CN117244096A - Borosilicate-based bioactive glass-modified bacterial cellulose functional dressing and preparation method thereof - Google Patents
Borosilicate-based bioactive glass-modified bacterial cellulose functional dressing and preparation method thereof Download PDFInfo
- Publication number
- CN117244096A CN117244096A CN202311290068.3A CN202311290068A CN117244096A CN 117244096 A CN117244096 A CN 117244096A CN 202311290068 A CN202311290068 A CN 202311290068A CN 117244096 A CN117244096 A CN 117244096A
- Authority
- CN
- China
- Prior art keywords
- bioactive glass
- bacterial cellulose
- based bioactive
- borosilicate
- boron
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 229920002749 Bacterial cellulose Polymers 0.000 title claims abstract description 127
- 239000005016 bacterial cellulose Substances 0.000 title claims abstract description 127
- 238000002360 preparation method Methods 0.000 title claims abstract description 20
- 230000000975 bioactive effect Effects 0.000 title claims description 16
- 239000005313 bioactive glass Substances 0.000 claims abstract description 45
- 239000004964 aerogel Substances 0.000 claims abstract description 31
- 238000001035 drying Methods 0.000 claims abstract description 3
- CFOAUMXQOCBWNJ-UHFFFAOYSA-N [B].[Si] Chemical compound [B].[Si] CFOAUMXQOCBWNJ-UHFFFAOYSA-N 0.000 claims abstract 11
- 238000002791 soaking Methods 0.000 claims abstract 2
- 239000010949 copper Substances 0.000 claims description 26
- 238000000034 method Methods 0.000 claims description 13
- 239000004327 boric acid Substances 0.000 claims description 8
- ZCCIPPOKBCJFDN-UHFFFAOYSA-N calcium nitrate Chemical group [Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ZCCIPPOKBCJFDN-UHFFFAOYSA-N 0.000 claims description 8
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical group CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 claims description 8
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical group CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 claims description 6
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical compound OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 claims description 6
- 229910052796 boron Inorganic materials 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- 239000011575 calcium Substances 0.000 claims description 6
- 229910052698 phosphorus Inorganic materials 0.000 claims description 6
- 229910052710 silicon Inorganic materials 0.000 claims description 6
- 238000006068 polycondensation reaction Methods 0.000 claims description 5
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 4
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 claims description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 4
- 238000002156 mixing Methods 0.000 claims description 4
- 239000011574 phosphorus Substances 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 3
- 239000002270 dispersing agent Substances 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 2
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 2
- 125000005619 boric acid group Chemical group 0.000 claims description 2
- 229910052733 gallium Inorganic materials 0.000 claims description 2
- 229910052709 silver Inorganic materials 0.000 claims description 2
- 239000004332 silver Substances 0.000 claims description 2
- 239000011701 zinc Substances 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000004599 antimicrobial Substances 0.000 claims 3
- 238000004519 manufacturing process Methods 0.000 claims 1
- 239000000463 material Substances 0.000 abstract description 19
- 230000029663 wound healing Effects 0.000 abstract description 6
- 239000002121 nanofiber Substances 0.000 abstract description 5
- 206010061218 Inflammation Diseases 0.000 abstract description 4
- 230000006870 function Effects 0.000 abstract description 3
- 238000003980 solgel method Methods 0.000 abstract description 3
- 238000012986 modification Methods 0.000 abstract description 2
- 230000004048 modification Effects 0.000 abstract description 2
- 230000033115 angiogenesis Effects 0.000 abstract 1
- 230000003064 anti-oxidating effect Effects 0.000 abstract 1
- 230000003115 biocidal effect Effects 0.000 abstract 1
- 238000000151 deposition Methods 0.000 abstract 1
- 230000008021 deposition Effects 0.000 abstract 1
- 239000000047 product Substances 0.000 description 33
- 239000000835 fiber Substances 0.000 description 31
- 238000001878 scanning electron micrograph Methods 0.000 description 18
- 238000010586 diagram Methods 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- 230000000844 anti-bacterial effect Effects 0.000 description 13
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 12
- 239000000243 solution Substances 0.000 description 11
- 238000012360 testing method Methods 0.000 description 11
- 238000010521 absorption reaction Methods 0.000 description 10
- 230000003110 anti-inflammatory effect Effects 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 210000004027 cell Anatomy 0.000 description 9
- 230000002757 inflammatory effect Effects 0.000 description 9
- 206010052428 Wound Diseases 0.000 description 7
- 208000027418 Wounds and injury Diseases 0.000 description 7
- 230000035876 healing Effects 0.000 description 6
- 208000015181 infectious disease Diseases 0.000 description 6
- 238000009864 tensile test Methods 0.000 description 6
- 206010041925 Staphylococcal infections Diseases 0.000 description 5
- 230000004663 cell proliferation Effects 0.000 description 5
- 238000003501 co-culture Methods 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- XTVVROIMIGLXTD-UHFFFAOYSA-N copper(II) nitrate Chemical compound [Cu+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O XTVVROIMIGLXTD-UHFFFAOYSA-N 0.000 description 5
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 238000001228 spectrum Methods 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 4
- 239000003242 anti bacterial agent Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000002131 composite material Substances 0.000 description 4
- MZOFCQQQCNRIBI-VMXHOPILSA-N (3s)-4-[[(2s)-1-[[(2s)-1-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-5-(diaminomethylideneamino)-1-oxopentan-2-yl]amino]-3-[[2-[[(2s)-2,6-diaminohexanoyl]amino]acetyl]amino]-4-oxobutanoic acid Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(O)=O)NC(=O)CNC(=O)[C@@H](N)CCCCN MZOFCQQQCNRIBI-VMXHOPILSA-N 0.000 description 3
- 241000894006 Bacteria Species 0.000 description 3
- JPVYNHNXODAKFH-UHFFFAOYSA-N Cu2+ Chemical compound [Cu+2] JPVYNHNXODAKFH-UHFFFAOYSA-N 0.000 description 3
- 241000191967 Staphylococcus aureus Species 0.000 description 3
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 3
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 3
- 230000004071 biological effect Effects 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 230000001684 chronic effect Effects 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 229910001431 copper ion Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000001963 growth medium Substances 0.000 description 3
- 230000004054 inflammatory process Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- ZHJGWYRLJUCMRT-UHFFFAOYSA-N 5-[6-[(4-methylpiperazin-1-yl)methyl]benzimidazol-1-yl]-3-[1-[2-(trifluoromethyl)phenyl]ethoxy]thiophene-2-carboxamide Chemical compound C=1C=CC=C(C(F)(F)F)C=1C(C)OC(=C(S1)C(N)=O)C=C1N(C1=C2)C=NC1=CC=C2CN1CCN(C)CC1 ZHJGWYRLJUCMRT-UHFFFAOYSA-N 0.000 description 2
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- PHEDXBVPIONUQT-UHFFFAOYSA-N Cocarcinogen A1 Natural products CCCCCCCCCCCCCC(=O)OC1C(C)C2(O)C3C=C(C)C(=O)C3(O)CC(CO)=CC2C2C1(OC(C)=O)C2(C)C PHEDXBVPIONUQT-UHFFFAOYSA-N 0.000 description 2
- 208000008960 Diabetic foot Diseases 0.000 description 2
- 102000010834 Extracellular Matrix Proteins Human genes 0.000 description 2
- 108010037362 Extracellular Matrix Proteins Proteins 0.000 description 2
- 108010087230 Sincalide Proteins 0.000 description 2
- 239000003963 antioxidant agent Substances 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000010609 cell counting kit-8 assay Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 230000003013 cytotoxicity Effects 0.000 description 2
- 231100000135 cytotoxicity Toxicity 0.000 description 2
- 239000002158 endotoxin Substances 0.000 description 2
- 210000002744 extracellular matrix Anatomy 0.000 description 2
- 238000004108 freeze drying Methods 0.000 description 2
- CHPZKNULDCNCBW-UHFFFAOYSA-N gallium nitrate Chemical compound [Ga+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O CHPZKNULDCNCBW-UHFFFAOYSA-N 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 238000006460 hydrolysis reaction Methods 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229920006008 lipopolysaccharide Polymers 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- PHEDXBVPIONUQT-RGYGYFBISA-N phorbol 13-acetate 12-myristate Chemical compound C([C@]1(O)C(=O)C(C)=C[C@H]1[C@@]1(O)[C@H](C)[C@H]2OC(=O)CCCCCCCCCCCCC)C(CO)=C[C@H]1[C@H]1[C@]2(OC(C)=O)C1(C)C PHEDXBVPIONUQT-RGYGYFBISA-N 0.000 description 2
- 238000012643 polycondensation polymerization Methods 0.000 description 2
- 230000001023 pro-angiogenic effect Effects 0.000 description 2
- 238000004626 scanning electron microscopy Methods 0.000 description 2
- IZTQOLKUZKXIRV-YRVFCXMDSA-N sincalide Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(=O)NCC(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC=CC=1)C(N)=O)NC(=O)[C@@H](N)CC(O)=O)C1=CC=C(OS(O)(=O)=O)C=C1 IZTQOLKUZKXIRV-YRVFCXMDSA-N 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 241000589220 Acetobacter Species 0.000 description 1
- 244000235858 Acetobacter xylinum Species 0.000 description 1
- 235000002837 Acetobacter xylinum Nutrition 0.000 description 1
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 206010040943 Skin Ulcer Diseases 0.000 description 1
- 206010072170 Skin wound Diseases 0.000 description 1
- 208000026137 Soft tissue injury Diseases 0.000 description 1
- 208000025865 Ulcer Diseases 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001464 adherent effect Effects 0.000 description 1
- 230000008952 bacterial invasion Effects 0.000 description 1
- 244000052616 bacterial pathogen Species 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 238000003889 chemical engineering Methods 0.000 description 1
- 238000012136 culture method Methods 0.000 description 1
- 239000012228 culture supernatant Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 210000000416 exudates and transudate Anatomy 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 229940044658 gallium nitrate Drugs 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 230000003179 granulation Effects 0.000 description 1
- 238000005469 granulation Methods 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 230000009545 invasion Effects 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 230000003902 lesion Effects 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 229960003085 meticillin Drugs 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000002062 molecular scaffold Substances 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- 230000004215 skin function Effects 0.000 description 1
- 231100000019 skin ulcer Toxicity 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 231100000397 ulcer Toxicity 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
- 230000037314 wound repair Effects 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/22—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing macromolecular materials
- A61L15/28—Polysaccharides or their derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/18—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons containing inorganic materials
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/44—Medicaments
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L15/00—Chemical aspects of, or use of materials for, bandages, dressings or absorbent pads
- A61L15/16—Bandages, dressings or absorbent pads for physiological fluids such as urine or blood, e.g. sanitary towels, tampons
- A61L15/42—Use of materials characterised by their function or physical properties
- A61L15/46—Deodorants or malodour counteractants, e.g. to inhibit the formation of ammonia or bacteria
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/10—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices containing or releasing inorganic materials
- A61L2300/102—Metals or metal compounds, e.g. salts such as bicarbonates, carbonates, oxides, zeolites, silicates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/404—Biocides, antimicrobial agents, antiseptic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/41—Anti-inflammatory agents, e.g. NSAIDs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L2300/00—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices
- A61L2300/40—Biologically active materials used in bandages, wound dressings, absorbent pads or medical devices characterised by a specific therapeutic activity or mode of action
- A61L2300/412—Tissue-regenerating or healing or proliferative agents
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Epidemiology (AREA)
- Hematology (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Inorganic Chemistry (AREA)
- Materials For Medical Uses (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Description
技术领域Technical field
本发明涉及生物医用材料领域,特别涉及一种硼硅基生物活性玻璃修饰细菌纤维素功能敷料及其制备方法。The invention relates to the field of biomedical materials, and in particular to a borosilicate-based bioactive glass-modified bacterial cellulose functional dressing and a preparation method thereof.
背景技术Background technique
细菌纤维素(BC)由于具有与皮肤组织细胞外基质类似的三维纤维网络结构,因此可以在较大程度上模仿皮肤中细胞外基质的形态。细菌纤维素纳米纤维支架可以模拟皮肤功能,阻止外界致病菌的入侵,并具有良好的吸水性、保水性、透气性、防粘连、生物相容性以及免疫原性,能够维持创面湿润的环境,促进肉芽生长,是理想的敷料基材之一(Khalid,et al.International Journal of Biological Macromolecules,203(2022)256-267)。然而,细菌纤维素不具备生物学性能,无法处理包括糖尿病足在内的复杂慢性创面。因此将有效成分引入到细菌纤维素支架的三维网络结构中,制备BC基复合材料,是改善BC基敷料生物学性能的有效方式。Since bacterial cellulose (BC) has a three-dimensional fiber network structure similar to the extracellular matrix of skin tissue, it can imitate the morphology of the extracellular matrix in the skin to a large extent. The bacterial cellulose nanofiber scaffold can simulate skin functions, prevent the invasion of external pathogenic bacteria, and has good water absorption, water retention, breathability, anti-adhesion, biocompatibility and immunogenicity, and can maintain a moist environment on the wound surface. , promotes granulation growth and is one of the ideal dressing base materials (Khalid, et al. International Journal of Biological Macromolecules, 203 (2022) 256-267). However, bacterial cellulose does not have biological properties and cannot treat complex chronic wounds, including diabetic foot. Therefore, introducing active ingredients into the three-dimensional network structure of bacterial cellulose scaffolds to prepare BC-based composite materials is an effective way to improve the biological properties of BC-based dressings.
生物活性玻璃含有多种生物活性无机离子,不但在硬组织工程修复领域得到广泛的应用(Pang,et al.Materials Science&Engineering C,105(2019)110076),还对软组织损伤如皮肤溃疡具有良好的促愈合效果(Yang,et al.Chemical Engineering Journal,419(2021)129437)。目前,生物活性玻璃与BC复合的常用方法是原位复合法,即将生物活性玻璃前驱体与BC培养基混合,用该混合液培养BC。然而,利用该类方法所得的生物活性玻璃改性BC,生物活性玻璃填充于BC的网络结构中,堵塞了BC纳米孔网络结构,因此影响了BC的敷料特性,并不适用于皮肤创面修复。因此,如何开发一种新制备方法以减弱生物活性玻璃对细菌纤维素纳米孔网络结构的影响,是本领域技术人员亟需解决的技术问题。Bioactive glass contains a variety of bioactive inorganic ions, which is not only widely used in the field of hard tissue engineering repair (Pang, et al. Materials Science & Engineering C, 105 (2019) 110076), but also has good resistance to soft tissue injuries such as skin ulcers. Healing effect (Yang, et al. Chemical Engineering Journal, 419 (2021) 129437). At present, the common method for compounding bioactive glass and BC is the in-situ compounding method, that is, mixing the bioactive glass precursor and BC culture medium, and using the mixed solution to culture BC. However, using the bioactive glass-modified BC obtained by this method, the bioactive glass is filled in the BC network structure, blocking the BC nanopore network structure, thus affecting the dressing properties of BC, and is not suitable for skin wound repair. Therefore, how to develop a new preparation method to weaken the impact of bioactive glass on the bacterial cellulose nanopore network structure is an urgent technical problem that needs to be solved by those skilled in the art.
发明内容Contents of the invention
本发明的目的在于,提供一种硼硅基生物活性玻璃修饰细菌纤维素功能敷料及其制备方法。本发明采用溶胶-凝胶法将硼硅基生物活性玻璃溶胶中的离子成分沉积于细菌纤维素纳米纤维表面,利用硼硅基生物活性玻璃对细菌纤维素进行功能化改性,从而赋予细菌纤维素基敷料抗菌、抗炎、抗氧化、促血管生成和促伤口愈合等功能。The object of the present invention is to provide a borosilicate-based bioactive glass-modified bacterial cellulose functional dressing and a preparation method thereof. The present invention uses a sol-gel method to deposit the ionic components in the borosilicate-based bioactive glass sol on the surface of bacterial cellulose nanofibers, and uses the borosilicate-based bioactive glass to functionally modify the bacterial cellulose, thereby endowing the bacterial fibers with Plain-based dressings have antibacterial, anti-inflammatory, antioxidant, pro-angiogenic and wound-healing functions.
为实现上述目的,本发明提供了如下技术方案:In order to achieve the above objects, the present invention provides the following technical solutions:
本发明技术方案之一:提供一种硼硅基生物活性玻璃修饰细菌纤维素功能敷料的制备方法,包括以下步骤:One of the technical solutions of the present invention is to provide a method for preparing a borosilicate-based bioactive glass-modified bacterial cellulose functional dressing, which includes the following steps:
制备硼硅基生物活性玻璃溶胶和细菌纤维素气凝胶;Preparation of borosilicate-based bioactive glass sol and bacterial cellulose aerogel;
将所述细菌纤维素气凝胶浸泡在所述硼硅基生物活性玻璃溶胶中,缩聚,干燥,得到所述硼硅基生物活性玻璃修饰细菌纤维素功能敷料。The bacterial cellulose aerogel is soaked in the borosilicate-based bioactive glass sol, condensed, and dried to obtain the borosilicate-based bioactive glass-modified bacterial cellulose functional dressing.
优选地,所述细菌纤维素气凝胶中的细菌纤维素选自由醋酸菌属中的微生物合成的纤维素。Preferably, the bacterial cellulose in the bacterial cellulose aerogel is selected from cellulose synthesized by microorganisms of the genus Acetobacter.
优选地,所述干燥为冷冻干燥。Preferably, the drying is freeze drying.
通过冷冻干燥的细菌纤维素气凝胶能够更好的保持纳米孔结构,以便硼硅基生物活性玻璃溶胶中的活性离子顺利地进入细菌纤维素网络结构中。The freeze-dried bacterial cellulose aerogel can better maintain the nanopore structure, so that the active ions in the borosilicate-based bioactive glass sol can smoothly enter the bacterial cellulose network structure.
优选地,所述缩聚在体积百分数90%的乙醇水溶液中进行。Preferably, the polycondensation is carried out in an aqueous ethanol solution with a volume percentage of 90%.
优选地,所述缩聚的温度为20-35℃,时间为18-30h。Preferably, the polycondensation temperature is 20-35°C and the time is 18-30 h.
优选地,所述硼硅基生物活性玻璃修饰细菌纤维素功能敷料中,硼硅基生物活性玻璃和细菌纤维素的质量比为1:1-5:1。Preferably, in the borosilicate-based bioactive glass-modified bacterial cellulose functional dressing, the mass ratio of borosilicate-based bioactive glass and bacterial cellulose is 1:1-5:1.
优选地,所述硼硅基生物活性玻璃溶胶的制备方法包括以下步骤:Preferably, the preparation method of the borosilicate-based bioactive glass sol includes the following steps:
将硅源、钙源、磷源和硼源在分散剂中混合,得到所述硼硅基生物活性玻璃溶胶。A silicon source, a calcium source, a phosphorus source and a boron source are mixed in a dispersant to obtain the borosilicate-based bioactive glass sol.
更优选地,所述分散剂为乙醇。More preferably, the dispersant is ethanol.
优选地,所述硅源为正硅酸乙酯;所述钙源为硝酸钙;所述磷源为磷酸三乙酯;所述硼源为硼酸。Preferably, the silicon source is ethyl orthosilicate; the calcium source is calcium nitrate; the phosphorus source is triethyl phosphate; and the boron source is boric acid.
优选地,所述硼硅基生物活性玻璃溶胶中,正硅酸乙酯的体积浓度为20-21%,硝酸钙的浓度为60-65mg/mL,磷酸三乙酯的体积浓度为1.8-2.5%,硼酸的浓度为5-10mg/mL。Preferably, in the borosilicate-based bioactive glass sol, the volume concentration of ethyl orthosilicate is 20-21%, the concentration of calcium nitrate is 60-65 mg/mL, and the volume concentration of triethyl phosphate is 1.8-2.5 %, the concentration of boric acid is 5-10mg/mL.
优选地,所述混合过程中还包含添加抗菌剂步骤,所述抗菌剂为包含银、锌、铜和镓中一种或多种元素的抗菌剂。Preferably, the mixing process further includes the step of adding an antibacterial agent, and the antibacterial agent is an antibacterial agent containing one or more elements among silver, zinc, copper and gallium.
本发明技术方案之二:提供一种根据上述制备方法得到的硼硅基生物活性玻璃修饰细菌纤维素功能敷料。The second technical solution of the present invention is to provide a borosilicate-based bioactive glass-modified bacterial cellulose functional dressing obtained according to the above preparation method.
本发明技术方案之三:提供一种上述硼硅基生物活性玻璃修饰细菌纤维素功能敷料在制备创口敷料中的应用。The third technical solution of the present invention is to provide an application of the above-mentioned borosilicate-based bioactive glass-modified bacterial cellulose functional dressing in the preparation of wound dressings.
本发明的有益技术效果如下:The beneficial technical effects of the present invention are as follows:
本发明采用溶胶-凝胶法将硼硅基生物活性玻璃溶胶中的离子成分沉积于细菌纤维素纳米纤维表面,利用硼硅基生物活性玻璃对细菌纤维素进行功能化改性,从而赋予细菌纤维素基敷料抗菌、抗炎、抗氧化、促血管生成和促伤口愈合等功能,能够满足包括糖尿病足溃疡在内的具有复杂微环境的慢性溃疡治疗的临床需求。The present invention uses a sol-gel method to deposit the ionic components in the borosilicate-based bioactive glass sol on the surface of bacterial cellulose nanofibers, and uses the borosilicate-based bioactive glass to functionally modify the bacterial cellulose, thereby endowing the bacterial fibers with The plain-based dressing has antibacterial, anti-inflammatory, antioxidant, pro-angiogenic and wound-healing functions, and can meet the clinical needs for the treatment of chronic ulcers with complex microenvironments, including diabetic foot ulcers.
本发明在添加生物活性玻璃以引入生物活性离子的同时,使生物活性玻璃仅附着于BC纳米纤维的表面,形成了明显的涂层结构,因此保留了细菌纤维素的纳米孔网络结构及敷料特性,又具有了强生物学性能,从而扩展了产物的应用环境。While adding bioactive glass to introduce bioactive ions, the present invention allows the bioactive glass to only adhere to the surface of BC nanofibers, forming an obvious coating structure, thus retaining the nanopore network structure and dressing properties of bacterial cellulose. , and has strong biological properties, thus expanding the application environment of the product.
附图说明Description of drawings
图1为BC气凝胶和实施例1中BBG/BC的SEM图及纤维直径分布图。其中,(a)、(c)为BC气凝胶在不同比例尺下的SEM图,(b)、(d)为BBG/BC的SEM图,(e)为BC气凝胶的纤维直径分布图,(f)为BBG/BC的纤维直径分布图。Figure 1 is the SEM image and fiber diameter distribution diagram of BC aerogel and BBG/BC in Example 1. Among them, (a) and (c) are SEM images of BC aerogel at different scales, (b) and (d) are SEM images of BBG/BC, and (e) is the fiber diameter distribution of BC aerogel. , (f) is the fiber diameter distribution diagram of BBG/BC.
图2为实施例2-4中产物的SEM图及纤维直径分布图。其中,(a)、(d)为实施例2产物在不同比例尺下的SEM图,(b)、(e)为实施例3产物的SEM图,(c)、(f)为实施例3产物的SEM图,(g)为实施例2产物的纤维直径分布图,(h)为实施例3产物的纤维直径分布图,(i)为实施例4产物的纤维直径分布图。Figure 2 is the SEM image and fiber diameter distribution chart of the product in Example 2-4. Among them, (a) and (d) are SEM images of the product of Example 2 at different scales, (b) and (e) are SEM images of the product of Example 3, (c) and (f) are the products of Example 3. SEM image, (g) is the fiber diameter distribution diagram of the product of Example 2, (h) is the fiber diameter distribution diagram of the product of Example 3, (i) is the fiber diameter distribution diagram of the product of Example 4.
图3为BC气凝胶和实施例1-4产物的XPS全谱图、拉伸实验结果图和吸水性能图。其中,(a)为XPS全谱图,(b)为拉伸实验结果图,(c)为吸水倍率图。Figure 3 shows the XPS full spectrum, tensile test results and water absorption performance of BC aerogel and the products of Examples 1-4. Among them, (a) is the XPS full spectrum chart, (b) is the tensile test result chart, and (c) is the water absorption rate chart.
图4为实施例5产物的SEM图及纤维直径分布图。其中,(a)、(b)为不同比例尺下的SEM图,(c)为纤维直径分布图。Figure 4 is a SEM image and fiber diameter distribution chart of the product of Example 5. Among them, (a) and (b) are SEM images at different scales, and (c) is the fiber diameter distribution map.
图5为BC气凝胶和实施例1-4产物的抗菌性能图。Figure 5 is a graph showing the antibacterial properties of BC aerogel and the products of Examples 1-4.
图6为BC气凝胶和实施例1-4产物的细胞相容性图。Figure 6 is a cytocompatibility diagram of BC aerogel and the products of Examples 1-4.
图7为BC气凝胶和实施例1-4产物的抗炎性能图。其中,(a)为炎症因子TNF-α的抗炎性能图,(b)为炎症因子IL-1β的抗炎性能图。Figure 7 is a graph showing the anti-inflammatory properties of BC aerogel and the products of Examples 1-4. Among them, (a) is a graph of the anti-inflammatory properties of the inflammatory factor TNF-α, and (b) is a graph of the anti-inflammatory properties of the inflammatory factor IL-1β.
图8为BC气凝胶和实施例3产物的促愈合性能图。Figure 8 is a graph showing the healing properties of BC airgel and the product of Example 3.
图9为BC气凝胶和实施例1、5产物的抗菌性能图和细胞相容性图。其中,(a)为抗菌性能图,(b)为细胞相容性图。Figure 9 is a graph of antibacterial performance and cytocompatibility of BC aerogel and the products of Examples 1 and 5. Among them, (a) is the antibacterial performance diagram, and (b) is the cytocompatibility diagram.
具体实施方式Detailed ways
现详细说明本发明的多种示例性实施方式,该详细说明不应认为是对本发明的限制,而应理解为是对本发明的某些方面、特性和实施方案的更详细的描述。应理解本发明中所述的术语仅仅是为描述特别的实施方式,并非用于限制本发明。Various exemplary embodiments of the invention will now be described in detail. This detailed description should not be construed as limitations of the invention, but rather as a more detailed description of certain aspects, features and embodiments of the invention. It should be understood that the terms used in the present invention are only used to describe particular embodiments and are not intended to limit the present invention.
另外,对于本发明中的数值范围,应理解为还具体公开了该范围的上限和下限之间的每个中间值。在任何陈述值或陈述范围内的中间值,以及任何其他陈述值或在所述范围内的中间值之间的每个较小的范围也包括在本发明内。这些较小范围的上限和下限可独立地包括或排除在范围内。In addition, for numerical ranges in the present invention, it should be understood that every intermediate value between the upper and lower limits of the range is also specifically disclosed. Every smaller range between any stated value or value intermediate within a stated range, and any other stated value or value intermediate within a stated range, is also included within the invention. The upper and lower limits of these smaller ranges may independently be included or excluded from the range.
除非另有说明,否则本文使用的所有技术和科学术语具有本发明所述领域的常规技术人员通常理解的相同含义。虽然本发明仅描述了优选的方法和材料,但是在本发明的实施或测试中也可以使用与本文所述相似或等同的任何方法和材料。Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. Although only the preferred methods and materials are described herein, any methods and materials similar or equivalent to those described herein can be used in the practice or testing of the invention.
关于本发明中所使用的“包含”、“包括”、“具有”、“含有”等等,均为开放性的用语,即意指包含但不限于。The words "include", "includes", "have", "contains", etc. used in the present invention are all open terms, which mean including but not limited to.
本发明以下各实施例及对比例中所用细菌纤维素由培养基培养获得,所述培养基的制备培养方法为:称取葡萄糖25g、酵母粉7.5g、蛋白胨10g以及Na2PO410 g,溶于1L去离子水中,搅拌至完全溶解;用冰醋酸将该混合溶液的pH值调节至4~5之间,再115℃高温灭菌30min后取出,作为细菌纤维素生长培养基。The bacterial cellulose used in the following examples and comparative examples of the present invention is obtained by culture medium. The preparation and culture method of the medium is: weigh 25g of glucose, 7.5g of yeast powder, 10g of peptone and 10g of Na 2 PO 4 , Dissolve in 1L deionized water, stir until completely dissolved; use glacial acetic acid to adjust the pH value of the mixed solution to between 4 and 5, then sterilize at 115°C for 30 minutes and then take it out to use as a bacterial cellulose growth medium.
本发明以下各实施例及对比例中所用细菌纤维素气凝胶(BC气凝胶)的制备方法为:将木醋杆菌种子液和培养液以1:9的体积比混合,30℃下孵育3天,再经纯化和冷冻干燥后,得到细菌纤维素气凝胶。The preparation method of bacterial cellulose aerogel (BC aerogel) used in the following examples and comparative examples of the present invention is: Mix Acetobacter xylinum seed liquid and culture liquid at a volume ratio of 1:9, and incubate at 30°C. After 3 days, purification and freeze-drying, bacterial cellulose aerogel was obtained.
本发明以下各实施例及对比例中所用各原料均为市售产品。All raw materials used in the following examples and comparative examples of the present invention are commercially available products.
实施例1Example 1
硼硅基生物活性玻璃修饰细菌纤维素功能敷料的制备:Preparation of borosilicate-based bioactive glass-modified bacterial cellulose functional dressing:
(1)制备硼硅基生物活性玻璃溶胶:取40mL无水乙醇倒入试剂瓶,搅拌状态下逐滴加入10.2mL正硅酸乙酯,搅拌30min后放入3.1g四水硝酸钙,搅拌至溶液澄清,再逐滴加入1.1mL磷酸三乙酯(TEP)溶液,备用;将0.4g硼酸加入10mL无水乙醇中,于60℃下加热搅拌至硼酸溶解,随后加入上述试剂瓶中,然后用磁力搅拌器搅拌3h,获得硼硅基生物活性玻璃溶胶。(1) Preparation of borosilicate-based bioactive glass sol: Pour 40 mL of absolute ethanol into a reagent bottle, add 10.2 mL of tetraethyl orthosilicate drop by drop under stirring, stir for 30 min, then add 3.1 g of calcium nitrate tetrahydrate, and stir until When the solution is clear, add 1.1 mL triethyl phosphate (TEP) solution drop by drop and set aside; add 0.4 g boric acid to 10 mL absolute ethanol, heat and stir at 60°C until the boric acid dissolves, then add it to the above reagent bottle, and then use Stir with a magnetic stirrer for 3 hours to obtain borosilicate-based bioactive glass sol.
(2)缩聚反应:将0.5g的BC气凝胶浸入上述50mL硼硅基生物活性玻璃溶胶中,震荡条件下于37℃浸泡24h,取出后用无水乙醇冲洗材料表面两遍,得到前驱体;而后配制体积百分数90%的乙醇水溶液,放入前驱体,水解缩聚24h后取出,清洗干净后用冷冻干燥机-50℃冻干12h,得到硼硅基生物活性玻璃修饰细菌纤维素功能敷料(BBG/BC)。(2) Condensation polymerization reaction: Immerse 0.5g of BC aerogel into the above 50mL borosilicate-based bioactive glass sol, soak it at 37°C for 24 hours under shaking conditions, take it out and rinse the surface of the material twice with absolute ethanol to obtain the precursor Then prepare an ethanol aqueous solution with a volume percentage of 90%, put in the precursor, take it out after hydrolysis and polycondensation for 24 hours, clean it and then freeze-dry it with a freeze dryer at -50°C for 12 hours to obtain a borosilicate-based bioactive glass-modified bacterial cellulose functional dressing ( BBG/BC).
图1为BC气凝胶和实施例1中BBG/BC的SEM图及纤维直径分布图。其中,(a)、(c)为BC气凝胶在不同比例尺下的SEM图,(b)、(d)为BBG/BC的SEM图,(e)为BC气凝胶的纤维直径分布图,(f)为BBG/BC的纤维直径分布图。由图1的(a)、(c)可见,BC具有天然的纳米纤维多孔网络结构;由(b)、(d)可见,硼硅基生物活性玻璃包裹BC纤维后,形成涂层,并保留了BC气凝胶多孔网络结构;通过纤维直径统计发现,BC气凝胶的纤维直径为45.7±13.1nm,BBG/BC的纤维直径略有增大,为57±22nm。Figure 1 is the SEM image and fiber diameter distribution diagram of BC aerogel and BBG/BC in Example 1. Among them, (a) and (c) are SEM images of BC aerogel at different scales, (b) and (d) are SEM images of BBG/BC, and (e) is the fiber diameter distribution of BC aerogel. , (f) is the fiber diameter distribution diagram of BBG/BC. As can be seen from Figure 1 (a) and (c), BC has a natural nanofiber porous network structure; as can be seen from (b) and (d), after the borosilicate-based bioactive glass wraps the BC fiber, it forms a coating and remains The porous network structure of BC airgel was discovered; through fiber diameter statistics, it was found that the fiber diameter of BC airgel was 45.7±13.1nm, and the fiber diameter of BBG/BC increased slightly, to 57±22nm.
实施例2(添加0.08g硝酸铜抗菌剂)Example 2 (adding 0.08g copper nitrate antibacterial agent)
Cu2+@BBG-1的制备:Preparation of Cu 2+ @BBG-1:
(1)制备硼硅基生物活性玻璃溶胶:取40mL无水乙醇倒入试剂瓶,搅拌状态下逐滴加入10.2mL正硅酸乙酯,搅拌30min后放入3.1g四水硝酸钙,搅拌至溶液澄清,再逐滴加入1.1mL磷酸三乙酯(TEP)溶液,然后添加0.08g硝酸铜,备用;将0.4g硼酸加入10mL无水乙醇中,于60℃下加热搅拌至硼酸溶解,随后加入上述试剂瓶中,然后用磁力搅拌器搅拌3h,获得硼硅基生物活性玻璃溶胶。(1) Preparation of borosilicate-based bioactive glass sol: Pour 40 mL of absolute ethanol into a reagent bottle, add 10.2 mL of tetraethyl orthosilicate drop by drop under stirring, stir for 30 min, then add 3.1 g of calcium nitrate tetrahydrate, and stir until When the solution is clear, add 1.1mL triethyl phosphate (TEP) solution dropwise, then add 0.08g copper nitrate and set aside; add 0.4g boric acid to 10mL absolute ethanol, heat and stir at 60°C until the boric acid dissolves, and then add into the above reagent bottle, and then stirred with a magnetic stirrer for 3 hours to obtain a borosilicate-based bioactive glass sol.
(2)缩聚反应:将0.5g的BC气凝胶浸入上述50mL硼硅基生物活性玻璃溶胶中,震荡条件下于37℃浸泡24h,取出后用无水乙醇冲洗材料表面两遍,得到前驱体;而后配制体积百分数90%的乙醇水溶液,放入前驱体,水解缩聚24h后取出,清洗干净后用冷冻干燥机-50℃冻干12h,得到Cu2+@BBG/BC-1。(2) Condensation polymerization reaction: Immerse 0.5g of BC aerogel into the above 50mL borosilicate-based bioactive glass sol, soak it at 37°C for 24 hours under shaking conditions, take it out and rinse the surface of the material twice with absolute ethanol to obtain the precursor ; Then prepare an ethanol aqueous solution with a volume percentage of 90%, put in the precursor, take it out after hydrolysis and polycondensation for 24 hours, clean it and freeze-dry it with a freeze dryer at -50°C for 12 hours to obtain Cu 2+ @BBG/BC-1.
实施例3Example 3
与实施例2的区别仅在于,将硝酸铜的添加量修改为0.16g,记作Cu2+@BBG/BC-2。The only difference from Example 2 is that the added amount of copper nitrate is modified to 0.16g, which is recorded as Cu 2+ @BBG/BC-2.
实施例4Example 4
与实施例2的区别仅在于,将硝酸铜的添加量修改为0.39g,记作Cu2+@BBG/BC-3。The only difference from Example 2 is that the added amount of copper nitrate is modified to 0.39g, which is recorded as Cu 2+ @BBG/BC-3.
图2为实施例2-4中产物的SEM图及纤维直径分布图。其中,(a)、(d)为实施例2产物在不同比例尺下的SEM图,(b)、(e)为实施例3产物的SEM图,(c)、(f)为实施例3产物的SEM图,(g)为实施例2产物的纤维直径分布图,(h)为实施例3产物的纤维直径分布图,(i)为实施例4产物的纤维直径分布图。由图2所示,在加入铜离子后,仍能够在BC纤维表面形成涂层,并且随着铜离子含量增大,纤维直径增大,Cu2+@BBG/BC-1、Cu2+@BBG/BC-2和Cu2+@BBG/BC-3的纤维直径分别为59±15nm、64±15nm和66±14nm。Figure 2 is the SEM image and fiber diameter distribution chart of the product in Example 2-4. Among them, (a) and (d) are SEM images of the product of Example 2 at different scales, (b) and (e) are SEM images of the product of Example 3, (c) and (f) are the products of Example 3. SEM image, (g) is the fiber diameter distribution diagram of the product of Example 2, (h) is the fiber diameter distribution diagram of the product of Example 3, (i) is the fiber diameter distribution diagram of the product of Example 4. As shown in Figure 2, after adding copper ions, a coating can still be formed on the surface of BC fibers, and as the copper ion content increases, the fiber diameter increases, Cu 2+ @BBG/BC-1, Cu 2+ @ The fiber diameters of BBG/BC-2 and Cu 2+ @BBG/BC-3 are 59±15nm, 64±15nm and 66±14nm, respectively.
图3为BC气凝胶和实施例1-4产物的XPS全谱图、拉伸实验结果图和吸水性能图。其中,(a)为XPS全谱图,(b)为拉伸实验结果图,(c)为吸水倍率图。拉伸实验结果图的测试条件为:样品长×宽×高约为2×1×0.5mm,拉伸速率为5mm/min,每种样品测量3次,最后计算平均值及标准差。Figure 3 shows the XPS full spectrum, tensile test results and water absorption performance of BC aerogel and the products of Examples 1-4. Among them, (a) is the XPS full spectrum chart, (b) is the tensile test result chart, and (c) is the water absorption rate chart. The test conditions for the tensile test result chart are: the sample length × width × height is approximately 2 × 1 × 0.5mm, the tensile rate is 5mm/min, each sample is measured three times, and finally the average and standard deviation are calculated.
由图3的XPS全谱图所示,BC气凝胶表面存在C、O元素;BBG/BC表面存在C、O、B、Si、Ca和P等元素;三种Cu2+@BBG/BC样品存在C、O、B、Si、Ca、P和Cu等元素,表明掺铜生物活性玻璃附着在BC纤维表面。As shown in the XPS full spectrum in Figure 3, elements C and O exist on the surface of BC airgel; elements such as C, O, B, Si, Ca and P exist on the surface of BBG/BC; three types of Cu 2+ @BBG/BC The presence of elements such as C, O, B, Si, Ca, P, and Cu in the sample indicates that the copper-doped bioactive glass is attached to the surface of the BC fiber.
拉伸实验结果图表明,BBG涂层的形成提高了BC基复合材料的力学性能。掺铜后,产物的拉伸强度和断裂延伸率有所下降,杨氏模量有所提高。The tensile test results show that the formation of BBG coating improves the mechanical properties of BC-based composites. After doping with copper, the tensile strength and elongation at break of the product decreased, and the Young's modulus increased.
吸水性能图表明,引入BBG后,BBG/BC仍能快速吸水。BBG/BC的吸水倍率低于BC,而掺杂的铜离子并未影响产物的吸水倍率。较快的吸水速率和较高的吸水倍率使得掺铜硼硅基生物活性玻璃改性细菌纤维素功能敷料能够有效除去创面渗液。The water absorption performance chart shows that after the introduction of BBG, BBG/BC can still absorb water quickly. The water absorption rate of BBG/BC is lower than that of BC, and the doped copper ions do not affect the water absorption rate of the product. The faster water absorption rate and higher water absorption rate enable the copper-doped borosilicate-based bioactive glass-modified bacterial cellulose functional dressing to effectively remove wound exudate.
实施例5Example 5
与实施例2的区别仅在于,省略硝酸铜的加入并补充1.6g的硝酸镓,记作Ga3+@BBG/BC。The only difference from Example 2 is that the addition of copper nitrate is omitted and 1.6 g of gallium nitrate is added, which is recorded as Ga 3+ @BBG/BC.
图4为实施例5产物的SEM图及纤维直径分布图。其中,(a)、(b)为不同比例尺下的SEM图,(c)为纤维直径分布图。由图可知,掺镓的硼硅基生物活性玻璃的引入未破坏BC特有的三维网络结构,而纤维直径有明显变化,表明掺镓的硼硅基生物活性玻璃包裹于纤维表面形成涂层。Figure 4 is a SEM image and fiber diameter distribution chart of the product of Example 5. Among them, (a) and (b) are SEM images at different scales, and (c) is the fiber diameter distribution map. It can be seen from the figure that the introduction of gallium-doped borosilicate-based bioactive glass does not destroy the unique three-dimensional network structure of BC, but the fiber diameter changes significantly, indicating that the gallium-doped borosilicate-based bioactive glass wraps around the fiber surface to form a coating.
效果验证Effect verification
(1)进行抗菌性能测试,具体测试条件为:将金黄色葡萄球菌(S.aureus,ATCC25923)和耐甲氧西林金黄色葡萄球菌(MRSA,ATCC 43300)与材料共培养24h,用2.5%戊二醛溶液固定,经梯度酒精脱水后,采用扫描电镜观察。结果如图5所示。(1) Carry out antibacterial performance test. The specific test conditions are: co-culture Staphylococcus aureus (S. aureus, ATCC 25923) and methicillin-resistant Staphylococcus aureus (MRSA, ATCC 43300) with the material for 24 hours, and use 2.5% amyl The samples were fixed in dialdehyde solution, dehydrated through graded alcohol, and observed using scanning electron microscopy. The results are shown in Figure 5.
图5为BC气凝胶和实施例1-4产物的抗菌性能图。由图可知,S.aureus与MRSA细菌在BC气凝胶和BBG/BC上形成了生物膜,而在实施例2-4表面的细菌数量明显减少,证明了掺铜材料对于常见类型细菌均能表现出良好的抗菌性能。Figure 5 is a graph showing the antibacterial properties of BC aerogel and the products of Examples 1-4. As can be seen from the figure, S. aureus and MRSA bacteria formed biofilms on BC aerogels and BBG/BC, and the number of bacteria on the surface of Examples 2-4 was significantly reduced, proving that copper-doped materials are effective against common types of bacteria. Exhibits good antibacterial properties.
(2)进行细胞相容性测试,具体测试条件为:将小鼠胚胎成纤维细胞(NIH-3T3)与材料共培养1、3和5d,采用CCK-8检测细胞增殖。结果如图6所示。(2) Conduct a cytocompatibility test. The specific test conditions are: co-culture mouse embryonic fibroblasts (NIH-3T3) with the material for 1, 3 and 5 days, and use CCK-8 to detect cell proliferation. The results are shown in Figure 6.
图6为BC气凝胶和实施例1-4产物的细胞相容性图。由图可知,细胞在BBG/BC、Cu2+@BBG/BC-1、Cu2+@BBG/BC-2表面的数量明显多于BC,表明BBG/BC、Cu2+@BBG/BC-1、Cu2+@BBG/BC-2均能够促进细胞增殖;相反,Cu2+@BBG/BC-3材料表面上细胞数量明显减少,且少于BC组,并发现有死亡的细胞,结果表明Cu2+@BBG/BC-3的细胞毒性较大,这与细胞增殖的实验结果趋势一致。Figure 6 is a cytocompatibility diagram of BC aerogel and the products of Examples 1-4. It can be seen from the figure that the number of cells on the surface of BBG/BC, Cu 2+ @BBG/BC-1, and Cu 2+ @BBG/BC-2 is significantly more than that of BC, indicating that BBG/BC, Cu 2+ @BBG/BC- 1. Both Cu 2+ @BBG/BC-2 can promote cell proliferation; on the contrary, the number of cells on the surface of Cu 2+ @BBG/BC-3 material was significantly reduced, and it was less than that in the BC group, and dead cells were found. The results It shows that Cu 2+ @BBG/BC-3 has greater cytotoxicity, which is consistent with the trend of experimental results of cell proliferation.
(3)进行抗炎性能测试,具体测试条件为:用THP-1专用培养基培养3-5d后加入PMA(Phorbol-12-myristate-13-acetate)诱导1d作为巨噬细胞来源,收集贴壁细胞再加入100ng/mL浓度LPS(Lipopolysaccharide)诱导细胞炎症模型。将材料与上述5×104cells/mL诱导好的炎症模型巨噬细胞共培养,于37℃培养箱中孵育24h后取每孔培养基上清液,按照炎症因子试剂盒说明书,用酶标仪检测炎症因子TNF-α和IL-1β的分泌情况。结果如图7所示。(3) Carry out anti-inflammatory performance test. The specific test conditions are: culture with THP-1 special medium for 3-5 days, then add PMA (Phorbol-12-myristate-13-acetate) for 1 day of induction as a source of macrophages, and collect adherent cells. The cells were then added with 100ng/mL concentration of LPS (Lipopolysaccharide) to induce cellular inflammation model. Co-culture the material with the above-mentioned 5×10 4 cells/mL induced inflammation model macrophages, incubate it in a 37°C incubator for 24 hours, take the culture supernatant from each well, and use enzyme labeling according to the instructions of the inflammatory factor kit. The instrument detects the secretion of inflammatory factors TNF-α and IL-1β. The results are shown in Figure 7.
图7为BC气凝胶和实施例1-4产物的抗炎性能图。其中,(a)为炎症因子TNF-α的抗炎性能图,(b)为炎症因子IL-1β的抗炎性能图。由图可知,共培养后,BC组表现出较高的炎症因子量,而BBG/BC、Cu2+@BBG/BC-1、Cu2+@BBG/BC-2、Cu2+@BBG/BC-3材料测得数据显示炎症因子减少。结果表明,复合后材料共培养24h后测得的炎症因子相较于BC较少,说明材料具有一定的抗炎能力。Figure 7 is a graph showing the anti-inflammatory properties of BC aerogel and the products of Examples 1-4. Among them, (a) is a graph of the anti-inflammatory properties of the inflammatory factor TNF-α, and (b) is a graph of the anti-inflammatory properties of the inflammatory factor IL-1β. It can be seen from the figure that after co-culture, the BC group showed higher amounts of inflammatory factors, while BBG/BC, Cu 2+ @BBG/BC-1, Cu 2+ @BBG/BC-2, Cu 2+ @BBG/ The measured data of BC-3 material shows that inflammatory factors are reduced. The results showed that the inflammatory factors measured after the composite material was co-cultured for 24 hours were less than those of BC, indicating that the material has a certain anti-inflammatory ability.
(4)进行促慢性创面愈合性能测试,具体测试条件为:通过建立糖尿病老鼠伤口模型考察掺铜硼硅基生物活性玻璃修饰细菌纤维素功能敷料的促伤口愈合能力。结果如图8所示。(4) Test the chronic wound healing performance. The specific test conditions are as follows: establish a diabetic mouse wound model to examine the wound healing ability of the copper-doped borosilicate-based bioactive glass-modified bacterial cellulose functional dressing. The results are shown in Figure 8.
图8为BC气凝胶和实施例3产物的促愈合性能图,其中Control组为未感染的BC处理组,BC组为感染MRSA的BC处理组,Cu2+@BBG/BC-2组为感染MRSA的,Cu2+@BBG/BC-2处理组。由图可知,术后第四天时,BC组创面有明显感染发炎症状;而Cu2+@BBG/BC-2组与Control组类似,创面未见感染病灶,表明Cu2+@BBG/BC-2敷料能够消除MRSA引起的感染。尽管受到细菌入侵,在有效消除感染的情况下,Cu2+@BBG/BC-2组的愈合速率明显高于未受感染的Control组,并且在第16天实现完全愈合。而受感染影响的BC组愈合速率最慢,因为感染会影响伤口的愈合。Figure 8 is a diagram of the healing properties of BC aerogel and the product of Example 3, in which the Control group is an uninfected BC treatment group, the BC group is a MRSA-infected BC treatment group, and the Cu 2+ @BBG/BC-2 group is Infected with MRSA, Cu 2+ @BBG/BC-2 treatment group. It can be seen from the figure that on the fourth day after surgery, the wounds of the BC group had obvious symptoms of infection and inflammation; while the Cu 2+ @BBG/BC-2 group was similar to the Control group, and no infection lesions were found in the wounds, indicating that Cu 2+ @BBG/BC- 2 Dressings can eliminate infections caused by MRSA. Despite bacterial invasion, with effective elimination of infection, the healing rate of the Cu 2+ @BBG/BC-2 group was significantly higher than that of the uninfected Control group, and complete healing was achieved on day 16. The BC group affected by infection had the slowest healing rate because infection affects wound healing.
(5)进行体外生物学实验,测试实施例5产物的抗菌性能和细胞相容性。其中,抗菌性能的测试条件为:采用扫描电镜观察材料抑制金黄色葡萄球菌(S.aureus,ATCC 25923)和大肠杆菌(E.coli,ATCC 25922)在材料表面生物膜的形成。细胞相容性的测试条件为:将NIH-3T3与材料共培养1、3和5d,采用CCK-8检测细胞增殖。结果如图9所示。(5) Conduct in vitro biological experiments to test the antibacterial performance and cell compatibility of the product of Example 5. Among them, the test conditions for antibacterial performance are: using scanning electron microscopy to observe the material's ability to inhibit the formation of biofilms on the surface of the material by Staphylococcus aureus (S. aureus, ATCC 25923) and Escherichia coli (E.coli, ATCC 25922). The test conditions for cytocompatibility are: co-culture NIH-3T3 with materials for 1, 3 and 5 days, and use CCK-8 to detect cell proliferation. The results are shown in Figure 9.
图9为BC气凝胶和实施例1、5产物的抗菌性能图和细胞相容性图。其中,(a)为抗菌性能图,(b)为细胞相容性图。由图可知,S.aureus与E.coli细菌在BC和BBG/BC上形貌完整数量较多且形成生物膜,而在Ga3+@BBG/BC材料表面S.aureus与E.coli细菌数量均明显减少,表明Ga3+@BBG/BC具有良好的抗菌性能。另一方面,细胞在BBG/BC表面的细胞活性显著优于BC,即相比于BC,BBG/BC更能促进细胞增殖,而Ga3+@BBG/BC复合材料OD值与BBG/BC组相似,无明显细胞毒性表现。Figure 9 is a graph of antibacterial performance and cytocompatibility of BC aerogel and the products of Examples 1 and 5. Among them, (a) is the antibacterial performance diagram, and (b) is the cytocompatibility diagram. It can be seen from the figure that the number of S.aureus and E.coli bacteria on BC and BBG/BC is complete and the number of biofilms is formed, while the number of S.aureus and E.coli bacteria on the surface of Ga 3+ @BBG/BC material is were significantly reduced, indicating that Ga 3+ @BBG/BC has good antibacterial properties. On the other hand, the cell activity of cells on the surface of BBG/BC is significantly better than that of BC, that is, compared with BC, BBG/BC can promote cell proliferation, and the OD value of Ga 3+ @BBG/BC composite material is different from that of BBG/BC group. Similar, no obvious cytotoxicity.
以上所述的实施例仅是对本发明的优选方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。The above-described embodiments only describe the preferred modes of the present invention and do not limit the scope of the present invention. Without departing from the design spirit of the present invention, those of ordinary skill in the art can make various modifications to the technical solutions of the present invention. All deformations and improvements shall fall within the protection scope determined by the claims of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311290068.3A CN117244096B (en) | 2023-10-08 | 2023-10-08 | Borosilicate-based bioactive glass-modified bacterial cellulose functional dressing and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311290068.3A CN117244096B (en) | 2023-10-08 | 2023-10-08 | Borosilicate-based bioactive glass-modified bacterial cellulose functional dressing and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117244096A true CN117244096A (en) | 2023-12-19 |
CN117244096B CN117244096B (en) | 2024-07-23 |
Family
ID=89132828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311290068.3A Active CN117244096B (en) | 2023-10-08 | 2023-10-08 | Borosilicate-based bioactive glass-modified bacterial cellulose functional dressing and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117244096B (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107684636A (en) * | 2016-08-04 | 2018-02-13 | 北京纳通医学科技研究院有限公司 | A kind of bactericidal composition and as the bacteria cellulose antimicrobial composite material obtained by it |
CN108498859A (en) * | 2018-03-30 | 2018-09-07 | 福州大学 | A kind of antibiotic property biological activity glass nano-fibre holder and preparation method thereof |
CN109336371A (en) * | 2018-09-03 | 2019-02-15 | 中国科学院深圳先进技术研究院 | Preparation method of micro-nano borosilicate bioactive glass |
CN110075362A (en) * | 2018-01-26 | 2019-08-02 | 中国科学院化学研究所 | A kind of composite material and preparation method and purposes containing bioactive glass coating |
CN113827763A (en) * | 2020-06-08 | 2021-12-24 | 华东交通大学 | Traditional Chinese medicine component modified multifunctional bacterial cellulose-based skin dressing and preparation method thereof |
RU2771864C1 (en) * | 2021-12-23 | 2022-05-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" | Method for obtaining a biocomposite with antibacterial properties based on bacterial cellulose hydrogel |
WO2022197701A1 (en) * | 2021-03-15 | 2022-09-22 | The Curators Of The University Of Missouri | Dressings and methods for wound healing |
-
2023
- 2023-10-08 CN CN202311290068.3A patent/CN117244096B/en active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107684636A (en) * | 2016-08-04 | 2018-02-13 | 北京纳通医学科技研究院有限公司 | A kind of bactericidal composition and as the bacteria cellulose antimicrobial composite material obtained by it |
CN110075362A (en) * | 2018-01-26 | 2019-08-02 | 中国科学院化学研究所 | A kind of composite material and preparation method and purposes containing bioactive glass coating |
CN108498859A (en) * | 2018-03-30 | 2018-09-07 | 福州大学 | A kind of antibiotic property biological activity glass nano-fibre holder and preparation method thereof |
CN109336371A (en) * | 2018-09-03 | 2019-02-15 | 中国科学院深圳先进技术研究院 | Preparation method of micro-nano borosilicate bioactive glass |
CN113827763A (en) * | 2020-06-08 | 2021-12-24 | 华东交通大学 | Traditional Chinese medicine component modified multifunctional bacterial cellulose-based skin dressing and preparation method thereof |
WO2022197701A1 (en) * | 2021-03-15 | 2022-09-22 | The Curators Of The University Of Missouri | Dressings and methods for wound healing |
RU2771864C1 (en) * | 2021-12-23 | 2022-05-13 | Федеральное государственное бюджетное образовательное учреждение высшего образования "Национальный исследовательский Мордовский государственный университет им. Н.П. Огарёва" | Method for obtaining a biocomposite with antibacterial properties based on bacterial cellulose hydrogel |
Non-Patent Citations (1)
Title |
---|
DUYGU EGE等: "Borate Bioactive Glasses (BBG): Bone Regeneration, Wound Healing Applications, and Future Directions", 《ACS APPLIED BIO MATERIALS》, vol. 5, 11 July 2022 (2022-07-11), pages 3608 - 3622 * |
Also Published As
Publication number | Publication date |
---|---|
CN117244096B (en) | 2024-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Akhavan-Kharazian et al. | Preparation and characterization of chitosan/gelatin/nanocrystalline cellulose/calcium peroxide films for potential wound dressing applications | |
Wen et al. | In vitro and in vivo investigation of bacterial cellulose dressing containing uniform silver sulfadiazine nanoparticles for burn wound healing | |
Yang et al. | Green electrospun Manuka honey/silk fibroin fibrous matrices as potential wound dressing | |
Ji et al. | Phase separation-based electrospun Janus nanofibers loaded with Rana chensinensis skin peptides/silver nanoparticles for wound healing | |
Shao et al. | Development of silver sulfadiazine loaded bacterial cellulose/sodium alginate composite films with enhanced antibacterial property | |
CN101912634B (en) | Method for preparing nanosilver/nano silicon dioxide-containing antibacterial biological dressing | |
Hsu et al. | Characterization and biocompatibility of chitosan nanocomposites | |
Schuhladen et al. | Production of a novel poly (ɛ‐caprolactone)‐methylcellulose electrospun wound dressing by incorporating bioactive glass and Manuka honey | |
Chen et al. | Three-dimensional layered nanofiber sponge with in situ grown silver-metal organic framework for enhancing wound healing | |
Jiang et al. | Rational design of porous structure-based sodium alginate/chitosan sponges loaded with green synthesized hybrid antibacterial agents for infected wound healing | |
CN105031711B (en) | A kind of collagen/chitosan compounded spongy biological dressing and preparation method thereof | |
CN101905031B (en) | A kind of preparation method of silver sulfadiazine/bacterial cellulose composite wound dressing | |
Salehi et al. | Chitosan hydrogel loaded with Aloe vera gel and tetrasodium ethylenediaminetetraacetic acid (EDTA) as the wound healing material: in vitro and in vivo study | |
Dehghani et al. | Chitosan/silk fibroin/nitrogen-doped carbon quantum dot/α-tricalcium phosphate nanocomposite electrospinned as a scaffold for wound healing application: In vitro and in vivo studies | |
Ren et al. | Silk fibroin/chitosan/halloysite composite medical dressing with antibacterial and rapid haemostatic properties | |
CN101927029A (en) | A kind of preparation method of chitosan/polyvinyl alcohol sponge dressing containing nanometer silver | |
CN103159972A (en) | Preparation method for chitosan and cellulose antibiosis application film of biotin coupling nano silver | |
CN104153120A (en) | Antibacterial medical dressing film carrying nano-silver and cellulose nanocrystalline hybrid materials and preparation method thereof | |
CN106110383A (en) | A kind of chitosan alginate dressing and freeze-drying process thereof | |
Yang et al. | A facile, biosynthetic design strategy for high-performance multifunctional bacterial cellulose-based dressing | |
Tang et al. | Preparation and characterization of chitosan/sodium cellulose sulfate/silver nanoparticles composite films for wound dressing | |
Cestari et al. | Silk fibroin nanofibers containing chondroitin sulfate and silver sulfadiazine for wound healing treatment | |
Zuo et al. | Preparation and characterization of tannin-maltodextrin-polyvinyl alcohol hydrogel based on hydrogen bonding for wound healing | |
Lan et al. | Preparation and characterization of silk fibroin/polyethylene oxide nanofiber membranes with antibacterial activity | |
Yuan et al. | Bioactive Poly (4‐hydroxybutyrate)/Poly (ethylene glycol) Fibrous Dressings Incorporated with Zinc Oxide Nanoparticles for Efficient Antibacterial Therapy and Rapid Clotting |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |