、物理研究等领域应用。In the present application, the single crystal material prepared by the above method can be directly coupled to optoelectronic devices for high-energy ionizing radiation detection after cutting, grinding and polishing. The most typical application is gamma spectrum detection. It is also suitable for application in medical imaging, homeland security, physical research and other fields through detection of X-rays, alpha particles, beta particles, neutrons, etc. according to specific needs.
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。The present invention will be further described below in conjunction with specific examples. It should be understood that these examples are only used to illustrate the present invention and are not intended to limit the scope of the present invention.
实施例1:本实施例1提出的一种零维钙钛矿卤化物闪烁单晶,其组成化学式为Cs3Cu2I5:0.5%Eu2+,即以(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE为通式,x = 0、y = 0、z = 0、m= 0.5、RE = Eu2+,上述卤化物闪烁单晶采用布里奇曼下降法制备,制备工艺包括如下操作:按需制备的本征卤化物闪烁单晶组成化学式Cs3Cu2I5:0.5%Eu2+称取各原料;b) 在充满氩气的手套箱中,将各原料置于带有毛细底的石英坩埚中;然后把坩埚内抽为真空并焊封;c)将焊封好的石英坩埚竖直置于晶体生长炉的中间位置;对晶体生长炉进行升温,使温度达到550°C左右,至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚底部温度降至350°C左右,再以0.5 mm/h的下降速度使石英坩埚在炉体内下降,晶体从坩埚毛细底开始成核并生长,直至熔体完全凝固;然后以7°C/h的速率进行降温,直至降到室温;最后在干燥环境中从石英坩埚中取出制备好的卤化物闪烁体并进行切割加工。Example 1: A zero-dimensional perovskite halide scintillating single crystal proposed in Example 1 has a composition chemical formula of Cs 3 Cu 2 I 5 :0.5%Eu 2+ , that is, (Cs 1-x A x ) 3 (Cu 1-y B y ) 2 (I 1-z X z ) 5 : m at%RE as the general formula, x = 0, y = 0, z = 0, m = 0.5, RE = Eu 2+ , and the above halide scintillating single crystal is prepared by the Bridgman descent method, and the preparation process includes the following operations: a) weighing each raw material of the intrinsic halide scintillating single crystal with the composition chemical formula Cs 3 Cu 2 I 5 :0.5%Eu 2+ prepared as required; b) preparing a scintillating single crystal of the intrinsic halide scintillating single crystal with the composition chemical formula Cs 3 Cu 2 I 5 :0.5%Eu 2+ ; In a glove box filled with argon, each raw material is placed in a quartz crucible with a capillary bottom; then the crucible is evacuated to a vacuum and sealed with welding; c) the sealed quartz crucible is placed vertically in the middle position of a crystal growth furnace; the crystal growth furnace is heated to about 550°C until the raw materials are completely melted and mixed evenly; the crucible position and furnace temperature are adjusted to reduce the temperature of the bottom of the crucible to about 350°C, and then the quartz crucible is lowered in the furnace body at a descending speed of 0.5 mm/h, and the crystal begins to nucleate and grow from the capillary bottom of the crucible until the melt is completely solidified; then the temperature is lowered at a rate of 7°C/h until it reaches room temperature; finally, the prepared halide scintillator is taken out of the quartz crucible in a dry environment and cut and processed.
测试上述闪烁单晶的辐射发光光谱和光致发光激发和发射谱,除本征的自限激子发光外,存在一个新的Eu2+发光中心。耦合到光电倍增管测试得Cs3Cu2I5:0.5%Eu2+晶体的光产额为60,000 ph./MeV,能量分辨率为4.0%。相比未掺杂的Cs3Cu2I5晶体,光产额增加了1.1倍,能量分辨率优化了0.8个百分点。非低维结构的SrI2:Eu2+晶体中的Eu2+离子发光存在着强自吸收效应,而低维晶体结构的Cs3Cu2I5:0.5%Eu2+晶体中Eu2+离子发光的自吸收现象被明显优化。The radiative luminescence spectrum and photoluminescence excitation and emission spectrum of the above-mentioned scintillating single crystals were tested. In addition to the intrinsic self-limited exciton luminescence, there is a new Eu 2+ luminescence center. The light yield of the Cs 3 Cu 2 I 5 :0.5%Eu 2+ crystal coupled to a photomultiplier tube was 60,000 ph./MeV, and the energy resolution was 4.0%. Compared with the undoped Cs 3 Cu 2 I 5 crystal, the light yield increased by 1.1 times, and the energy resolution was optimized by 0.8 percentage points. The luminescence of Eu 2+ ions in the non-low-dimensional SrI 2 :Eu 2+ crystal has a strong self-absorption effect, while the self-absorption of Eu 2+ ion luminescence in the low-dimensional Cs 3 Cu 2 I 5 :0.5%Eu 2+ crystal is significantly optimized.
对比例1:组成化学式为Cs3Cu2I5卤化物闪烁单晶采用布里奇曼下降法制备,制备工艺包括如下操作:a) 按需制备的本征卤化物闪烁体组成化学式Cs3Cu2I5称取各原料;b)在充满氩气的手套箱中,将各原料置于带有毛细底的石英坩埚中;然后把坩埚内抽为真空并焊封;c) 将焊封好的石英坩埚竖直置于晶体生长炉的中间位置;对晶体生长炉进行升温,使温度达到550°C左右,至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚底部温度降至350°C左右,再以0.5 mm/h的下降速度使石英坩埚在炉体内下降,晶体从坩埚毛细底开始成核并生长,直至熔体完全凝固;然后以7°C/h的速率进行降温,直至降到室温;最后在干燥环境中从石英坩埚中取出制备好的卤化物闪烁体并进行切割加工。Comparative Example 1: A halide scintillator single crystal with a chemical formula of Cs 3 Cu 2 I 5 was prepared by a Bridgman descent method, and the preparation process includes the following operations: a) weighing each raw material according to the intrinsic halide scintillator with a chemical formula of Cs 3 Cu 2 I 5 prepared as required; b) placing each raw material in a quartz crucible with a capillary bottom in a glove box filled with argon; then evacuating the crucible to a vacuum and sealing it with welding; c) vertically placing the sealed quartz crucible in the middle of a crystal growth furnace; heating the crystal growth furnace to about 550°C until the raw materials are completely melted and evenly mixed; adjusting the crucible position and furnace temperature to reduce the crucible bottom temperature to about 350°C, and then heating the crucible at 0.5 The quartz crucible is lowered in the furnace at a descending speed of 0.1777 W/h. Crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely solidified. The temperature is then lowered at a rate of 7°C/h until it reaches room temperature. Finally, the prepared halide scintillator is taken out of the quartz crucible in a dry environment and cut.
耦合到光电倍增管测试得Cs3Cu2I5晶体的光产额为28,000 ph./MeV,能量分辨率为4.8%。The light yield of Cs 3 Cu 2 I 5 crystal coupled to a photomultiplier tube was 28,000 ph./MeV, and the energy resolution was 4.8%.
对比例2:组成化学式为SrI2:Eu2+闪烁单晶采用布里奇曼下降法制备,制备工艺包括如下操作:a) 按需制备的本征卤化物闪烁体组成化学式SrI2:Eu2+称取各原料;b) 在充满氩气的手套箱中,将各原料置于带有毛细底的石英坩埚中;然后把坩埚内抽为真空并焊封;c) 将焊封好的石英坩埚竖直置于晶体生长炉的中间位置;对晶体生长炉进行升温,使温度达到600°C左右,至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚底部温度降至530°C左右,再以0.5 mm/h的下降速度使石英坩埚在炉体内下降,晶体从坩埚毛细底开始成核并生长,直至熔体完全凝固;然后以7°C/h的速率进行降温,直至降到室温;最后在干燥环境中从石英坩埚中取出制备好的卤化物闪烁体并进行切割加工。Comparative Example 2: A scintillating single crystal with a chemical formula of SrI 2 :Eu 2+ was prepared by the Bridgman descent method, and the preparation process included the following operations: a) weighing each raw material according to the intrinsic halide scintillator with a chemical formula of SrI 2 :Eu 2+ prepared as required; b) placing each raw material in a quartz crucible with a capillary bottom in a glove box filled with argon; then evacuating the crucible to a vacuum and sealing it with welding; c) vertically placing the sealed quartz crucible in the middle of a crystal growth furnace; heating the crystal growth furnace to about 600°C until the raw materials were completely melted and mixed evenly; adjusting the crucible position and furnace temperature to reduce the crucible bottom temperature to about 530°C, and then heating the crucible at 0.5 The quartz crucible is lowered in the furnace at a descending speed of 0.1777 W/h. Crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely solidified. The temperature is then lowered at a rate of 7°C/h until it reaches room temperature. Finally, the prepared halide scintillator is taken out of the quartz crucible in a dry environment and cut.
测试上述闪烁晶体光致发光激发和发射谱,发现其具有严重的自吸收。The photoluminescence excitation and emission spectra of the scintillation crystal were tested and it was found that it had severe self-absorption.
实施例2:本实施例2提出的四种零维钙钛矿卤化物闪烁单晶,其组成化学式为Cs3Cu2I5:0.5%Pr3+、Cs3Cu2I5:0.5%Yb2+、Cs3Cu2I5:0.5%Sm2+和Cs3Cu2I5:0.5%Ce3+,即以(Cs1- xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE为通式,x = 0、y = 0、z = 0、m = 0.5、RE = Pr3+、Yb2+、Sm2+和Ce3+,上述卤化物闪烁单晶采用布里奇曼下降法制备,制备工艺包括如下操作:a) 按需制备的本征卤化物闪烁单晶组成化学式Cs3Cu2I5:0.5%Pr3+、Cs3Cu2I5:0.5%Yb2+、Cs3Cu2I5:0.5%Sm2+和Cs3Cu2I5:0.5%Ce3+称取各原料;b) 在充满氮气的手套箱中,将各原料置于带有毛细底的石英坩埚中;然后把坩埚内抽为真空并焊封;c) 将焊封好的石英坩埚竖直置于晶体生长炉的中间位置;对晶体生长炉进行升温,使温度达到550°C左右,至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚底部温度降至350°C左右,再以0.5 mm/h的下降速度使石英坩埚在炉体内下降,晶体从坩埚毛细底开始成核并生长,直至熔体完全凝固;然后以7°C/h的速率进行降温,直至降到室温;最后从石英坩埚中取出制备完成的晶体。Example 2: The four zero-dimensional perovskite halide scintillating single crystals proposed in Example 2 have the chemical formulas of Cs 3 Cu 2 I 5 :0.5%Pr 3+ , Cs 3 Cu 2 I 5 :0.5%Yb 2+ , Cs 3 Cu 2 I 5 :0.5%Sm 2+ and Cs 3 Cu 2 I 5 :0.5%Ce 3+ , that is, (Cs 1- x A x ) 3 (Cu 1-y B y ) 2 (I 1- z X z ) 5 : m at%RE as the general formula, x = 0, y = 0, z = 0, m = 0.5, RE = Pr 3+ , Yb 2+ , Sm 2+ and Ce 3+ , and the above halide scintillating single crystals are prepared by the Bridgman descent method, and the preparation process includes the following operations: a) The intrinsic halide scintillating single crystal prepared on demand has the chemical formula Cs 3 Cu 2 I 5 :0.5% Pr 3+ , Cs 3 Cu 2 I 5 :0.5% Yb 2+ , Cs 3 Cu 2 I 5 :0.5% Sm 2+ and Cs 3 Cu 2 I 5 :0.5% Ce 3+. a) Weigh each raw material; b) Place each raw material in a quartz crucible with a capillary bottom in a glove box filled with nitrogen; then evacuate the crucible and seal it with welding; c) Place the sealed quartz crucible vertically in the middle of a crystal growth furnace; Heat the crystal growth furnace to about 550°C until the raw materials are completely melted and mixed evenly; Adjust the position of the crucible and the furnace temperature to reduce the temperature of the bottom of the crucible to about 350°C, and then heat it at 0.5 The quartz crucible is lowered in the furnace at a descending speed of 0.1777 W/h. The crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely solidified. The temperature is then lowered at a rate of 7°C/h until it reaches room temperature. Finally, the prepared crystals are taken out of the quartz crucible.
耦合到光电倍增管测试得Cs3Cu2I5:0.5%Pr3+和Cs3Cu2I5:0.5%Yb2+晶体的光产额相较于未掺杂的Cs3Cu2I5晶体都有提升,分别为40,000 ph./MeV和45,000 ph./MeV;能量分辨率分别为4.2%和4.5%。相较于未掺杂Cs3Cu2I5的衰减时间,Cs3Cu2I5:0.5%Ce3+晶体的闪烁衰减时间为561 ns,加快了近40%。The light yields of Cs 3 Cu 2 I 5 :0.5%Pr 3+ and Cs 3 Cu 2 I 5 :0.5%Yb 2+ crystals were measured by coupling to a photomultiplier tube, which were 40,000 ph./MeV and 45,000 ph./MeV respectively, compared with the undoped Cs 3 Cu 2 I 5 crystal. The energy resolutions were 4.2% and 4.5% respectively. Compared with the decay time of undoped Cs 3 Cu 2 I 5 , the scintillation decay time of Cs 3 Cu 2 I 5 :0.5%Ce 3+ crystal was 561 ns, which was nearly 40% faster.
实施例3:本实施例3提出的一种零维钙钛矿卤化物闪烁单晶,其组成化学式为(Cs0.99Tl0.01)3Cu2I5:0.5%Eu2+,即以(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE为通式,x = 0.01、y = 0、z = 0、m = 0.5、A = Tl、RE = Eu2+,上述卤化物闪烁单晶采用水平定向凝固法制备,制备工艺包括如下操作:a) 按需制备的本征卤化物闪烁体组成化学式(Cs0.99Tl0.01)3Cu2I5:0.5%Eu2+称取各原料;b) 在充满氮气的手套箱中,将各原料置于带有毛细底的石英坩埚中;然后把坩埚内抽为真空并焊封;c) 将焊封好的石英坩埚水平置于水平定向生长炉的中间位置;对晶体生长炉进行升温,使温度达到600°C左右,至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚毛细温度降至360°C左右,再以0.7 mm/h的移动速度使石英坩埚在炉体内匀速水平移动,晶体从坩埚毛细处开始成核并生长,直至熔体完全凝固;然后以10°C/h的速率进行降温,直至降到室温;最后从石英坩埚中取出制备完成的晶体。Embodiment 3: A zero-dimensional perovskite halide scintillating single crystal proposed in Embodiment 3 has a composition chemical formula of (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Eu 2+ , that is, (Cs 1-x A x ) 3 (Cu 1-y B y ) 2 (I 1-z X z ) 5 : m at%RE as a general formula, x = 0.01, y = 0, z = 0, m = 0.5, A = Tl, RE = Eu 2+ , and the above halide scintillating single crystal is prepared by horizontal directional solidification method, and the preparation process comprises the following operations: a) weighing the raw materials of the intrinsic halide scintillator composition chemical formula (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Eu 2+ prepared as required; b) In a glove box filled with nitrogen, each raw material is placed in a quartz crucible with a capillary bottom; then the crucible is evacuated and sealed by welding; c) the sealed quartz crucible is placed horizontally in the middle of a horizontal directional growth furnace; the crystal growth furnace is heated to about 600°C until the raw materials are completely melted and mixed evenly; the crucible position and furnace temperature are adjusted to reduce the capillary temperature of the crucible to about 360°C, and then the quartz crucible is moved horizontally at a uniform speed of 0.7 mm/h in the furnace body, and the crystal begins to nucleate and grow from the capillary of the crucible until the melt is completely solidified; then the temperature is lowered at a rate of 10°C/h until it reaches room temperature; finally, the prepared crystal is taken out from the quartz crucible.
测试上述闪烁晶体的辐射发光光谱和光致发光激发和发射谱,除本征的自限激子发光及Tl离子的束缚激子发光外,存在一个新的Eu2+发光中心。耦合到光电倍增管测试得(Cs0.99Tl0.01)3Cu2I5:0.5%Eu2+晶体的光产额为93,000 ph./MeV,能量分辨率为3.3%。相比未掺杂的(Cs0.99Tl0.01)3Cu2I5晶体,光产额提升了7%,能量分辨率优化了0.1个百分点。The radiative luminescence spectrum and photoluminescence excitation and emission spectrum of the above scintillating crystals were tested. In addition to the intrinsic self-limited exciton luminescence and the bound exciton luminescence of Tl ions, there is a new Eu 2+ luminescence center. The light yield of the (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Eu 2+ crystal was 93,000 ph./MeV and the energy resolution was 3.3% when coupled to a photomultiplier tube. Compared with the undoped (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 crystal, the light yield increased by 7% and the energy resolution was optimized by 0.1 percentage point.
实施例4:本实施例4提出的四种零维钙钛矿卤化物闪烁单晶,其组成化学式为(Cs0.99Tl0.01)3Cu2I5:0.5%Sc3+、(Cs0.99Tl0.01)3Cu2I5:0.5%Y3+、(Cs0.99Tl0.01)3Cu2I5:0.5%La3+和(Cs0.99Tl0.01)3Cu2I5:0.5%Lu3+,即以(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE为通式,x = 0.01、y = 0、z = 0、m = 0.5、A = Tl、RE = Sc3+、Y3+、La3+和Lu3+,上述卤化物闪烁单晶采用水平定向凝固法制备,制备工艺包括如下操作:a) 按需制备的本征卤化物闪烁单晶组成化学式(Cs0.99Tl0.01)3Cu2I5:0.5%Sc3+、(Cs0.99Tl0.01)3Cu2I5:0.5%Y3+、(Cs0.99Tl0.01)3Cu2I5:0.5%La3+和(Cs0.99Tl0.01)3Cu2I5:0.5%Lu3+称取各原料;b) 在充满氮气的手套箱中,将各原料置于带有毛细底的石英坩埚中;然后把坩埚内抽为真空并焊封;c) 将焊封好的石英坩埚水平置于水平定向生长炉的中间位置;对晶体生长炉进行升温,使温度达到600°C左右,至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚毛细温度降至360°C左右,再以0.8 mm/h的移动速度使石英坩埚在炉体内匀速水平移动,晶体从坩埚毛细处开始成核并生长,直至熔体完全凝固;然后以10 °C/h的速率进行降温,直至降到室温;最后从石英坩埚中取出制备完成的晶体。Example 4: The four zero-dimensional perovskite halide scintillating single crystals proposed in Example 4 have the following compositional formulas: (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Sc 3+ , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Y 3+ , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%La 3+ , and (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Lu 3+ , that is, (Cs 1-x A x ) 3 (Cu 1-y B y ) 2 (I 1-z X z ) 5 : m at%RE as the general formula, with x = 0.01, y = 0, z = 0, m = 0.5, A = Tl, RE = Sc 3+ , Y 3+ , La 3+ and Lu 3+ , the above halide scintillating single crystal is prepared by horizontal directional solidification method, and the preparation process comprises the following operations: a) weighing the raw materials of the intrinsic halide scintillating single crystal composition chemical formula (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Sc 3+ , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Y 3+ , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%La 3+ and (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 : 0.5 % Lu 3+ prepared on demand; b) In a glove box filled with nitrogen, each raw material is placed in a quartz crucible with a capillary bottom; then the crucible is evacuated and sealed with welding; c) the sealed quartz crucible is placed horizontally in the middle of a horizontal directional growth furnace; the crystal growth furnace is heated to about 600°C until the raw materials are completely melted and mixed evenly; the crucible position and furnace temperature are adjusted to reduce the capillary temperature of the crucible to about 360°C, and then the quartz crucible is moved horizontally at a uniform speed of 0.8 mm/h in the furnace body, and the crystal begins to nucleate and grow from the capillary of the crucible until the melt is completely solidified; then the temperature is lowered at a rate of 10°C/h until it reaches room temperature; finally, the prepared crystal is taken out from the quartz crucible.
耦合到光电倍增管测试(Cs0.99Tl0.01)3Cu2I5:0.5%Y3+晶体的光产额为90,000 ph./MeV。相比未掺杂的(Cs0.99Tl0.01)3Cu2I5晶体,光产额提升了3%。(Cs0.99Tl0.01)3Cu2I5:0.5%Sc3+的衰减时间为750ns,相较于未掺杂(Cs0.99Tl0.01)3Cu2I5晶体加快了20%左右。The light yield of (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Y 3+ crystal coupled to a photomultiplier tube is 90,000 ph./MeV. Compared with the undoped (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 crystal, the light yield is increased by 3%. The decay time of (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Sc 3+ is 750ns, which is about 20% faster than that of the undoped (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 crystal.
实施例5:本实施例5提出的一种零维钙钛矿卤化物闪烁单晶,其组成化学式为Cs3Cu2(I0.8Br0.2)5:0.5%Eu2+,即以(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE为通式,x = 0、y =0、z = 0.2、m = 0.5、X = Br、RE = Eu2+。上述卤化物闪烁单晶采用布里奇曼下降法制备,制备工艺包括如下操作:a)按需制备的本征卤化物闪烁单晶组成化学式Cs3Cu2(I0.8Br0.2)5:0.5%Eu2+称取各原料;b) 在充满氮气的手套箱中,将各原料置于带有毛细底的石英坩埚中;然后把坩埚内抽为真空并焊封;c) 将焊封好的石英坩埚竖直置于晶体生长炉的中间位置;对晶体生长炉进行升温,使温度达到600°C左右,至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚底部温度降至370°C左右,再以1.5 mm/h的下降速度使石英坩埚在炉体内下降,晶体从坩埚毛细底开始成核并生长,直至熔体完全凝固;然后以12°C/h的速率进行降温,直至降到室温;最后从石英坩埚中取出制备完成的晶体。Example 5: A zero-dimensional perovskite halide scintillating single crystal proposed in Example 5 has a composition chemical formula of Cs 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ , that is, (Cs 1-x A x ) 3 (Cu 1-y B y ) 2 (I 1-z X z ) 5 : m at%RE as the general formula, x = 0, y = 0, z = 0.2, m = 0.5, X = Br, RE = Eu 2+ . The halide scintillating single crystal is prepared by the Bridgman descent method, and the preparation process includes the following operations: a) weighing various raw materials according to the intrinsic halide scintillating single crystal composition chemical formula Cs 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ prepared on demand; b) placing various raw materials in a quartz crucible with a capillary bottom in a glove box filled with nitrogen; then evacuating the crucible to a vacuum and sealing it with welding; c) vertically placing the sealed quartz crucible in the middle of a crystal growth furnace; heating the crystal growth furnace to about 600°C until the raw materials are completely melted and evenly mixed; adjusting the crucible position and furnace temperature to reduce the crucible bottom temperature to about 370°C, and then heating the crucible at 1.5 The quartz crucible is lowered in the furnace at a descending speed of 1.50 mm/h. The crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely solidified. The temperature is then lowered at a rate of 12°C/h until it reaches room temperature. Finally, the prepared crystals are taken out of the quartz crucible.
所得的Cs3Cu2(I0.8Br0.2)5:0.5%Eu2+晶体具有良好的结晶性,不潮解,自吸收小,能够以较快的下降速度和降温速度生长出晶体质量良好的单晶,对于大尺寸的晶体生长有明显的优势。耦合到光电倍增管测试得Cs3Cu2(I0.8Br0.2)5:0.5%Eu2+晶体的光产额为60,000ph./MeV,能量分辨率为4.2%,相较于未掺杂的Cs3Cu2I5晶体,光产额提升了40%,能量分辨率优化了0.6个百分点。The obtained Cs 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ crystal has good crystallinity, no deliquesce, low self-absorption, and can grow single crystals with good crystal quality at a faster descent rate and cooling rate, which has obvious advantages for the growth of large-sized crystals. The light yield of Cs 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ crystal coupled to the photomultiplier tube test was 60,000ph./MeV, and the energy resolution was 4.2%. Compared with the undoped Cs 3 Cu 2 I 5 crystal, the light yield increased by 40% and the energy resolution was optimized by 0.6 percentage points.
实施例6:本实施例6提出的一种零维钙钛矿卤化物闪烁单晶,其组成化学式为(Cs0.99Tl0.01)3Cu2(I0.8Br0.2)5:0.5%Eu2+,即以(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE为通式,x= 0.01、y = 0、z = 0.2、m = 0.5、A = Tl、B = Br、RE = Eu2+。上述卤化物闪烁单晶采用布里奇曼下降法制备,制备工艺包括如下操作:a)按需制备的本征卤化物闪烁单晶组成化学式(Cs0.99Tl0.01)3Cu2(I0.8Br0.2)5:0.5%Eu2+称取各原料;b) 在充满氩气的手套箱中,将各原料置于带有毛细底的石英坩埚中;然后把坩埚内抽为真空并焊封;c) 将焊封好的石英坩埚竖直置于晶体生长炉的中间位置;对晶体生长炉进行升温,使温度达到550°C左右,至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚底部温度降至370°C左右,再以1.5 mm/h的下降速度使石英坩埚在炉体内下降,晶体从坩埚毛细底开始成核并生长,直至熔体完全凝固;然后以12°C/h的速率进行降温,直至降到室温;最后从石英坩埚中取出制备完成的晶体。Example 6: A zero-dimensional perovskite halide scintillating single crystal proposed in Example 6 has a composition chemical formula of (Cs 0.99 Tl 0.01 ) 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ , that is, (Cs 1-x A x ) 3 (Cu 1-y B y ) 2 (I 1-z X z ) 5 : m at%RE as the general formula, x = 0.01, y = 0, z = 0.2, m = 0.5, A = Tl, B = Br, RE = Eu 2+ . The halide scintillating single crystal is prepared by the Bridgman descent method, and the preparation process includes the following operations: a) weighing various raw materials according to the composition formula of the intrinsic halide scintillating single crystal prepared on demand (Cs 0.99 Tl 0.01 ) 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ ; b) placing various raw materials in a quartz crucible with a capillary bottom in a glove box filled with argon; then evacuating the crucible to a vacuum and sealing it with welding; c) vertically placing the sealed quartz crucible in the middle of a crystal growth furnace; heating the crystal growth furnace to about 550°C until the raw materials are completely melted and evenly mixed; adjusting the crucible position and furnace temperature to reduce the temperature of the bottom of the crucible to about 370°C, and then heating the crucible at 1.5 The quartz crucible is lowered in the furnace at a descending speed of 1.50 mm/h. The crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely solidified. The temperature is then lowered at a rate of 12°C/h until it reaches room temperature. Finally, the prepared crystals are taken out of the quartz crucible.
所得的(Cs0.99Tl0.01)3Cu2(I0.8Br0.2)5:0.5%Eu2+晶体具有良好的结晶性、不潮解、自吸收小,能够以较快的下降速度和降温速度生长出晶体质量良好的单晶,对于大尺寸的晶体生长有明显的优势。耦合到光电倍增管测试得(Cs0.99Tl0.01)3Cu2(I0.8Br0.2)5:0.5%Eu2+晶体的光产额为110,000 ph./MeV,能量分辨率为3.2%,相较于未掺杂的(Cs0.99Tl0.01)3Cu2I5晶体,光产额提升了26%,能量分辨率优化了0.2个百分点。The obtained (Cs 0.99 Tl 0.01 ) 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ crystal has good crystallinity, no deliquesce, low self-absorption, and can grow single crystals with good crystal quality at a faster descent rate and cooling rate, which has obvious advantages for the growth of large-sized crystals. The light yield of (Cs 0.99 Tl 0.01 ) 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ crystal was 110,000 ph./MeV and the energy resolution was 3.2% when coupled to a photomultiplier tube. Compared with the undoped (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 crystal, the light yield increased by 26% and the energy resolution was optimized by 0.2 percentage points.
实施例7:本实施例7提出的一种零维钙钛矿卤化物闪烁单晶,其组成化学式为(Cs0.9Rb0.1)3Cu2I5:0.5%Eu2+,即以(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE为通式,x = 0.1、y =0、z = 0、m = 0.5、A = Rb、RE = Eu2+。上述卤化物闪烁单晶采用布里奇曼下降法制备,制备工艺包括如下操作:a)按需制备的本征卤化物闪烁单晶组成化学式(Cs0.9Rb0.1)3Cu2I5:0.5%Eu2+称取各原料;b) 在充满氩气的手套箱中,将各原料置于带有毛细底的石英坩埚中;然后把坩埚内抽为真空并焊封;c) 将焊封好的石英坩埚竖直置于晶体生长炉的中间位置;对晶体生长炉进行升温,使温度达到600°C左右,至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚底部温度降至370°C左右,再以1.0 mm/h的下降速度使石英坩埚在炉体内下降,晶体从坩埚毛细底开始成核并生长,直至熔体完全凝固;然后以10°C/h的速率进行降温,直至降到室温;最后从石英坩埚中取出制备完成的晶体。Example 7: A zero-dimensional perovskite halide scintillating single crystal proposed in Example 7 has a composition chemical formula of (Cs 0.9 Rb 0.1 ) 3 Cu 2 I 5 :0.5%Eu 2+ , that is, (Cs 1-x A x ) 3 (Cu 1-y B y ) 2 (I 1-z X z ) 5 : m at%RE as the general formula, x = 0.1, y = 0, z = 0, m = 0.5, A = Rb, RE = Eu 2+ . The halide scintillating single crystal is prepared by the Bridgman descent method, and the preparation process includes the following operations: a) weighing each raw material according to the composition formula of the intrinsic halide scintillating single crystal prepared on demand (Cs 0.9 Rb 0.1 ) 3 Cu 2 I 5 :0.5%Eu 2+ ; b) placing each raw material in a quartz crucible with a capillary bottom in a glove box filled with argon; then evacuating the crucible to a vacuum and sealing it with welding; c) vertically placing the sealed quartz crucible in the middle of a crystal growth furnace; heating the crystal growth furnace to about 600°C until the raw materials are completely melted and evenly mixed; adjusting the crucible position and furnace temperature to reduce the crucible bottom temperature to about 370°C, and then heating the crucible at 1.0 The quartz crucible is lowered in the furnace at a descending speed of 1.5 mm/h. The crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely solidified. The temperature is then lowered at a rate of 10°C/h until it reaches room temperature. Finally, the prepared crystals are taken out of the quartz crucible.
γ射线及X射线能谱测试结果表明,(Cs0.9Rb0.1)3Cu2I5:0.5%Eu2+闪烁单晶具备辐射探测性能,137Cs辐照下的γ射线能谱表明(Cs0.9Rb0.1)3Cu2I5:0.5%Eu2+有较好的能量分辨率,137Cs辐照下的闪烁衰减曲线表明(Cs0.9Rb0.1)3Cu2I5:0.5%Eu2+衰减时间较快,可应用于医学成像、安全检查、高能物理等领域。The test results of γ-ray and X-ray energy spectra show that the (Cs 0.9 Rb 0.1 ) 3 Cu 2 I 5 :0.5%Eu 2+ scintillation single crystal has radiation detection performance. The γ-ray energy spectrum under 137 Cs irradiation shows that (Cs 0.9 Rb 0.1 ) 3 Cu 2 I 5 :0.5%Eu 2+ has good energy resolution. The scintillation decay curve under 137 Cs irradiation shows that (Cs 0.9 Rb 0.1 ) 3 Cu 2 I 5 :0.5%Eu 2+ has a fast decay time, which can be used in medical imaging, security inspection, high energy physics and other fields.
实施例8:本实施例8提出的一种零维钙钛矿卤化物闪烁单晶,其组成化学式为Cs3(Cu0.9Ag0.1)2I5:0.5%Eu2+,即以(Cs1-xAx)3(Cu1-yBy)2(I1-zXz)5:mat%RE为通式,x = 0、y =0.1、z = 0、m = 0.5、B = Ag、RE = Eu2+。上述卤化物闪烁单晶采用布里奇曼下降法制备,制备工艺包括如下操作:a)按需制备的本征卤化物闪烁单晶组成化学式Cs3(Cu0.9Ag0.1)2I5:0.5%Eu2+称取各原料;b) 在充满氩气的手套箱中,将各原料置于带有毛细底的石英坩埚中;然后把坩埚内抽为真空并焊封;c) 将焊封好的石英坩埚竖直置于晶体生长炉的中间位置;对晶体生长炉进行升温,使温度达到550°C左右,至原料完全熔化并混合均匀;调节坩埚位置与炉温,使坩埚底部温度降至350°C左右,再以1.0 mm/h的下降速度使石英坩埚在炉体内下降,晶体从坩埚毛细底开始成核并生长,直至熔体完全凝固;然后以7°C/h的速率进行降温,直至降到室温;最后从石英坩埚中取出制备完成的晶体。Example 8: A zero-dimensional perovskite halide scintillating single crystal proposed in Example 8 has a composition chemical formula of Cs 3 (Cu 0.9 Ag 0.1 ) 2 I 5 :0.5%Eu 2+ , that is, (Cs 1-x A x ) 3 (Cu 1-y B y ) 2 (I 1-z X z ) 5 : m at%RE as the general formula, x = 0, y = 0.1, z = 0, m = 0.5, B = Ag, RE = Eu 2+ . The halide scintillating single crystal is prepared by the Bridgman descent method, and the preparation process includes the following operations: a) weighing various raw materials according to the composition formula of the intrinsic halide scintillating single crystal prepared on demand Cs 3 (Cu 0.9 Ag 0.1 ) 2 I 5 :0.5%Eu 2+ ; b) placing various raw materials in a quartz crucible with a capillary bottom in a glove box filled with argon; then evacuating the crucible to a vacuum and sealing it with welding; c) vertically placing the sealed quartz crucible in the middle of a crystal growth furnace; heating the crystal growth furnace to about 550°C until the raw materials are completely melted and evenly mixed; adjusting the crucible position and furnace temperature to reduce the crucible bottom temperature to about 350°C, and then heating the crucible at 1.0 The quartz crucible is lowered in the furnace at a descending speed of 0.1777 W/h. The crystals begin to nucleate and grow from the capillary bottom of the crucible until the melt is completely solidified. The temperature is then lowered at a rate of 7°C/h until it reaches room temperature. Finally, the prepared crystals are taken out of the quartz crucible.
γ射线及X射线能谱测试结果表明,Cs3(Cu0.9Ag0.1)2I5:0.5%Eu2+闪烁单晶具备辐射探测性能,137Cs辐照下的γ射线能谱表明Cs3(Cu0.9Ag0.1)2I5:0.5%Eu2+有较好的能量分辨率,137Cs辐照下的闪烁衰减曲线表明Cs3(Cu0.9Ag0.1)2I5:0.5%Eu2+衰减时间较快,可应用于医学成像、安全检查、高能物理等领域。The test results of γ-ray and X-ray energy spectra show that the Cs 3 (Cu 0.9 Ag 0.1 ) 2 I 5 :0.5%Eu 2+ scintillating single crystal has radiation detection performance. The γ-ray energy spectrum under 137 Cs irradiation shows that Cs 3 (Cu 0.9 Ag 0.1 ) 2 I 5 :0.5%Eu 2+ has good energy resolution. The scintillation decay curve under 137 Cs irradiation shows that Cs 3 (Cu 0.9 Ag 0.1 ) 2 I 5 :0.5%Eu 2+ has a fast decay time, which can be used in medical imaging, security inspection, high energy physics and other fields.
图1示出了本申请实施例1-2中得到的卤化物闪烁单晶在自然光下的样品照片。如图1所示,所得的Cs3Cu2I5:0.5%Eu2+、Cs3Cu2I5:0.5%Pr3+和Cs3Cu2I5:0.5%Yb2+单晶透明、无包裹体。Figure 1 shows a sample photo of the halide scintillating single crystals obtained in Examples 1-2 of the present application under natural light. As shown in Figure 1, the obtained Cs3Cu2I5 : 0.5 %Eu2 + , Cs3Cu2I5 : 0.5 %Pr3 + and Cs3Cu2I5 : 0.5 % Yb2 + single crystals are transparent and free of inclusions.
图2示出了本申请实施例3中得到的卤化物闪烁单晶在自然光下的样品照片。如图2所示,所得的(Cs0.99Tl0.01)3Cu2I5:0.5%Eu2+单晶透明、无包裹体。Figure 2 shows a sample photo of the halide scintillating single crystal obtained in Example 3 of the present application under natural light. As shown in Figure 2, the obtained (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Eu 2+ single crystal is transparent and has no inclusions.
图3示出了本申请实施例4中得到的卤化物闪烁单晶在自然光下的样品照片。如图3所示,所得的(Cs0.99Tl0.01)3Cu2I5:0.5%Sc3+、(Cs0.99Tl0.01)3Cu2I5:0.5%Y3+、(Cs0.99Tl0.01)3Cu2I5:0.5%La3+和(Cs0.99Tl0.01)3Cu2I5:0.5%Lu3+单晶透明、无包裹体。Fig. 3 shows a sample photo of the halide scintillating single crystal obtained in Example 4 of the present application under natural light. As shown in Fig. 3, the obtained (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 : 0.5%Sc 3+ , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 : 0.5%Y 3+ , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 : 0.5%La 3+ and (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 : 0.5%Lu 3+ single crystals are transparent and free of inclusions.
图4示出了本申请实施例5-6中得到的卤化物闪烁单晶在自然光下的样品照片。如图4所示,所得的Cs3Cu2(I0.8Br0.2)5:0.5%Eu2+和(Cs0.99Tl0.01)3Cu2(I0.8Br0.2)5:0.5%Eu2+单晶透明、无包裹体。Figure 4 shows a sample photo of the halide scintillating single crystals obtained in Examples 5-6 of the present application under natural light. As shown in Figure 4, the obtained Cs 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ and (Cs 0.99 Tl 0.01 ) 3 Cu 2 (I 0.8 Br 0.2 ) 5 :0.5%Eu 2+ single crystals are transparent and free of inclusions.
图5示出了本申请实施例1中得到的卤化物闪烁单晶的辐射发光光谱。如图5所示,所得的Cs3Cu2I5:0.5%Eu2+单晶在X射线激发存在一个450 nm及560 nm的发射峰。Figure 5 shows the radiant luminescence spectrum of the halide scintillating single crystal obtained in Example 1 of the present application. As shown in Figure 5, the obtained Cs 3 Cu 2 I 5 :0.5%Eu 2+ single crystal has an emission peak at 450 nm and 560 nm under X-ray excitation.
图6示出了本申请实施例3中得到的卤化物闪烁单晶的辐射发光光谱。如图6所示,所得的(Cs0.99Tl0.01)3Cu2I5:0.5%Eu2+单晶在X射线激发下存在一个510 nm的发射峰。Figure 6 shows the radiant luminescence spectrum of the halide scintillating single crystal obtained in Example 3 of the present application. As shown in Figure 6, the obtained (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Eu 2+ single crystal has an emission peak of 510 nm under X-ray excitation.
图7示出了本申请实施例4中得到的卤化物闪烁单晶的辐射发光光谱。如图7所示,相比未掺杂的(Cs0.99Tl0.01)3Cu2I5晶体,所得的(Cs0.99Tl0.01)3Cu2I5:0.5%Sc3+、(Cs0.99Tl0.01)3Cu2I5:0.5%Y3+、(Cs0.99Tl0.01)3Cu2I5:0.5%La3+和(Cs0.99Tl0.01)3Cu2I5:0.5%Lu3+单晶在X射线激发下的发射峰无明显改变,均在510 nm。Fig. 7 shows the radioluminescence spectrum of the halide scintillating single crystal obtained in Example 4 of the present application. As shown in Fig. 7, compared with the undoped (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 crystal, the emission peaks of the obtained (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Sc 3+ , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Y 3+ , (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%La 3+ and (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5%Lu 3+ single crystals under X-ray excitation have no obvious change, and are all at 510 nm.
图8示出了本申请实施例1和对比例2中得到的卤化物闪烁单晶的荧光光谱。如图8所示,相比于SrI2:Eu晶体,所得的Cs3Cu2I5:0.5%Eu2+单晶几乎不存在自吸收。Figure 8 shows the fluorescence spectra of the halide scintillating single crystals obtained in Example 1 and Comparative Example 2. As shown in Figure 8, compared with SrI2 :Eu crystal, the obtained Cs3Cu2I5 : 0.5 %Eu2 + single crystal has almost no self-absorption.
图9示出了本申请实施例1和对比例1中得到的卤化物闪烁单晶的γ射线能谱。如图9所示,相比未掺杂的Cs3Cu2I5晶体,所得的Cs3Cu2I5:0.5%Eu2+单晶的光产额和能量分辨率得到优化。Figure 9 shows the gamma-ray energy spectra of the halide scintillating single crystals obtained in Example 1 and Comparative Example 1. As shown in Figure 9, compared with the undoped Cs3Cu2I5 crystal, the light yield and energy resolution of the obtained Cs3Cu2I5 :0.5% Eu2 + single crystal are optimized.
图10示出了本申请实施例4中得到的卤化物闪烁单晶的γ射线能谱。如图10所示,所得的(Cs0.99Tl0.01)3Cu2I5:0.5%Y3+单晶的能量分辨率及光产额均得到优化。Figure 10 shows the gamma-ray energy spectrum of the halide scintillating single crystal obtained in Example 4 of the present application. As shown in Figure 10, the energy resolution and light yield of the obtained (Cs 0.99 Tl 0.01 ) 3 Cu 2 I 5 :0.5% Y 3+ single crystal are optimized.
图11示出了本申请实施例1中得到的卤化物闪烁单晶的闪烁衰减曲线。如图11所示,所得的Cs3Cu2I5:0.5%Eu2+单晶的闪烁衰减时间,分别存在一个152 ns的快分量和一个995 ns的慢分量。Figure 11 shows the scintillation decay curve of the halide scintillating single crystal obtained in Example 1 of the present application. As shown in Figure 11, the scintillation decay time of the obtained Cs 3 Cu 2 I 5 :0.5%Eu 2+ single crystal has a fast component of 152 ns and a slow component of 995 ns.
图12示出了本申请实施例2中得到的卤化物闪烁单晶的闪烁衰减曲线。如图12所示,所得的Cs3Cu2I5:0.5%Pr3+单晶的闪烁衰减时间,分别存在一个170 ns的快分量和一个995 ns的慢分量;所得的Cs3Cu2I5:0.5%Yb2+单晶的闪烁衰减时间,分别存在一个195 ns的快分量和一个1000 ns的慢分量。Figure 12 shows the scintillation decay curve of the halide scintillating single crystal obtained in Example 2 of the present application. As shown in Figure 12, the scintillation decay time of the obtained Cs 3 Cu 2 I 5 :0.5% Pr 3+ single crystal has a fast component of 170 ns and a slow component of 995 ns; the scintillation decay time of the obtained Cs 3 Cu 2 I 5 :0.5% Yb 2+ single crystal has a fast component of 195 ns and a slow component of 1000 ns.
图13示出了根据本申请一个优选实施方式的闪烁单晶耦合光电探测器示意图。如图13所示,闪烁晶体1将入射的高能射线(包括γ射线,以及β或中子等其他高能射线)转变为紫外光或可见光,并通过反射层2将闪烁光尽可能的收集到光电倍增管3中,经由光电转换将光信号转变为电信号(数字信号),最后由电子学器件4将信号处理后输出。Fig. 13 shows a schematic diagram of a scintillation single crystal coupled photodetector according to a preferred embodiment of the present application. As shown in Fig. 13, the scintillation crystal 1 converts the incident high-energy rays (including gamma rays, and other high-energy rays such as beta or neutrons) into ultraviolet light or visible light, and collects the scintillation light as much as possible into the photomultiplier tube 3 through the reflective layer 2, converts the optical signal into an electrical signal (digital signal) through photoelectric conversion, and finally the electronic device 4 processes the signal and outputs it.
最后有必要在此说明的是:以上实施例只用于对本发明的技术方案作进一步详细地说明,不能理解为对本发明保护范围的限制,本领域的技术人员根据本发明的上述内容做出的一些非本质的改进和调整均属于本发明的保护范围。Finally, it is necessary to explain here that the above embodiments are only used to further illustrate the technical solution of the present invention in detail and cannot be understood as limiting the scope of protection of the present invention. Some non-essential improvements and adjustments made by technicians in this field based on the above content of the present invention all belong to the scope of protection of the present invention.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410034956.7A CN117552106B (en) | 2024-01-10 | 2024-01-10 | Rare earth-based zero-dimensional perovskite halide scintillating single crystal and preparation method and application thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202410034956.7A CN117552106B (en) | 2024-01-10 | 2024-01-10 | Rare earth-based zero-dimensional perovskite halide scintillating single crystal and preparation method and application thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117552106A CN117552106A (en) | 2024-02-13 |
CN117552106B true CN117552106B (en) | 2024-04-05 |
Family
ID=89813109
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202410034956.7A Active CN117552106B (en) | 2024-01-10 | 2024-01-10 | Rare earth-based zero-dimensional perovskite halide scintillating single crystal and preparation method and application thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117552106B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN118480865B (en) * | 2024-07-09 | 2024-10-18 | 中国科学院上海硅酸盐研究所 | Magnesium thallium co-doped zero-dimensional perovskite halide scintillation monocrystal and preparation method and application thereof |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107366018A (en) * | 2017-07-12 | 2017-11-21 | 宁波大学 | A kind of rare earth halide mixing scintillation crystal and preparation method thereof |
CN110606505A (en) * | 2019-10-21 | 2019-12-24 | 江苏科技大学 | Preparation and application of a zero-dimensional halogen perovskite structure material Cs4PbBr6 |
CN113136203A (en) * | 2021-03-26 | 2021-07-20 | 南京理工大学 | Thallium-doped Cs with high luminous yield3Cu2I5Nanocrystalline scintillator |
CN113373501A (en) * | 2021-06-10 | 2021-09-10 | 天津理工大学 | EuCl3Helper Cs3Cu2X5Method for growing perovskite single crystal |
CN113529168A (en) * | 2021-07-01 | 2021-10-22 | 中国计量大学 | A Li+-doped zero-dimensional perovskite structure metal halide scintillation crystal and its preparation method and application |
CN113897666A (en) * | 2020-06-22 | 2022-01-07 | 中国科学院上海硅酸盐研究所 | A kind of intrinsically luminescent halide scintillation crystal and its preparation method and application |
CN113957525A (en) * | 2021-08-03 | 2022-01-21 | 中国计量大学 | Li for neutron/gamma retort+Halide-doped scintillation crystal and preparation method thereof |
CN114276802A (en) * | 2021-12-27 | 2022-04-05 | 南京理工大学 | Preparation method of thallium-doped cesium copper iodine scintillator thin film for inhibiting iodide ion oxidation precipitation |
CN114411252A (en) * | 2022-01-24 | 2022-04-29 | 中国科学院上海硅酸盐研究所 | Novel perovskite-like structure scintillator for neutron detection and preparation method and application thereof |
CN115565712A (en) * | 2022-09-20 | 2023-01-03 | 西北核技术研究所 | Long-life alpha-type photovoltaic isotope battery |
CN116855750A (en) * | 2023-05-22 | 2023-10-10 | 山东大学 | A high light yield, ultrafast scintillation attenuation, low-cost Cs3Cu2I5:Mn single crystal scintillator and its preparation and application |
-
2024
- 2024-01-10 CN CN202410034956.7A patent/CN117552106B/en active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107366018A (en) * | 2017-07-12 | 2017-11-21 | 宁波大学 | A kind of rare earth halide mixing scintillation crystal and preparation method thereof |
CN110606505A (en) * | 2019-10-21 | 2019-12-24 | 江苏科技大学 | Preparation and application of a zero-dimensional halogen perovskite structure material Cs4PbBr6 |
CN113897666A (en) * | 2020-06-22 | 2022-01-07 | 中国科学院上海硅酸盐研究所 | A kind of intrinsically luminescent halide scintillation crystal and its preparation method and application |
CN113136203A (en) * | 2021-03-26 | 2021-07-20 | 南京理工大学 | Thallium-doped Cs with high luminous yield3Cu2I5Nanocrystalline scintillator |
CN113373501A (en) * | 2021-06-10 | 2021-09-10 | 天津理工大学 | EuCl3Helper Cs3Cu2X5Method for growing perovskite single crystal |
CN113529168A (en) * | 2021-07-01 | 2021-10-22 | 中国计量大学 | A Li+-doped zero-dimensional perovskite structure metal halide scintillation crystal and its preparation method and application |
CN113957525A (en) * | 2021-08-03 | 2022-01-21 | 中国计量大学 | Li for neutron/gamma retort+Halide-doped scintillation crystal and preparation method thereof |
CN114276802A (en) * | 2021-12-27 | 2022-04-05 | 南京理工大学 | Preparation method of thallium-doped cesium copper iodine scintillator thin film for inhibiting iodide ion oxidation precipitation |
CN114411252A (en) * | 2022-01-24 | 2022-04-29 | 中国科学院上海硅酸盐研究所 | Novel perovskite-like structure scintillator for neutron detection and preparation method and application thereof |
CN115565712A (en) * | 2022-09-20 | 2023-01-03 | 西北核技术研究所 | Long-life alpha-type photovoltaic isotope battery |
CN116855750A (en) * | 2023-05-22 | 2023-10-10 | 山东大学 | A high light yield, ultrafast scintillation attenuation, low-cost Cs3Cu2I5:Mn single crystal scintillator and its preparation and application |
Also Published As
Publication number | Publication date |
---|---|
CN117552106A (en) | 2024-02-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2021259074A1 (en) | Low-dimensional perovskite-structured metal halide, preparation method therefor, and application thereof | |
JP5389328B2 (en) | Single crystal for scintillator containing Pr, its manufacturing method, radiation detector and inspection apparatus | |
CN104508192B (en) | With many doping lutetium base oxygen orthosilicate scintillators for improving optical characteristics | |
CN109851510A (en) | A kind of compound scintillator of perovskite crystal/quantum dot and its preparation method and application | |
CN117552106B (en) | Rare earth-based zero-dimensional perovskite halide scintillating single crystal and preparation method and application thereof | |
CN107366018A (en) | A kind of rare earth halide mixing scintillation crystal and preparation method thereof | |
CN108531988A (en) | A kind of preparation method of rare earth halide scintillation crystal and application | |
CN114411252A (en) | Novel perovskite-like structure scintillator for neutron detection and preparation method and application thereof | |
Vedda et al. | Trap-center recombination processes by rare earth activators in YAlO 3 single crystal host | |
CN105332056A (en) | Divalent metal cation and cerium co-doped lutetium aluminum garnet crystal for laser illumination and preparation method thereof | |
Liu et al. | A novel Li+-doped CsCu 2 I 3 single crystal for dual gamma–neutron detection | |
WO2015007229A1 (en) | Ultrabright csi:tl scintillators with reduced afterglow: fabrication and application | |
CN117431067B (en) | Mn-doped enhanced ionizing radiation luminescent halide scintillator and preparation method and application thereof | |
CN105908257B (en) | Calcium ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof | |
US7347956B2 (en) | Luminous material for scintillator comprising single crystal of Yb mixed crystal oxide | |
CN108441960A (en) | Divalent metal is co-doped with lutetium aluminum carbuncle crystal preparation method with cerium | |
CN106048725B (en) | Silicon ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof | |
CN115506007B (en) | Near infrared luminous metal halide scintillation crystal and preparation method and application thereof | |
CN113512757B (en) | A kind of bulk high-quality scintillation crystal and its preparation method and application | |
CN118480865B (en) | Magnesium thallium co-doped zero-dimensional perovskite halide scintillation monocrystal and preparation method and application thereof | |
CN106048724B (en) | Sodium barium ytterbium ion is co-doped with YAG fast flashing crystal and preparation method thereof | |
CN105297136A (en) | Cerium-doped gadolinium lutecium aluminate garnet crystal for laser illumination and preparation method thereof | |
WO2007094785A1 (en) | BULK SINGLE CRYSTAL DOPED ZINC OXIDE (ZnO) SCINTILLATOR | |
CN108193274B (en) | Compound tungstate scintillation crystal and preparation method thereof | |
CN117304933B (en) | Rare earth cluster reinforced low-dimensional halide scintillation material and preparation method and application thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |