Nothing Special   »   [go: up one dir, main page]

CN117376796B - Preparation method of microelectromechanical microphone - Google Patents

Preparation method of microelectromechanical microphone Download PDF

Info

Publication number
CN117376796B
CN117376796B CN202311676803.4A CN202311676803A CN117376796B CN 117376796 B CN117376796 B CN 117376796B CN 202311676803 A CN202311676803 A CN 202311676803A CN 117376796 B CN117376796 B CN 117376796B
Authority
CN
China
Prior art keywords
oxide layer
baffle
layer
diaphragm
depositing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311676803.4A
Other languages
Chinese (zh)
Other versions
CN117376796A (en
Inventor
刘雨微
张睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Jicui Zhongyi Technology Industry Development Co ltd
AAC Microtech Changzhou Co Ltd
Original Assignee
AAC Microtech Changzhou Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AAC Microtech Changzhou Co Ltd filed Critical AAC Microtech Changzhou Co Ltd
Priority to CN202311676803.4A priority Critical patent/CN117376796B/en
Publication of CN117376796A publication Critical patent/CN117376796A/en
Application granted granted Critical
Publication of CN117376796B publication Critical patent/CN117376796B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R19/00Electrostatic transducers
    • H04R19/04Microphones
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04RLOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
    • H04R31/00Apparatus or processes specially adapted for the manufacture of transducers or diaphragms therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Signal Processing (AREA)
  • Manufacturing & Machinery (AREA)
  • Pressure Sensors (AREA)

Abstract

本发明提供了一种微机电麦克风的制备方法,包括如下步骤:选择基底,在基底的第一表面上制备第一挡板结构;在第一挡板结构背离基底的一侧制备振膜结构,振膜结构的周缘向第一挡板的正投影落在第一挡板上;在振膜结构背离第一挡板的一侧间隔制备第二挡板结构,第二挡板结构与第一挡板结构连接,且第二挡板结构向振膜结构的正投影至少部分落在振膜结构的周缘;在第二挡板结构背离振膜结构的一侧间隔制备背板结构,背板结构包括若干声学通孔;刻蚀基底与第一表面相对的第二表面,形成背腔结构。与相关技术相比,本发明的微机电麦克风的制备方法,旨在提升振膜的自由度以提升微机电麦克风的灵敏度的同时提升振膜结构的结构强度。

The invention provides a method for preparing a microelectromechanical microphone, which includes the following steps: selecting a substrate, preparing a first baffle structure on the first surface of the substrate; preparing a diaphragm structure on the side of the first baffle structure facing away from the substrate, The orthographic projection of the periphery of the diaphragm structure to the first baffle falls on the first baffle; a second baffle structure is prepared at intervals on the side of the diaphragm structure away from the first baffle, and the second baffle structure is in contact with the first baffle. The plate structures are connected, and the orthographic projection of the second baffle structure to the diaphragm structure at least partially falls on the periphery of the diaphragm structure; a backplate structure is prepared at intervals on the side of the second baffle structure away from the diaphragm structure, and the backplate structure includes A plurality of acoustic through holes; etching the second surface of the substrate opposite to the first surface to form a back cavity structure. Compared with related technologies, the preparation method of the microelectromechanical microphone of the present invention aims to increase the degree of freedom of the diaphragm to improve the sensitivity of the microelectromechanical microphone and at the same time improve the structural strength of the diaphragm structure.

Description

微机电麦克风的制备方法Preparation method of microelectromechanical microphone

技术领域Technical field

本发明涉及麦克风技术领域,尤其涉及一种微机电麦克风的制备方法。The present invention relates to the field of microphone technology, and in particular, to a method for preparing a microelectromechanical microphone.

背景技术Background technique

随着无线通讯的发展,用户对移动电话的通话质量要求越来越高,麦克风作为移动电话的语音拾取装置,其设计的好坏直接影响移动电话的通话质量。With the development of wireless communications, users have higher and higher requirements for the call quality of mobile phones. As the voice pickup device of mobile phones, the design of the microphone directly affects the call quality of mobile phones.

由于微机电系统技术(Micro-Electro-Mechanic System,MEMS)具有小型化、易集成、高性能、低成本等特点,使其获得业界青睐,MEMS麦克风在当前的移动电话中应用较为广泛;常见的MEMS麦克风为电容式,即包括振膜和背板,二者构成MEMS声传感电容,在高性能的MEMS麦克风中,除了需要进行低噪声的设计外,高灵敏度的MEMS麦克风设计也是当前设计必须考量的重要因素。现有技术MEMS麦克风采用四条悬臂梁的设计,能够使得振膜获得较大的自由度,进而获得很高的灵敏度。Micro-Electro-Mechanic System (MEMS) technology is favored by the industry due to its miniaturization, easy integration, high performance, and low cost. MEMS microphones are widely used in current mobile phones; common MEMS microphones are capacitive, which include a diaphragm and a backplate, both of which constitute a MEMS sound sensing capacitor. In addition to low-noise design, high-performance MEMS microphones also require high-sensitivity MEMS microphone design. important factors to consider. In the existing technology, MEMS microphones adopt a design of four cantilever beams, which allows the diaphragm to obtain a greater degree of freedom and thereby obtain high sensitivity.

然而,前述MEMS麦克风设计在可靠性实验下,振膜与基底或背板的撞击中,较窄的悬臂梁为振膜的断裂弱点。基于此,有必要提供了一种新的微机电麦克风的制备方法,以在提升振膜的自由度的同时提升振膜的结构强度。However, in the reliability test of the aforementioned MEMS microphone design, when the diaphragm collides with the substrate or back plate, the narrow cantilever beam becomes the fracture weak point of the diaphragm. Based on this, it is necessary to provide a new method of preparing a microelectromechanical microphone to improve the degree of freedom of the diaphragm and at the same time improve the structural strength of the diaphragm.

发明内容Contents of the invention

本发明的目的是克服上述技术问题,提供一种能够在提升振膜的自由度的同时提升振膜的结构强度的微机电麦克风的制备方法。The purpose of the present invention is to overcome the above technical problems and provide a method for preparing a microelectromechanical microphone that can improve the degree of freedom of the diaphragm while simultaneously improving the structural strength of the diaphragm.

为了实现上述目的,本发明实施例提供了一种微机电麦克风的制备方法,包括如下步骤:In order to achieve the above object, an embodiment of the present invention provides a method for preparing a microelectromechanical microphone, which includes the following steps:

选择基底,在基底的第一表面上沉积第一氧化层;Select a substrate and deposit a first oxide layer on the first surface of the substrate;

图形化第一氧化层,第一氧化层包括多个第一连接通孔;Patterning a first oxide layer, the first oxide layer including a plurality of first connection vias;

在第一氧化层的表面沉积第一氮化硅层直至填满第一连接通孔,图形化第一氮化硅层以形成第一挡板结构;Deposit a first silicon nitride layer on the surface of the first oxide layer until the first connection via hole is filled, and pattern the first silicon nitride layer to form a first baffle structure;

在第一挡板结构的表面沉积第二氧化层,图形化第二氧化层,第二氧化层包括第二连接通孔;Deposit a second oxide layer on the surface of the first baffle structure, pattern the second oxide layer, and the second oxide layer includes a second connection via hole;

在第二氧化层的表面沉积第一多晶硅层直至填满第二连接通孔,图形化第一多晶硅层以形成振膜结构,振膜结构的周缘向第一挡板的正投影落在第一挡板上;Deposit a first polysilicon layer on the surface of the second oxide layer until the second connection via hole is filled, pattern the first polysilicon layer to form a diaphragm structure, and the periphery of the diaphragm structure projects orthogonally to the first baffle Fall on the first baffle;

在振膜结构的表面沉积第三氧化层并图形化,以露出至少部分第一挡板;Deposit and pattern a third oxide layer on the surface of the diaphragm structure to expose at least part of the first baffle;

在第三氧化层的表面沉积第二氮化硅层,图形化第二氮化硅层以形成第二挡板结构,第二挡板结构与第一挡板结构连接,且第二挡板结构向振膜结构的正投影至少部分落在振膜结构的周缘;A second silicon nitride layer is deposited on the surface of the third oxide layer, and the second silicon nitride layer is patterned to form a second baffle structure. The second baffle structure is connected to the first baffle structure, and the second baffle structure The orthographic projection onto the diaphragm structure falls at least partially on the periphery of the diaphragm structure;

在第二挡板结构的表面沉积第四氧化层,在第四氧化层的表面沉积背板材质层,图形化背板材质层形成背板结构,背板结构包括若干声学通孔;A fourth oxide layer is deposited on the surface of the second baffle structure, a backplane material layer is deposited on the surface of the fourth oxide layer, and the patterned backplane material layer forms a backplane structure, and the backplane structure includes a plurality of acoustic through holes;

背面刻蚀基底,形成对应于背板结构中间主体区域的背腔结构;The substrate is etched on the back to form a back cavity structure corresponding to the middle main area of the back plate structure;

经声学通孔去除第三氧化层与第四氧化层,经背腔结构去除背腔结构上方的第一氧化层与第二氧化层。The third oxide layer and the fourth oxide layer are removed through the acoustic through hole, and the first oxide layer and the second oxide layer above the back cavity structure are removed through the back cavity structure.

进一步地,图形化第一氧化层包括在第一氧化层的靠近边缘的位置沿第一氧化层的边缘刻蚀出呈环状的第一连接通孔。Further, patterning the first oxide layer includes etching a ring-shaped first connection via hole along the edge of the first oxide layer at a position close to the edge of the first oxide layer.

进一步地,第一连接通孔的数量为多个,多个第一连接通孔沿第一氧化层的中心部分向边缘部分的方向依次间隔设置。Further, the number of the first connection via holes is multiple, and the plurality of first connection via holes are arranged at intervals in a direction from the central part to the edge part of the first oxide layer.

进一步地,图形化第二氧化层包括在第二氧化层的靠近边缘的位置刻蚀出第二连接通孔。Further, patterning the second oxide layer includes etching a second connection via hole in a position close to an edge of the second oxide layer.

进一步地,第一多晶硅层填满第二连接通孔的部分为振膜结构的引出电极。Further, the part of the first polysilicon layer that fills the second connection through hole is the extraction electrode of the diaphragm structure.

进一步地,沉积第一氧化层包括依次沉积第一子氧化层与第二子氧化层,第二子氧化层的沉积厚度大于第一子氧化层。Further, depositing the first oxide layer includes sequentially depositing a first sub-oxide layer and a second sub-oxide layer, and the deposition thickness of the second sub-oxide layer is greater than that of the first sub-oxide layer.

进一步地,第二子氧化层的厚度与第一子氧化层的厚度的比值为2至5。Further, the ratio of the thickness of the second sub-oxide layer to the thickness of the first sub-oxide layer is 2 to 5.

进一步地,形成背腔结构包括从基底的第二表面减薄并刻蚀基底。Further, forming the back cavity structure includes thinning and etching the substrate from the second surface of the substrate.

进一步地,沉积背板材质层包括依次沉积第三氮化硅层与第二多晶硅层。Further, depositing the backplane material layer includes sequentially depositing a third silicon nitride layer and a second polysilicon layer.

与相关技术相比,本发明提供的微机电麦克风的制备方法,通过在振膜结构沿振动方向的两端分别设置第一挡板结构与第二挡板结构,以利用第一挡板结构与第二挡板结构限制振膜结构在振动方向的位移,进而减少振膜结构达到断裂应力的可能性,进而提升了振膜结构的结构强度。Compared with related technologies, the method of manufacturing a microelectromechanical microphone provided by the present invention is to utilize the first baffle structure and the second baffle structure by respectively arranging a first baffle structure and a second baffle structure at both ends of the diaphragm structure along the vibration direction. The second baffle structure limits the displacement of the diaphragm structure in the vibration direction, thereby reducing the possibility of the diaphragm structure reaching fracture stress, thereby improving the structural strength of the diaphragm structure.

附图说明Description of drawings

为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图,其中:In order to more clearly illustrate the technical solutions in the embodiments of the present invention, the drawings needed to be used in the description of the embodiments will be briefly introduced below. Obviously, the drawings in the following description are only some embodiments of the present invention. For those of ordinary skill in the art, other drawings can also be obtained based on these drawings without exerting creative efforts, among which:

图1为本发明其中一实施例的微机电麦克风的结构示意图;Figure 1 is a schematic structural diagram of a microelectromechanical microphone according to one embodiment of the present invention;

图2为本发明其中一实施例涉及的微机电麦克风的制备方法流程图;Figure 2 is a flow chart of a method for preparing a microelectromechanical microphone according to one embodiment of the present invention;

图3a至图3o为本发明其中一实施例涉及的微机电麦克风制备工艺示意图。3a to 3o are schematic diagrams of a manufacturing process of a microelectromechanical microphone according to one embodiment of the present invention.

具体实施方式Detailed ways

下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Obviously, the described embodiments are only some, not all, of the embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts fall within the scope of protection of the present invention.

请参阅图1,利用本发明所提出的制备方法所制备的微机电麦克风100包括基底10以及设置在基底10上并与基底10绝缘相连的电容系统20。Referring to FIG. 1 , a microelectromechanical microphone 100 prepared using the preparation method proposed by the present invention includes a substrate 10 and a capacitor system 20 disposed on the substrate 10 and insulatedly connected to the substrate 10 .

基底10的材质优选为半导体材料,例如硅,其具有背腔101、第一表面10A以及与第一表面10A相对的第二表面10B,相应地,在本发明实施例的下述描述中,以第一表面10A代表上表面方向,以第二表面10B代表下表面方向。其中背腔101可以通过体硅工艺或干法腐蚀形成。The substrate 10 is preferably made of a semiconductor material, such as silicon, and has a back cavity 101, a first surface 10A, and a second surface 10B opposite to the first surface 10A. Correspondingly, in the following description of the embodiment of the present invention, The first surface 10A represents the upper surface direction, and the second surface 10B represents the lower surface direction. The back cavity 101 can be formed by bulk silicon process or dry etching.

电容系统20包括振膜21、与振膜21相对的背板22以及分别设置在所述振膜21的下、上两侧的第一挡板23与第二挡板24,其中,振膜21包括一处电极引出部103,振膜21通过该电极引出部103与第一挡板23连接,且振膜21的其余部分均与第一挡板23在振动方向X上间隔设置,振膜21与第二挡板24在振动方向X上间隔设置。如此一来,振膜21仅通过电极引出部103与第一挡板23存在一处连接,以使振膜21的其余位置在振动方向X上与其他构件均不存在连接,以提升了振膜21的释放程度,振膜21在振动方向X上具备极大的自由度,进而提升了微机电麦克风100的灵敏度。The capacitive system 20 includes a diaphragm 21, a back plate 22 opposite to the diaphragm 21, and a first baffle 23 and a second baffle 24 respectively provided on the lower and upper sides of the diaphragm 21, wherein the diaphragm 21 It includes an electrode lead-out part 103 through which the diaphragm 21 is connected to the first baffle 23, and the remaining parts of the diaphragm 21 are spaced apart from the first baffle 23 in the vibration direction X. The diaphragm 21 It is spaced apart from the second baffle 24 in the vibration direction X. In this way, the diaphragm 21 is only connected to the first baffle 23 at one point through the electrode lead-out part 103, so that the remaining positions of the diaphragm 21 are not connected to other components in the vibration direction With a release degree of 21, the diaphragm 21 has a great degree of freedom in the vibration direction X, thereby improving the sensitivity of the microelectromechanical microphone 100.

在本申请的这些实施例中,电极引出部103为振膜21的引出电极。In these embodiments of the present application, the electrode extraction part 103 is an extraction electrode of the diaphragm 21 .

同时,振膜21的周缘部分与第一挡板23之间、以及振膜21的周缘部分与第二挡板24之间在振动方向X上的投影重叠,以分别利用第一挡板23与第二挡板24在振膜21振动时对振膜21起到限位的作用,减少振膜21发生达到断裂应力的位移的可能性,进而降低了振膜21因振动过程中位移过大而断裂的风险,如此提升了振膜21的结构强度。At the same time, the projections between the peripheral portion of the diaphragm 21 and the first baffle 23 and between the peripheral portion of the diaphragm 21 and the second baffle 24 in the vibration direction The second baffle 24 plays a role in limiting the position of the diaphragm 21 when the diaphragm 21 vibrates, reducing the possibility of the diaphragm 21 being displaced to a breaking stress, thereby reducing the risk of the diaphragm 21 being damaged due to excessive displacement during vibration. The risk of breakage thus increases the structural strength of the diaphragm 21 .

在微机电麦克风100通电工作时,振膜21与背板22会带上极性相反的电荷,从而形成电容,当振膜21在声波的作用下产生振动,背板22与振膜21之间的距离会发生变化,从而导致电容系统20的电容发生改变,进而将声波信号转化为了电信号,实现微机电麦克风100的相应功能。When the microelectromechanical microphone 100 is powered on, the diaphragm 21 and the back plate 22 will be charged with opposite polarities, thereby forming a capacitor. When the diaphragm 21 vibrates under the action of sound waves, the space between the back plate 22 and the diaphragm 21 The distance will change, thereby causing the capacitance of the capacitor system 20 to change, thereby converting the acoustic signal into an electrical signal, thereby realizing the corresponding function of the microelectromechanical microphone 100 .

在本发明的这些实施例中,振膜21沿垂直于振动方向X的横截面可以但不限于为矩形或圆形。In these embodiments of the present invention, the cross section of the diaphragm 21 along the direction perpendicular to the vibration direction X may be, but is not limited to, rectangular or circular.

该第一挡板23与第二挡板24可以由诸如硅之类的半导体材料组成或者可以包括例如硅之类的半导体材料。比如锗、硅锗、碳化硅、氮化镓、铟、氮化铟镓、砷化铟镓、氧化铟镓锌、或其他元素和/或化合物半导体(例如,例如砷化镓或磷化铟之类的III-V化合物半导体、或II-VI化合物半导体、或三元化合物半导体、或四元化合物半导体)。也可以由如下各项中的至少一种组成或者可以包括如下各项中的至少一种:金属、电介质材料、压电材料、压阻材料和铁电材料。也可以是由介质材料如氮化硅制成。The first baffle 23 and the second baffle 24 may be composed of or may include a semiconductor material such as silicon. Such as germanium, silicon germanium, silicon carbide, gallium nitride, indium, indium gallium nitride, indium gallium arsenide, indium gallium zinc oxide, or other elemental and/or compound semiconductors (for example, such as gallium arsenide or indium phosphide). Class III-V compound semiconductor, or II-VI compound semiconductor, or ternary compound semiconductor, or quaternary compound semiconductor). It may also be composed of or may include at least one of the following items: metal, dielectric material, piezoelectric material, piezoresistive material, and ferroelectric material. It can also be made of dielectric materials such as silicon nitride.

在本发明的一些实施例中,可以设置第一挡板23、第二挡板24及背板22一体成型。In some embodiments of the present invention, the first baffle 23 , the second baffle 24 and the back plate 22 may be configured to be integrally formed.

请参阅图3a至图3o,其为本发明提供的微机电麦克风的制备方法的一种实施例的流程图,该制备方法用来制造如图1或者图2所示的微机电麦克风100,具体包括如下步骤。Please refer to Figure 3a to Figure 3o, which is a flow chart of an embodiment of a microelectromechanical microphone preparation method provided by the present invention. The preparation method is used to manufacture the microelectromechanical microphone 100 shown in Figure 1 or Figure 2. Specifically, Include the following steps.

步骤S1,选择基底10,在基底10的第一表面10A上制备第一挡板23结构,包括如下子步骤:Step S1, select the substrate 10 and prepare the first baffle 23 structure on the first surface 10A of the substrate 10, including the following sub-steps:

S11,选择基底10,并在该基底10的第一表面10A上沉积第一氧化层231,如图3a所示。S11, select the substrate 10, and deposit the first oxide layer 231 on the first surface 10A of the substrate 10, as shown in FIG. 3a.

该基底10例如是半导体硅衬底,也可以是其它半导体材质衬底,比如:锗、硅锗、碳化硅、氮化镓、铟、氮化铟镓、砷化铟镓、氧化铟镓锌、或其他元素和/或化合物半导体(例如,例如砷化镓或磷化铟之类的III-V化合导体)锗或者氮化镓之类。The substrate 10 is, for example, a semiconductor silicon substrate, or may be another semiconductor material substrate, such as: germanium, silicon germanium, silicon carbide, gallium nitride, indium, indium gallium nitride, indium gallium arsenide, indium gallium zinc oxide, Or other elements and/or compound semiconductors (for example, III-V compound conductors such as gallium arsenide or indium phosphide) germanium or gallium nitride and the like.

该第一氧化层231例如为二氧化硅,可以采用热氧化、气相沉积等常规工艺形成。The first oxide layer 231 is, for example, silicon dioxide, and can be formed using conventional processes such as thermal oxidation and vapor deposition.

在一些实施例中,可以设置沉积第一氧化层231包括依次沉积第一子氧化层2311与第二子氧化层2312,其中,第二子氧化层2312的沉积厚度大于第一子氧化层2311的沉积厚度。In some embodiments, depositing the first oxide layer 231 may include sequentially depositing the first sub-oxide layer 2311 and the second sub-oxide layer 2312, wherein the deposition thickness of the second sub-oxide layer 2312 is greater than that of the first sub-oxide layer 2311. Deposition thickness.

示例性地,在一些实施例中,可以设置第二子氧化层2312的厚度与第一子氧化层2311的厚度的比值为2至5,例如,可以设置第二子氧化层2312的厚度为第一子氧化层2311的厚度的3倍或4倍。Exemplarily, in some embodiments, the ratio of the thickness of the second sub-oxide layer 2312 to the thickness of the first sub-oxide layer 2311 can be set to 2 to 5. For example, the thickness of the second sub-oxide layer 2312 can be set to be 2 to 5. 3 or 4 times the thickness of a sub-oxide layer 2311.

S12,图形化该第一氧化层231,以使该第一氧化层231包括多个第一连接通孔104,如图3b所示。S12, pattern the first oxide layer 231 so that the first oxide layer 231 includes a plurality of first connection vias 104, as shown in FIG. 3b.

本步骤中,第一连接通孔104使基底10的第一表面10A的部分露出于第一氧化层231,以在后续沉积过程中与第一氮化硅层232接触,形成连接导电结构。In this step, the first connection via 104 exposes part of the first surface 10A of the substrate 10 to the first oxide layer 231 so as to contact the first silicon nitride layer 232 during the subsequent deposition process to form a connection conductive structure.

在本发明的一些实施例中,可以在第一氧化层231的靠近边缘的位置沿第一氧化层231的边缘刻蚀出呈环状的第一连接通孔104。其中,第一氧化层231的边缘位置指的是在平行于基底10的第一表面10A的平面上的边缘位置;第一连接通孔104呈环状指的是第一连接通孔104在平行于基底10的第一表面10A的截面形状呈环状,与第一氧化层231的外轮廓相似。In some embodiments of the present invention, a ring-shaped first connection via 104 may be etched along the edge of the first oxide layer 231 near the edge of the first oxide layer 231 . The edge position of the first oxide layer 231 refers to the edge position on a plane parallel to the first surface 10A of the substrate 10; the annular shape of the first connection via hole 104 refers to the edge position of the first connection via hole 104 on a parallel plane. The cross-sectional shape of the first surface 10A of the substrate 10 is annular, similar to the outer contour of the first oxide layer 231 .

优选地,在一些实施例中,可以设置第一连接通孔104的数量为多个,多个第一连接通孔104沿第一氧化层231的中心部分向边缘部分的方向一侧间隔设置。以提升后续沉积的第一氮化硅层232与基底10之间的接触面积,提升第一氮化硅层232与基底10之间的结构一致性。Preferably, in some embodiments, the number of the first connection vias 104 may be multiple, and the plurality of first connection vias 104 are spaced apart from the central part toward the edge part of the first oxide layer 231 . In order to increase the contact area between the subsequently deposited first silicon nitride layer 232 and the substrate 10, the structural consistency between the first silicon nitride layer 232 and the substrate 10 is improved.

S13,在第一氧化层231的表面沉积第一氮化硅层232直至填满第一连接通孔104,图形化第一氮化硅层232以形成第一挡板23结构,如图3d所示。S13, deposit the first silicon nitride layer 232 on the surface of the first oxide layer 231 until the first connection via hole 104 is filled, and pattern the first silicon nitride layer 232 to form the first baffle 23 structure, as shown in Figure 3d. Show.

图形化第一氮化硅层232以使第一氮化硅层232被加工为呈环形的第一挡板23结构。The first silicon nitride layer 232 is patterned so that the first silicon nitride layer 232 is processed into a ring-shaped first baffle 23 structure.

步骤S2,在第一挡板23结构背离基底10的一侧制备振膜21结构,包括如下子步骤:Step S2, preparing the diaphragm 21 structure on the side of the first baffle 23 structure facing away from the substrate 10, including the following sub-steps:

S21,在第一挡板23结构的表面沉积第二氧化层211,图形化第二氧化层211,该第二氧化层211包括第二连接通孔2111,如图3e所示。S21, deposit a second oxide layer 211 on the surface of the first baffle 23 structure, and pattern the second oxide layer 211. The second oxide layer 211 includes a second connection through hole 2111, as shown in FIG. 3e.

在一些实施例中,可以设置图形化第二氧化层211包括在第二氧化层211的靠近边缘的位置刻蚀出第二连接通孔2111。In some embodiments, patterning the second oxide layer 211 may include etching a second connection via 2111 near an edge of the second oxide layer 211 .

S22,在第二氧化层211的表面沉积第一多晶硅层212直至填满第二连接通孔2111,图形化第一多晶硅层212以形成振膜21结构。其中,该振膜21结构的周缘向第一挡板23的正投影落在第一挡板23上,如图3f至图3g所示。S22, deposit the first polysilicon layer 212 on the surface of the second oxide layer 211 until the second connection via hole 2111 is filled, and pattern the first polysilicon layer 212 to form the diaphragm 21 structure. Wherein, the orthogonal projection of the periphery of the diaphragm 21 structure to the first baffle 23 falls on the first baffle 23, as shown in Figures 3f to 3g.

在本发明的这些实施例中,第一多晶硅层212填至第二连接通孔2111的部分为后续振膜21与第一挡板23的连接位置,在一些实施例中,可以设置该第二连接通孔2111位于第二氧化层211沿周缘的某一处位置,进而缩减振膜21与其他构件的连接点数量,以将振膜21更多地释放,使振膜21在振动方向上获得更多的自由度,进而提升微机电麦克风100的灵敏度。In these embodiments of the present invention, the part filled with the first polysilicon layer 212 to the second connection through hole 2111 is the connection position between the subsequent diaphragm 21 and the first baffle 23. In some embodiments, this can be set The second connection through hole 2111 is located at a certain position along the periphery of the second oxide layer 211, thereby reducing the number of connection points between the diaphragm 21 and other components, so as to release more of the diaphragm 21, so that the diaphragm 21 can vibrate in the direction of vibration. to obtain more degrees of freedom, thereby improving the sensitivity of the microelectromechanical microphone 100.

示例性地,在一些实施例中,可以设置该振膜21结构对应于第二连接通孔2111内的部分为振膜21的电极引出结构,以同时实现振膜21的连接于导电。For example, in some embodiments, the structure of the diaphragm 21 can be set to correspond to the electrode extraction structure of the diaphragm 21 that is part of the second connection through hole 2111, so as to realize the connection and conduction of the diaphragm 21 at the same time.

同时,该振膜21结构的周缘向第一挡板23的正投影落在第一挡板23上,可以利用第一挡板23在振膜21的振动方向X的一侧为振膜21提供限位,使振膜21不会在该侧发生过大的位移,进而减少振膜21结构达到断裂应力的可能性,进而提升了振膜21结构的结构强度。At the same time, the orthogonal projection of the periphery of the diaphragm 21 structure to the first baffle 23 falls on the first baffle 23 , and the first baffle 23 can be used to provide the diaphragm 21 with energy on one side of the vibration direction X of the diaphragm 21 . The position limitation prevents the diaphragm 21 from excessive displacement on this side, thereby reducing the possibility of the diaphragm 21 structure reaching fracture stress, thereby improving the structural strength of the diaphragm 21 structure.

步骤S3,在振膜21结构背离第一挡板23的一侧间隔制备第二挡板24结构,包括如下子步骤:Step S3, preparing a second baffle 24 structure at intervals on the side of the diaphragm 21 structure away from the first baffle 23, including the following sub-steps:

S31,在振膜21结构的表面沉积第三氧化层241并图形化,以露出至少部分第一挡板23,如图3h所示。S31, deposit the third oxide layer 241 on the surface of the diaphragm 21 structure and pattern it to expose at least part of the first baffle 23, as shown in FIG. 3h.

S32,在第三氧化层241的表面沉积第二氮化硅层242,图形化第二氮化硅层242以形成第二挡板24结构,其中,第二挡板24结构与第一挡板23结构连接,且第二挡板24结构向振膜21结构的正投影至少部分落在振膜21结构的周缘,如图3i所示。S32, deposit the second silicon nitride layer 242 on the surface of the third oxide layer 241, and pattern the second silicon nitride layer 242 to form the second baffle 24 structure, where the second baffle 24 structure is the same as the first baffle. 23 structure is connected, and the orthographic projection of the second baffle 24 structure to the diaphragm 21 structure at least partially falls on the periphery of the diaphragm 21 structure, as shown in Figure 3i.

第二挡板24结构与第一挡板23结构连接,指的是在沉积第二氮化硅层242时,可以将第二氮化硅层242与步骤S31中露出的部分第一挡板23接触,且在后续对第二氮化硅层242进行图形化时,保留第二氮化硅层242与第一挡板23接触的部分,以使第一挡板23与第二挡板24行程一体式的结构,提升了微机电麦克风100的结构一致性,结构可靠性更佳。The structure of the second baffle 24 is connected to the structure of the first baffle 23, which means that when depositing the second silicon nitride layer 242, the second silicon nitride layer 242 can be connected with the part of the first baffle 23 exposed in step S31. contact, and when the second silicon nitride layer 242 is subsequently patterned, the portion of the second silicon nitride layer 242 that contacts the first baffle 23 is retained to allow the first baffle 23 and the second baffle 24 to travel The integrated structure improves the structural consistency of the microelectromechanical microphone 100 and provides better structural reliability.

第二挡板24结构向振膜21结构的正投影至少部分落在振膜21结构的周缘,指的是第二挡板24的结构与第一挡板23相似,均为对应于振膜21的周缘的环状结构,第二挡板24用于在振膜21沿振动方向X的另一侧为振膜21提供限位,降低振膜21在振动过程中在靠近第二挡板24的一侧产生过大的位移,进而减少振膜21结构达到断裂应力的可能性,进而提升了振膜21结构的结构强度。The orthographic projection of the second baffle 24 structure to the diaphragm 21 structure at least partially falls on the periphery of the diaphragm 21 structure, which means that the structure of the second baffle 24 is similar to the first baffle 23 and both correspond to the diaphragm 21 The second baffle 24 is used to provide a limit for the diaphragm 21 on the other side of the diaphragm 21 along the vibration direction Excessive displacement occurs on one side, thereby reducing the possibility of the diaphragm 21 structure reaching fracture stress, thereby improving the structural strength of the diaphragm 21 structure.

步骤S4,在第二挡板24结构背离振膜21结构的一侧间隔制备背板22结构,背板22结构包括若干声学通孔102,包括如下子步骤:Step S4, prepare a back plate 22 structure at intervals on the side of the second baffle 24 structure away from the diaphragm 21 structure. The back plate 22 structure includes a plurality of acoustic through holes 102, including the following sub-steps:

S41,在第二挡板24结构的表面沉积第四氧化层221,在第四氧化层221的表面沉积背板材质层222,图形化背板材质层222形成背板22结构,该背板22结构包括若干声学通孔102,如图3j至图3m所示。S41, deposit the fourth oxide layer 221 on the surface of the second baffle 24 structure, deposit the backplate material layer 222 on the surface of the fourth oxide layer 221, and pattern the backplate material layer 222 to form the backplate 22 structure. The backplate 22 The structure includes a number of acoustic vias 102, as shown in Figures 3j to 3m.

其中,沉积背板材质层222包括依次沉积第三氮化硅层2221与第二多晶硅层2222。Wherein, depositing the backplane material layer 222 includes sequentially depositing a third silicon nitride layer 2221 and a second polysilicon layer 2222.

声学通孔102沿振膜21的振动方向X贯穿第三氮化硅层2221与第二多晶硅层2222。The acoustic through hole 102 penetrates the third silicon nitride layer 2221 and the second polysilicon layer 2222 along the vibration direction X of the diaphragm 21 .

步骤S5,刻蚀基底10与第一表面10A相对的第二表面10B,形成背腔101结构,包括如下子步骤:Step S5, etching the second surface 10B of the substrate 10 opposite to the first surface 10A to form the back cavity 101 structure, including the following sub-steps:

S51,背面刻蚀基底10,形成对应于背板22结构中间主体区域的背腔101结构,如图3n所示。S51, the substrate 10 is etched on the back side to form a back cavity 101 structure corresponding to the middle body area of the back plate 22 structure, as shown in Figure 3n.

示例性地,在一些实施例中,可以采用研磨工艺将基底10的第二表面10B进行减薄,再图形化基底10的第二表面10B并进行刻蚀,形成背腔101区域,刻蚀停止于第一氧化层231。For example, in some embodiments, a grinding process can be used to thin the second surface 10B of the substrate 10, and then the second surface 10B of the substrate 10 is patterned and etched to form the back cavity 101 area, and the etching is stopped. on the first oxide layer 231.

S52,经声学通孔102去除第三氧化层241与第四氧化层221,经背腔101结构去除背腔101结构上方的第一氧化层231与第二氧化层211,如图3o所示。S52, remove the third oxide layer 241 and the fourth oxide layer 221 through the acoustic through hole 102, and remove the first oxide layer 231 and the second oxide layer 211 above the back cavity 101 structure through the back cavity 101 structure, as shown in FIG. 3o.

示例性地,可以采用BOE溶液或者HF气相刻蚀技术去除前述第一氧化层231、第二氧化层211、第三氧化层241及第四氧化层221。For example, BOE solution or HF vapor etching technology can be used to remove the first oxide layer 231, the second oxide layer 211, the third oxide layer 241 and the fourth oxide layer 221.

以上所述的仅是本发明的实施方式,在此应当指出,对于本领域的普通技术人员来说,在不脱离本发明创造构思的前提下,还可以做出改进,但这些均属于本发明的保护范围。What is described above is only the embodiment of the present invention. It should be pointed out that for those of ordinary skill in the art, improvements can be made without departing from the creative concept of the present invention, but these all belong to the present invention. scope of protection.

Claims (9)

1. A method for manufacturing a microelectromechanical microphone, comprising the steps of:
selecting a substrate, and depositing a first oxide layer on a first surface of the substrate;
patterning the first oxide layer, wherein the first oxide layer comprises a plurality of first connecting through holes;
depositing a first silicon nitride layer on the surface of the first oxide layer until the first connecting through hole is filled, and patterning the first silicon nitride layer to form a first baffle structure;
depositing a second oxide layer on the surface of the first baffle structure, and patterning the second oxide layer, wherein the second oxide layer comprises a second connecting through hole;
depositing a first polysilicon layer on the surface of the second oxide layer until the second connecting through hole is filled, and patterning the first polysilicon layer to form a vibrating diaphragm structure, wherein orthographic projection of the periphery of the vibrating diaphragm structure to the first baffle plate falls on the first baffle plate;
depositing and patterning a third oxide layer on the surface of the vibrating diaphragm structure to expose at least part of the first baffle;
depositing a second silicon nitride layer on the surface of the third oxide layer, and patterning the second silicon nitride layer to form a second baffle structure, wherein the second baffle structure is connected with the first baffle structure, and the orthographic projection of the second baffle structure to the vibrating diaphragm structure at least partially falls on the periphery of the vibrating diaphragm structure;
depositing a fourth oxide layer on the surface of the second baffle structure, depositing a backboard material layer on the surface of the fourth oxide layer, and patterning the backboard material layer to form a backboard structure, wherein the backboard structure comprises a plurality of acoustic through holes;
etching the substrate on the back surface to form a back cavity structure corresponding to the middle main body area of the back plate structure;
and removing the third oxide layer and the fourth oxide layer through the acoustic through hole, and removing the first oxide layer and the second oxide layer above the back cavity structure through the back cavity structure.
2. The method of claim 1, wherein patterning the first oxide layer includes etching the first connection via in a ring shape along an edge of the first oxide layer at a position near the edge of the first oxide layer.
3. The method for manufacturing a microelectromechanical microphone according to claim 2, characterized in that the number of the first connecting holes is plural, and the plural first connecting holes are sequentially arranged at intervals along the direction from the center portion to the edge portion of the first oxide layer.
4. The method of claim 1, wherein patterning the second oxide layer includes etching the second connection via at a location of the second oxide layer near an edge.
5. The method of claim 4, wherein the portion of the first polysilicon layer that fills the second connection via is an extraction electrode of the diaphragm structure.
6. The method of claim 1, wherein depositing the first oxide layer comprises sequentially depositing a first sub-oxide layer and a second sub-oxide layer, the second sub-oxide layer having a deposition thickness greater than a deposition thickness of the first sub-oxide layer.
7. The method of claim 6, wherein a ratio of a thickness of the second sub-oxide layer to a thickness of the first sub-oxide layer is 2 to 5.
8. The method of claim 1, wherein forming the back cavity structure comprises thinning and etching the substrate from the second surface of the substrate.
9. The method of claim 1, wherein depositing the backplate material layer comprises sequentially depositing a third silicon nitride layer and a second polysilicon layer.
CN202311676803.4A 2023-12-08 2023-12-08 Preparation method of microelectromechanical microphone Active CN117376796B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202311676803.4A CN117376796B (en) 2023-12-08 2023-12-08 Preparation method of microelectromechanical microphone

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311676803.4A CN117376796B (en) 2023-12-08 2023-12-08 Preparation method of microelectromechanical microphone

Publications (2)

Publication Number Publication Date
CN117376796A CN117376796A (en) 2024-01-09
CN117376796B true CN117376796B (en) 2024-02-06

Family

ID=89396958

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311676803.4A Active CN117376796B (en) 2023-12-08 2023-12-08 Preparation method of microelectromechanical microphone

Country Status (1)

Country Link
CN (1) CN117376796B (en)

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122696A1 (en) * 2011-03-11 2012-09-20 Goertek Inc. Cmos compatible silicon differential condenser microphone and method for manufacturing the same
CN103607687A (en) * 2013-11-29 2014-02-26 上海集成电路研发中心有限公司 MEMS microphone defect monitoring structure and manufacturing method thereof
CN103888888A (en) * 2014-04-18 2014-06-25 东南大学 Capacitive silicon miniature microphone and manufacturing method thereof
CN104270701A (en) * 2014-09-30 2015-01-07 歌尔声学股份有限公司 Vibrating diaphragm structure of MEMS microphone and manufacturing method thereof
CN104507014A (en) * 2014-12-26 2015-04-08 上海集成电路研发中心有限公司 MEMS microphone with fold-type vibrating film and manufacturing method of microphone
CN105392093A (en) * 2015-12-03 2016-03-09 瑞声声学科技(深圳)有限公司 Manufacture method of microphone chip
CN106206448A (en) * 2015-05-05 2016-12-07 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor structure
CN206164843U (en) * 2016-08-31 2017-05-10 歌尔股份有限公司 A MEMS microphone
CN109905833A (en) * 2018-12-31 2019-06-18 瑞声科技(新加坡)有限公司 MEMS microphone manufacturing method
CN110012410A (en) * 2018-12-31 2019-07-12 瑞声科技(新加坡)有限公司 MEMS microphone manufacturing method
WO2019236539A1 (en) * 2018-06-06 2019-12-12 Drexel University Mxene-based voice coils and active acoustic devices
CN111491244A (en) * 2020-03-16 2020-08-04 歌尔微电子有限公司 MEMS microphone processing method and MEMS microphone
CN112565948A (en) * 2020-11-18 2021-03-26 杭州士兰集昕微电子有限公司 Micro-electro-mechanical system microphone and manufacturing method thereof
DE102021120538A1 (en) * 2020-08-17 2022-02-17 Tdk Corporation Microelectromechanical microphone with membrane trench reinforcements and method of making
CN114513731A (en) * 2022-04-20 2022-05-17 苏州敏芯微电子技术股份有限公司 Microphone assembly and electronic equipment
CN114640933A (en) * 2022-04-20 2022-06-17 瑶芯微电子科技(上海)有限公司 MEMS microphone and preparation method thereof
CN219124365U (en) * 2022-12-29 2023-06-02 瑞声科技(新加坡)有限公司 MEMS microphone
CN117098051A (en) * 2023-09-27 2023-11-21 苏州感测通信息科技有限公司 Piezoelectric MEMS speaker chip and manufacturing method thereof

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8962368B2 (en) * 2013-07-24 2015-02-24 Goertek, Inc. CMOS compatible MEMS microphone and method for manufacturing the same
US20230118429A1 (en) * 2020-05-05 2023-04-20 Tdk Electronics Ag Microelectromechanical microphone with membrane trench reinforcements and method of fabrication

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012122696A1 (en) * 2011-03-11 2012-09-20 Goertek Inc. Cmos compatible silicon differential condenser microphone and method for manufacturing the same
CN103607687A (en) * 2013-11-29 2014-02-26 上海集成电路研发中心有限公司 MEMS microphone defect monitoring structure and manufacturing method thereof
CN103888888A (en) * 2014-04-18 2014-06-25 东南大学 Capacitive silicon miniature microphone and manufacturing method thereof
CN104270701A (en) * 2014-09-30 2015-01-07 歌尔声学股份有限公司 Vibrating diaphragm structure of MEMS microphone and manufacturing method thereof
CN104507014A (en) * 2014-12-26 2015-04-08 上海集成电路研发中心有限公司 MEMS microphone with fold-type vibrating film and manufacturing method of microphone
CN106206448A (en) * 2015-05-05 2016-12-07 中芯国际集成电路制造(上海)有限公司 The forming method of semiconductor structure
CN105392093A (en) * 2015-12-03 2016-03-09 瑞声声学科技(深圳)有限公司 Manufacture method of microphone chip
CN206164843U (en) * 2016-08-31 2017-05-10 歌尔股份有限公司 A MEMS microphone
WO2019236539A1 (en) * 2018-06-06 2019-12-12 Drexel University Mxene-based voice coils and active acoustic devices
CN109905833A (en) * 2018-12-31 2019-06-18 瑞声科技(新加坡)有限公司 MEMS microphone manufacturing method
CN110012410A (en) * 2018-12-31 2019-07-12 瑞声科技(新加坡)有限公司 MEMS microphone manufacturing method
CN111491244A (en) * 2020-03-16 2020-08-04 歌尔微电子有限公司 MEMS microphone processing method and MEMS microphone
DE102021120538A1 (en) * 2020-08-17 2022-02-17 Tdk Corporation Microelectromechanical microphone with membrane trench reinforcements and method of making
CN112565948A (en) * 2020-11-18 2021-03-26 杭州士兰集昕微电子有限公司 Micro-electro-mechanical system microphone and manufacturing method thereof
CN114513731A (en) * 2022-04-20 2022-05-17 苏州敏芯微电子技术股份有限公司 Microphone assembly and electronic equipment
CN114640933A (en) * 2022-04-20 2022-06-17 瑶芯微电子科技(上海)有限公司 MEMS microphone and preparation method thereof
CN219124365U (en) * 2022-12-29 2023-06-02 瑞声科技(新加坡)有限公司 MEMS microphone
CN117098051A (en) * 2023-09-27 2023-11-21 苏州感测通信息科技有限公司 Piezoelectric MEMS speaker chip and manufacturing method thereof

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Development of Directional MEMS Microphone Single Module for High Directivity and SNR;llseon Yoo;《IEEE Sensors Journal》;全文 *
低应力超薄振膜MEMS麦克风研究;孙全胜;《中国优秀硕士学位论文全文数据库-信息科技辑》;全文 *
基于MEMS的压电超声技术的研究;孙宏明;《中国优秀硕士学位论文全文数据库-信息科技辑》;全文 *

Also Published As

Publication number Publication date
CN117376796A (en) 2024-01-09

Similar Documents

Publication Publication Date Title
KR101578542B1 (en) Method of Manufacturing Microphone
US8509462B2 (en) Piezoelectric micro speaker including annular ring-shaped vibrating membranes and method of manufacturing the piezoelectric micro speaker
CN101754077B (en) Piezoelectric acoustic transducer and method for fabricating the same
CN106954164B (en) Microphone structure and manufacturing method thereof
CN111063790B (en) Piezoelectric transducer, method of manufacturing piezoelectric transducer, and electronic apparatus
US11405737B2 (en) Method for manufacturing MEMS microphone
US10979840B2 (en) Method for manufacturing MEMS microphone
TWI439140B (en) Mems microphone with single polysilicon film
US20140001581A1 (en) Mems microphone and forming method therefor
CN101365258A (en) Capacitor microphone
CN112866886B (en) MEMS microphone structure and manufacturing method thereof
JP2007504782A (en) Silicon microphone manufacturing method
CN111770422A (en) Cascaded miniature microphone and manufacturing method thereof
CN115924838A (en) MEMS device, preparation method thereof and electronic device
CN112188369B (en) Loudspeaker and manufacturing method thereof
US10177027B2 (en) Method for reducing cracks in a step-shaped cavity
CN105530579A (en) Microphone and method of manufacturing the same
CN114827881A (en) Back cavity forming method, device with back cavity, MEMS microphone and preparation method
JP2008517523A (en) Silicon microphone
CN117376796B (en) Preparation method of microelectromechanical microphone
CN114644318A (en) Three-film MEMS device
JP2003163998A (en) Method for manufacturing condenser microphone, condenser microphone, and electronic device
CN111203375A (en) Transducer and manufacturing method thereof
CN116347310A (en) A kind of MEMS microphone structure and preparation method thereof
US20220417632A1 (en) Mems microphone and method of manufacturing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20250113

Address after: 213000 No.3, Changcao Road, Wujin high tech Industrial Development Zone, Changzhou City, Jiangsu Province

Patentee after: AAC MICROTECH (CHANGZHOU) Co.,Ltd.

Country or region after: China

Patentee after: Jiangsu Jicui Zhongyi Technology Industry Development Co.,Ltd.

Address before: 213167 No.3, Changcao Road, Wujin high tech Industrial Development Zone, Changzhou City, Jiangsu Province

Patentee before: AAC MICROTECH (CHANGZHOU) Co.,Ltd.

Country or region before: China