CN117011299A - Reference point cloud quality assessment method and system integrating graph resampling and gradient characteristics - Google Patents
Reference point cloud quality assessment method and system integrating graph resampling and gradient characteristics Download PDFInfo
- Publication number
- CN117011299A CN117011299A CN202311280774.XA CN202311280774A CN117011299A CN 117011299 A CN117011299 A CN 117011299A CN 202311280774 A CN202311280774 A CN 202311280774A CN 117011299 A CN117011299 A CN 117011299A
- Authority
- CN
- China
- Prior art keywords
- point cloud
- dimensional gradient
- points
- reference point
- gradient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000012952 Resampling Methods 0.000 title claims abstract description 33
- 238000001303 quality assessment method Methods 0.000 title claims abstract description 27
- 238000000034 method Methods 0.000 claims abstract description 15
- 238000011176 pooling Methods 0.000 claims abstract description 10
- 238000004364 calculation method Methods 0.000 claims description 18
- 239000011159 matrix material Substances 0.000 claims description 15
- 238000012546 transfer Methods 0.000 claims description 12
- 238000001914 filtration Methods 0.000 claims description 9
- 238000013527 convolutional neural network Methods 0.000 claims description 8
- 239000000284 extract Substances 0.000 claims description 8
- 238000000605 extraction Methods 0.000 claims description 3
- 238000010845 search algorithm Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 4
- 230000035945 sensitivity Effects 0.000 abstract description 3
- 230000000007 visual effect Effects 0.000 description 5
- 230000008447 perception Effects 0.000 description 4
- 238000011161 development Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000004927 fusion Effects 0.000 description 2
- 238000013441 quality evaluation Methods 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03H—IMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
- H03H17/00—Networks using digital techniques
- H03H17/02—Frequency selective networks
- H03H17/0248—Filters characterised by a particular frequency response or filtering method
- H03H17/028—Polynomial filters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10028—Range image; Depth image; 3D point clouds
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/20—Special algorithmic details
- G06T2207/20024—Filtering details
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30168—Image quality inspection
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/30—Computing systems specially adapted for manufacturing
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Physics (AREA)
- Quality & Reliability (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Theoretical Computer Science (AREA)
- Algebra (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Image Analysis (AREA)
- Processing Or Creating Images (AREA)
Abstract
Description
技术领域Technical field
本发明涉及图像处理领域,特别涉及一种融合图重采样和梯度特征的参考点云质量评估方法及系统。The invention relates to the field of image processing, and in particular to a reference point cloud quality assessment method and system that integrates graph resampling and gradient features.
背景技术Background technique
随着成像技术的不断发展,计算机视觉领域对于三维数据的需求日渐提升。3D点云因其灵活的表现形式,在现代通信系统中展现出广泛的应用前景,成为了沉浸式媒体应用中常用的三维数据格式之一。三维数据包含了深度信息,在视觉表达上带来了更加直观的空间感和立体感,符合人类视觉系统在观测时对物体进行感知和理解。With the continuous development of imaging technology, the demand for three-dimensional data in the field of computer vision is increasing. Due to its flexible representation, 3D point cloud shows wide application prospects in modern communication systems and has become one of the commonly used three-dimensional data formats in immersive media applications. Three-dimensional data contains depth information, which brings a more intuitive sense of space and three-dimensionality in visual expression, which is in line with the human visual system's perception and understanding of objects during observation.
然而,点云在数据处理过程中会受到噪声和畸变的影响,导致失真的同时降低了人眼观看显示内容的视觉质量,从而影响终端用户对视觉体验的满意度。因此,设计同时兼顾点云特殊结构特征且符合人类视觉特性的点云质量评估方法,对点云数据在采集、处理和应用方面的稳健发展具有重要的应用价值,点云质量评估在当下具有较高的理论研究意义与实际应用价值。However, point clouds are affected by noise and distortion during data processing, which causes distortion and reduces the visual quality of the displayed content for the human eye, thus affecting the end user's satisfaction with the visual experience. Therefore, designing a point cloud quality assessment method that takes into account the special structural characteristics of point clouds and conforms to human visual characteristics has important application value for the steady development of point cloud data collection, processing and application. Point cloud quality assessment has a greater significance currently. It has high theoretical research significance and practical application value.
发明内容Contents of the invention
本发明的主要目的在于克服现有技术中的缺陷,提出一种融合图重采样和梯度特征的参考点云质量评估方法及系统,有效地描述了因点云失真引起的梯度方向特征和响应强度变化,符合人眼对于失真点云的主观感知度,具有较高的识别准确性、敏感性以及鲁棒性。The main purpose of the present invention is to overcome the defects in the existing technology and propose a reference point cloud quality assessment method and system that integrates graph resampling and gradient features, effectively describing the gradient direction features and response intensity caused by point cloud distortion. The changes are in line with the human eye's subjective perception of distorted point clouds, and have high recognition accuracy, sensitivity and robustness.
本发明采用如下技术方案:The present invention adopts the following technical solutions:
一方面,一种融合图重采样和梯度特征的参考点云质量评估方法,包括:On the one hand, a reference point cloud quality assessment method that combines graph resampling and gradient features includes:
S101,使用基于图的关键点重采样方法,对输入的参考点云进行关键点提取;S101, use the graph-based key point resampling method to extract key points from the input reference point cloud;
S102,以关键点为中心划分参考点云和失真点云的局部邻域组,根据关键点与其他点在坐标空间中的欧几里德距离来聚类每个局部区域内的点;S102, divide the local neighborhood group of the reference point cloud and the distortion point cloud with the key point as the center, and cluster the points in each local area according to the Euclidean distance between the key point and other points in the coordinate space;
S103,分别提取局部区域内参考点云和失真点云的三维梯度幅值特征和三维梯度方向图特征,基于三维梯度幅值特征计算参考点云和失真点云的三维梯度幅值相似度,基于三维梯度方向图特征计算参考点云和失真点云的三维梯度方向图相似度,基于三维梯度幅值相似度和三维梯度方向图相似度计算出联合三维梯度特征相似度;S103, respectively extract the three-dimensional gradient amplitude features and the three-dimensional gradient direction map features of the reference point cloud and the distorted point cloud in the local area, and calculate the three-dimensional gradient amplitude similarity of the reference point cloud and the distorted point cloud based on the three-dimensional gradient amplitude features. The three-dimensional gradient pattern feature calculates the three-dimensional gradient pattern similarity between the reference point cloud and the distorted point cloud, and calculates the joint three-dimensional gradient feature similarity based on the three-dimensional gradient amplitude similarity and the three-dimensional gradient pattern similarity;
S104,基于联合三维梯度特征相似度,使用响应强度值进行加权池化,得到失真点云的客观质量分数。S104, based on the joint three-dimensional gradient feature similarity, use the response intensity value to perform weighted pooling to obtain the objective quality score of the distorted point cloud.
优选的,所述S101,具体包括:Preferably, the S101 specifically includes:
对输入的参考点云,使用高通图滤波方法对/>进行重采样提取关键点;具体使用图转移算子/>来描述节点之间相对位置关系,/>表示图转移算子/>的维度;使用邻接矩阵/>与转移矩阵/>来表示/>,即/>,每个线性移位不变图滤波器都是/>的多项式函数:Reference point cloud for input , use high-pass image filtering method to // Perform resampling to extract key points; specifically use the graph transfer operator/> To describe the relative position relationship between nodes,/> Represents graph transfer operator/> Dimensions; use adjacency matrix/> and transfer matrix/> to express/> , that is/> , every linear shift invariant graph filter is/> polynomial function:
其中,表示线性移位不变图滤波器;/>表示线性移位不变图滤波器的第/>个因子,/> 表示图转移算子的/>次幂;/>表示第/>个系数;/>表示图形滤波器的长度;/>表示度矩阵;/>表示/>的逆矩阵;/>表示单位矩阵;in, Represents a linear shift invariant graph filter;/> Represents the linear shift invariant graph filter./> factors,/> Represents the graph transfer operator /> Power;/> Indicates the first/> coefficient;/> Indicates the length of the graphics filter;/> represents the degree matrix;/> Express/> The inverse matrix;/> represents the identity matrix;
使用类哈尔图滤波器来实现的高通滤波如下:Implemented using Harr-like filters The high-pass filtering is as follows:
其中,表示类哈尔图滤波器的高通滤波;/>表示/>的/>个特征向量;/>表示/>的特征值;在图顶点域中,第/>点/>的频率响应公式为:in, Represents the high-pass filtering of Har-like filter;/> Express/> of/> feature vector;/> Express/> eigenvalues; in the graph vertex domain, the Click/> The frequency response formula of is:
其中,表示第/>点/>的频率响应公式;/>表示空间频域中点的总个数;/>表示第/>点/>的相邻点;in, Indicates the first/> Click/> The frequency response formula;/> Represents the total number of points in the spatial frequency domain;/> Indicates the first/> Click/> adjacent points;
对输入参考点云提取关键点生成骨架点云/>。For input reference point cloud Extract key points to generate skeleton point cloud/> .
优选的,所述S102,具体包括:Preferably, the S102 specifically includes:
将重采样后的关键点骨架点云中每个点都作为参考点云/>和失真点云/>的局部区域中心,对于/>中的第/>个关键点/>,使用/>和/>中对应几何部分的欧氏距离对/>点的邻居进行聚类,公式如下:The resampled key point skeleton point cloud Each point in is used as a reference point cloud/> and distorted point cloud/> The local area center of /> No./> in key points/> , use/> and/> Euclidean distance pairs of corresponding geometric parts in/> Neighbors of points are clustered, and the formula is as follows:
其中,表示以关键点/>为球心、/>为半径的参考点云的邻域组;/>表示以关键点/>为球心、/>为半径的失真点云的邻域组;/>表示参考点云的关键点骨架中所有点的集合;/>表示失真点云的关键点骨架中所有点的集合;/>表示二范数的平方。in, Represented as key points/> is the center of the ball,/> is the neighborhood group of the reference point cloud with radius;/> Represented as key points/> is the center of the ball,/> is the neighborhood group of the distorted point cloud with radius;/> Represents the set of all points in the key point skeleton of the reference point cloud;/> Represents the set of all points in the key point skeleton of the distorted point cloud;/> represents the square of the second norm.
优选的,所述S103,具体包括:Preferably, the S103 specifically includes:
根据参考点云 的三维梯度幅值特征/>与三维梯度方向图/>,以及失真点云/>的三维梯度幅值特征/>与梯度方向图/>,计算得到参考点云和失真点云的三维梯度幅值相似度/>以及三维梯度方向相似度/>,计算公式如下:According to the reference point cloud The three-dimensional gradient amplitude characteristics/> with three-dimensional gradient pattern/> , and distorted point cloud/> The three-dimensional gradient amplitude characteristics/> with gradient pattern/> , calculate the three-dimensional gradient amplitude similarity of the reference point cloud and the distorted point cloud/> And three-dimensional gradient direction similarity/> ,Calculated as follows:
其中,和/>是用于保证数值稳定性的常数;in, and/> is a constant used to ensure numerical stability;
对于参考点云局部区域的点,三维梯度幅值特征/>计算公式如下:For points in the local area of the reference point cloud , three-dimensional gradient amplitude characteristics/> Calculated as follows:
其中,、/>、/>分别表示参考点云局部邻域组内的点在x、y、z三个方向上的梯度幅值差;/>表示参考点云局部邻域组内的点xyz轴上的梯度计算方法;in, ,/> ,/> Respectively represent the gradient amplitude differences of points in the local neighborhood group of the reference point cloud in the three directions of x, y, and z;/> Represents the gradient calculation method on the xyz axis of points within the local neighborhood group of the reference point cloud;
引入三维梯度方向来描述点云空间上的变化信息,以关键点为球心,/>为半径构造局部区域,对于落在该局部区域的点/>,计算该点的球坐标值公式如下:The three-dimensional gradient direction is introduced to describe the change information in the point cloud space, with key points is the center of the sphere,/> Constructs a local area for the radius, for points falling within the local area/> , the formula for calculating the spherical coordinate value of this point is as follows:
其中,表示点/>的极角,/>表示点/>的方位角,根据局部区域内所有点的球坐标值进行方向聚类;设定三维梯度的八个方向,局部区域内点的球坐标值越接近哪个方向,则聚类于该方向;三维梯度八方向依据极角和方位角计算,在空间内等间距分布;具体取值的计算公式为:in, Indicates point/> The polar angle of /> Indicates point/> Azimuth angle, perform direction clustering based on the spherical coordinate values of all points in the local area; set the eight directions of the three-dimensional gradient. The closer the spherical coordinate values of the points in the local area are to the direction, the clustering will be in that direction; the three-dimensional gradient The eight directions are calculated based on the polar angle and azimuth angle, and are equally spaced in space; the specific value calculation formula is:
其中;/>表示极角/>的方向,/>表示方位角的方向,两个方向相互组合构成了三维梯度八方向;in ;/> Indicates polar angle/> direction,/> represents the azimuth angle direction, the two directions combine with each other to form a three-dimensional gradient eight directions;
三维梯度方向图计算公式如下:3D gradient pattern Calculated as follows:
其中,为点/>在三维八方向上的卷积核,卷积核的方向取决于该点聚类于哪个三维梯度的方向;/>表示卷积运算;in, for point/> Convolution kernel in three-dimensional eight directions. The direction of the convolution kernel depends on the direction of the three-dimensional gradient in which the point is clustered;/> Represents the convolution operation;
对于失真点云局部区域的点,三维梯度幅值特征/>计算公式如下:For points in the local area of the distorted point cloud , three-dimensional gradient amplitude characteristics/> Calculated as follows:
其中,、/>、/>分别表示失真点云局部邻域组内的点在x、y、z三个方向上的梯度幅值差;/>表示失真点云局部邻域组内的点xyz轴上的梯度计算方法;in, ,/> ,/> Respectively represent the gradient amplitude differences of points in the local neighborhood group of the distorted point cloud in the three directions of x, y, and z;/> Represents the gradient calculation method on the xyz axis of points within the local neighborhood group of the distorted point cloud;
引入三维梯度方向来描述点云空间上的变化信息,以关键点为球心,/>为半径构造局部区域,对于落在该局部区域的点/>,计算该点的球坐标值公式如下:The three-dimensional gradient direction is introduced to describe the change information in the point cloud space, with key points is the center of the sphere,/> Constructs a local area for the radius, for points falling within the local area/> , the formula for calculating the spherical coordinate value of this point is as follows:
其中,表示点/>的极角,/>表示点/>的方位角,根据局部区域内所有点的球坐标值进行方向聚类;设定三维梯度的八个方向,局部区域内点的球坐标值越接近哪个方向,则聚类于该方向;三维梯度八方向依据极角和方位角计算,在空间内等间距分布;具体取值的计算公式为:in, Indicates point/> The polar angle of /> Indicates point/> Azimuth angle, perform direction clustering based on the spherical coordinate values of all points in the local area; set the eight directions of the three-dimensional gradient. The closer the spherical coordinate values of the points in the local area are to the direction, the clustering will be in that direction; the three-dimensional gradient The eight directions are calculated based on the polar angle and azimuth angle, and are equally spaced in space; the specific value calculation formula is:
其中;/>表示极角/>的方向,/>表示方位角的方向,两个方向相互组合构成了三维梯度八方向;in ;/> Indicates polar angle/> direction,/> represents the azimuth angle direction, the two directions combine with each other to form a three-dimensional gradient eight directions;
三维梯度方向图计算公式如下:3D gradient pattern Calculated as follows:
其中,为点/>在三维八方向上的卷积核,卷积核的方向取决于该点聚类于哪个三维梯度的方向;in, for point/> Convolution kernel in eight three-dimensional directions. The direction of the convolution kernel depends on the direction of the three-dimensional gradient in which the point is clustered;
基于三维梯度幅值相似度和三维梯度方向图相似度计算出联合三维梯度特征相似度,如下:The joint three-dimensional gradient feature similarity is calculated based on the three-dimensional gradient amplitude similarity and the three-dimensional gradient direction map similarity, as follows:
其中,参数是用于调整/>和/>之间相对重要性的正数。Among them, parameters is used to adjust/> and/> A positive number of relative importance between.
优选的,所述S104,具体如下:Preferably, the S104 is as follows:
其中,为参考点云局部区域内的点的响应强度值;/>失真点云局部区域内的点的响应强度值;/>表示局部区域的个数;/>表示参考点云和失真点云的局部范围,即xyz这个三维点落在该局部范围内;/>表示失真点云的客观质量分数。in, is the response intensity value of points in the local area of the reference point cloud;/> The response intensity value of points in the local area of the distorted point cloud;/> Indicates the number of local areas;/> Represents the local range of the reference point cloud and distortion point cloud, that is, the three-dimensional point xyz falls within this local range;/> Represents the objective quality score of the distorted point cloud.
优选的,响应强度值的计算方法为K近邻搜索算法。Preferably, the calculation method of the response intensity value is a K nearest neighbor search algorithm.
另一方面,一种融合图重采样和梯度特征的参考点云质量评估系统,包括:On the other hand, a reference point cloud quality assessment system that integrates graph resampling and gradient features includes:
关键点提取模块,用于使用基于图的关键点重采样方法,对输入的参考点云进行关键点提取;The key point extraction module is used to extract key points from the input reference point cloud using the graph-based key point resampling method;
局部区域点聚类模块,用于以关键点为中心划分参考点云和失真点云的局部邻域组,根据关键点与其他点在坐标空间中的欧几里德距离来聚类每个局部区域内的点;The local area point clustering module is used to divide the local neighborhood group of the reference point cloud and the distortion point cloud with the key point as the center, and cluster each local area according to the Euclidean distance between the key point and other points in the coordinate space. Points within the region;
梯度特征相似度计算模块,用于分别提取局部区域内参考点云和失真点云的三维梯度幅值特征和三维梯度方向图特征,基于三维梯度幅值特征计算参考点云和失真点云的三维梯度幅值相似度,基于三维梯度方向图特征计算参考点云和失真点云的三维梯度方向图相似度,基于三维梯度幅值相似度和三维梯度方向图相似度计算出联合三维梯度特征相似度;The gradient feature similarity calculation module is used to extract the three-dimensional gradient amplitude features and the three-dimensional gradient pattern features of the reference point cloud and the distorted point cloud in the local area, and calculate the three-dimensional gradient feature of the reference point cloud and the distorted point cloud based on the three-dimensional gradient amplitude feature. Gradient amplitude similarity, calculate the three-dimensional gradient pattern similarity between the reference point cloud and the distorted point cloud based on the three-dimensional gradient pattern feature, and calculate the joint three-dimensional gradient feature similarity based on the three-dimensional gradient amplitude similarity and the three-dimensional gradient pattern similarity. ;
质量评估模块,用于基于联合三维梯度特征相似度,使用响应强度值进行加权池化,得到失真点云的客观质量分数。The quality assessment module is used to obtain an objective quality score of the distorted point cloud based on the joint three-dimensional gradient feature similarity and weighted pooling using response intensity values.
与现有技术相比,本发明的有益效果如下:Compared with the prior art, the beneficial effects of the present invention are as follows:
(1)本发明通过基于图的重采样方法提取参考点云的几何信息以生成关键点骨架,为参考点云和失真点云构建以关键点为球心的局部区域参数化模型,分别度量梯度幅值和梯度方向的相似度,最后使用响应强度值的加权合并计算方法对这两个特征的相似度进行加权池化,计算得到点云质量评价分数,有效地描述了因点云失真引起的梯度方向特征和响应强度变化,符合人眼对于失真点云的主观感知度,具有较高的识别准确性、敏感性以及鲁棒性,点云质量评估性能好;(1) The present invention extracts the geometric information of the reference point cloud through a graph-based resampling method to generate a key point skeleton, builds a local area parameterized model with the key point as the center of the sphere for the reference point cloud and the distortion point cloud, and measures the gradient respectively. The similarity of the amplitude and gradient direction is finally used to perform weighted pooling on the similarity of the two features using the weighted merger calculation method of the response intensity value, and the point cloud quality evaluation score is calculated, which effectively describes the point cloud distortion caused by The gradient direction characteristics and response intensity changes are in line with the human eye's subjective perception of distorted point clouds, with high recognition accuracy, sensitivity and robustness, and good point cloud quality assessment performance;
(2)本发明通过基于图的重采样方法提取参考点云的几何信息以生成关键点骨架,解决了参考和失真点云在质量评估中特征映射困难的问题,采样后的关键点不仅符合人类感知,而且显著降低了计算复杂性。(2) The present invention extracts the geometric information of the reference point cloud through a graph-based resampling method to generate a key point skeleton, which solves the problem of difficult feature mapping of reference and distorted point clouds in quality assessment. The sampled key points are not only in line with human perception, and significantly reduces computational complexity.
附图说明Description of the drawings
图1为本发明实施例的融合图重采样和梯度特征的参考点云质量评估方法流程图;Figure 1 is a flow chart of a reference point cloud quality assessment method for fusion graph resampling and gradient features according to an embodiment of the present invention;
图2为本发明实施例的融合图重采样和梯度特征的参考点云质量评估方法的结构流程图;Figure 2 is a structural flow chart of a reference point cloud quality assessment method for fusion graph resampling and gradient features according to an embodiment of the present invention;
图3为本发明实施例的融合图重采样和梯度特征的参考点云质量评估系统的结构框图。Figure 3 is a structural block diagram of a reference point cloud quality assessment system that fuses graph resampling and gradient features according to an embodiment of the present invention.
具体实施方式Detailed ways
下面结合具体实施例,进一步阐述本发明。应理解,这些实施例仅用于说明本发明而不用于限制本发明的范围。此外应理解,在阅读了本发明讲授的内容之后,本领域技术人员可以对本发明作各种改动或修改,这些等价形式同样落于本申请所附权利要求书所限定的范围。The present invention will be further described below in conjunction with specific embodiments. It should be understood that these examples are only used to illustrate the invention and are not intended to limit the scope of the invention. In addition, it should be understood that after reading the teachings of the present invention, those skilled in the art can make various changes or modifications to the present invention, and these equivalent forms also fall within the scope defined by the appended claims of this application.
参见图1和图2所示,本发明的一种融合图重采样和梯度特征的参考点云质量评估方法,具体步骤如下:Referring to Figures 1 and 2, a reference point cloud quality assessment method that fuses graph resampling and gradient features of the present invention is shown. The specific steps are as follows:
S101,使用基于图的关键点重采样方法,对输入的参考点云进行关键点提取。S101, use the graph-based key point resampling method to extract key points from the input reference point cloud.
具体的,接收输入的参考点云,使用一个高通图滤波方法对/>进行重采样来提取关键点。使用图转移算子/>来描述节点之间相对位置关系,/>表示图转移算子/>的维度;/>可以使用邻接矩阵/>与转移矩阵/>来表示,即/>。每个线性移位不变图滤波器都是/>的多项式函数:Specifically, receive the input reference point cloud , using a high-pass image filtering method to // Resampling is performed to extract key points. Use graph transfer operator/> To describe the relative position relationship between nodes,/> Represents graph transfer operator/> Dimensions;/> You can use adjacency matrix/> and transfer matrix/> to express, that is/> . Every linear shift invariant graph filter is/> polynomial function:
其中,表示线性移位不变图滤波器;/>表示图转移算子的/>次幂;/>表示第/>个系数;/>表示图形滤波器的长度;/>表示度矩阵;/>表示/>的逆矩阵;/>表示单位矩阵。本实施例中使用类哈尔图滤波器来实现/>的高通滤波:in, Represents a linear shift invariant graph filter;/> Represents the graph transfer operator /> Power;/> Indicates the first/> coefficient;/> Indicates the length of the graphics filter;/> represents the degree matrix;/> Express/> The inverse matrix;/> represents the identity matrix. In this embodiment, a Harr-like filter is used to implement/> High pass filtering:
其中,表示类哈尔图滤波器的高通滤波;/>表示/>的/>个特征向量;/>表示/>的特征值;在图顶点域中,第/>点/>(参考点云空间频域中的某个点)的频率响应公式为:in, Represents the high-pass filtering of Har-like filter;/> Express/> of/> feature vector;/> Express/> eigenvalues; in the graph vertex domain, the Click/> The frequency response formula (referring to a point in the frequency domain of the point cloud space) is:
其中,表示第/>点/>的频率响应公式;/>表示空间频域中点的总个数;/>表示第/>点/>的相邻点;in, Indicates the first/> Click/> The frequency response formula;/> Represents the total number of points in the spatial frequency domain;/> Indicates the first/> Click/> adjacent points;
被用于对空间频域中的参考点云/>进行排序以进行采样,它反映了第/>点可以从相邻点收集到多少关于该点的信息,信息越多的点越可能被选取为关键点。最后取滤波器长度/>和重采样后的有效关键点数量/>,以达到复杂性和效率之间的平衡。 is used to reference point clouds in the spatial frequency domain/> is sorted for sampling, which reflects the How much information about the point can be collected from adjacent points? The more information a point has, the more likely it is to be selected as a key point. Finally take the filter length/> and the number of effective key points after resampling/> , to achieve a balance between complexity and efficiency.
S102,以关键点为中心划分参考点云和失真点云的局部邻域组,根据关键点与其他点在坐标空间中的欧几里德距离来聚类每个局部区域内的点。S102, divide the local neighborhood group of the reference point cloud and the distortion point cloud with the key point as the center, and cluster the points in each local area according to the Euclidean distance between the key point and other points in the coordinate space.
具体的,将重采样后的关键点骨架点云中每个点都作为参考点云/>和失真点云/>的局部区域中心,对于/>中的第/>个关键点/>,本方法使用/>和/>中对应几何部分的欧氏距离对/>点的邻居进行聚类,公式如下:Specifically, the resampled key point skeleton point cloud Each point in is used as a reference point cloud/> and distorted point cloud/> The local area center of /> No./> in key points/> , this method uses/> and/> Euclidean distance pairs of corresponding geometric parts in/> Neighbors of points are clustered, and the formula is as follows:
其中,和/>代表以关键点/>为球心、/>为半径的参考和失真点云的邻域组;/>表示参考点云的关键点骨架中所有点的集合;/>表示失真点云的关键点骨架中所有点的集合;/>表示二范数的平方。in, and/> Represents key points/> is the center of the ball,/> is the reference for the radius and the neighborhood group of the distorted point cloud;/> Represents the set of all points in the key point skeleton of the reference point cloud;/> Represents the set of all points in the key point skeleton of the distorted point cloud;/> represents the square of the second norm.
S103,分别提取局部区域内参考点云和失真点云的三维梯度幅值特征和三维梯度方向图特征,基于三维梯度幅值特征计算参考点云和失真点云的三维梯度幅值相似度,基于三维梯度方向图特征计算参考点云和失真点云的三维梯度方向图相似度,基于三维梯度幅值相似度和三维梯度方向图相似度计算出联合三维梯度特征相似度。S103, respectively extract the three-dimensional gradient amplitude features and the three-dimensional gradient direction map features of the reference point cloud and the distorted point cloud in the local area, and calculate the three-dimensional gradient amplitude similarity of the reference point cloud and the distorted point cloud based on the three-dimensional gradient amplitude features. The three-dimensional gradient pattern feature calculates the three-dimensional gradient pattern similarity between the reference point cloud and the distorted point cloud, and calculates the joint three-dimensional gradient feature similarity based on the three-dimensional gradient amplitude similarity and the three-dimensional gradient pattern similarity.
具体的,在提取三维梯度幅值特征的基础上,扩展三维梯度八方向的计算方法,采用K近邻搜索算法计算每一点的响应强度值,构建三维梯度信息的局部参数化模型,如下。Specifically, on the basis of extracting the three-dimensional gradient amplitude features, the calculation method of the eight directions of the three-dimensional gradient is expanded, the K nearest neighbor search algorithm is used to calculate the response intensity value of each point, and a local parameterized model of the three-dimensional gradient information is constructed, as follows.
对于三维点云局部区域的点,三维的梯度幅值计算公式如下:For points in the local area of 3D point cloud , the three-dimensional gradient amplitude calculation formula is as follows:
其中,、/>、/>表示了每个局部邻域组内的点在三个方向上的梯度幅值差。in, ,/> ,/> It represents the gradient amplitude difference in three directions of points in each local neighborhood group.
三维梯度八方向的划分角度公式如下:The division angle formula of the eight directions of the three-dimensional gradient is as follows:
其梯度的方向图的计算公式如下:The calculation formula of its gradient direction diagram is as follows:
其中,为由三维梯度八方向划分角度计算出的点/>方向的卷积核;/>表示卷积运算。in, It is a point calculated from the angle divided by the eight directions of the three-dimensional gradient/> Directional convolution kernel;/> Represents the convolution operation.
使用局部参数化模型提取参考和失真点云的三维梯度特征并计算它们的特征相似度,包括三维梯度幅值特征与梯度方向图特征。Use a local parameterized model to extract the three-dimensional gradient features of the reference and distorted point clouds and calculate their feature similarities, including three-dimensional gradient amplitude features and gradient direction map features.
具体的,根据参考点云 的三维梯度幅值特征/>与梯度方向图,以及失真点云/>的三维梯度幅值特征/>与梯度方向图/>,计算得到参考点云和失真点云的三维梯度幅值相似度/>和三维梯度方向相似度,计算公式如下:Specifically, based on the reference point cloud The three-dimensional gradient amplitude characteristics/> with gradient direction map , and distorted point cloud/> The three-dimensional gradient amplitude characteristics/> with gradient pattern/> , calculate the three-dimensional gradient amplitude similarity of the reference point cloud and the distorted point cloud/> Similarity to three-dimensional gradient direction ,Calculated as follows:
其中,和/>是用于保证数值稳定性的常数。in, and/> is a constant used to ensure numerical stability.
本实施例联合考虑三维梯度幅值和方向相似度作为点云质量评估综合指标,计算方式可以表示为它们的组合:This embodiment jointly considers three-dimensional gradient amplitude and direction similarity as a comprehensive index for point cloud quality evaluation. The calculation method can be expressed as a combination of them:
其中,参数是用于调整/>和/>之间相对重要性的正数。Among them, parameters is used to adjust/> and/> A positive number of relative importance between.
S104,基于联合三维梯度特征相似度,使用响应强度值进行加权池化,得到失真点云的客观质量分数。S104, based on the joint three-dimensional gradient feature similarity, use the response intensity value to perform weighted pooling to obtain the objective quality score of the distorted point cloud.
具体,使用三维响应强度值加权池化方法计算得到点云客观质量分数,如下:Specifically, the objective quality score of the point cloud is calculated using the three-dimensional response intensity value weighted pooling method. ,as follows:
其中,和/>为参考点云和失真点云的响应强度值,选取两者中的较大值作为三维边缘强度池化策略中的权重/>;/>表示参考点云和失真点云的局部范围,即xyz这个三维点落在该局部范围内;/>表示失真点云的客观质量分数。in, and/> For the response intensity values of the reference point cloud and the distorted point cloud, the larger value of the two is selected as the weight in the three-dimensional edge intensity pooling strategy/> ;/> Represents the local range of the reference point cloud and distortion point cloud, that is, the three-dimensional point xyz falls within this local range;/> Represents the objective quality score of the distorted point cloud.
参见图3所示,本实施例还公开了一种融合图重采样和梯度特征的参考点云质量评估系统,包括:As shown in Figure 3, this embodiment also discloses a reference point cloud quality assessment system that integrates graph resampling and gradient features, including:
关键点提取模块301,用于使用基于图的关键点重采样方法,对输入的参考点云进行关键点提取;The key point extraction module 301 is used to extract key points from the input reference point cloud using a graph-based key point resampling method;
局部区域点聚类模块302,用于以关键点为中心划分参考点云和失真点云的局部邻域组,根据关键点与其他点在坐标空间中的欧几里德距离来聚类每个局部区域内的点;The local area point clustering module 302 is used to divide the local neighborhood group of the reference point cloud and the distortion point cloud with the key point as the center, and cluster each key point according to the Euclidean distance between the key point and other points in the coordinate space. Points within a local area;
梯度特征相似度计算模块303,用于分别提取局部区域内参考点云和失真点云的三维梯度幅值特征和三维梯度方向图特征,基于三维梯度幅值特征计算参考点云和失真点云的三维梯度幅值相似度,基于三维梯度方向图特征计算参考点云和失真点云的三维梯度方向图相似度,基于三维梯度幅值相似度和三维梯度方向图相似度计算出联合三维梯度特征相似度;The gradient feature similarity calculation module 303 is used to respectively extract the three-dimensional gradient amplitude features and the three-dimensional gradient pattern features of the reference point cloud and the distortion point cloud in the local area, and calculate the reference point cloud and the distortion point cloud based on the three-dimensional gradient amplitude feature. Three-dimensional gradient amplitude similarity. Calculate the three-dimensional gradient pattern similarity between the reference point cloud and the distorted point cloud based on the three-dimensional gradient pattern feature. Calculate the joint three-dimensional gradient feature similarity based on the three-dimensional gradient amplitude similarity and the three-dimensional gradient pattern similarity. Spend;
质量评估模块304,用于基于联合三维梯度特征相似度,使用响应强度值进行加权池化,得到失真点云的客观质量分数。The quality assessment module 304 is used to perform weighted pooling based on the joint three-dimensional gradient feature similarity and use the response intensity value to obtain an objective quality score of the distorted point cloud.
一种融合图重采样和梯度特征的参考点云质量评估系统的具体实现同一种融合图重采样和梯度特征的参考点云质量评估方法,本实施例不做重复说明。A specific implementation of a reference point cloud quality assessment system that fuses graph resampling and gradient features. The same reference point cloud quality assessment method that fuses graph resampling and gradient features will not be repeated in this embodiment.
上述仅为本发明的具体实施方式,但本发明的设计构思并不局限于此,凡利用此构思对本发明进行非实质性的改动,均应属于侵犯本发明保护范围的行为。The above are only specific embodiments of the present invention, but the design concept of the present invention is not limited thereto. Any non-substantive changes to the present invention using this concept shall constitute an infringement of the protection scope of the present invention.
Claims (7)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311280774.XA CN117011299B (en) | 2023-10-07 | 2023-10-07 | Reference point cloud quality assessment method and system integrating graph resampling and gradient characteristics |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202311280774.XA CN117011299B (en) | 2023-10-07 | 2023-10-07 | Reference point cloud quality assessment method and system integrating graph resampling and gradient characteristics |
Publications (2)
Publication Number | Publication Date |
---|---|
CN117011299A true CN117011299A (en) | 2023-11-07 |
CN117011299B CN117011299B (en) | 2024-02-20 |
Family
ID=88562197
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202311280774.XA Active CN117011299B (en) | 2023-10-07 | 2023-10-07 | Reference point cloud quality assessment method and system integrating graph resampling and gradient characteristics |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN117011299B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117872389A (en) * | 2024-01-19 | 2024-04-12 | 武汉万曦智能科技有限公司 | Wireless speed measuring method and system for field vehicle |
CN118859185A (en) * | 2024-09-25 | 2024-10-29 | 北京中成康富科技股份有限公司 | Indoor personnel active positioning perception method and system based on millimeter wave bio-radar |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113850748A (en) * | 2020-06-09 | 2021-12-28 | 上海交通大学 | Evaluation system and method for point cloud quality |
CN114331989A (en) * | 2021-12-16 | 2022-04-12 | 重庆邮电大学 | Full-reference 3D point cloud quality assessment method based on point feature histogram geodetic distance |
WO2023288231A1 (en) * | 2021-07-13 | 2023-01-19 | Tencent America LLC | Image based sampling metric for quality assessment |
WO2023093824A1 (en) * | 2021-11-26 | 2023-06-01 | 中兴通讯股份有限公司 | Point cloud quality evaluation method, and device and storage medium |
CN116205886A (en) * | 2023-03-07 | 2023-06-02 | 重庆邮电大学 | A Point Cloud Quality Assessment Method Based on Relative Entropy |
-
2023
- 2023-10-07 CN CN202311280774.XA patent/CN117011299B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113850748A (en) * | 2020-06-09 | 2021-12-28 | 上海交通大学 | Evaluation system and method for point cloud quality |
WO2023288231A1 (en) * | 2021-07-13 | 2023-01-19 | Tencent America LLC | Image based sampling metric for quality assessment |
WO2023093824A1 (en) * | 2021-11-26 | 2023-06-01 | 中兴通讯股份有限公司 | Point cloud quality evaluation method, and device and storage medium |
CN114331989A (en) * | 2021-12-16 | 2022-04-12 | 重庆邮电大学 | Full-reference 3D point cloud quality assessment method based on point feature histogram geodetic distance |
CN116205886A (en) * | 2023-03-07 | 2023-06-02 | 重庆邮电大学 | A Point Cloud Quality Assessment Method Based on Relative Entropy |
Non-Patent Citations (2)
Title |
---|
HUANQIANG ZENG: "Point Cloud Quality Assessment via 3D Edge Similarity Measurement", 《IEEE SIGNAL PROCESSING LETTERS ( VOLUME: 29)》, pages 1804 * |
郭小敏: "基于引导调制的彩色点云无参考质量评价方法", 《光电子·激光》, vol. 34, no. 7, pages 713 - 722 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117872389A (en) * | 2024-01-19 | 2024-04-12 | 武汉万曦智能科技有限公司 | Wireless speed measuring method and system for field vehicle |
CN118859185A (en) * | 2024-09-25 | 2024-10-29 | 北京中成康富科技股份有限公司 | Indoor personnel active positioning perception method and system based on millimeter wave bio-radar |
Also Published As
Publication number | Publication date |
---|---|
CN117011299B (en) | 2024-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN117011299B (en) | Reference point cloud quality assessment method and system integrating graph resampling and gradient characteristics | |
CN112418030B (en) | A head and face shape classification method based on three-dimensional point cloud coordinates | |
Collins et al. | A barcode shape descriptor for curve point cloud data | |
CN107833181B (en) | Three-dimensional panoramic image generation method based on zoom stereo vision | |
CN100559398C (en) | Automatic deepness image registration method | |
CN111553409B (en) | A Point Cloud Recognition Method Based on Voxel Shape Descriptors | |
CN114972459B (en) | A point cloud registration method based on low-dimensional point cloud local feature descriptors | |
CN103745459B (en) | Detection method of an unstructured point cloud feature point and extraction method thereof | |
CN102103202A (en) | Semi-supervised classification method for airborne laser radar data fusing images | |
CN113689535B (en) | Building model generation method and device based on unmanned aerial vehicle image | |
CN113269791B (en) | Point cloud segmentation method based on edge judgment and region growth | |
CN106204557A (en) | A kind of extracting method of the non-complete data symmetrical feature estimated with M based on extension Gaussian sphere | |
CN107945217B (en) | A method and system for fast screening of image feature point pairs suitable for automatic assembly | |
CN108564653B (en) | Human Skeleton Tracking System and Method Based on Multi-Kinect | |
CN108388902B (en) | Composite 3D descriptor construction method combining global framework point and local SHOT characteristics | |
CN112365592B (en) | Local environment feature description method based on bidirectional elevation model | |
CN117292064A (en) | Three-dimensional object modeling method and system based on structured light scanning data | |
CN106803094A (en) | Threedimensional model shape similarity analysis method based on multi-feature fusion | |
CN115222988A (en) | PointEFF fine classification method for urban ground objects based on lidar point cloud data | |
CN111340862A (en) | Point cloud registration method and device based on multi-feature fusion and storage medium | |
CN117011465A (en) | Tree three-dimensional reconstruction method and device, electronic equipment and storage medium | |
CN111127667A (en) | Point cloud initial registration method based on region curvature binary descriptor | |
CN116051540B (en) | Method and system for acquiring position and pose of transformer terminals based on point cloud model | |
CN117541614A (en) | Space non-cooperative target close-range relative pose tracking method based on improved ICP algorithm | |
CN118134984A (en) | A 3D reconstruction algorithm and 3D reconstruction system based on feature boundary lines |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB03 | Change of inventor or designer information |
Inventor after: Zeng Huanqiang Inventor after: Lu Zian Inventor after: Hou Junhui Inventor after: Chen Jing Inventor after: Zhu Jianqing Inventor after: Chen Longtao Inventor before: Zeng Huanqiang Inventor before: Lu Zian Inventor before: Hou Junhui Inventor before: Chen Jing Inventor before: Zhu Jianqing Inventor before: Chen Longtao |
|
CB03 | Change of inventor or designer information | ||
GR01 | Patent grant | ||
GR01 | Patent grant |