CN117452369B - An optimization method for calculating echo top height for short-term severe weather monitoring - Google Patents
An optimization method for calculating echo top height for short-term severe weather monitoring Download PDFInfo
- Publication number
- CN117452369B CN117452369B CN202311794388.2A CN202311794388A CN117452369B CN 117452369 B CN117452369 B CN 117452369B CN 202311794388 A CN202311794388 A CN 202311794388A CN 117452369 B CN117452369 B CN 117452369B
- Authority
- CN
- China
- Prior art keywords
- radar
- longitude
- echo
- polar coordinate
- height
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 79
- 238000012544 monitoring process Methods 0.000 title claims abstract description 32
- 238000005457 optimization Methods 0.000 title claims abstract description 12
- 238000004364 calculation method Methods 0.000 claims abstract description 31
- 238000001514 detection method Methods 0.000 claims abstract description 27
- 238000012545 processing Methods 0.000 claims description 12
- 239000000284 extract Substances 0.000 claims description 2
- 238000005516 engineering process Methods 0.000 abstract description 3
- 238000010586 diagram Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 7
- 230000006870 function Effects 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 2
- 101001121408 Homo sapiens L-amino-acid oxidase Proteins 0.000 description 1
- 101000827703 Homo sapiens Polyphosphoinositide phosphatase Proteins 0.000 description 1
- 102100026388 L-amino-acid oxidase Human genes 0.000 description 1
- 102100023591 Polyphosphoinositide phosphatase Human genes 0.000 description 1
- 101100012902 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) FIG2 gene Proteins 0.000 description 1
- 101100233916 Saccharomyces cerevisiae (strain ATCC 204508 / S288c) KAR5 gene Proteins 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/95—Radar or analogous systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/41—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
- G01S7/417—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section involving the use of neural networks
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A90/00—Technologies having an indirect contribution to adaptation to climate change
- Y02A90/10—Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation
Landscapes
- Engineering & Computer Science (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- Computer Networks & Wireless Communication (AREA)
- General Physics & Mathematics (AREA)
- Artificial Intelligence (AREA)
- Evolutionary Computation (AREA)
- Electromagnetism (AREA)
- Radar Systems Or Details Thereof (AREA)
Abstract
本申请涉及大气科学技术领域,尤其是涉及一种用于短时灾害性天气监测的回波顶高计算优化方法,方法包括:根据雷达的型号和雷达基数据的结构,得到不同仰角下的极坐标格式回波数据;根据雷达回波数据提取雷达波束仰角及波束斜距得到雷达波束高度;将极坐标系下的雷达波束高度及回波数据叠加至经纬网格坐标,对经纬网格坐标下极坐标点周围临近的经纬网格点进行极坐标探测点填充,得到经纬网格雷达数据;获取预设回波强度阈值,根据经纬网格雷达数据,再进行判断计算得到回波顶高,解决了以往方法在计算雷达回波顶高时水平位置不固定的问题,有效提高雷达回波顶高的计算精度,从而提高短时灾害性天气监测的估测精度。
The present application relates to the field of atmospheric science and technology, and in particular to an echo top height calculation optimization method for short-term disastrous weather monitoring. The method comprises: obtaining polar coordinate format echo data at different elevation angles according to the radar model and the structure of radar base data; extracting the radar beam elevation angle and the beam slant range according to the radar echo data to obtain the radar beam height; superimposing the radar beam height and the echo data in the polar coordinate system to the longitude and latitude grid coordinates, and performing polar coordinate detection point filling on the longitude and latitude grid points adjacent to the polar coordinate points in the longitude and latitude grid coordinates to obtain the longitude and latitude grid radar data; obtaining a preset echo intensity threshold, and then performing judgment and calculation to obtain the echo top height according to the longitude and latitude grid radar data, thereby solving the problem of the non-fixed horizontal position when calculating the radar echo top height in the previous method, effectively improving the calculation accuracy of the radar echo top height, and thus improving the estimation accuracy of short-term disastrous weather monitoring.
Description
技术领域Technical Field
本申请涉及大气科学技术领域,尤其是涉及一种用于短时灾害性天气监测的回波顶高计算优化方法。The present application relates to the field of atmospheric science and technology, and in particular to an echo top height calculation optimization method for short-term disastrous weather monitoring.
背景技术Background Art
雷达回波顶高是指天气雷达探测到的回波的发展高度,由于雷达回波反映的是云团或云块的信息,雷达回波顶高实际上可以理解为云顶的高度。雷达回波顶高体现了云团内部上升运动的强度,对天气的发生发展有着重要的指示作用,常常被作为重要指标去识别和预报雷电、冰雹、短时强降水和大风等灾害性天气,例如在河北邯郸地区冰雹往往发生在雷达回波顶高≥13km的情况下,将雷达回波顶高和雷达回波强度同时作为参数去估测雷达短时强降水,明显地提升了短时强降水的估测精度,此外,雷达回波顶高还在人工防雹作业的指挥中具有很好的参考意义。雷达回波顶高是一个非常重要的指标参数,被广泛地应用于短时灾害性天气的监测、预警和防灾中,因此,如何精确地计算出雷达回波顶的高度是雷达气象学的一个重要任务之一。Radar echo top height refers to the height of the echo detected by the weather radar. Since the radar echo reflects the information of the cloud or cloud mass, the radar echo top height can actually be understood as the height of the cloud top. The radar echo top height reflects the intensity of the upward movement inside the cloud, and plays an important role in indicating the occurrence and development of the weather. It is often used as an important indicator to identify and forecast disastrous weather such as lightning, hail, short-term heavy precipitation and strong winds. For example, hail in Handan, Hebei Province often occurs when the radar echo top height is ≥13km. Using the radar echo top height and radar echo intensity as parameters to estimate the radar short-term heavy precipitation has significantly improved the estimation accuracy of short-term heavy precipitation. In addition, the radar echo top height also has a good reference significance in the command of artificial hail prevention operations. Radar echo top height is a very important indicator parameter, which is widely used in the monitoring, early warning and disaster prevention of short-term disastrous weather. Therefore, how to accurately calculate the height of the radar echo top is one of the important tasks of radar meteorology.
目前,常用的雷达回波顶高的计算方法主要是在雷达体扫数据(极坐标格式)中进行的,即在极坐标下的给定的每个方位(即方位角)—斜距(即雷达波束的距离)上,从高仰角向低仰角逐渐搜索找出大于等于给定雷达回波强度阈值(默认为18dBZ)的最高高度,即雷达回波顶高。在具体计算雷达回波顶高时,一些方法是直接将搜索到的≥18 dBZ的最高仰角的雷达波束高度直接作为雷达回波顶高,另一些方法则是利用插值法将搜索的≥18dBZ的最高仰角的雷达波束高度和雷达回波强度与上一层仰角的雷达波束高度和雷达回波强度进行插值,获得18dBZ雷达回波强度对应的高度,即雷达回波顶高。At present, the commonly used radar echo top height calculation method is mainly carried out in radar volume scan data (polar coordinate format), that is, at each given azimuth (i.e. azimuth)-slant range (i.e. the distance of the radar beam) in polar coordinates, gradually search from high elevation angle to low elevation angle to find the highest altitude greater than or equal to the given radar echo intensity threshold (the default is 18dBZ), that is, the radar echo top height. When calculating the radar echo top height, some methods directly use the radar beam height of the highest elevation angle ≥18 dBZ searched as the radar echo top height, while other methods use the interpolation method to interpolate the radar beam height and radar echo intensity of the highest elevation angle ≥18dBZ searched with the radar beam height and radar echo intensity of the previous elevation angle to obtain the height corresponding to the 18dBZ radar echo intensity, that is, the radar echo top height.
虽然以往的雷达回波顶高的计算方法得到了广泛的应用,但由于是在极坐标系下计算的,存在较大偏差,具体结合图1所示,由于地球是一个圆球体形,有地球曲率存在,加之仰角的不同,每个方位—斜距上不同仰角雷达波束对应的水平距离(距离雷达站的位置)是不相同的。用以往方法计算雷达回波顶高时,实际上用的是不同地面点(如图1中的H、G、I、J几个点)上空不同高度的雷达探测值计算的,故而现有方法不可避免存在偏差,因此,降低了短时灾害性天气监测的估测精度。Although the previous calculation method of radar echo top height has been widely used, it has large deviations because it is calculated in the polar coordinate system. As shown in Figure 1, the earth is a sphere with earth curvature. In addition, the elevation angle is different, so the horizontal distance (distance from the radar station) corresponding to the radar beam at different elevation angles on each azimuth-slant range is different. When the radar echo top height is calculated using the previous method, it is actually calculated using radar detection values at different altitudes above different ground points (such as points H, G, I, and J in Figure 1). Therefore, the existing method inevitably has deviations, thereby reducing the estimation accuracy of short-term severe weather monitoring.
发明内容Summary of the invention
本申请旨在至少解决现有技术中在用于短时灾害性天气监测的回波顶高计算处理方法中其得到的雷达回波顶高数据误差大,导致降低短时灾害性天气监测的估测精度问题。为此,本申请提出了一种用于短时灾害性天气监测的回波顶高计算优化方法。The present application aims to at least solve the problem that the radar echo top height data obtained in the echo top height calculation processing method for short-term disastrous weather monitoring in the prior art has large errors, resulting in reduced estimation accuracy of short-term disastrous weather monitoring. To this end, the present application proposes an echo top height calculation optimization method for short-term disastrous weather monitoring.
根据本申请实施例第一方面提供的1、一种用于短时灾害性天气监测的回波顶高计算优化方法,其特征在于,所述方法包括:According to the first aspect of the embodiment of the present application, 1. A method for calculating and optimizing echo top height for short-term disastrous weather monitoring is provided, characterized in that the method comprises:
雷达数据处理,根据天气雷达的型号和对应的雷达基数据的结构,得到雷达立体观测信息以及不同仰角下极坐标格式的雷达回波强度数据;Radar data processing: According to the weather radar model and the structure of the corresponding radar base data, radar stereo observation information and radar echo intensity data in polar coordinate format at different elevation angles are obtained;
雷达波束高度计算,根据所述雷达立体观测信息,提取雷达波束仰角、方位角以及波束斜距,结合地球有效半径,得到所述雷达波束高度;Radar beam height calculation: extracting the radar beam elevation angle, azimuth angle and beam slant range based on the radar stereo observation information, and combining them with the effective radius of the earth to obtain the radar beam height;
将极坐标系下的所述雷达波束高度以及所述雷达回波强度数据叠加至经纬网格坐标,对经纬网格坐标下极坐标点周围临近的经纬网格点进行极坐标探测点填充,得到经纬网格雷达数据;The radar beam height and the radar echo intensity data in the polar coordinate system are superimposed on the longitude and latitude grid coordinates, and the longitude and latitude grid points adjacent to the polar coordinate points in the longitude and latitude grid coordinates are filled with polar coordinate detection points to obtain longitude and latitude grid radar data;
获取预设回波强度阈值,根据所述经纬网格雷达数据,确定大于或等于所述回波强度阈值的第一仰角层;Obtaining a preset echo intensity threshold, and determining a first elevation angle layer greater than or equal to the echo intensity threshold according to the latitude and longitude grid radar data;
判断所述第一仰角层是否为最高仰角层,若否,获取相邻上一层的第二仰角层,根据所述第一仰角层及所述第二仰角层得到回波顶高。It is determined whether the first elevation layer is the highest elevation layer. If not, the second elevation layer of the adjacent previous layer is obtained, and the echo top height is obtained according to the first elevation layer and the second elevation layer.
根据本申请的一些实施例,所述雷达波束高度计算,根据所述雷达立体观测信息,提取雷达波束仰角、方位角以及波束斜距,结合地球有效半径,得到所述雷达波束高度,包括:According to some embodiments of the present application, the radar beam height calculation, based on the radar stereoscopic observation information, extracts the radar beam elevation angle, azimuth angle and beam slant range, and combines the effective radius of the earth to obtain the radar beam height, includes:
根据提取雷达波束仰角、方位角、波束斜距以及结合地球有效半径值,建立雷达波束高度与雷达仰角及波束斜距之间的关系式,得到各仰角下不同方位-斜距处雷达回波对应的雷达波束高度,其中,关系式为:,式中,为雷达波束高度,为雷达仰角,为波束斜距,为地球有效半径值。By extracting the radar beam elevation angle, azimuth angle, beam slant range and combining the effective radius of the earth, the relationship between the radar beam height, radar elevation angle and beam slant range is established, and the radar beam height corresponding to the radar echo at different azimuths and slant ranges at each elevation angle is obtained. The relationship is: , where is the radar beam height, is the radar elevation angle, is the beam slant distance, is the effective radius of the Earth.
根据本申请的一些实施例,所述将极坐标系下的所述雷达波束高度以及所述雷达回波强度数据叠加至经纬网格坐标,对经纬网格坐标下极坐标点周围临近的经纬网格点进行极坐标探测点填充,得到经纬网格雷达数据,包括:According to some embodiments of the present application, the radar beam height and the radar echo intensity data in the polar coordinate system are superimposed on the longitude and latitude grid coordinates, and the longitude and latitude grid points adjacent to the polar coordinate points in the longitude and latitude grid coordinates are filled with polar coordinate detection points to obtain the longitude and latitude grid radar data, including:
根据雷达波束仰角、雷达波束斜距以及雷达波束高度,得到雷达波束水平距离对应的极坐标点;According to the radar beam elevation angle, radar beam slant range and radar beam height, the polar coordinate point corresponding to the radar beam horizontal distance is obtained;
以雷达站点为中心建立经纬网格坐标系,设置网格分辨率以及格点数,并将雷达观测的极坐标数据叠加至经纬网格中,确定经纬网格中所述极坐标点位置;Establish a longitude and latitude grid coordinate system with the radar site as the center, set the grid resolution and the number of grid points, and superimpose the polar coordinate data observed by the radar on the longitude and latitude grid to determine the position of the polar coordinate point in the longitude and latitude grid;
根据经纬网格中所述极坐标点,得到极坐标探测点;According to the polar coordinate points in the longitude and latitude grid, polar coordinate detection points are obtained;
将所述极坐标探测点填充至所述极坐标点周围的经纬网格坐标中,得到经纬网格雷达数据。The polar coordinate detection points are filled into the longitude and latitude grid coordinates around the polar coordinate points to obtain longitude and latitude grid radar data.
根据本申请的一些实施例,所述根据雷达波束仰角、雷达波束斜距以及雷达波束高度,得到雷达波束水平距离对应的极坐标点,包括:According to some embodiments of the present application, obtaining the polar coordinate point corresponding to the horizontal distance of the radar beam according to the radar beam elevation angle, the radar beam slant range, and the radar beam height includes:
根据雷达波束仰角、雷达波束斜距以及雷达波束高度,建立雷达波束水平距离的关系式,计算得到所述雷达波束水平距离,其中,According to the radar beam elevation angle, radar beam slant range and radar beam height, a relationship of radar beam horizontal distance is established to calculate the radar beam horizontal distance, where:
所述关系式为:,The relationship is: ,
式中,为雷达波束的水平距离,为雷达波束高度,为波束斜距,为地球有效半径值。In the formula, is the horizontal distance of the radar beam, is the radar beam height, is the beam slant distance, is the effective radius of the Earth.
根据所述雷达波束水平距离以及雷达波束极角,得到对应的极坐标点。According to the radar beam horizontal distance and the radar beam polar angle, the corresponding polar coordinate point is obtained.
根据本申请的一些实施例,所述以雷达站点为中心建立经纬网格坐标系,设置网格分辨率以及格点数,并将雷达观测的极坐标数据叠加至经纬网格中,确定经纬网格中所述极坐标点位置,包括:所述经纬网格坐标系的网格分辨率设置为0.01°×0.01°,以及网格格点数设置为451×451。According to some embodiments of the present application, a longitude and latitude grid coordinate system is established with the radar site as the center, the grid resolution and the number of grid points are set, and the polar coordinate data observed by the radar is superimposed on the longitude and latitude grid to determine the position of the polar coordinate point in the longitude and latitude grid, including: the grid resolution of the longitude and latitude grid coordinate system is set to 0.01°×0.01°, and the number of grid points is set to 451×451.
根据本申请的一些实施例,所述根据经纬网格中所述极坐标点,得到极坐标探测点,包括:According to some embodiments of the present application, obtaining polar coordinate detection points according to the polar coordinate points in the longitude and latitude grid includes:
获取距离分辨率以及方位分辨率,根据所述距离分辨率、所述方位分辨率以及所述极坐标点,得到多个极坐标探测点。The distance resolution and the azimuth resolution are acquired, and a plurality of polar coordinate detection points are obtained according to the distance resolution, the azimuth resolution and the polar coordinate points.
根据本申请的一些实施例,所述将所述极坐标探测点填充至所述极坐标点周围的经纬网格坐标中,得到经纬网格雷达数据,包括:According to some embodiments of the present application, filling the polar coordinate detection point into the longitude and latitude grid coordinates around the polar coordinate point to obtain the longitude and latitude grid radar data includes:
根据多个所述极坐标探测点的数据值,依次填充至所述极坐标点周围的经纬网格坐标中得到网格范围区域;According to the data values of the plurality of polar coordinate detection points, the longitude and latitude grid coordinates around the polar coordinate points are sequentially filled to obtain a grid range area;
根据所述网格范围区域确定经纬网格点,将所述极坐标点的数据值填充所述经纬网格点得到经纬网格雷达数据。The longitude and latitude grid points are determined according to the grid range area, and the longitude and latitude grid points are filled with the data values of the polar coordinate points to obtain the longitude and latitude grid radar data.
根据本申请的一些实施例,所述获取预设回波强度阈值,根据所述经纬网格雷达数据,确定大于或等于所述回波强度阈值的第一仰角层,包括:According to some embodiments of the present application, the step of obtaining a preset echo intensity threshold and determining, according to the latitude and longitude grid radar data, a first elevation angle layer that is greater than or equal to the echo intensity threshold includes:
根据转换为经纬网格后的雷达回波强度数据和雷达回波高度数据 ,从每个网格格点的高层依次向低层搜索,若出现大于或等于所述回波强度阈值的雷达回波强度数据值,则确定该层为第一仰角层。According to the radar echo intensity data and radar echo height data converted into longitude and latitude grids, the search is conducted from the high layer of each grid point to the low layer in sequence. If a radar echo intensity data value greater than or equal to the echo intensity threshold appears, the layer is determined to be the first elevation angle layer.
根据本申请的一些实施例,所述判断所述第一仰角层是否为最高仰角层,若否,获取相邻上一层的第二仰角层,根据所述第一仰角层及所述第二仰角层得到回波顶高,包括According to some embodiments of the present application, the determining whether the first elevation layer is the highest elevation layer, if not, obtaining the second elevation layer of the adjacent previous layer, and obtaining the echo top height according to the first elevation layer and the second elevation layer, includes:
若所述第一仰角层为最高仰角层,则该网格格点处回波顶高为所述第一仰角层对应的雷达回波强度数据值。If the first elevation layer is the highest elevation layer, the echo top height at the grid point is the radar echo intensity data value corresponding to the first elevation layer.
根据本申请的一些实施例,所述判断所述第一仰角层是否为最高仰角层,若否,获取相邻上一层的第二仰角层,根据所述第一仰角层及所述第二仰角层得到回波顶高,包括:According to some embodiments of the present application, the determining whether the first elevation layer is the highest elevation layer, if not, obtaining the second elevation layer of the adjacent previous layer, and obtaining the echo top height according to the first elevation layer and the second elevation layer, includes:
根据所述第一仰角层及所述第二仰角层对应的回波强度数据值和回波高度数据值,创建垂直方向线性插值的回波顶高关系式,According to the echo intensity data values and echo height data values corresponding to the first elevation layer and the second elevation layer, a vertical linear interpolation echo top height relationship equation is created,
根据所述回波顶高关系式计算得到回波顶高,其中,The echo top height is calculated according to the echo top height relationship, where:
所述回波顶高关系式为:;The echo top height relationship is: ;
式中,ET为回波顶高,为第一仰角层对应的回波高度数据值,为第二仰角层对应的回波高度数据值,为第一仰角层对应的回波强度数据值,为第二仰角层对应的回波强度数据值。Where ET is the echo top height, is the echo height data value corresponding to the first elevation layer, is the echo height data value corresponding to the second elevation layer, is the echo intensity data value corresponding to the first elevation layer, is the echo intensity data value corresponding to the second elevation layer.
与现有的相关技术相比较,上述实施例中的技术方案至少包括以下有益效果:Compared with the existing related technologies, the technical solutions in the above embodiments at least include the following beneficial effects:
通过从雷达基数中提取出雷达回波数据,根据雷达波束高度的计算公式和雷达回波数据,计算出不同雷达回波数据的对应高度;再进行雷达数据的坐标转换,利用临近法将极坐标系下的雷达回波数据和雷达波束高度数据转换至经纬网格坐标系下,获得不同仰角的经纬网格的雷达回波和雷达波束高度数据;最后进行雷达回波顶高的计算,在经纬网格坐标系下,利用线性插值法对每个格点上空不同仰角层的回波强度进行插值,并找出每个格点上空大于等于回波强度阈值(即≥18dBZ)回波出现的最高高度,即该格点处的雷达回波顶高,本方法改变以往雷达回波顶高计算方法的思路,先将雷达回波数据从极坐标格式转为经纬网格的坐标格式,再通过在垂直方向通过线性插值获得雷达回波顶高的值,解决了以往方法在计算雷达回波顶高时水平位置不固定的问题,有效提高雷达回波顶高的计算精度,从而提高短时灾害性天气监测的估测精度。By extracting radar echo data from the radar base, the corresponding heights of different radar echo data are calculated according to the calculation formula of radar beam height and radar echo data; then the coordinate conversion of radar data is performed, and the radar echo data and radar beam height data in the polar coordinate system are converted to the longitude and latitude grid coordinate system by using the proximity method, and the radar echo and radar beam height data of the longitude and latitude grids at different elevation angles are obtained; finally, the radar echo top height is calculated, and the echo intensity of different elevation layers above each grid point is interpolated by the linear interpolation method in the longitude and latitude grid coordinate system. , and find out the highest altitude where the echo above each grid point is greater than or equal to the echo intensity threshold (i.e. ≥18dBZ), that is, the radar echo top height at the grid point. This method changes the idea of the previous radar echo top height calculation method. First, the radar echo data is converted from the polar coordinate format to the coordinate format of the latitude and longitude grid, and then the radar echo top height value is obtained by linear interpolation in the vertical direction. This solves the problem of the non-fixed horizontal position when calculating the radar echo top height in the previous method, effectively improves the calculation accuracy of the radar echo top height, and thus improves the estimation accuracy of short-term disastrous weather monitoring.
本申请的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。Additional aspects and advantages of the present application will be given in part in the description below, and in part will become apparent from the description below, or will be learned through the practice of the present application.
附图说明BRIEF DESCRIPTION OF THE DRAWINGS
为了更清楚地说明本申请实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。In order to more clearly illustrate the technical solutions of the embodiments of the present application, the drawings required for use in the embodiments will be briefly introduced below. Obviously, the drawings described below are only some embodiments of the present application. For ordinary technicians in this field, other drawings can be obtained based on these drawings without creative work.
图1是根据现有技术中雷达回波顶高计算过程的几何关系图;FIG1 is a geometric diagram of a radar echo top height calculation process according to the prior art;
图2是根据本申请实施例的一种用于短时灾害性天气监测的回波顶高计算优化方法的流程图;FIG2 is a flow chart of an echo top height calculation optimization method for short-term disastrous weather monitoring according to an embodiment of the present application;
图3是根据本申请实施例的一种用于短时灾害性天气监测的回波顶高计算优化方法的又一流程图;FIG3 is another flow chart of an echo top height calculation optimization method for short-term severe weather monitoring according to an embodiment of the present application;
图4是根据本申请实施例的一种用于短时灾害性天气监测的回波顶高计算优化方法的数据处理框图;FIG4 is a data processing block diagram of an echo top height calculation optimization method for short-term severe weather monitoring according to an embodiment of the present application;
图5是根据本申请实施例的一种用于短时灾害性天气监测的回波顶高计算优化方法数据处理过程的经纬网格坐标下几何关系图;5 is a geometric relationship diagram under longitude and latitude grid coordinates of a data processing process of an echo top height calculation optimization method for short-term disastrous weather monitoring according to an embodiment of the present application;
具体实施方式DETAILED DESCRIPTION
下面详细描述本申请的实施例,参考附图描述的实施例是示例性的,应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。The embodiments of the present application are described in detail below. The embodiments described with reference to the accompanying drawings are exemplary. It should be understood that the specific embodiments described herein are only used to explain the present application and are not used to limit the present application.
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施方式的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。Unless otherwise defined, all technical and scientific terms used herein have the same meaning as those commonly understood by those skilled in the art to which this application belongs. The terms used herein in the specification of this application are only for the purpose of describing specific embodiments and are not intended to limit this application. The term "and/or" used herein includes any and all combinations of one or more of the related listed items.
本申请的说明书和权利要求书及所述附图中术语“第一”、“第二”、“第三”等是区别于不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元,或者可选地,还包括没有列出的步骤或单元,或者可选地还包括这些过程、方法、产品或设备固有的其它步骤或单元。The terms "first", "second", "third", etc. in the specification and claims of the present application and the drawings are used to distinguish different objects rather than to describe a specific order. In addition, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusions. For example, a series of steps or units are included, or optionally, steps or units not listed are included, or optionally, other steps or units inherent to these processes, methods, products or devices are included.
附图中仅示出了与本申请相关的部分而非全部内容。在更加详细地讨论示例性实施例之前,应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。Only the part relevant to the present application is shown in the accompanying drawings, but not all of the content. Before discussing the exemplary embodiments in more detail, it should be mentioned that some exemplary embodiments are described as processing or methods depicted as flow charts. Although the flow chart describes each operation (or step) as a sequential process, many of the operations therein can be implemented in parallel, concurrently or simultaneously. In addition, the order of each operation can be rearranged. When its operation is completed, the process can be terminated, but it can also have additional steps not included in the accompanying drawings. The process can correspond to a method, function, procedure, subroutine, subprogram, etc.
实施例1Example 1
请参阅图2及图4,本实施例提供一种用于短时灾害性天气监测的回波顶高计算优化方法,所述方法包括以下步骤:Referring to FIG. 2 and FIG. 4 , this embodiment provides an echo top height calculation optimization method for short-term disastrous weather monitoring, the method comprising the following steps:
步骤S100:雷达数据处理,根据天气雷达的型号和对应的雷达基数据的结构,得到雷达立体观测信息以及不同仰角下极坐标格式的雷达回波强度数据;Step S100: radar data processing, obtaining radar stereo observation information and radar echo intensity data in polar coordinate format at different elevation angles according to the model of the weather radar and the structure of the corresponding radar base data;
在本步骤中,需要解释的是,在天气监测过程中,其主要通过天气雷达进行实时监测,当天气雷达设备的发射机通过天线把电磁波能量射向空间某一方向,处在此方向上的云团或云块反射碰到的电磁波;雷达天线接收此反射波,送至接收设备进行处理,从而可以提取有关该云团或云块的某些信息,而对于这些信息需要根据天气雷达的型号和对应的雷达基数据的结构,利用Fortran、Python或者C等程序对雷达基数据进行解码,提取出不同仰角下的极坐标格式的雷达回波强度数据Z(即雷达反射率,单位:dBZ)。In this step, it is necessary to explain that in the process of weather monitoring, real-time monitoring is mainly carried out through weather radar. When the transmitter of the weather radar equipment emits electromagnetic wave energy in a certain direction in space through the antenna, the cloud cluster or cloud block in this direction reflects the electromagnetic wave encountered; the radar antenna receives the reflected wave and sends it to the receiving device for processing, so that certain information about the cloud cluster or cloud block can be extracted. For this information, it is necessary to decode the radar base data according to the model of the weather radar and the structure of the corresponding radar base data using Fortran, Python or C programs to extract the radar echo intensity data Z (i.e. radar reflectivity, unit: dBZ) in polar coordinate format at different elevation angles.
步骤S200:雷达波束高度计算,根据所述雷达立体观测信息,提取雷达波束仰角、方位角以及波束斜距,结合地球有效半径,得到所述雷达波束高度;Step S200: Calculating the radar beam height: extracting the radar beam elevation angle, azimuth angle and beam slant range according to the radar stereoscopic observation information, and combining the effective radius of the earth to obtain the radar beam height;
在本步骤中,根据解码得到的雷达回波数据,提取雷达波束仰角、雷达波束斜距,并结合地球有效半径值,建立雷达波束高度与雷达仰角及波束斜距之间的关系式,从而得到不同仰角下不同方位-斜距处雷达回波对应的雷达波束高度,其中,计算公式为:,式中,为雷达波束高度,为雷达仰角,为波束斜距,为地球有效半径值。In this step, the radar beam elevation angle and the radar beam slant range are extracted according to the decoded radar echo data, and the relationship between the radar beam height, the radar elevation angle and the beam slant range is established in combination with the effective radius of the earth, so as to obtain the radar beam height corresponding to the radar echo at different azimuths and slant ranges at different elevation angles. The calculation formula is: , where is the radar beam height, is the radar elevation angle, is the beam slant distance, is the effective radius of the Earth.
需要说明的是,对于地球有效半径值为考虑了标准大气下大气折射影响后的半径,具体地,,为地球半径。It should be noted that for the effective radius of the earth is the radius after considering the influence of atmospheric refraction under standard atmosphere. Specifically, , is the radius of the Earth.
可以理解的是,天气雷达在对天气进行监测时,其天气雷达处于立体空间内,在工作过程是对周围空间不同方向发生电磁波进行数据采集,对于雷达波束高度可以理解为云层到地面的高度,对于雷达仰角可以理解为雷达向某一方向发生波束在竖直切面方向与水平地面所形成的夹角,而对于雷达波束斜距可以理解为天气雷达所在站点与监测到云层或者云团之间的距离。It can be understood that when the weather radar is monitoring the weather, it is in a three-dimensional space. During the working process, it collects data on electromagnetic waves generated in different directions in the surrounding space. The radar beam height can be understood as the height from the cloud to the ground, the radar elevation angle can be understood as the angle formed by the radar beam in a certain direction in the vertical section direction and the horizontal ground, and the radar beam slant range can be understood as the distance between the weather radar site and the monitored cloud layer or cloud cluster.
步骤S300:将极坐标系下的所述雷达波束高度以及所述雷达回波强度数据叠加至经纬网格坐标,对经纬网格坐标下极坐标点周围临近的经纬网格点进行极坐标探测点填充,得到经纬网格雷达数据;Step S300: superimposing the radar beam height and the radar echo intensity data in the polar coordinate system to the longitude and latitude grid coordinates, and performing polar coordinate detection point filling on the longitude and latitude grid points adjacent to the polar coordinate points in the longitude and latitude grid coordinates to obtain longitude and latitude grid radar data;
在本步骤中,为了得到更加精确的雷达回波顶高数据,需要先将根据雷达仰角和斜距计算出雷达波束的水平距离r,也就是将不同仰角和斜距的波束投影至地平面,再以天气雷达站点为中心,设置一个经纬网格,同时,对该经纬网格的分辨率及网格格点进行设置,并将雷达观测的极坐标格式的数据叠加在该网格上。In this step, in order to obtain more accurate radar echo top height data, it is necessary to first calculate the horizontal distance r of the radar beam according to the radar elevation angle and slant range, that is, to project the beams of different elevation angles and slant ranges to the ground plane, and then set a longitude and latitude grid with the weather radar site as the center. At the same time, set the resolution and grid points of the longitude and latitude grid, and superimpose the polar coordinate format data of the radar observation on the grid.
需要说明的是,在把雷达数据叠加在该经纬网格坐标时,对于经纬网格坐标下极坐标点需要采用临近法插值,具体利用极坐标探测点去填充极坐标点周围临近的经纬网格区域,对于该区域范围内的经纬网格点的雷达数据,利用极坐标点对应的雷达数据进行填充。It should be noted that when superimposing the radar data on the longitude and latitude grid coordinates, the nearest neighbor interpolation method is required for the polar coordinate points under the longitude and latitude grid coordinates. Specifically, the polar coordinate detection points are used to fill the longitude and latitude grid area adjacent to the polar coordinate points. For the radar data of the longitude and latitude grid points within the area, the radar data corresponding to the polar coordinate points are used to fill them.
可以理解的是,对于其他的极坐标点也使用相同的办法进行填充,如此,将极坐标系下的极坐标点叠加在经纬网格坐标时,对于未落在经纬网格格点上的极坐标点便可以用填充区域内的经纬网格点替代,从而有效将极坐标系下的雷达回波数据和计算的雷达回波高度数据插值转换至经纬网格坐标系中。It can be understood that the same method is used to fill in other polar coordinate points. In this way, when the polar coordinate points in the polar coordinate system are superimposed on the longitude and latitude grid coordinates, the polar coordinate points that do not fall on the longitude and latitude grid points can be replaced by the longitude and latitude grid points in the filling area, thereby effectively interpolating the radar echo data and the calculated radar echo height data in the polar coordinate system into the longitude and latitude grid coordinate system.
步骤S400:获取预设回波强度阈值,根据所述经纬网格雷达数据,确定大于或等于所述回波强度阈值的第一仰角层;Step S400: obtaining a preset echo intensity threshold, and determining a first elevation angle layer greater than or equal to the echo intensity threshold according to the latitude and longitude grid radar data;
在本步骤中,回波强度阈值需要提前进行预设,在一般情况下给定雷达回波强度阈值为18dBZ,对于经纬网格坐标系下的雷达回波数据和计算的雷达回波高度数据,从每个经纬网格格点的高层逐渐向低层搜索,找出最先出现回波强度≥18dBZ的仰角层,该仰角层可以认定为第一仰角层,若第一仰角层为最高仰角层,则该网格格点处回波顶高为第一仰角层对应的雷达回波强度数据值,例如第一仰角层记为层,对应回波强度记为,回波高度记为,若层为最高仰角层,则该格点处的回波顶高ET等于对应的回波强度。In this step, the echo intensity threshold needs to be preset in advance. In general, the radar echo intensity threshold is given as 18 dBZ. For the radar echo data in the longitude and latitude grid coordinate system and the calculated radar echo height data, search from the high layer of each longitude and latitude grid point to the low layer to find the elevation layer where the echo intensity ≥ 18 dBZ first appears. This elevation layer can be identified as the first elevation layer. If the first elevation layer is the highest elevation layer, the echo top height at the grid point is the radar echo intensity data value corresponding to the first elevation layer. For example, the first elevation layer is recorded as layer, and the corresponding echo intensity is recorded as , the echo height is recorded as ,like The layer is the highest elevation layer, then the echo top height ET at the grid point is equal to the corresponding echo intensity .
步骤S500:判断所述第一仰角层是否为最高仰角层,若否,获取相邻上一层的第二仰角层,根据所述第一仰角层及所述第二仰角层得到回波顶高。Step S500: determine whether the first elevation layer is the highest elevation layer, if not, obtain the second elevation layer of the adjacent previous layer, and obtain the echo top height according to the first elevation layer and the second elevation layer.
在步骤中,若判断第一仰角层并不是最高仰角层,则需要获取第一仰角层相邻的上一仰角层对应的数据,可以记第二仰角层记为层,对应回波强度记为,回波高度记为。In step 1, if it is determined that the first elevation layer is not the highest elevation layer, it is necessary to obtain the data corresponding to the previous elevation layer adjacent to the first elevation layer. The second elevation layer can be recorded as layer, and the corresponding echo intensity is recorded as , the echo height is recorded as .
根据所述第一仰角层及所述第二仰角层对应的回波强度数据值和回波高度数据值,利用垂直方向线性插值法在经纬网格坐标下计算得到回波顶高,其中,According to the echo intensity data values and echo height data values corresponding to the first elevation layer and the second elevation layer, the echo top height is calculated in the latitude and longitude grid coordinates using the vertical linear interpolation method, wherein:
对于回波顶高计算公式为:;The calculation formula for echo top height is: ;
式中,ET为回波顶高,为第一仰角层对应的回波高度数据值,为第二仰角层对应的回波高度数据值,为第一仰角层对应的回波强度数据值,为第二仰角层对应的回波强度数据值。Where ET is the echo top height, is the echo height data value corresponding to the first elevation layer, is the echo height data value corresponding to the second elevation layer, is the echo intensity data value corresponding to the first elevation layer, is the echo intensity data value corresponding to the second elevation layer.
上述方法步骤中,通过从雷达基数中提取出雷达回波数据,根据雷达波束高度的计算公式和雷达回波数据,计算出不同雷达回波数据的对应高度;再进行雷达数据的坐标转换,利用临近法将极坐标系下的雷达回波数据和雷达波束高度数据转换至经纬网格坐标系下,获得不同仰角的经纬网格的雷达回波和雷达波束高度数据;最后进行雷达回波顶高的计算,在经纬网格坐标系下,利用线性插值法对每个格点上空不同仰角层的回波强度进行插值,并找出每个格点上空大于等于回波强度阈值(即≥18 dBZ)回波出现的最高高度,即该格点处的雷达回波顶高,改变以往雷达回波顶高计算方法的思路,先将雷达回波数据从极坐标格式转为经纬网格的坐标格式,再通过在垂直方向通过线性插值获得雷达回波顶高的值,解决了以往方法在计算雷达回波顶高时水平位置不固定的问题,有效提高雷达回波顶高的计算精度,从而提高短时灾害性天气监测的估测精度。In the above method steps, radar echo data is extracted from the radar base, and the corresponding heights of different radar echo data are calculated according to the calculation formula of radar beam height and radar echo data; then the coordinate conversion of radar data is performed, and the radar echo data and radar beam height data in the polar coordinate system are converted to the longitude and latitude grid coordinate system by using the proximity method, so as to obtain the radar echo and radar beam height data of the longitude and latitude grids at different elevation angles; finally, the radar echo top height is calculated, and the echo intensity of different elevation angle layers above each grid point is interpolated by using the linear interpolation method in the longitude and latitude grid coordinate system, and the echo intensity threshold (i.e. ≥18) above each grid point is found. The highest height at which a (dBZ) echo appears, that is, the radar echo top height at this grid point, changes the idea of the previous radar echo top height calculation method. First, the radar echo data is converted from polar coordinate format to latitude and longitude grid coordinate format, and then the value of the radar echo top height is obtained by linear interpolation in the vertical direction. This solves the problem of the non-fixed horizontal position when calculating the radar echo top height in the previous method, effectively improves the calculation accuracy of the radar echo top height, and thus improves the estimation accuracy of short-term disastrous weather monitoring.
实施例2Example 2
请参阅图3及图5,本实施例对实施例1提供一种用于短时灾害性天气监测的回波顶高计算优化方法的步骤S300进一步描述,具体包括以下步骤:Referring to FIG. 3 and FIG. 5 , this embodiment further describes step S300 of an echo top height calculation optimization method for short-term disastrous weather monitoring provided in embodiment 1, which specifically includes the following steps:
步骤S310:根据雷达波束仰角、雷达波束斜距以及雷达波束高度,得到雷达波束水平距离对应的极坐标点;Step S310: obtaining a polar coordinate point corresponding to the horizontal distance of the radar beam according to the radar beam elevation angle, the radar beam slant range and the radar beam height;
在本步骤中,根据雷达波束仰角、雷达波束斜距以及雷达波束高度,建立雷达波束水平距离与所述雷达波束仰角、所述雷达波束斜距以及所述雷达波束高度的关系式,其中,In this step, according to the radar beam elevation angle, the radar beam slant range and the radar beam height, a relationship between the radar beam horizontal distance and the radar beam elevation angle, the radar beam slant range and the radar beam height is established, wherein:
对应的关系式为:,The corresponding relationship is: ,
式中,为雷达波束的水平距离,为雷达波束高度,为波束斜距,为地球有效半径值。In the formula, is the horizontal distance of the radar beam, is the radar beam height, is the beam slant distance, is the effective radius of the Earth.
根据雷达波束水平距离以及雷达波束极角,得到对应的极坐标点,对于雷达波束极角可以根据天气雷达测得的数据进行获取;对于雷达波束高度为步骤S200计算所得到。According to the horizontal distance of the radar beam and the polar angle of the radar beam, the corresponding polar coordinate point is obtained. The polar angle of the radar beam can be obtained according to the data measured by the weather radar; the height of the radar beam It is obtained by calculation in step S200.
步骤S320:以雷达站点为中心建立经纬网格坐标系,设置网格分辨率以及格点数,并将雷达观测的极坐标数据叠加至经纬网格中,确定经纬网格中所述极坐标点位置;Step S320: establishing a longitude and latitude grid coordinate system with the radar site as the center, setting the grid resolution and the number of grid points, and superimposing the polar coordinate data observed by the radar on the longitude and latitude grid to determine the position of the polar coordinate point in the longitude and latitude grid;
在本步骤中,以雷达站点为中心建立经纬网格坐标系,并对该经纬网格坐标设置网格分辨率以及格点数,具体地,经纬网格坐标系的网格分辨率设置为0.01°×0.01°,以及网格格点数设置为451×451,对于设置好参数的经纬网格坐标系,将雷达观测的极坐标数据叠加至经纬网格中,确定经纬网格中所述极坐标点位置;In this step, a longitude and latitude grid coordinate system is established with the radar site as the center, and the grid resolution and the number of grid points are set for the longitude and latitude grid coordinate system. Specifically, the grid resolution of the longitude and latitude grid coordinate system is set to 0.01°×0.01°, and the number of grid points is set to 451×451. For the longitude and latitude grid coordinate system with set parameters, the polar coordinate data observed by the radar is superimposed on the longitude and latitude grid to determine the position of the polar coordinate point in the longitude and latitude grid.
步骤S330:根据经纬网格中所述极坐标点,得到极坐标探测点;Step S330: obtaining polar coordinate detection points according to the polar coordinate points in the longitude and latitude grid;
在本步骤中,获取距离分辨率以及方位分辨率,根据所述距离分辨率、所述方位分辨率以及所述极坐标点,得到多个极坐标探测点;In this step, the distance resolution and the azimuth resolution are obtained, and a plurality of polar coordinate detection points are obtained according to the distance resolution, the azimuth resolution and the polar coordinate points;
在一些实施例中,如图5所示,以经纬网格中所述极坐标点的为例,将极坐标点周围的经纬网格点的值全部用该极坐标点的探测值填充,具体的填充范围为、、以及四个极坐标点组成的范围,其中,、、以及为不同的多个极坐标探测点,其中,表示两个相连斜距之间的差(即距离库或距离分辨率),为相连方位之间的差(即方位分辨率)。In some embodiments, as shown in FIG. 5, the polar coordinate points in the longitude and latitude grid are For example, the polar coordinate point The values of the surrounding longitude and latitude grid points are all filled with the detection values of the polar coordinate point. The specific filling range is , , as well as A range of four polar coordinate points, where , , as well as are different multiple polar coordinate detection points, where represents the difference between two consecutive slope ranges (i.e., range base or range resolution), is the difference between consecutive bearings (i.e., bearing resolution).
步骤S340:将所述极坐标探测点填充至所述极坐标点周围的经纬网格坐标中,得到经纬网格雷达数据。Step S340: Fill the polar coordinate detection point into the longitude and latitude grid coordinates around the polar coordinate point to obtain longitude and latitude grid radar data.
在本步骤中,根据多个极坐标探测点的数据值,依次填充至极坐标点周围的经纬网格坐标中得到网格范围区域;In this step, according to the data values of the multiple polar coordinate detection points, the longitude and latitude grid coordinates around the polar coordinate points are filled in turn to obtain a grid range area;
根据网格范围区域确定经纬网格点,将极坐标点的数据值填充经纬网格点得到经纬网格雷达数据。The longitude and latitude grid points are determined according to the grid range area, and the data values of the polar coordinate points are filled into the longitude and latitude grid points to obtain the longitude and latitude grid radar data.
继续参阅图5,以经纬网格中极坐标点为例,将极坐标点周围的经纬网格点的值全部用该极坐标点的探测值填充,具体的填充范围为、、以及四个极坐标点所组成,对于极坐标点的极坐标系下的雷达回波数据和计算的雷达回波高度数据,其可以填充至经纬网格点A或B中,实现转换为经纬网格格点的雷达回强度波数和雷达回波高度数据。Continuing to refer to Figure 5, the polar coordinate points in the longitude and latitude grid For example, the polar coordinate point The values of the surrounding longitude and latitude grid points are all filled with the detection values of the polar coordinate point. The specific filling range is , , as well as It is composed of four polar coordinate points. The radar echo data in the polar coordinate system and the calculated radar echo height data can be filled into the longitude and latitude grid point A or B to realize the conversion into the radar echo intensity wave number and radar echo height data of the longitude and latitude grid grid points.
实施例3Example 3
相应的,本实施例还提供一种存储介质,所述存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述实施例中所述的一种用于短时灾害性天气监测的回波顶高计算优化方法的方法步骤。Correspondingly, this embodiment also provides a storage medium, in which instructions are stored. When the storage medium is run on a computer, the computer executes the method steps of a method for optimizing echo top height calculation for short-term disastrous weather monitoring described in the above embodiment.
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CDROM、光学存储器等)上实施的计算机程序产品的形式。Those skilled in the art will appreciate that the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment in combination with software and hardware. Moreover, the present application may adopt the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CDROM, optical storage, etc.) that contain computer-usable program code.
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。The present application is described with reference to the flowchart and/or block diagram of the method, device (system) and computer program product according to the embodiment of the present application. It should be understood that each process and/or box in the flowchart and/or block diagram, and the combination of the process and/or box in the flowchart and/or block diagram can be realized by computer program instructions. These computer program instructions can be provided to a processor of a general-purpose computer, a special-purpose computer, an embedded processor or other programmable data processing device to produce a machine, so that the instructions executed by the processor of the computer or other programmable data processing device produce a device for realizing the function specified in one process or multiple processes in the flowchart and/or one box or multiple boxes in the block diagram.
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。These computer program instructions may also be stored in a computer-readable memory that can direct a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce a manufactured product including an instruction device that implements the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。These computer program instructions may also be loaded onto a computer or other programmable data processing device so that a series of operational steps are executed on the computer or other programmable device to produce a computer-implemented process, whereby the instructions executed on the computer or other programmable device provide steps for implementing the functions specified in one or more processes in the flowchart and/or one or more boxes in the block diagram.
在一个典型的配置中,计算设备包括一个或多个处理器(CPU)、输入/输出接口、网络接口和内存。In a typical configuration, a computing device includes one or more processors (CPU), input/output interfaces, network interfaces, and memory.
存储器可能包括计算机可读介质中的非永久性存储器,随机存取存储器(RAM)和/或非易失性内存等形式,如只读存储器(ROM)或闪存(flash RAM)。存储器是计算机可读介质的示例。The memory may include non-permanent memory in a computer-readable medium, random access memory (RAM) and/or non-volatile memory in the form of read-only memory (ROM) or flash RAM. The memory is an example of a computer-readable medium.
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。It should also be noted that the terms "include", "comprises" or any other variations thereof are intended to cover non-exclusive inclusion, so that a process, method, commodity or device including a series of elements includes not only those elements, but also other elements not explicitly listed, or also includes elements inherent to such process, method, commodity or device. In the absence of more restrictions, the elements defined by the sentence "comprises a ..." do not exclude the existence of other identical elements in the process, method, commodity or device including the elements.
本申请的说明书和权利要求书及所述附图中术语“第一”、“第二”、“第三”等是区别于不同的对象,而不是用于描述特定顺序。此外,术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。例如,包含了一系列步骤或单元,或者可选地,还包括没有列出的步骤或单元,或者可选地还包括这些过程、方法、产品或设备固有的其它步骤或单元。The terms "first", "second", "third", etc. in the specification and claims of the present application and the drawings are used to distinguish different objects rather than to describe a specific order. In addition, the terms "including" and "having" and any variations thereof are intended to cover non-exclusive inclusions. For example, a series of steps or units are included, or optionally, steps or units not listed are included, or optionally, other steps or units inherent to these processes, methods, products or devices are included.
附图中仅示出了与本申请相关的部分而非全部内容。在更加详细地讨论示例性实施例之前,应当提到的是,一些示例性实施例被描述成作为流程图描绘的处理或方法。虽然流程图将各项操作(或步骤)描述成顺序的处理,但是其中的许多操作可以并行地、并发地或者同时实施。此外,各项操作的顺序可以被重新安排。当其操作完成时所述处理可以被终止,但是还可以具有未包括在附图中的附加步骤。所述处理可以对应于方法、函数、规程、子例程、子程序等等。Only the part relevant to the present application is shown in the accompanying drawings, but not all of the content. Before discussing the exemplary embodiments in more detail, it should be mentioned that some exemplary embodiments are described as processing or methods depicted as flow charts. Although the flow chart describes each operation (or step) as a sequential process, many of the operations therein can be implemented in parallel, concurrently or simultaneously. In addition, the order of each operation can be rearranged. When its operation is completed, the process can be terminated, but it can also have additional steps not included in the accompanying drawings. The process can correspond to a method, function, procedure, subroutine, subprogram, etc.
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。In the description of this specification, the description with reference to the terms "one embodiment", "some embodiments", "illustrative embodiments", "examples", "specific examples", or "some examples" means that the specific features, structures, materials, or characteristics described in conjunction with the embodiment or example are included in at least one embodiment or example of the present application. In this specification, the schematic representation of the above terms does not necessarily refer to the same embodiment or example.
显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或者特性可以包含在本实施例申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是相同的实施例,也不是与其它实施例互斥的独立的或是备选的实施例。本领域技术人员可以显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。Obviously, the described embodiments are only a part of the embodiments of the present application, rather than all the embodiments. Mentioning "embodiment" in this article means that the specific features, structures or characteristics described in conjunction with the embodiment may be included in at least one embodiment of the present embodiment application. The appearance of this phrase in various positions in the specification is not necessarily the same embodiment, nor is it an independent or alternative embodiment that is mutually exclusive with other embodiments. It can be explicitly and implicitly understood by those skilled in the art that the embodiments described herein can be combined with other embodiments. Based on the embodiments in this application, all other embodiments obtained by ordinary technicians in this field without making creative work are within the scope of protection of this application.
尽管已经示出和描述了本申请的实施例,本领域的普通技术人员可以理解:在不脱离本申请的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本申请的范围由权利要求及其等同物限定。Although the embodiments of the present application have been shown and described, those skilled in the art will appreciate that various changes, modifications, substitutions and variations may be made to the embodiments without departing from the principles and spirit of the present application, and that the scope of the present application is defined by the claims and their equivalents.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311794388.2A CN117452369B (en) | 2023-12-25 | 2023-12-25 | An optimization method for calculating echo top height for short-term severe weather monitoring |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311794388.2A CN117452369B (en) | 2023-12-25 | 2023-12-25 | An optimization method for calculating echo top height for short-term severe weather monitoring |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117452369A CN117452369A (en) | 2024-01-26 |
CN117452369B true CN117452369B (en) | 2024-04-05 |
Family
ID=89593382
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311794388.2A Active CN117452369B (en) | 2023-12-25 | 2023-12-25 | An optimization method for calculating echo top height for short-term severe weather monitoring |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117452369B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117749257B (en) * | 2024-02-20 | 2024-05-17 | 成都星联芯通科技有限公司 | Engineering realization method and device for searching high-orbit multi-beam by terminal and terminal equipment |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9019147B1 (en) * | 2012-01-30 | 2015-04-28 | Rockwell Collins, Inc. | System and method for displaying weather information |
CN110824479A (en) * | 2019-10-28 | 2020-02-21 | 兰州大方电子有限责任公司 | Radar data processing method for short-term forecasting |
US10605912B1 (en) * | 2015-09-30 | 2020-03-31 | Rockwell Collins, Inc. | Storm top adaptive beam scan |
CN110967695A (en) * | 2019-10-28 | 2020-04-07 | 兰州大方电子有限责任公司 | Radar echo extrapolation short-term prediction method based on deep learning |
CN111366930A (en) * | 2020-03-09 | 2020-07-03 | 上海眼控科技股份有限公司 | Cloud top height verification method and device, computer equipment and storage medium |
CN113640803A (en) * | 2021-09-01 | 2021-11-12 | 江西师范大学 | Short-time quantitative rainfall forecasting method based on echo intensity and echo top height extrapolation |
CN115421117A (en) * | 2022-06-06 | 2022-12-02 | 中国人民解放军61540部队 | A Radar Echo Extrapolation Method Based on Deep Learning |
CN116953653A (en) * | 2023-09-19 | 2023-10-27 | 成都远望科技有限责任公司 | Networking echo extrapolation method based on multiband weather radar |
CN117148358A (en) * | 2023-08-30 | 2023-12-01 | 江西师范大学 | A speed deblurring method for Doppler weather radar based on Barnes spatial filtering |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102212524B1 (en) * | 2020-07-15 | 2021-02-05 | 대한민국 | Method for retrieval of lost radial velocity in weather radar, recording medium and device for performing the method |
-
2023
- 2023-12-25 CN CN202311794388.2A patent/CN117452369B/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9019147B1 (en) * | 2012-01-30 | 2015-04-28 | Rockwell Collins, Inc. | System and method for displaying weather information |
US10605912B1 (en) * | 2015-09-30 | 2020-03-31 | Rockwell Collins, Inc. | Storm top adaptive beam scan |
CN110824479A (en) * | 2019-10-28 | 2020-02-21 | 兰州大方电子有限责任公司 | Radar data processing method for short-term forecasting |
CN110967695A (en) * | 2019-10-28 | 2020-04-07 | 兰州大方电子有限责任公司 | Radar echo extrapolation short-term prediction method based on deep learning |
CN111366930A (en) * | 2020-03-09 | 2020-07-03 | 上海眼控科技股份有限公司 | Cloud top height verification method and device, computer equipment and storage medium |
CN113640803A (en) * | 2021-09-01 | 2021-11-12 | 江西师范大学 | Short-time quantitative rainfall forecasting method based on echo intensity and echo top height extrapolation |
CN115421117A (en) * | 2022-06-06 | 2022-12-02 | 中国人民解放军61540部队 | A Radar Echo Extrapolation Method Based on Deep Learning |
CN117148358A (en) * | 2023-08-30 | 2023-12-01 | 江西师范大学 | A speed deblurring method for Doppler weather radar based on Barnes spatial filtering |
CN116953653A (en) * | 2023-09-19 | 2023-10-27 | 成都远望科技有限责任公司 | Networking echo extrapolation method based on multiband weather radar |
Non-Patent Citations (3)
Title |
---|
S波段相控阵天气雷达与新一代天气雷达探测云回波强度及结构误差的模拟分析;张志强;刘黎平;;气象学报;20110815(第04期);第729-735页 * |
多普勒天气雷达组网拼图有效数据区域分析;杨洪平;张沛源;程明虎;李柏;熊毅;高玉春;陈大任;;应用气象学报;20090215(第01期);第47-55页 * |
机载双极化气象雷达雷暴回波仿真与验证;李海等;信号处理;20231016(第网络首发期);1-14 * |
Also Published As
Publication number | Publication date |
---|---|
CN117452369A (en) | 2024-01-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2018206753B2 (en) | Method and device for filling invalid regions of terrain elevation model data | |
CN105761312B (en) | A kind of mima type microrelief method of surface reconstruction | |
JPWO2003012740A1 (en) | Automatic three-dimensional structure shape generating apparatus, automatic generating method, program thereof, and recording medium storing the program | |
CN107843895B (en) | A kind of Dual-Doppler weather radar dimensional wind inversion method | |
CN117452369B (en) | An optimization method for calculating echo top height for short-term severe weather monitoring | |
CN109059791B (en) | Deformation monitoring method and device for power equipment | |
CN115760725B (en) | Laser radar-based transmission line external force intrusion monitoring method, medium and equipment | |
CN112686945A (en) | Web-based three-dimensional terrain surface area measurement method | |
CN117237568A (en) | Three-dimensional real-life modeling method of overhead transmission lines based on point cloud data fitting | |
CN109031235B (en) | Method for rapidly acquiring three-dimensional contour line data of radar basic reflectivity | |
CN113743027A (en) | Method and device for drawing wind resource map based on CFD technology | |
CN117075171B (en) | Pose information determining method, device and equipment of laser radar and storage medium | |
CN118794363A (en) | Method, device and processor for slope monitoring | |
CN113030898A (en) | Weather radar base data three-dimensional curved surface triangulation network construction method | |
CN109752723B (en) | Underwater topographic map drawing method and device | |
CN111598941A (en) | Method, device and equipment for measuring gradient of tower and storage medium | |
CN117129997A (en) | Dual-polarization radar differential phase shift rate foot identification method based on convection storm | |
CN111583406A (en) | Pole tower foot base point coordinate calculation method and device and terminal equipment | |
CN105701859A (en) | Radar single-station polar coordinate data three-dimensional grid processing method and system | |
CN116299477A (en) | Differential reflectivity factor column identification method, system, medium and equipment | |
CN112684449B (en) | Water area power line sag inversion method and device based on SAR technology | |
CN111898687B (en) | A Radar Reflectance Data Fusion Method Based on Dillonie Triangulation | |
CN115792932A (en) | Positioning method, device, equipment and medium for inspection robot | |
De Marco et al. | An assessment on morphological survey calibration and the automation of digital drawing for the reliable documentation and conservation analysis of out-of-scale buildings | |
CN114814750A (en) | Radar calibration and verification method and device, computer equipment and storage medium |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CB03 | Change of inventor or designer information | ||
CB03 | Change of inventor or designer information |
Inventor after: Zou Haibo Inventor after: Zhu Shiqi Inventor after: Wu Shanshan Inventor before: Zou Haibo Inventor before: Zhu Shiqi Inventor before: Wu Shanshan |