CN117304329A - Method for improving expression quantity and sensitivity of 19-nor-testosterone nanobody - Google Patents
Method for improving expression quantity and sensitivity of 19-nor-testosterone nanobody Download PDFInfo
- Publication number
- CN117304329A CN117304329A CN202311154447.XA CN202311154447A CN117304329A CN 117304329 A CN117304329 A CN 117304329A CN 202311154447 A CN202311154447 A CN 202311154447A CN 117304329 A CN117304329 A CN 117304329A
- Authority
- CN
- China
- Prior art keywords
- expression
- nanobody
- nortestosterone
- inclusion body
- sensitivity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000014509 gene expression Effects 0.000 title claims abstract description 99
- 238000000034 method Methods 0.000 title claims abstract description 61
- 229960004719 nandrolone Drugs 0.000 title claims abstract description 56
- NPAGDVCDWIYMMC-IZPLOLCNSA-N nandrolone Chemical compound O=C1CC[C@@H]2[C@H]3CC[C@](C)([C@H](CC4)O)[C@@H]4[C@@H]3CCC2=C1 NPAGDVCDWIYMMC-IZPLOLCNSA-N 0.000 title claims abstract description 45
- 230000035945 sensitivity Effects 0.000 title claims abstract description 29
- 210000003000 inclusion body Anatomy 0.000 claims abstract description 98
- 238000001514 detection method Methods 0.000 claims abstract description 25
- 238000004153 renaturation Methods 0.000 claims abstract description 22
- 241000588724 Escherichia coli Species 0.000 claims abstract description 15
- 239000013604 expression vector Substances 0.000 claims abstract description 10
- 102000002933 Thioredoxin Human genes 0.000 claims abstract description 5
- 108060008226 thioredoxin Proteins 0.000 claims abstract description 5
- 229940094937 thioredoxin Drugs 0.000 claims abstract description 5
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 claims description 57
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 42
- 238000004925 denaturation Methods 0.000 claims description 39
- 230000036425 denaturation Effects 0.000 claims description 39
- 239000000872 buffer Substances 0.000 claims description 28
- 239000000243 solution Substances 0.000 claims description 25
- 239000011780 sodium chloride Substances 0.000 claims description 21
- 239000011248 coating agent Substances 0.000 claims description 15
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 claims description 15
- 239000007983 Tris buffer Substances 0.000 claims description 14
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 14
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 10
- 239000004202 carbamide Substances 0.000 claims description 10
- 238000000576 coating method Methods 0.000 claims description 8
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 claims description 6
- 241000894006 Bacteria Species 0.000 claims description 6
- 229960000789 guanidine hydrochloride Drugs 0.000 claims description 6
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 claims description 6
- 230000001939 inductive effect Effects 0.000 claims description 5
- 239000004475 Arginine Substances 0.000 claims description 4
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 claims description 4
- 230000004927 fusion Effects 0.000 claims description 4
- 125000003275 alpha amino acid group Chemical group 0.000 claims 1
- 238000000746 purification Methods 0.000 abstract description 16
- 238000002965 ELISA Methods 0.000 abstract description 13
- 241001052560 Thallis Species 0.000 abstract 1
- 238000010612 desalination reaction Methods 0.000 abstract 1
- 108090000623 proteins and genes Proteins 0.000 description 53
- 102000004169 proteins and genes Human genes 0.000 description 51
- 238000011033 desalting Methods 0.000 description 18
- 235000018102 proteins Nutrition 0.000 description 16
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 10
- 230000006698 induction Effects 0.000 description 10
- 238000002360 preparation method Methods 0.000 description 9
- 230000015572 biosynthetic process Effects 0.000 description 8
- 239000013598 vector Substances 0.000 description 8
- 210000004027 cell Anatomy 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 7
- 238000000605 extraction Methods 0.000 description 7
- 235000013305 food Nutrition 0.000 description 7
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 7
- UBWXUGDQUBIEIZ-QNTYDACNSA-N nandrolone phenpropionate Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@H]4CCC(=O)C=C4CC3)CC[C@@]21C)C(=O)CCC1=CC=CC=C1 UBWXUGDQUBIEIZ-QNTYDACNSA-N 0.000 description 7
- 238000006243 chemical reaction Methods 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000000411 inducer Substances 0.000 description 6
- 229960001133 nandrolone phenpropionate Drugs 0.000 description 6
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 6
- 239000006228 supernatant Substances 0.000 description 6
- 108010077805 Bacterial Proteins Proteins 0.000 description 5
- 238000004587 chromatography analysis Methods 0.000 description 5
- 238000001556 precipitation Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 229920002684 Sepharose Polymers 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 239000012634 fragment Substances 0.000 description 4
- 238000005457 optimization Methods 0.000 description 4
- 239000002244 precipitate Substances 0.000 description 4
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 241001465754 Metazoa Species 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 3
- 230000001580 bacterial effect Effects 0.000 description 3
- UQLDLKMNUJERMK-UHFFFAOYSA-L di(octadecanoyloxy)lead Chemical compound [Pb+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O UQLDLKMNUJERMK-UHFFFAOYSA-L 0.000 description 3
- 238000010828 elution Methods 0.000 description 3
- 239000012149 elution buffer Substances 0.000 description 3
- 238000002744 homologous recombination Methods 0.000 description 3
- 230000006801 homologous recombination Effects 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 238000000751 protein extraction Methods 0.000 description 3
- 238000003259 recombinant expression Methods 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 2
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 2
- 108010058846 Ovalbumin Proteins 0.000 description 2
- 238000012408 PCR amplification Methods 0.000 description 2
- 238000001261 affinity purification Methods 0.000 description 2
- 150000001413 amino acids Chemical group 0.000 description 2
- 230000004071 biological effect Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000010353 genetic engineering Methods 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- 238000003018 immunoassay Methods 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 239000000543 intermediate Substances 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229940092253 ovalbumin Drugs 0.000 description 2
- 210000001322 periplasm Anatomy 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 238000006467 substitution reaction Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000014616 translation Effects 0.000 description 2
- GCKMFJBGXUYNAG-UHFFFAOYSA-N 17alpha-methyltestosterone Natural products C1CC2=CC(=O)CCC2(C)C2C1C1CCC(C)(O)C1(C)CC2 GCKMFJBGXUYNAG-UHFFFAOYSA-N 0.000 description 1
- 108010021625 Immunoglobulin Fragments Proteins 0.000 description 1
- 102000008394 Immunoglobulin Fragments Human genes 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- GCKMFJBGXUYNAG-HLXURNFRSA-N Methyltestosterone Chemical compound C1CC2=CC(=O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@](C)(O)[C@@]1(C)CC2 GCKMFJBGXUYNAG-HLXURNFRSA-N 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000013543 active substance Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 230000006957 competitive inhibition Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000000502 dialysis Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- DNJIEGIFACGWOD-UHFFFAOYSA-N ethyl mercaptane Natural products CCS DNJIEGIFACGWOD-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 150000002597 lactoses Chemical class 0.000 description 1
- 210000004962 mammalian cell Anatomy 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960001566 methyltestosterone Drugs 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000002703 mutagenesis Methods 0.000 description 1
- 231100000350 mutagenesis Toxicity 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 230000009871 nonspecific binding Effects 0.000 description 1
- 210000003463 organelle Anatomy 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 210000001236 prokaryotic cell Anatomy 0.000 description 1
- 230000009465 prokaryotic expression Effects 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 238000001243 protein synthesis Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229930000044 secondary metabolite Natural products 0.000 description 1
- 238000011896 sensitive detection Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000003270 steroid hormone Substances 0.000 description 1
- 239000012089 stop solution Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 239000012224 working solution Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K16/00—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
- C07K16/44—Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material not provided for elsewhere, e.g. haptens, metals, DNA, RNA, amino acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/5308—Immunoassay; Biospecific binding assay; Materials therefor for analytes not provided for elsewhere, e.g. nucleic acids, uric acid, worms, mites
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2317/00—Immunoglobulins specific features
- C07K2317/50—Immunoglobulins specific features characterized by immunoglobulin fragments
- C07K2317/56—Immunoglobulins specific features characterized by immunoglobulin fragments variable (Fv) region, i.e. VH and/or VL
- C07K2317/569—Single domain, e.g. dAb, sdAb, VHH, VNAR or nanobody®
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/35—Fusion polypeptide containing a fusion for enhanced stability/folding during expression, e.g. fusions with chaperones or thioredoxin
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Molecular Biology (AREA)
- Biomedical Technology (AREA)
- Immunology (AREA)
- Organic Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Urology & Nephrology (AREA)
- Physics & Mathematics (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Hematology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Medicinal Chemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Cell Biology (AREA)
- Plant Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Food Science & Technology (AREA)
- Analytical Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
技术领域Technical field
本发明属于食品安全检测技术领域。更具体地,涉及一种提高19-去甲睾酮纳米抗体表达量及灵敏度的方法。The invention belongs to the technical field of food safety detection. More specifically, it relates to a method for improving the expression and sensitivity of 19-nortestosterone Nanobodies.
背景技术Background technique
苯丙酸诺龙是动物源性动物常用的类固醇激素之一,广泛用于畜牧业中以促进蛋白质的合成、减少脂肪堆积、提高饲料报酬。但苯丙酸诺龙的滥用及残留会造成食品安全问题,因此,需要加强对食品中苯丙酸诺龙的检测。目前主要是以其次生代谢物19-去甲睾酮(19-nortestosterone,19-NT)作为苯丙酸诺龙残留检测的标志物,而对于19-去甲睾酮的检测常采用色谱法、质谱法、免疫分析法;而免疫分析法中,采用抗体进行检测具有快速、简便、灵敏度高等优点,近年来已成为食品安全检测常用手段,而核心试剂抗体的制备是免疫检测技术的关键。Nandrolone phenylpropionate is one of the steroid hormones commonly used in animal-derived animals. It is widely used in animal husbandry to promote protein synthesis, reduce fat accumulation, and improve feed returns. However, the abuse and residue of nandrolone phenylpropionate will cause food safety problems. Therefore, it is necessary to strengthen the detection of nandrolone phenylpropionate in food. At present, its secondary metabolite 19-nortestosterone (19-NT) is mainly used as a marker for the detection of nandrolone phenylpropionate residues. Chromatography and mass spectrometry are often used to detect 19-nortestosterone. , immunoassay method; in the immunoassay method, the use of antibodies for detection has the advantages of rapidness, simplicity, and high sensitivity. In recent years, it has become a common method for food safety detection, and the preparation of core reagent antibodies is the key to immune detection technology.
纳米抗体(Nanobody,Nb)是驼科动物中轻链天然缺失、只有重链可变区的新型抗体分子,具有分子量小、可溶性好、稳定性高及易表达等优势,在免疫检测方面具有极大的应用潜力。中国专利CN111269320A公开了一种特异性识别19-去甲睾酮的纳米抗体NT8能够用于用19-去甲睾酮的检测,但其纳米抗体的表达量不高,灵敏度仍有待提高,限制了抗19-去甲睾酮纳米抗体的应用。Nanobody (Nb) is a new type of antibody molecule in camelids that naturally lacks the light chain and only has the variable region of the heavy chain. It has the advantages of small molecular weight, good solubility, high stability and easy expression, and has great potential in immune detection. great application potential. Chinese patent CN111269320A discloses a nanobody NT8 that specifically recognizes 19-nortestosterone and can be used to detect 19-nortestosterone. However, the expression level of the nanobody is not high and the sensitivity still needs to be improved, which limits the anti-19 - Application of nortestosterone Nanobodies.
包涵体是外源基因在原核细胞中表达时,尤其在大肠杆菌中高效表达时,形成的由膜包裹的高密度、不溶性蛋白质颗粒。包涵体的新创:大肠杆菌没有哺乳动物细胞中携带的蛋白质翻译后修饰的细胞器及功能酶,导致中间体大量堆积,容易发生链间二硫键错配,加重包涵体的生成;包涵体的生成与蛋白本身的性质也有很大的关系,一般蛋白链内含多个半胱氨酸这样的含硫残疾,更容易形成二硫键;环境也有很大的关系,细胞内部的电势、pH都有可能促进包涵体的生成,与蛋白质等电点接近的环境回促进包涵体的形成;目的蛋白本身的结构,目的蛋白本身的聚集度趋势,亲疏水性都与包涵体的形成有关;目的蛋白可能对菌是有害的,出于菌的自身保护基制,目的蛋白被以无活性的包涵体沉淀形式表达出来。Inclusion bodies are high-density, insoluble protein particles wrapped by membranes formed when foreign genes are expressed in prokaryotic cells, especially when they are highly expressed in E. coli. New creation of inclusion bodies: E. coli does not have the organelles and functional enzymes for post-translational modification of proteins carried in mammalian cells, resulting in a large accumulation of intermediates, prone to mismatching of inter-chain disulfide bonds, and aggravating the formation of inclusion bodies; The production is also closely related to the nature of the protein itself. Generally, the protein chain contains sulfur-containing disabilities such as multiple cysteine, which makes it easier to form disulfide bonds. The environment also has a great relationship. The electric potential and pH inside the cell are both It is possible to promote the formation of inclusion bodies, and an environment close to the isoelectric point of the protein will promote the formation of inclusion bodies; the structure of the target protein itself, the aggregation trend of the target protein itself, and its hydrophobicity are all related to the formation of inclusion bodies; the target protein may It is harmful to bacteria. Due to the self-protection mechanism of bacteria, the target protein is expressed in the form of inactive inclusion body precipitation.
蛋白表达量高,合成速度快,越容易形成包涵体,但目前还鲜有研究通过增强包涵体的表达直接提升其活性蛋白表达量,因为包涵体的形成与包涵体的复性和纯化在生物、医药领域是非常重要的问题,同时也是一个很棘手的问题。一般包涵体中目的蛋白的含量高,约50%,可以高效的获得目的蛋白,但是只能先尿素或盐酸胍变性后重新复性才能恢复其生物活性,且活性水平一般都较差,所以包涵体的使用难度较大。如果从包涵体组分能高效的制备出高活性的蛋白,包涵体的使用无疑是有重要应用意义的。The higher the protein expression and the faster the synthesis rate, the easier it is to form inclusion bodies. However, there are currently few studies on directly increasing the expression of active proteins by enhancing the expression of inclusion bodies, because the formation of inclusion bodies and the renaturation and purification of inclusion bodies are important in biology. , the medical field is a very important issue, and it is also a very difficult issue. Generally, the target protein content in inclusion bodies is high, about 50%, and the target protein can be obtained efficiently. However, its biological activity can only be restored after denaturation with urea or guanidine hydrochloride and then re-renatured, and the activity level is generally poor, so inclusion bodies The body is more difficult to use. If highly active proteins can be efficiently prepared from inclusion body components, the use of inclusion bodies will undoubtedly have important application significance.
发明内容Contents of the invention
本发明要解决的技术问题是克服现有抗19-去甲睾酮纳米抗体NT8表达量不高,灵敏度较低以及包涵体无生物活性等问题,提供一种提高19-去甲睾酮纳米抗体表达量及灵敏度的方法。The technical problem to be solved by the present invention is to overcome the problems of low expression level of existing anti-19-nortestosterone nanobody NT8, low sensitivity and no biological activity of inclusion bodies, and provide a method to improve the expression level of 19-nortestosterone nanobody. and sensitivity methods.
本发明的目的是提供一种提高19-去甲睾酮纳米抗体表达量及灵敏度的方法。The purpose of the present invention is to provide a method for improving the expression and sensitivity of 19-nortestosterone Nanobody.
本发明另一目的是提供一种高表达量、高灵敏度的抗19-去甲睾酮纳米抗体。Another object of the present invention is to provide an anti-19-nortestosterone Nanobody with high expression and high sensitivity.
本发明又一目的是提供一种检测19-去甲睾酮的方法。Another object of the present invention is to provide a method for detecting 19-nortestosterone.
本发明上述目的通过以下技术方案实现:The above objects of the present invention are achieved through the following technical solutions:
本发明提供一种提高19-去甲睾酮纳米抗体表达量及灵敏度的方法,包含如下步骤:The invention provides a method for improving the expression amount and sensitivity of 19-nortestosterone Nanobody, which includes the following steps:
S1.将19-去甲睾酮纳米抗体融合硫氧还蛋白A构建表达载体,并转化至大肠杆菌表达宿主中进行诱导表达,得到菌体中的不溶组分即为纳米抗体包涵体表达组分;S1. Fusion of the 19-nortestosterone Nanobody with thioredoxin A to construct an expression vector, and transform it into an E. coli expression host for induced expression. The insoluble component in the bacteria is the Nanobody inclusion body expression component;
S2.将纳米抗体包涵体表达组分通过一步法进行变性、复性、纯化和脱盐处理,即得高表达量及灵敏度的19-去甲睾酮纳米抗体。S2. The Nanobody inclusion body expression components are denatured, renatured, purified and desalted through a one-step method to obtain 19-nortestosterone Nanobody with high expression and sensitivity.
进一步地,步骤S1中19-去甲睾酮纳米抗体为纳米抗体NT8,其氨基酸序列如SEQID NO.1所示。Further, in step S1, the 19-nortestosterone Nanobody is Nanobody NT8, and its amino acid sequence is shown in SEQ ID NO.1.
本发明提供的方法能显著提高19-去甲睾酮纳米抗体表达量及灵敏度,通过将纳米抗体NT8融合硫氧还蛋白A(TrxA),构建重组表达载体pET-32a-NbNT8,通过优化大肠杆菌表达宿主,诱导剂浓度,诱导温度最终得到纳米抗体包涵体表达量最高的表达体系;并同优化纳米抗体包涵体变性工作液的配方,建立纳米抗体包涵体一步法进行柱上复性、纯化及脱盐,最终制备的纳米抗体TrxA-NbNT8表达量可达65mg/L培养基。包涵体是没有活性的目的蛋白固体,优化包涵体变性缓冲液、包涵体复性缓冲液的配方,可以提高包涵体的提取效率及复性后蛋白的活性水平。同时,本发明建立的ic-ELISA方法检测19-去甲睾酮,采用纳米抗体TrxA-NbNT8的检测限低至0.877pg/mL,线性范围为3.71-514.09pg/mL,灵敏度43.67pg/mL。比原始pComb3xss载体周质空间表达的纳米抗体NT8灵敏度(1.53ng/mL)提高了35.04倍。The method provided by the invention can significantly improve the expression amount and sensitivity of 19-nortestosterone nanobody. By fusing the nanobody NT8 with thioredoxin A (TrxA), a recombinant expression vector pET-32a-NbNT8 is constructed, and by optimizing the expression in E. coli The host, inducer concentration, and induction temperature finally resulted in an expression system with the highest expression of nanobody inclusion bodies; and at the same time, the formula of the denaturation working solution of nanobody inclusion bodies was optimized to establish a one-step method for nanobody inclusion body renaturation, purification, and desalting on the column. , the expression level of the finally prepared nanobody TrxA-NbNT8 can reach 65 mg/L culture medium. Inclusion bodies are inactive target protein solids. Optimizing the formulas of inclusion body denaturation buffer and inclusion body renaturation buffer can improve the extraction efficiency of inclusion bodies and the activity level of the protein after renaturation. At the same time, the ic-ELISA method established by the present invention detects 19-nortestosterone, and the detection limit of nanobody TrxA-NbNT8 is as low as 0.877pg/mL, the linear range is 3.71-514.09pg/mL, and the sensitivity is 43.67pg/mL. The sensitivity (1.53ng/mL) of Nanobody NT8 expressed in the periplasmic space of the original pComb3xss vector is 35.04 times higher.
进一步地,步骤S1中采用携带强启动子T7lac的pET-32a表达载体,可以经乳糖类似物IPTG诱导高效率的启动乳糖操纵子,诱导目的蛋白快速表达;所述载体利用基因工程技术易于克隆、非常适合用于构建表达载体。Furthermore, in step S1, the pET-32a expression vector carrying the strong promoter T7lac can be induced by the lactose analog IPTG to start the lactose operon with high efficiency and induce the rapid expression of the target protein; the vector is easy to clone using genetic engineering technology. Very suitable for constructing expression vectors.
进一步地,步骤S1中大肠杆菌表达宿主为BL21DE3、OverExpress C43(DE3)、Rosetta DE3、Rosetta gamiB DE3或Top 10F’。Further, in step S1, the E. coli expression host is BL21DE3, OverExpress C43 (DE3), Rosetta DE3, Rosetta gamiB DE3 or Top 10F’.
优选地,大肠杆菌(E.coli)表达宿主采用BL21DE3,将构建的pET-32a-TrxA-NbNT8于E.coli BL21DE3中构建表达工程菌。Preferably, Escherichia coli (E.coli) expression host uses BL21DE3, and the constructed pET-32a-TrxA-NbNT8 is constructed into an expression engineering strain in E.coli BL21DE3.
进一步地,步骤S1中诱导表达条件为:在0.125~1mM IPTG,20~37℃条件下诱导表达10~12h。Further, the conditions for inducing expression in step S1 are: inducing expression at 0.125-1mM IPTG and 20-37°C for 10-12 hours.
优选地,中诱导表达条件为:在1mM IPTG,25℃条件下诱导表达12h。Preferably, medium induction expression conditions are: inducing expression at 1mM IPTG at 25°C for 12 hours.
进一步地,步骤S2中一步法为通过在柱上一步进行包涵体复性+纯化+脱盐,纯化采用AKTA pure和Ni Sepharose 6Fast Flow纯化仪器和材料进行。Furthermore, the one-step method in step S2 is to perform inclusion body renaturation + purification + desalting in one step on the column. The purification is performed using AKTA pure and Ni Sepharose 6Fast Flow purification instruments and materials.
进一步地,步骤S2中变性采用含20mM Tris-HCl,0.5M NaCl,6M盐酸胍,5mM咪唑,1mMβ-巯基乙醇,pH 8.0的变性缓冲液进行处理;然后采用含20mM Tris,0.5M NaCl,6M尿素,20mM咪唑,1mMβ-巯基乙醇,pH 8.0的包涵体变性增强液进行二次变性处理。Further, the denaturation in step S2 is carried out using a denaturation buffer containing 20mM Tris-HCl, 0.5M NaCl, 6M guanidine hydrochloride, 5mM imidazole, 1mM β-mercaptoethanol, pH 8.0; and then using a denaturation buffer containing 20mM Tris, 0.5M NaCl, 6M Urea, 20mM imidazole, 1mM β-mercaptoethanol, pH 8.0 inclusion body denaturation enhancement solution were used for secondary denaturation treatment.
优选地,将不溶组分经包涵体洗涤液(20mM Tris,0.5M尿素,0.5M NaCl,2%Tween-20,pH 8.0)室温洗涤5min后二次离心收集沉淀,采用包涵体变性缓冲液室温重悬包涵体,振荡30min,离心收集上清;采用AKTA pure、Ni Sepharose 6Fast Flow和脱盐柱实现复性、纯化和脱盐处理,先换用包涵体变性缓冲液进行柱平衡,恒定流速0.5mL/min上样,随后将流动相切换为包涵体变性增强液,流速1mL/min。Preferably, the insoluble components are washed with inclusion body washing solution (20mM Tris, 0.5M urea, 0.5M NaCl, 2% Tween-20, pH 8.0) at room temperature for 5 minutes and then centrifuged twice to collect the precipitate, and the inclusion body denaturation buffer is used at room temperature. Resuspend the inclusion body, shake for 30 minutes, and centrifuge to collect the supernatant; use AKTA pure, Ni Sepharose 6Fast Flow and a desalting column to achieve refolding, purification and desalting treatment. First, use the inclusion body denaturation buffer for column equilibrium, with a constant flow rate of 0.5mL/ min to load the sample, and then switch the mobile phase to inclusion body denaturation enhancement solution with a flow rate of 1 mL/min.
进一步地,步骤S2中复性采用含20mM Tris,0.5M NaCl,20mM咪唑,1mMβ-巯基乙醇,0.3M精氨酸,pH 8.0的包涵体复性缓冲液与包涵体变性增强液混合处理。Further, in step S2, the inclusion body refolding buffer containing 20mM Tris, 0.5M NaCl, 20mM imidazole, 1mM β-mercaptoethanol, 0.3M arginine, and pH 8.0 is mixed with the inclusion body denaturation enhancement solution.
优选地,采用30CV的0%~100%的包涵体复性缓冲液进行柱上复性,流速0.5mL/min;叠用10CV 100%的包涵体复性缓冲液过柱,流速1mL/min。Preferably, 30 CV of 0% to 100% inclusion body refolding buffer is used for on-column renaturation, with a flow rate of 0.5 mL/min; 10 CV of 100% inclusion body refolding buffer is used to pass through the column, with a flow rate of 1 mL/min.
更进一步地,步骤S2中洗脱采用包涵体洗脱缓冲液(20mM Tris、300mM NaCl、500mM咪唑、pH 7.4)洗脱目的蛋白,流速1mL/min;随后换用抗体储存液(10mM PBS,pH 7.4)进行脱盐柱柱平衡,流速2mL/min上样4mL。Furthermore, in step S2, the inclusion body elution buffer (20mM Tris, 300mM NaCl, 500mM imidazole, pH 7.4) was used to elute the target protein at a flow rate of 1mL/min; then the antibody storage solution (10mM PBS, pH 7.4) Equilibrate the desalting column and load 4 mL of sample at a flow rate of 2 mL/min.
作为一种最优的实施方案,本发明提供具体的方法:As an optimal implementation, the present invention provides a specific method:
S1.基于基因工程技术,构建重组表达载体pET-32a-NbNT8,将目的基因和载体pET-32a进行PCR扩增实现线性化,经过同源重组将片段与载体进行克隆构建;并转化至大肠杆菌表达宿主中进行诱导表达,采用BL21DE3,在1mM IPTG,25℃下诱导12h,收集菌体,经高压破碎提取包涵体沉淀,得到菌体中的不溶组分即为纳米抗体包涵体表达组分;S1. Based on genetic engineering technology, construct the recombinant expression vector pET-32a-NbNT8, perform PCR amplification of the target gene and vector pET-32a to achieve linearization, and clone and construct the fragment and vector through homologous recombination; and transform into E. coli Induced expression in the expression host, using BL21DE3, induced with 1mM IPTG at 25°C for 12 hours, collected the cells, extracted the inclusion body precipitate through high-pressure crushing, and obtained the insoluble component in the cells as the nanobody inclusion body expression component;
S2.诱导表达后菌体中的不溶组分(包涵体)采用包涵体洗涤液(20mM Tris,0.5M尿素,0.5M NaCl,2% Tween-20,pH 8.0)洗涤5min后重新离心去除上清。二次离心获得的沉淀采用包涵体变性缓冲液(20mM Tris-HCl、0.5M NaCl、6M盐酸胍、5mM咪唑、1mMβ-巯基乙醇、pH 8.0)重悬30min后离心收集上清,得包涵体变性上清;S2. After induced expression, the insoluble components (inclusion bodies) in the bacterial cells are washed with inclusion body washing solution (20mM Tris, 0.5M urea, 0.5M NaCl, 2% Tween-20, pH 8.0) for 5 minutes and then centrifuged again to remove the supernatant. . The precipitate obtained by the second centrifugation was resuspended in inclusion body denaturation buffer (20mM Tris-HCl, 0.5M NaCl, 6M guanidine hydrochloride, 5mM imidazole, 1mM β-mercaptoethanol, pH 8.0) for 30 minutes, and then centrifuged to collect the supernatant to obtain inclusion body denaturation. supernatant;
S3.将上述S2得到的包涵体变性上清使用AKTA pure层析系统上样,目的蛋白与Cytiva镍层析填料(Ni Sepharose 6Fast Flow)结合,使用包涵体变性增强液(20mM Tris,0.5M NaCl,6M尿素,20mM咪唑,1mMβ-巯基乙醇,pH8.0),流速1mL/min,进行二次变性,洗去非特异性结合的杂质;S3. Load the denatured inclusion body supernatant obtained in S2 above using the AKTA pure chromatography system. Combine the target protein with Cytiva nickel chromatography packing (Ni Sepharose 6Fast Flow), and use the inclusion body denaturation enhancement solution (20mM Tris, 0.5M NaCl , 6M urea, 20mM imidazole, 1mM β-mercaptoethanol, pH8.0), flow rate 1mL/min, perform secondary denaturation to wash away non-specific binding impurities;
S4.柱上结合的目的蛋白TrxA-NbNT8使用AKTA pure层析系统梯度将本发明的包涵体复性缓冲液(20mM Tris,0.5M NaCl,20mM咪唑,1mMβ-巯基乙醇,0.3M精氨酸,pH 8.0)与包涵体变性增强液混合,并梯度增加包涵体复性缓冲液的比例至100%,流速1mL/min,完成柱上复性;S4. The target protein TrxA-NbNT8 bound on the column uses the gradient of the AKTA pure chromatography system to refold the inclusion body of the present invention (20mM Tris, 0.5M NaCl, 20mM imidazole, 1mM β-mercaptoethanol, 0.3M arginine, pH 8.0) was mixed with the inclusion body denaturation enhancement solution, and the ratio of the inclusion body refolding buffer was gradually increased to 100%, with a flow rate of 1mL/min to complete on-column refolding;
S5.将完成复性的目的蛋白TrxA-NbNT8从柱上洗脱,采用包涵体洗脱缓冲液(20mMTris、300mM NaCl、500mM咪唑、pH 7.4)洗脱目的蛋白,流速1mL/min;洗脱后重新上样经脱盐柱置换到储存液(10mM PBS,pH 7.4)中,即得高表达量及灵敏度的19-去甲睾酮纳米抗体TrxA-NbNT8。S5. Elute the renatured target protein TrxA-NbNT8 from the column, and use inclusion body elution buffer (20mM Tris, 300mM NaCl, 500mM imidazole, pH 7.4) to elute the target protein at a flow rate of 1mL/min; after elution Reload the sample and replace it into the storage solution (10mM PBS, pH 7.4) through the desalting column to obtain the 19-nortestosterone nanobody TrxA-NbNT8 with high expression and sensitivity.
本发明提供一种高表达量、高灵敏度的抗19-去甲睾酮纳米抗体,由上述方法处理得到。利用本发明方法处理后的抗19-去甲睾酮纳米抗体具有完整抗原识别能力地最小抗体片段(约15kDa,TrxA-NbNT8 36kDa);与传统抗体相比,本发明方法保持了纳米抗体的分子量小、有较高的表达量和稳定性、亲和力强、抗基质干扰能力强等优势。并且,本发明进一步提高了纳米抗体在大肠杆菌中的表达量,通过包涵体复性重组抗体提高了纳米抗体的灵敏度。The invention provides a high-expression, high-sensitivity anti-19-nortestosterone nanobody, which is processed by the above method. The anti-19-nortestosterone Nanobody treated with the method of the present invention has the smallest antibody fragment with complete antigen recognition ability (about 15kDa, TrxA-NbNT8 36kDa); compared with traditional antibodies, the method of the present invention maintains the small molecular weight of the Nanobody , has the advantages of high expression level and stability, strong affinity, and strong resistance to matrix interference. Moreover, the present invention further improves the expression level of Nanobodies in E. coli, and improves the sensitivity of Nanobodies by refolding recombinant antibodies with inclusion bodies.
本发明还提供一种检测19-去甲睾酮的方法,采用高表达量、高灵敏度的抗19-去甲睾酮纳米抗体TrxA-NbNT8进行检测。The present invention also provides a method for detecting 19-nortestosterone, which uses high-expression, high-sensitivity anti-19-nortestosterone nanobody TrxA-NbNT8 for detection.
优选地,所述检测进行间接竞争检测,采用包被原的包被浓度为0.25~1μg/mL。Preferably, the detection is an indirect competition detection, and the coating concentration of the coating agent is 0.25-1 μg/mL.
更优选地,采用包被原的包被浓度为1μg/mL。More preferably, the coating concentration of the coating agent is 1 μg/mL.
优选地,包被原采用19-去甲睾酮-OVA(由19-去甲睾酮半抗原与卵清白蛋白(OVA)通过活泼酯方法偶联得到)。Preferably, the coating agent is 19-nortestosterone-OVA (obtained by coupling 19-nortestosterone hapten and ovalbumin (OVA) through an active ester method).
本发明具有以下有益效果:The invention has the following beneficial effects:
本发明首次采用包涵体的形式表达纳米抗体,并通过一步法柱上复性、纯化、脱盐进行处理,为其提供了简便高效的制备方法,大大提高了纳米抗体的表达量。本发明方法的优势有:1)所制备的纳米抗体表达量高,成本低,灵敏度高;2)一步法柱上包涵体复性+纯化+脱盐操作简单,快速方便,适用于其他蛋白质;3)所制备的高质量抗19-去甲睾酮的纳米抗体用于建立ic-ELISA方法,可用于食品中苯丙酸诺龙检测。This invention expresses Nanobodies in the form of inclusion bodies for the first time, and processes them through one-step on-column renaturation, purification, and desalting, which provides a simple and efficient preparation method and greatly improves the expression of Nanobodies. The advantages of the method of the present invention are: 1) The prepared nanobody has high expression level, low cost and high sensitivity; 2) the one-step on-column inclusion body renaturation + purification + desalting operation is simple, fast and convenient, and is suitable for other proteins; 3 ) The high-quality anti-19-nortestosterone Nanobody prepared was used to establish an ic-ELISA method, which can be used for the detection of nandrolone phenylpropionate in food.
本发明不仅能显著提高纳米抗体TrxA-NbNT8的表达量,提高6倍;同时明显提高纳米抗体的灵敏度,提高了35.04倍;并通过建立ic-ELISA方法检测19-去甲睾酮,其检测限低至0.877pg/mL,灵敏度43.67pg/mL,检测范围为3.71-514.09pg/mL,为食品中苯丙酸诺龙的检测提供了高质量的识别元件,并有效降低了其生产成本。除此之外,本发明提供的方法适用于其他纳米抗体或其他蛋白质有效从包涵体中高效获得生物活性物质,为包涵体在原核表达系统的发展提供了参考。The present invention can not only significantly increase the expression of the nanobody TrxA-NbNT8 by 6 times, but also significantly improve the sensitivity of the nanobody by 35.04 times. It also establishes an ic-ELISA method to detect 19-nortestosterone with a low detection limit. to 0.877pg/mL, with a sensitivity of 43.67pg/mL and a detection range of 3.71-514.09pg/mL. It provides high-quality identification elements for the detection of nandrolone phenylpropionate in food and effectively reduces its production cost. In addition, the method provided by the present invention is suitable for other nanobodies or other proteins to effectively obtain biologically active substances from inclusion bodies, and provides a reference for the development of inclusion bodies in prokaryotic expression systems.
附图说明Description of the drawings
图1为不同表达宿主表达结果图。Figure 1 shows the expression results of different expression hosts.
图2为不同诱导温度表达结果图。Figure 2 shows the expression results at different induction temperatures.
图3为不同诱导剂浓度表达结果图。Figure 3 shows the expression results of different inducer concentrations.
图4为不同包涵体变性缓冲液的包涵体提取效果(左)及目的蛋白纯度鉴定结果(右)。Figure 4 shows the inclusion body extraction effects of different inclusion body denaturation buffers (left) and the target protein purity identification results (right).
图5为不同19-去甲睾酮包被原浓度对ic-ELISA方法灵敏度的影响。Figure 5 shows the effect of different 19-nortestosterone coating agent concentrations on the sensitivity of the ic-ELISA method.
图6为TrxA-NbNT8的ic-ELISA方法检测19-去甲睾酮的标准曲线。Figure 6 is the standard curve for the detection of 19-nortestosterone by the ic-ELISA method of TrxA-NbNT8.
具体实施方式Detailed ways
以下结合说明书附图和具体实施例来进一步说明本发明,但实施例并不对本发明做任何形式的限定。除非特别说明,本发明采用的试剂、方法和设备为本技术领域常规试剂、方法和设备。The invention will be further described below with reference to the accompanying drawings and specific examples, but the examples do not limit the invention in any way. Unless otherwise specified, the reagents, methods and equipment used in the present invention are conventional reagents, methods and equipment in this technical field.
除非特别说明,以下实施例所用试剂和材料均为市购。Unless otherwise stated, the reagents and materials used in the following examples were all commercially available.
本发明实施例中采用的19-去甲睾酮纳米抗体NT8来源于中国专利CN111269320A中记载。The 19-nortestosterone nanobody NT8 used in the embodiments of the present invention is derived from Chinese patent CN111269320A.
实施例1包涵体的表达优化Example 1 Optimization of expression of inclusion bodies
本实施例通过采用携带强启动子T7lac的pET-32a表达载体,经过纳米抗体包涵体的制备及表达优化来构建NbNT8最优重组表达体系;采用的纳米抗体NT8能够特异性识别19-去甲睾酮,其氨基酸序列如SEQ ID NO.1所示,同时进行硫氧还蛋白(TrxA)的融合表达,TrxA作为标签有促溶作用,防止二硫键错配。具体包括如下步骤:In this example, the pET-32a expression vector carrying the strong promoter T7lac was used to construct the optimal recombinant expression system of NbNT8 through the preparation and expression optimization of nanobody inclusion bodies; the nanobody NT8 used can specifically recognize 19-nortestosterone. , whose amino acid sequence is shown in SEQ ID NO. 1, and fusion expression of thioredoxin (TrxA) is performed at the same time. TrxA, as a tag, has a solubilizing effect and prevents disulfide bond mismatching. Specifically, it includes the following steps:
S1.根据纳米抗体NT8的5’-与3’-序列设计引物F1、R1用于扩增目的片段,引物F2、R2用于载体pET-32a线性化,引物由北京擎科生物科技有限公司合成;S1. Design primers F1 and R1 based on the 5'- and 3'-sequences of nanobody NT8 to amplify the target fragment. Primers F2 and R2 are used to linearize the vector pET-32a. The primers were synthesized by Beijing Qingke Biotechnology Co., Ltd. ;
引物F1:3’-gtaccgacgacgacgacaagGAGGTGCAGCTGGAGCAGTC-5’;Primer F1: 3’-gtaccgacgacgacgacaagGAGGTGCAGCTGGAGCAGTC-5’;
引物R1:3’-cagtggtggtggtggtggtgCTAAGAAGCGTAGTCCGGAACG-5’;Primer R1: 3’-cagtggtggtggtggtggtgCTAAGAAGCGTAGTCCGGAACG-5’;
引物F2:3’-CACCACCACCACCACCACTG-5’;Primer F2: 3’-CACCACCACCACCACCACTG-5’;
引物R2:3’-CTTGTCGTCGTCGTCGGTACC-5’。Primer R2: 3’-CTTGTCGTCGTCGTCGGTACC-5’.
S2.目的片段及载体制备:使用MutⅡFast Mutagenesis Kit V2进行PCR扩增,反应体系及条件如表1、表2所示,于冰上配制反应体系,配制后轻拨混匀,短暂离心后于PCR仪上进行反应;反应产物经1%琼脂糖凝胶电泳进行鉴定。S2. Preparation of target fragment and vector: use Mut ⅡFast Mutagenesis Kit V2 is used for PCR amplification. The reaction system and conditions are shown in Table 1 and Table 2. Prepare the reaction system on ice. After preparation, mix gently, centrifuge briefly and then react on the PCR machine; the reaction product is processed for 1 % agarose gel electrophoresis for identification.
表1Phanta Max DNA Polymerase反应体系Table 1 Phanta Max DNA Polymerase reaction system
附注:单位为μL;F/R:正反向引物,浓度为10μM;dNTPs(各组分浓度10mM),模板1ng/μL。Note: The unit is μL; F/R: forward and reverse primers, concentration is 10 μM; dNTPs (concentration of each component is 10mM), template 1ng/μL.
表2Phanta Max DNA Polymerase反应条件Table 2 Phanta Max DNA Polymerase reaction conditions
S3.采用以下表3中的同源重组体系及程序将目的片段与载体进行重组(50℃5min),并转化克隆感受态DH5α,涂布Amp抗性固体培养箱过夜培养。S3. Use the homologous recombination system and procedures in Table 3 below to recombine the target fragment with the vector (50°C for 5 minutes), transform the clone into competent DH5α, and coat it with Amp-resistant solid incubator for overnight culture.
表3同源重组反应体系Table 3 Homologous recombination reaction system
S4.经测序验证,将克隆成功的目的质粒转化到5种不同的表达感受态中:BL21DE3,OverExpress C43(DE3),Rosetta DE3,Rosetta gamiB DE3,Top 10F’,小量表达经菌体总蛋白提取(提取液:Thermo B-PER Bacterial Protein Extraction Reagent)验证其表达情况:37℃,1mM IPTG诱导表达12h;筛选出最优表达宿主。S4. After sequencing verification, the successfully cloned target plasmid was transformed into five different expression competent states: BL21DE3, OverExpress C43(DE3), Rosetta DE3, Rosetta gamiB DE3, Top 10F', and small-scale expression of total bacterial protein Extract (extraction solution: Thermo B-PER Bacterial Protein Extraction Reagent) to verify its expression: 37°C, 1mM IPTG induced expression for 12 hours; select the optimal expression host.
结果如图1所示,从不同条件下细胞的胞内可溶组分(↑)与包涵体组分(↓)的变化趋势可以看出,目的蛋白条带位置有可溶蛋白表达(↑)的过程中伴随着大量的包涵体(↓)产生,也就是说包涵体表达的同时,常规融合表达也是有被诱导出来的。The results are shown in Figure 1. From the changing trends of intracellular soluble components (↑) and inclusion body components (↓) of cells under different conditions, it can be seen that the position of the target protein band has soluble protein expression (↑) The process is accompanied by the production of a large number of inclusion bodies (↓), which means that at the same time as inclusion bodies are expressed, regular fusion expression is also induced.
经过不同的表达宿主BL21DE3,OverExpress C43(DE3),Rosetta DE3,RosettagamiB DE3诱导表达可以发现可溶表达(↑)泳道中目的蛋白条带细,且不同表达宿主均不能提高目的蛋白可溶表达;综合可溶表达(↑)和包涵体组分(↓)的表达量,选择工程菌1:BL21DE3进行后续试验。After induced expression by different expression hosts BL21DE3, OverExpress C43 (DE3), Rosetta DE3, and RosettagamiB DE3, it can be found that the target protein band in the soluble expression (↑) lane is thin, and different expression hosts cannot improve the soluble expression of the target protein; comprehensively For the expression levels of soluble expression (↑) and inclusion body components (↓), engineering strain 1: BL21DE3 was selected for subsequent experiments.
S5.根据S4确定的工程菌进行诱导温度的优化:在37℃、25℃、20℃、16℃条件下进行小量表达经菌体总蛋白提取(提取液:Thermo B-PER Bacterial Protein ExtractionReagent)验证其表达情况。S5. Optimize the induction temperature based on the engineering bacteria determined in S4: perform small-scale expression at 37°C, 25°C, 20°C, and 16°C and extract the total bacterial protein (extraction solution: Thermo B-PER Bacterial Protein Extraction Reagent) Verify its expression.
诱导温度优化结果如图2所示,降低诱导温度理论上可以降低转录翻译速度,减少目的蛋白中间体的堆积,减少二硫键的错配,降低包涵体的形成。虽然在不同的诱导温度下,目的蛋白都有诱导出现,但经表达测试验证发现,目的蛋白条带可溶表达(↑)在37℃、25℃、20℃这3个条件下没有明显区别,在16℃下条带较细,说明诱导温度的下降没有促进目的蛋白可溶表达。而包涵体组分在25℃诱导下目的蛋白条带最粗且较纯,综合考虑选择25℃进行下一步实验。The results of induction temperature optimization are shown in Figure 2. Lowering the induction temperature can theoretically reduce the transcription and translation speed, reduce the accumulation of target protein intermediates, reduce disulfide bond mismatches, and reduce the formation of inclusion bodies. Although the target protein was induced at different induction temperatures, the expression test verified that there was no obvious difference in the soluble expression of the target protein band (↑) under the three conditions of 37°C, 25°C, and 20°C. The band was thinner at 16°C, indicating that the decrease in induction temperature did not promote the soluble expression of the target protein. The target protein band of the inclusion body component was the thickest and purer when induced at 25°C. Therefore, 25°C was selected for the next experiment based on comprehensive considerations.
S6.进一步再根据S4、S5确定的工程菌及诱导温度进行诱导剂浓度的优化:在1mM、0.5mM、0.25mM、0.125mM条件下进行小量表达经菌体总蛋白提取(提取液:Thermo B-PERBacterial Protein Extraction Reagent)验证其表达情况。S6. Further optimize the inducer concentration based on the engineering bacteria and induction temperature determined in S4 and S5: perform small-scale expression under the conditions of 1mM, 0.5mM, 0.25mM, 0.125mM and extract the total bacterial protein (extraction solution: Thermo B-PERBacterial Protein Extraction Reagent) to verify its expression.
诱导剂浓度结果如图3所示,显示在1mM的诱导剂浓度下,目的蛋白条带可溶表达最粗(↑),包涵体组分也最粗(↓),因此选择1mM的诱导剂浓度进行后续实验。The results of inducer concentration are shown in Figure 3. It shows that at the inducer concentration of 1mM, the soluble expression of the target protein band is the thickest (↑) and the inclusion body component is also the thickest (↓). Therefore, the inducer concentration of 1mM was selected. Carry out subsequent experiments.
综上可知,在不同诱导条件下,目的蛋白可溶表达没有明显区别,而包涵体表达的目的蛋白表达量有明显提高。而TrxA作为促溶标签,可以减少包涵体的形成,对蛋白胞内的目的蛋白可溶表达有促进作用,但是对目的蛋白的整体表达量的提高(可溶表达+包涵体的总和)是没有定论的。在本实施例中可以发现Nb融合表达TrxA后,经过表达条件优化,其细菌可溶组分中表达的目的蛋白条带无明显变化,所以TrxA并没有提升本实验中Nb可溶表达的表达量。最终选择的构建最优表达体系为:pET-32a-TrxA-NbNT8于E.coli BL21DE3中构建的表达工程菌经25℃,1mM IPTG,诱导12h。该体系下marker 35kDa附近目的蛋白(34kDa)表达条带最粗,可用于下一步快速大量制备纳米抗体TrxA-NbNT8。In summary, it can be seen that under different induction conditions, there is no obvious difference in the soluble expression of the target protein, while the expression level of the target protein expressed in inclusion bodies is significantly improved. As a solubility-promoting tag, TrxA can reduce the formation of inclusion bodies and promote the soluble expression of the target protein in the protein cell, but it does not improve the overall expression of the target protein (the sum of soluble expression + inclusion bodies). conclusive. In this example, it can be found that after Nb was fused to express TrxA, after optimization of expression conditions, the target protein band expressed in the bacterial soluble component did not change significantly, so TrxA did not increase the expression level of Nb soluble expression in this experiment. . The optimal expression system finally selected was: pET-32a-TrxA-NbNT8 was constructed in E.coli BL21DE3 and induced by 1mM IPTG at 25°C for 12 hours. Under this system, the expression band of the target protein (34kDa) near marker 35kDa is the thickest, which can be used for the rapid and large-scale preparation of nanobody TrxA-NbNT8 in the next step.
实施例2包涵体的复性、纯化和脱盐Example 2 Renaturation, purification and desalting of inclusion bodies
根据实施例1构建的最优表达体系制备抗19-去甲睾酮纳米抗体,经过优化包涵体变性缓冲液,配合高效复性缓冲液,建立了包涵体一步法进行柱上复性、纯化和脱盐的方法,实现了抗19-去甲睾酮纳米抗体的高效制备,具体方法如下:Anti-19-nortestosterone Nanobodies were prepared according to the optimal expression system constructed in Example 1. After optimizing the inclusion body denaturation buffer and combining it with a high-efficiency refolding buffer, a one-step inclusion body method was established for on-column renaturation, purification and desalting. This method achieves the efficient preparation of anti-19-nortestosterone nanobodies. The specific method is as follows:
S1.根据实施例1确定的表达体系:E.coli BL21DE3-pET-32a-TrxA-NbNT825℃,1mM IPTG,诱导12h进行摇瓶培养;S1. Expression system determined according to Example 1: E.coli BL21DE3-pET-32a-TrxA-NbNT825°C, 1mM IPTG, induced for 12 hours and cultured in a shake flask;
S2.收集菌体高压破碎(1000bar,3次),收集破碎液种不溶组分经包涵体洗涤液(20mM Tris,0.5M尿素,0.5M NaCl,2% Tween-20,pH 8.0)室温洗涤5min后二次离心收集沉淀,采用下述不同配方的包涵体变性缓冲液室温重悬包涵体,振荡30min,离心收集上清进行下一步。S2. Collect the bacterial cells and crush them with high pressure (1000bar, 3 times). Collect the insoluble components of the crushed liquid and wash them with inclusion body washing solution (20mM Tris, 0.5M urea, 0.5M NaCl, 2% Tween-20, pH 8.0) at room temperature for 5 minutes. Collect the precipitate by centrifugation a second time, resuspend the inclusion bodies at room temperature using the following inclusion body denaturation buffers with different formulas, shake for 30 minutes, and centrifuge to collect the supernatant for the next step.
不同配方的包涵体变性缓冲液:Different formulations of inclusion body denaturation buffers:
包涵体变性缓冲液1:20mM Tris-HCl、0.5M NaCl、6M尿素、5mM咪唑、1mMβ-巯基乙醇、pH 8.0;Inclusion body denaturation buffer 1: 20mM Tris-HCl, 0.5M NaCl, 6M urea, 5mM imidazole, 1mM β-mercaptoethanol, pH 8.0;
包涵体变性缓冲液2:20mM Tris-HCl、0.5M NaCl、6M盐酸胍、5mM咪唑、1mMβ-巯基乙醇、pH 8.0;Inclusion body denaturation buffer 2: 20mM Tris-HCl, 0.5M NaCl, 6M guanidine hydrochloride, 5mM imidazole, 1mM β-mercaptoethanol, pH 8.0;
包涵体变性缓冲液3:0.2M PBS、0.5M NaCl、5mMβ-巯基乙醇、8M尿素、0.5%曲拉通、pH 8.0。Inclusion body denaturation buffer 3: 0.2M PBS, 0.5M NaCl, 5mM β-mercaptoethanol, 8M urea, 0.5% triton, pH 8.0.
S3.采用AKTA pure、Ni Sepharose 6Fast Flow和脱盐柱(购自天地人和)实现复性、纯化和脱盐:S3. Use AKTA pure, Ni Sepharose 6Fast Flow and desalting column (purchased from Tiandi Renhe) to achieve renaturation, purification and desalting:
1)装柱上样:换用包涵体变性缓冲液进行柱平衡,恒定流速0.5mL/min上样;1) Load the column and load the sample: Use inclusion body denaturation buffer for column equilibration, and load the sample at a constant flow rate of 0.5mL/min;
2)包涵体变性增强:待UV平衡后,流动相切换为包涵体变性增强液(20mM Tris,0.5M NaCl,6M尿素,20mM咪唑,1mMβ-巯基乙醇,pH 8.0),流速1mL/min;2) Inclusion body denaturation enhancement: After UV equilibrium, the mobile phase is switched to inclusion body denaturation enhancement solution (20mM Tris, 0.5M NaCl, 6M urea, 20mM imidazole, 1mM β-mercaptoethanol, pH 8.0), with a flow rate of 1mL/min;
3)包涵体复性:待UV平衡后,采用30CV的0%~100%的包涵体复性缓冲液(20mMTris,0.5M NaCl,20mM咪唑,1mMβ-巯基乙醇,0.3M精氨酸,pH 8.0)进行柱上复性,流速0.5mL/min;叠用10CV 100%的包涵体复性缓冲液过柱,流速1mL/min;3) Inclusion body refolding: After UV equilibrium, use 30CV of 0% to 100% inclusion body refolding buffer (20mM Tris, 0.5M NaCl, 20mM imidazole, 1mM β-mercaptoethanol, 0.3M arginine, pH 8.0 ) perform on-column renaturation at a flow rate of 0.5 mL/min; add 10 CV of 100% inclusion body renaturation buffer through the column at a flow rate of 1 mL/min;
4)目的蛋白洗脱:包涵体洗脱缓冲液(20mM Tris、300mM NaCl、500mM咪唑、pH7.4)洗脱目的蛋白,流速1mL/min;4) Elution of target protein: Elute the target protein with inclusion body elution buffer (20mM Tris, 300mM NaCl, 500mM imidazole, pH7.4), with a flow rate of 1mL/min;
5)装柱上样:换用抗体储存液(10mM PBS,pH 7.4)进行脱盐柱柱平衡,恒定流速2mL/min上样4mL;5) Load the column and load the sample: Use the antibody storage solution (10mM PBS, pH 7.4) to balance the desalting column, and load 4mL of sample at a constant flow rate of 2mL/min;
6)峰收集:UV≥5mAu时开始收集样品,UV<5mAu停止收集样品;6) Peak collection: start collecting samples when UV≥5mAu, stop collecting samples when UV<5mAu;
7)还原性SDS-PAGE鉴定其纯度后,样品可直接用于后续抗体活性检测。7) After reducing SDS-PAGE to identify its purity, the sample can be directly used for subsequent antibody activity detection.
本实施例建立了包涵体一步法同时进行柱上变性、复性、纯化和脱盐,其中,复性方法结合亲和纯化,在AKTA层析系统智能可控地进行实验,解放人力且速度快,蛋白被固定在亲和介质上且永远保持在流动体系中不会出现沉淀现象,损失小,得率高;而本研究所建立的纯化体系,在前面变形增强液除杂步骤后,不需要咪唑浓度梯度洗脱,可直接高浓度咪唑洗脱所有蛋白,速度快,体积小,浓度高;得到的亲和纯化产物可直接进行凝胶脱盐柱脱盐,最终脱盐得到地无变性剂无咪唑蛋白溶液浓度高(本实验可将得到蛋白浓度控制在mg/ml级别),可直接进行测试分析和储存。This example establishes a one-step inclusion body method that simultaneously performs on-column denaturation, renaturation, purification, and desalting. The renaturation method is combined with affinity purification, and the experiment is performed intelligently and controllably on the AKTA chromatography system, which frees up manpower and is fast. The protein is fixed on the affinity medium and remains permanently in the flow system without precipitation, resulting in small loss and high yield. However, the purification system established in this study does not require imidazole after the previous deformation enhancement solution impurity removal step. Concentration gradient elution can directly elute all proteins with high concentration of imidazole, which is fast, small in volume and high in concentration; the obtained affinity purification product can be directly desalted in a gel desalting column, and finally desalted to obtain a denaturant-free and imidazole-free protein solution. The concentration is high (this experiment can control the protein concentration at the mg/ml level) and can be directly tested, analyzed and stored.
结果如图4所示,通过测试三种不同的包涵体变性缓冲液,优化目的蛋白在包涵体中的提取效果,显示在20mM Tris-HCl、0.5M NaCl、6M盐酸胍、5mM咪唑、1mMβ-巯基乙醇、pH8.0(包涵体变性缓冲液2)的提取下,目的蛋白得率最高,纯度最好。The results are shown in Figure 4. By testing three different inclusion body denaturation buffers, the extraction effect of the target protein in the inclusion bodies was optimized, as shown in 20mM Tris-HCl, 0.5M NaCl, 6M guanidine hydrochloride, 5mM imidazole, 1mM β- Under the extraction of mercaptoethanol and pH 8.0 (inclusion body denaturation buffer 2), the target protein has the highest yield and the best purity.
最终,通过一步法进行包涵体变性及柱上复性、纯化及脱盐方法,与常规需要进行变性、复性、纯化、脱盐四步方法相比:操作更简单,时间更短,制备效率更高。同时解决了常规方法存在的变性不彻底、耗时(数天)、耗力(人工)、耗试剂(大量复性缓冲液)、步骤繁琐(可能增加浓缩步骤)、损失大(复性操作失误沉淀、透析反盐溶作用沉淀、浓缩食物沉淀)等问题。本实施例只需要花费约6h便可同时是完成变性、复性、脱盐等步骤,产物可直接用于下一步活性检测,收获的目的蛋白的量为65mg/L培养基,大大提高了纳米抗体的表达量,有效降低了抗体的应用成本。Finally, the one-step method is used to perform inclusion body denaturation, on-column renaturation, purification and desalting. Compared with the conventional four-step method of denaturation, renaturation, purification and desalting, the operation is simpler, the time is shorter and the preparation efficiency is higher. . At the same time, it solves the problems of incomplete denaturation, time-consuming (several days), labor-consuming (manual), reagent-consuming (a large amount of renaturation buffer), cumbersome steps (possible addition of concentration steps), and large losses (refolding operation errors) existing in conventional methods. Problems such as precipitation, dialysis reverse salt dissolution precipitation, concentrated food precipitation), etc. This embodiment only takes about 6 hours to complete the steps of denaturation, renaturation, desalting, etc. at the same time. The product can be directly used for the next step of activity detection. The amount of harvested target protein is 65 mg/L culture medium, which greatly improves the efficiency of Nanobodies. The expression level effectively reduces the cost of antibody application.
实施例3 19-去甲睾酮的检测Example 3 Detection of 19-nortestosterone
基于实施例2制备的抗19-去甲睾酮纳米抗体建立检测19-去甲睾酮的ic-ELISA方法,具体方法如下:An ic-ELISA method for detecting 19-nortestosterone was established based on the anti-19-nortestosterone Nanobody prepared in Example 2. The specific method is as follows:
1)通过棋盘法确定抗原抗体工作浓度:将包被抗原19-去甲睾酮-OVA(19-NT-OVA)稀释为1000ng/mL、500ng/mL、250ng/mL、125ng/mL进行包板12h;封闭:将酶标板取出洗板2次并拍干液体,加入120μL/孔3%脱脂奶粉(PBS),置于37℃水浴箱中3h,然后甩干封闭液,37℃30min烘箱烘干;加待检测蛋白:将抗体从1mg/mL进行倍并稀释,19-去甲睾酮用PBST缓冲液稀释100ng/mL,奇数列加入50μL/孔PBST,偶数列加入50μL/孔19-去甲睾酮,然后每列加入稀释好的抗体50μL/孔测定抗体效价抑制曲线;在37℃水浴40min后洗板3次并拍干液体;加anti-Nb-HRP Rab:PBST稀释5000倍,混匀加入100μL/孔,37℃水浴30min,洗板3次并拍干液体;加显色液:显色液100μL/孔,37℃水浴10min,加终止液50μL/孔终止反应;读数:用酶标仪测定450nm下的吸光度,选定读数为1.0左右的包被原与抗体工作浓度进行进一步竞争抑制曲线的建立。1) Determine the working concentration of antigen and antibody by the checkerboard method: dilute the coating antigen 19-nortestosterone-OVA (19-NT-OVA) to 1000ng/mL, 500ng/mL, 250ng/mL, and 125ng/mL and coat the plate for 12 hours ; Blocking: Take out the enzyme plate, wash it twice and pat dry the liquid, add 120 μL/well 3% skimmed milk powder (PBS), place it in a 37°C water bath for 3 hours, then dry the blocking solution, and dry it in an oven at 37°C for 30 minutes. ;Add the protein to be detected: double and dilute the antibody from 1 mg/mL, dilute 19-nortestosterone to 100ng/mL with PBST buffer, add 50 μL/well of PBST in odd-numbered columns, and add 50 μL/well of 19-nortestosterone in even-numbered columns. , then add 50 μL/well of the diluted antibody to each column to determine the antibody titer inhibition curve; wash the plate 3 times in a 37°C water bath for 40 minutes and pat the liquid dry; add anti-Nb-HRP Rab: dilute 5000 times with PBST, mix and add 100 μL/well, 37°C water bath for 30 minutes, wash the plate 3 times and pat dry; add chromogenic solution: 100 μL/well of chromogenic solution, 37°C water bath for 10 minutes, add 50 μL/well of stop solution to terminate the reaction; read: use a microplate reader Measure the absorbance at 450 nm, and select a working concentration of coating source and antibody with a reading of about 1.0 to further establish a competition inhibition curve.
2)建立不同包被原与抗体工作浓度下的竞争抑制曲线,确定不同包被原浓度对ic-ELISA方法的影响:取ABS值在1.0附近的抗原抗体浓度组合,配置系列浓度的19-去甲睾酮溶液,酶标板上每孔加入50μL抗体蛋白和50μL不同浓度的19-去甲睾酮溶液,37℃水浴40min。其他实验操作与上一步骤相同。最后得到的结果用Origin 9.1的四参数拟合模块建立ic-ELISA标准曲线。计算抑制曲线的IC50值。选择IC50值低的抗原抗体浓度为最佳工作浓度。2) Establish competitive inhibition curves under different working concentrations of coating agents and antibodies to determine the impact of different coating agent concentrations on the ic-ELISA method: Take an antigen-antibody concentration combination with an ABS value near 1.0, and configure a series of concentrations of 19- For methyltestosterone solution, add 50 μL of antibody protein and 50 μL of 19-nortestosterone solution of different concentrations to each well of the enzyme plate, and keep in a 37°C water bath for 40 minutes. Other experimental operations are the same as the previous step. The final results were obtained using the four-parameter fitting module of Origin 9.1 to establish the ic-ELISA standard curve. Calculate the IC50 value of the inhibition curve. Select the antigen and antibody concentration with a low IC50 value as the optimal working concentration.
测定结果如图5所示,显示不同19-去甲睾酮包被原浓度对ic-ELISA方法灵敏度的影响:包被原浓度低的情况下所建立的标曲灵敏度较差,选定1000ng/mL的19-NT-OVA,5μg/mL的抗体为最佳工作浓度。The measurement results are shown in Figure 5, showing the impact of different 19-nortestosterone coating original concentrations on the sensitivity of the ic-ELISA method: the sensitivity of the standard curve established when the original coating concentration is low is poor, so 1000ng/mL was selected. For 19-NT-OVA, an antibody of 5 μg/mL is the optimal working concentration.
3)采用以上优化后的条件:1000ng/mL的19-NT-OVA包被浓度,建立基于TrxA-NbNT8检测19-去甲睾酮的ic-ELISA方法,并绘制检测标准曲线。3) Using the above optimized conditions: 1000ng/mL 19-NT-OVA coating concentration, establish an ic-ELISA method based on TrxA-NbNT8 to detect 19-nortestosterone, and draw a detection standard curve.
TrxA-NbNT8的ic-ELISA方法检测19-去甲睾酮的标准曲线如图6所示,基于本发明制备高表达19-去甲睾酮的纳米抗体TrxA-NbNT8建立了ic-ELISA方法,优化了包被原使用量为1μg/mL,抗体用量为5μg/mL,该方法检测19-去甲睾酮的检测限低至0.877pg/mL,线性范围为3.71-514.09pg/mL,灵敏度43.67pg/mL,比原始pComb3xss载体周质空间表达的纳米抗体NT8灵敏度(1.53ng/mL)提高了35.04倍。在实际检测中可用于检测更微量残留的19-去甲睾酮,实现苯丙酸诺龙的灵敏检测。The standard curve of the ic-ELISA method of TrxA-NbNT8 for detecting 19-nortestosterone is shown in Figure 6. Based on the preparation of nanobody TrxA-NbNT8, which highly expresses 19-nortestosterone, the ic-ELISA method was established and optimized. The original dosage is 1μg/mL, and the antibody dosage is 5μg/mL. The detection limit of this method for detecting 19-nortestosterone is as low as 0.877pg/mL, the linear range is 3.71-514.09pg/mL, and the sensitivity is 43.67pg/mL. The sensitivity (1.53ng/mL) of Nanobody NT8 expressed in the periplasmic space of the original pComb3xss vector is 35.04 times higher. In actual detection, it can be used to detect even trace amounts of residual 19-nortestosterone to achieve sensitive detection of nandrolone phenylpropionate.
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。The above embodiments are preferred embodiments of the present invention, but the embodiments of the present invention are not limited to the above embodiments. Any other changes, modifications, substitutions, combinations, etc. may be made without departing from the spirit and principles of the present invention. All simplifications should be equivalent substitutions, and are all included in the protection scope of the present invention.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311154447.XA CN117304329A (en) | 2023-09-07 | 2023-09-07 | Method for improving expression quantity and sensitivity of 19-nor-testosterone nanobody |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311154447.XA CN117304329A (en) | 2023-09-07 | 2023-09-07 | Method for improving expression quantity and sensitivity of 19-nor-testosterone nanobody |
Publications (1)
Publication Number | Publication Date |
---|---|
CN117304329A true CN117304329A (en) | 2023-12-29 |
Family
ID=89248971
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311154447.XA Pending CN117304329A (en) | 2023-09-07 | 2023-09-07 | Method for improving expression quantity and sensitivity of 19-nor-testosterone nanobody |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117304329A (en) |
-
2023
- 2023-09-07 CN CN202311154447.XA patent/CN117304329A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104730238A (en) | ELISA detection kit for detecting porcine epidemic diarrhea virus antibody and use method and application of ELISA kit | |
CN104046646B (en) | A kind of method utilizing SUMO system expression HMGB1 A-box albumen | |
Pasquinelli et al. | Design of affinity tags for one‐step protein purification from immobilized zinc columns | |
CN104845981B (en) | Babesiamicrofti Bm1524 antigens and its application | |
CN116333159A (en) | HRP label nanobody fusion protein and its preparation method and application | |
CN117304329A (en) | Method for improving expression quantity and sensitivity of 19-nor-testosterone nanobody | |
Liew et al. | A His6-SUMO-eXact tag for producing human prepro-urocortin 2 in Escherichia coli for raising monoclonal antibodies | |
CN107988248A (en) | A kind of method of easy, efficient fusion His label SPX albumen pronucleus expressions, purifying and renaturation | |
MA | High expression level of human epidermal growth factor (hEGF) using a well-designed fusion protein-tagged construct in E. coli. | |
Esfandiar et al. | Purification and refolding of Escherichia coli‐expressed recombinant human interleukin‐2 | |
CN105602977A (en) | Preparation method and application of high-activity human cytokine Eotaxin-2 | |
US11524996B2 (en) | Method for producing refolded recombinant humanized ranibizumab | |
CN107090425A (en) | Restructuring mGM-CSF and the genetic engineering bacterium of GRP6 fusion proteins a kind of structure | |
Ahmed et al. | Enhancing recombinant interleukin‐6 production yield by fermentation optimization, two‐step denaturing, and one‐step purification | |
CN104845982B (en) | Babesiamicrofti Bm186 antigens and its application | |
Muruaga et al. | Adaptation of the binding domain of Lactobacillus acidophilus S-layer protein as a molecular tag for affinity chromatography development | |
CN112391367A (en) | Preparation method of Cas9 protein for gene editing of human primary cells | |
CN101298611A (en) | Active fragment of chlamydia proteasome sample active factor and expression method thereof | |
Liu et al. | Cloning and expression of visfatin and screening of oligopeptides binding with visfatin | |
WO2024021228A1 (en) | Sirt6 h133y protein, method for enriching myristoylation-modified peptide fragments using same, and use thereof | |
CN110615846B (en) | Bifunctional protein with IgG (immunoglobulin G) binding activity and biotin binding activity and ELISA (enzyme-linked immunosorbent assay) kit thereof | |
CN101531710A (en) | rF1 antigen, preparation method and application thereof | |
CN113563450A (en) | Cyclic Theileria taenii TA04380 truncated protein and application thereof | |
Liu et al. | Identifying a TFIID interactome via integrated biochemical and high-throughput proteomic studies | |
CN116063571A (en) | Preparation method and application of recombinant SSB antigen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination |