Nothing Special   »   [go: up one dir, main page]

CN117004547B - 一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用 - Google Patents

一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用 Download PDF

Info

Publication number
CN117004547B
CN117004547B CN202311253745.4A CN202311253745A CN117004547B CN 117004547 B CN117004547 B CN 117004547B CN 202311253745 A CN202311253745 A CN 202311253745A CN 117004547 B CN117004547 B CN 117004547B
Authority
CN
China
Prior art keywords
gene
cis
seq
corynebacterium glutamicum
acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202311253745.4A
Other languages
English (en)
Other versions
CN117004547A (zh
Inventor
谭天伟
李萌蕾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Chemical Technology
Original Assignee
Beijing University of Chemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Chemical Technology filed Critical Beijing University of Chemical Technology
Priority to CN202311253745.4A priority Critical patent/CN117004547B/zh
Publication of CN117004547A publication Critical patent/CN117004547A/zh
Application granted granted Critical
Publication of CN117004547B publication Critical patent/CN117004547B/zh
Priority to US18/825,195 priority patent/US20240425889A1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/20Bacteria; Culture media therefor
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/52Genes encoding for enzymes or proenzymes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0069Oxidoreductases (1.) acting on single donors with incorporation of molecular oxygen, i.e. oxygenases (1.13)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1022Transferases (2.) transferring aldehyde or ketonic groups (2.2)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/88Lyases (4.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/42Hydroxy-carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/40Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
    • C12P7/44Polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/01025Shikimate dehydrogenase (1.1.1.25)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/03Oxidoreductases acting on the CH-OH group of donors (1.1) with a oxygen as acceptor (1.1.3)
    • C12Y101/03014Catechol oxidase (dimerizing) (1.1.3.14)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11001Catechol 1,2-dioxygenase (1.13.11.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y113/00Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13)
    • C12Y113/11Oxidoreductases acting on single donors with incorporation of molecular oxygen (oxygenases) (1.13) with incorporation of two atoms of oxygen (1.13.11)
    • C12Y113/11003Protocatechuate 3,4-dioxygenase (1.13.11.3)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y202/00Transferases transferring aldehyde or ketonic groups (2.2)
    • C12Y202/01Transketolases and transaldolases (2.2.1)
    • C12Y202/01001Transketolase (2.2.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y205/00Transferases transferring alkyl or aryl groups, other than methyl groups (2.5)
    • C12Y205/01Transferases transferring alkyl or aryl groups, other than methyl groups (2.5) transferring alkyl or aryl groups, other than methyl groups (2.5.1)
    • C12Y205/010543-Deoxy-7-phosphoheptulonate synthase (2.5.1.54)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/0104Pyruvate kinase (2.7.1.40)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/010614-Hydroxybenzoate decarboxylase (4.1.1.61)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y401/00Carbon-carbon lyases (4.1)
    • C12Y401/01Carboxy-lyases (4.1.1)
    • C12Y401/01063Protocatechuate decarboxylase (4.1.1.63)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/01013-Dehydroquinate dehydratase (4.2.1.10)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/01Hydro-lyases (4.2.1)
    • C12Y402/011183-Dehydroshikimate dehydratase (4.2.1.118)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y402/00Carbon-oxygen lyases (4.2)
    • C12Y402/03Carbon-oxygen lyases (4.2) acting on phosphates (4.2.3)
    • C12Y402/030043-Dehydroquinate synthase (4.2.3.4)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y503/00Intramolecular oxidoreductases (5.3)
    • C12Y503/01Intramolecular oxidoreductases (5.3) interconverting aldoses and ketoses (5.3.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y505/00Intramolecular lyases (5.5)
    • C12Y505/01Intramolecular lyases (5.5.1)
    • C12Y505/01001Muconate cycloisomerase (5.5.1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/15Corynebacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/185Escherichia
    • C12R2001/19Escherichia coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12RINDEXING SCHEME ASSOCIATED WITH SUBCLASSES C12C - C12Q, RELATING TO MICROORGANISMS
    • C12R2001/00Microorganisms ; Processes using microorganisms
    • C12R2001/01Bacteria or Actinomycetales ; using bacteria or Actinomycetales
    • C12R2001/265Micrococcus
    • C12R2001/28Micrococcus glutamicus ; Corynebacterium glutamicum
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/30Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Biotechnology (AREA)
  • Biomedical Technology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Virology (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

本发明公开了一种以葡萄糖为底物从头合成顺,顺‑粘康酸的基因工程菌及其应用,属于基因重组与代谢工程技术领域。本发明公开的一种以葡萄糖为底物从头合成顺,顺‑粘康酸的基因工程菌,为经过底盘微生物改造,且包括顺,顺粘康酸途径构建模块和中间体高产模块的重组谷氨酸棒状杆菌;大大提升了菌株的生产能力,最终在发酵液中获得了90.2 g/L的MA,为更绿色更低成本的生产己二酸和尼龙‑66等众多化学品提供了可能。

Description

一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及 其应用
技术领域
本发明涉及基因重组与代谢工程技术领域,更具体的说是涉及一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用。
背景技术
顺,顺-粘康酸(cis,cis-muconic acid,MA)是两端有两个羧基,中间有两个双键的六碳(C6)化合物,分子式为C6H6O4,分子量为142.11,在工业上是生产尼龙-66、己二酸和聚氨酯等重要化学品的平台化合物,是制备功能树脂、医药及农用化学品的重要潜在原料。尤其在作为原料生产己二酸方面发挥着举足轻重的作用,全世界范围内己二酸的消耗量已经超过400万吨,我国的己二酸消耗量也超过了100万吨,并且随着经济发展需求量日益增长。传统的MA生产为化学合成法,主要通过过氧乙酸和醋酸等强腐蚀性或刺激性溶剂利用不可再生的石化资源衍生品作为原料进行生产,该方法耗时长污染大,与当今世界可持续发展的目标不相吻合;因此,开发环境友好型的MA生产方法越来越受到人们的重视。随着基因操作手段和代谢工程技术的日益成熟,生产MA的研究重心已逐步向微生物转化法聚集;生物转化法不需要催化剂、溶剂和氧化剂等,是清洁无害程度高的生产工艺;它可以有效缓解化学法合成粘康酸带来的众多负面影响,但利用微生物生产粘康酸的浓度和效率有待进一步提高。
不同的微生物具有不同的内源性代谢特性,在微生物转化法中主要有芳香族化合物的生物转化和糖的微生物发酵两种方式。如恶臭假单胞菌(Pseudomonas putida)和浑浊红球菌(Rhodococcus opacus)等微生物,可以代谢部分芳香族化合物通过优化表达菌株中的对羟基苯甲酸-3-羟化酶,以对香豆酸为底物,在补料发酵中生产了40 g/L的MA(Kuatsjah E, et al. Debottlenecking 4-hydroxybenzoate hydroxylation inPseudomonas putida KT2440 improves muconate productivity from p-coumarate);金明杰等通过敲除浑浊红球菌中的的香兰素还原酶基因,引入香兰素脱氢酶,得到了4.3 g/L的MA,实现了香兰素到MA的转化(Jin, et al. Deciphering the metabolicdistribution of vanillin in Rhodococcus opacus during lignin valorization)。然而目前生产所用的大部分苯类原料也多来源于石油资源,属于不可再生原料,而利用简单的碳源如葡萄糖直接进行MA的生产在一定程度上具有更重要的意义,酿酒酵母和大肠杆菌等常规模式生物,多被改造直接利用葡萄糖进行生产MA,在Wang等人的研究中通过改变酵母菌中的莽草酸途径通量和增加磷酸烯醇丙酮酸供应,在10 L发酵罐中实现了20.8 g/L的MA生产(Wang G, et al. An integrated yeast‐based process for cis, cis‐muconicacid production)。而谷棒棒状杆菌是一种具有强大发酵能力的微生物,早已应用于L-谷氨酸和L-赖氨酸等氨基酸的工业生产上,而且从代谢的角度来看,MA正是其自身β-酮己二酸途径的中间体,具有先天生产MA的优势,它是生物合成途径生产MA的理想宿主。对于大宗化学品来讲由于其价值相对不高,提升产物浓度和合成效率是降低成本的关键,为了促使细胞工厂更高效的生产目标产物,必须继续利用分子生物学技术和发酵调控等多种手段,不断优化改造生产菌株提升转化目标产物的效率,为其更高效更低成本的生产创造可能。
因此,提供一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用是本领域技术人员亟需解决的问题。
发明内容
有鉴于此,本发明提供了一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用,针对目前生物法从头合成MA存在的问题,研发了一种生物法高效从头合成MA的途径,并构建一株能够更高效利用葡萄糖来生产MA的重组谷氨酸棒状杆菌。
为了实现上述目的,本发明采用如下技术方案:
一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌,所述基因工程菌为经过底盘微生物改造,且包括顺,顺粘康酸途径构建模块和中间体高产模块的重组谷氨酸棒状杆菌;
所述底盘微生物改造为以谷氨酸棒状杆菌为出发菌株,敲除pyk(cgl2089)(丙酮酸激酶,Pyruvate kinase)、aroE(cgl1835)(莽草酸5-脱氢酶,shikimate 5-dehydrogenase)、pcaG/H(cgl2630、cgl2631)(原儿茶酸3,4-双加氧酶亚基,protocatechuate 3,4-dioxygenase subunit beta (pcaH),protocatechuate 3,4-dioxygenase subunit alpha (pcaG))、catB(cgl2635)(氯己二烯环异构酶,chloromuconate cycloisomerase)基因;
所述顺,顺粘康酸途径构建模块表达原儿茶酸脱羧酶(protocatechuatedecarboxylase)基因、黄素异戊二烯转移酶(UbiX-like flavin prenyltransferase)基因、4-羟基苯甲酸脱羧酶,D亚基(4-hydroxybenzoate decarboxylase, subunit D)基因、邻苯二酚1,2-双加氧酶(catechol 1,2-dioxygenase)基因;
所述中间体高产模块表达3-脱氢奎尼酸合成酶(3-dehydroquinate synthase)基因、3-脱氢奎宁酸脱水酶(3-dehydroquinate dehydratase)基因、磷酸异构酶基因(phosphate isomerase)基因和转酮酶(transketolase)基因。
进一步,所述原儿茶酸脱羧酶基因为肺炎克雷伯菌来源的原儿茶酸脱羧酶基因aroY
所述黄素异戊二烯转移酶基因包括大肠杆菌(Escherichia coli)来源的黄素异戊二烯转移酶基因kpdB、肺炎克雷伯菌(Kleber pneumoniae)来源的黄素异戊二烯转移酶基因kpdB
所述4-羟基苯甲酸脱羧酶,D亚基基因包括大肠杆菌(Escherichia coli)来源的4-羟基苯甲酸脱羧酶,D亚基基因kpdD、肺炎克雷伯菌(Kleber pneumoniae)来源的4-羟基苯甲酸脱羧酶,D亚基基因kpdD
所述邻苯二酚1,2-双加氧酶基因包括恶臭假单胞菌(Pseudomonas putida)来源的邻苯二酚1,2-双加氧酶基因catA和谷氨酸棒状杆菌内源的邻苯二酚1,2-双加氧酶基因catA
所述3-脱氢奎尼酸合成酶为谷氨酸棒状杆菌内源性的3-脱氢奎尼酸合成酶基因aroB
所述3-脱氢奎宁酸脱水酶基因为谷氨酸棒状杆菌内源性的3-脱氢奎宁酸脱水酶基因aroD
所述磷酸异构酶基因为谷氨酸棒状杆菌内源性的磷酸异构酶基因qsuB
所述肺炎克雷伯菌来源的原儿茶酸脱羧酶基因aroY的核苷酸序列如SEQ IDNO.37所示;
所述大肠杆菌来源的黄素异戊二烯转移酶基因kpdB的核苷酸序列如SEQ IDNO.68所示;
所述肺炎克雷伯菌来源的黄素异戊二烯转移酶基因kpdB的核苷酸序列如SEQ IDNO.38所示;
所述大肠杆菌来源的4-羟基苯甲酸脱羧酶,D亚基基因kpdD的核苷酸序列如SEQID NO.69所示;
所述肺炎克雷伯菌来源的4-羟基苯甲酸脱羧酶,D亚基基因kpdD的核苷酸序列如SEQ ID NO.39所示;
所述恶臭假单胞菌来源的邻苯二酚1,2-双加氧酶基因catA的核苷酸序列如SEQID NO.76所示;
所述谷氨酸棒状杆菌内源的邻苯二酚1,2-双加氧酶基因catA的核苷酸序列如SEQID NO.35所示;
所述谷氨酸棒状杆菌内源性的3-脱氢奎尼酸合成酶基因aroB的核苷酸序列如SEQID NO.51所示;
所述谷氨酸棒状杆菌内源性的3-脱氢奎宁酸脱水酶基因aroD的核苷酸序列如SEQID NO.52所示;
所述谷氨酸棒状杆菌内源性的磷酸异构酶基因qsuB的核苷酸序列如SEQ IDNO.50所示;
所述转酮酶基因tkt的核苷酸序列如SEQ ID NO.53所示。
优选地,所述原儿茶酸脱羧酶基因为肺炎克雷伯菌来源的原儿茶酸脱羧酶基因aroY
所述黄素异戊二烯转移酶基因为肺炎克雷伯菌(Kleber pneumoniae)来源的黄素异戊二烯转移酶基因kpdB
所述4-羟基苯甲酸脱羧酶,D亚基基因为肺炎克雷伯菌(Kleber pneumoniae)来源的4-羟基苯甲酸脱羧酶,D亚基基因kpdD
所述邻苯二酚1,2-双加氧酶基因为谷氨酸棒状杆菌内源的邻苯二酚1,2-双加氧酶基因catA
所述3-脱氢奎尼酸合成酶为谷氨酸棒状杆菌内源性的3-脱氢奎尼酸合成酶基因aroB
所述3-脱氢奎宁酸脱水酶基因为谷氨酸棒状杆菌内源性的3-脱氢奎宁酸脱水酶基因aroD
所述磷酸异构酶基因为谷氨酸棒状杆菌内源性的磷酸异构酶基因qsuB
进一步,所述中间体高产模块还表达2-磷酸-3-脱氢-脱氧庚酸醛缩酶(Phospho-2-dehydro-3-deoxyheptonate aldolase)基因。
所述2-磷酸-3-脱氢-脱氧庚酸醛缩酶基因的核苷酸序列如SEQ ID NO.81所示。
进一步,一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌的构建方法,包括以下步骤:
(1)以谷氨酸棒状杆菌ATCC13032为出发菌株,敲除pyk(cgl2089)、aroE(cgl1835)、pcaG/H(cgl2630、cgl2631)和catB(cgl2635)基因,获得改造的谷氨酸棒状杆菌;
(2)在改造的谷氨酸棒状杆菌中所述的顺,顺粘康酸途径构建模块和中间体高产模块。
进一步,所述的基因工程菌或所述的方法在生产顺,顺粘康酸中的应用。
进一步,所述的基因工程菌或所述的方法在提高顺,顺粘康酸产量中的应用。
进一步,一种生产顺,顺粘康酸的方法,利用所述的基因工程菌或所述的方法构建的基因工程菌进行发酵。
为此,本发明提供了一种生物法合成顺,顺-粘康酸的途径(图1):
谷氨酸棒状杆菌中通过底盘改造对葡萄糖生产途径中的3条主要分解途径进行敲除,表达葡萄糖生产MA的缺失和低活性酶基因及其相关蛋白,强化核心通路的关键酶基因。
所述葡萄糖生产MA的主要分解途径为,敲除aroE(cgl1835)(莽草酸5-脱氢酶,shikimate 5-dehydrogenase)减少向莽草酸的通量,敲除pcaG/H(cgl2630、cgl2631)(原儿茶酸3,4-双加氧酶亚基,protocatechuate 3,4-dioxygenase subunit beta (pcaH),protocatechuate 3,4-dioxygenase subunit alpha (pcaG))阻断向3-羧基粘康酸的转化,敲除catB(cgl2635)(氯己二烯环异构酶,chloromuconate cycloisomerase)阻断粘康酸分解为粘康酸内酯,敲除MA生产中的主要分解路径,使得MA生产的通量更多,实现更多MA的富集;
所述表达葡萄糖生产MA的缺失和低活性酶基因及其相关蛋白,通过表达不同来源的aroY(protocatechuate decarboxylase,原儿茶酸脱羧酶)、kpdB(UbiX-like flavinprenyltransferase,黄素异戊二烯转移酶)、kpdD(4-hydroxybenzoate decarboxylase,subunit D,4-羟基苯甲酸D亚基脱羧酶)和catA(catechol 1,2-dioxygenase,邻苯二酚1,2-双加氧酶),实现了菌株内粘康酸生产途径的构建。
所述强化核心通路的关键酶基因,通过敲除pyk(cgl2089)(丙酮酸激酶,Pyruvatekinase)以及表达tkt(转酮酶,transketolase),分别增加莽草酸途径中3-脱氧-7-磷酸-D-阿拉伯庚二酸(3-deoxy-D-arabinoheptulosonate-7-phosphate,DAHP)合成的前体物质磷酸烯醇式丙酮酸(phosphoenolpyruvate,PEP)和D-赤藓糖-4-磷酸(erythrose 4-phophate,E4P)的积累,通过增加PEP和E4P通量,增加生产途径通量,更有助于MA的生产。
所述强化核心通路的关键酶基因,还包括利用组合代谢工程策略超表达内源的aroG(phospho-2-dehydro-3-deoxyheptonate aldolase,2-磷酸-3-脱氢-脱氧庚酸醛缩酶)、aroB(3-dehydroquinate synthase,3-脱氢奎尼酸合成酶)、aroD(shikimate/quinatedehydratase,3-脱氢奎宁酸脱水酶)和qsuB(phosphate isomerase,磷酸异构酶),通多对关键中间体生产基因的超表达,提升了中间体的转化程度,获得更多的MA积累。
经由上述的技术方案可知,与现有技术相比,本发明公开提供了一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用,具体提供一种更高效的利用葡萄糖生产MA的重组谷氨酸棒状杆菌,通过敲除生产途径中的主要分解途径以及表达菌株内源性缺失与低活性的酶基因及其蛋白,实现了菌株内生产途径的构建,随后通过增加生产途径的代谢通量以及强化核心通路的关键酶基因,大大提升了菌株的生产能力,最终在发酵液中获得了90.2 g/L的MA,是目前以葡萄糖或(和)甘油为底物生产粘康酸的最高纪录,具有广泛的应用前景;为更绿色更低成本的生产己二酸和尼龙-66等众多化学品提供了可能。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图获得其他的附图。
图1附图为本发明生物法合成顺,顺-粘康酸的途径;
图2附图为本发明菌株MA1的不同体系发酵生长代谢及MA生产情况;其中,A:50 mL摇瓶发酵体系;B:5 L发酵罐发酵体系;
图3附图为本发明菌株MA2的50 mL摇瓶发酵中的生长代谢及MA生产情况;
图4附图为本发明菌株MA3的50 mL摇瓶发酵中的生长代谢及MA生产情况;
图5附图为本发明菌株MA4的50 mL摇瓶发酵中的生长代谢及MA生产情况。
实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
LBHIS培养基:蛋白胨5.0 g/L,酵母粉2.5 g/L,NaCl 5.0 g/L,脑心浸提液(BHI)18.5 g/L,山梨醇91.0 g/L。对应的LBHIS固体培养基添加1.8%-2%琼脂。
LBG培养基:蛋白胨10.0 g/L,酵母粉5.0 g/L,NaCl 10.0 g/L,葡萄糖20.0 g/L。
EPO培养基:蛋白胨10.0 g/L,酵母粉5.0 g/L,NaCl 10.0 g/L,甘氨酸30.0 g/L,Tween80 10.0 g/L。
30%蔗糖培养基:蛋白胨10.0 g/L,酵母粉5.0 g/L,NaCl 10.0 g/L,蔗糖(sucrose)300.0 g/L。
20%蔗糖固体培养基:蛋白胨10.0 g/L,酵母粉5.0 g/L,NaCl 10.0 g/L,蔗糖(sucrose)200.0 g/L,琼脂15.0 g/L。
发酵培养基:葡萄糖65.0 g/L,尿素5.0 g/L,玉米浸粉8.0 g/L,生物素4×10-4 g/L,VB1生物素4×10-4 g/L,K2HPO4 1.0 g/L,KH2PO4 1.0 g/L,CaCl2•2H2O 29.4 mg/L,MgSO4•7H2O 1.2325 g/L,微量元素溶液0.2%。(微量元素溶液配制方法:称取1g FeSO4·7H2O,1gMnSO4·H2O,0.1g ZnSO4·7H2O,0.2g CuSO4,0.002g NiCl2·6H2O,加水定容成100 mL,再加入100 µl浓盐酸调节pH,然后过膜虑菌,在发酵培养基体系中加0.2%)。
实施例
一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌的构建方法,包括以下步骤:
(1)以谷氨酸棒状杆菌ATCC13032基因组DNA为模板,使用引物catB-up-F/catB-up-R扩增catB-up(如SEQ ID NO.1所示),使用引物catB-down-F/catB-down-R扩增catB-down(如SEQ ID NO.2所示),获得敲除catB的上游和下游同源臂。引物序列为:
catB-up-F:5’-CTAGACTTTTTCCAGAGCTTTTTGGAACAGCTTG-3’;SEQ ID NO.3;
catB-up-R:5’-CCAGAAAGCCATAGAAAAAGGAGAATTATCGATGCTGTTTCTAGCACG-3’;SEQID NO.4;
catB-down-F:5’-TTTTTCTATGGCTTTCTGGTTAAGTGGGAAA-3’;SEQ ID NO.5;
catB-down-R:5’-TTATCGAGTTCAGCCGATCACAAAGATTTTTC-3’;SEQ ID NO.6。
基因扩增体系:Primestar(Takara)25 µL,上下游引物各2 µL,模板 1 µL,ddH2O20 µL。
基因扩增程序:98 ℃预变性3分钟;98 ℃变性10秒,57 ℃退火30秒,72延伸10 s/kb,35个循环;72℃延伸10分钟。
PCR产物经过琼脂糖凝胶电泳和产物回收后得到基因片段catB-up和catB-down。
质粒载体pk18mobsacb用引物pK18-catBF/pK18-catBR线性化得到pk-catB载体,引物序列如下:
pK18-catBF:5’-ATCGGCTGAACTCGATAAAAGCTTGGCACTGGCCG-3’;SEQ ID NO.7;
pK18-catBR:5’-CAAAAAGCTCTGGAAAAAGTCTAGAGGATCCCCGGGTACCG-3’;SEQ IDNO.8。
在PCR管中加入3 µL catB-up、3 µL catB-down、4 µL pK-catB载体和10 µlGibson连接酶,连接温度为50 ℃,连接时间为15 min,其总体系为20 µL。
Gibson连接的20 µl连接总体系均转化到E.coli Trans10商业感受态(北京全式金生物)中进行培养和保留。转化过程严格按照说明书进行操作:37 ℃培养1 h后涂板到LB平板(含50μg/mL卡那霉素)上,随后再37 ℃培养12 h,挑选10-20个单菌落进行菌落PCR扩增及DNA测序验证。菌落PCR扩增及DNA测序引物为上述catB-up-F/catB-down-R。
挑选一个正确的单菌落,将其命名为大肠杆菌EC001,质粒命名为pK18-catB,经扩繁,进行质粒提取,获得pK18-catB质粒,将其电转至谷氨酸棒状杆菌ATCC13032感受态中。
谷氨酸棒状杆菌ATCC13032感受态细胞制备如下:挑取谷氨酸棒杆菌ATCC13032甘油保存菌种划线接种于LBHIS平板上,在30℃培养箱中培养至菌落清晰,从平板上挑取菌落接入LBHIS液体试管培养基中培养12 h,随后以初始OD600为0.3左右接入EPO培养基中。继续培养至OD600为0.9,取菌液于离心管中,冰浴15 min,4500 rpm 冷冻离心10 min收集菌体(1.5 mL 离心管分装),用100 μL预冷的10%的甘油重悬菌体,继续重复上述离心三次。洗涤完成后用100 μL 10%的无菌甘油重悬菌体,即为谷氨酸棒状杆菌ATCC13032感受态细胞。
电转方法如下:在每管感受态细胞中加入2-4 μL质粒,冰浴10 min。将混合液移入预冷的电击杯中,在1.8 kv,电击5 ms,50 μF,100 Ω条件下进行电击。电击完毕后立即加入800 μL LBHIS培养基,随后46 ℃水浴6 min,后置于30 ℃培养2~3 h,涂布于含50 μg/mL卡那霉素的固体LBHIS平板上,30℃培养24~36 h后进行验证。
基因敲除菌株需挑取若干上述平板长出的单菌落进行sacB基因的验证,验证引物如下:
sacB-F:5’-CTCAAGCGTTTGCGAAAGAAACG-3’;SEQ ID NO.9;
sacB-R:5’-GAGTCAGTGAACAGGTACCATTTGCC-3’;SEQ ID NO.10。
将验证正确的菌株接种于30%蔗糖培养基中培养24 h,待菌液变混浊后划线于20%蔗糖培养基上,继续进行sacB基因的菌落PCR,此时没有扩增出sacB基因的单菌落为正确菌落,将菌体接种于LBHIS液体培养基中进行培养,待浑浊后在LBHIS固体平板上进行纯化,再次使用目的基因的上下游片段引物catB-up-F/catB-up-R和catB-down-F/catB-down-R验证,确定无误后即为目的基因敲除菌株可保菌待用,将其命名为谷氨酸棒状杆菌GM1。
(2)以谷氨酸棒状杆菌ATCC13032基因组DNA为模板,使用引物aroE-up-F/aroE-up-R扩增aroE-up(如SEQ ID NO.11所示),使用引物aroE-down-F/aroE-down-R扩增aroE-down(如SEQ ID NO.12所示),获得敲除aroE的上游和下游同源臂。引物序列为:
aroE-up-F:5’-GTCGCTCACCGCGATTTTAGAGTGGC-3’;SEQ ID NO.13;
aroE-up-R:5’-GATGTGACTAAATCTTAGTGACTATTTACATGGGTGG-3’;SEQ ID NO.14;
aroE-down-F:5’-GTCACTAAGATTTAGTCACATCCGAGAGCCGAGTACCG-3’;SEQ IDNO.15;
aroE-down-R:5’-TCTCTGCTTGAGACTTAAGCGTTATCCG-3’;SEQ ID NO.16。
质粒载体pk18mobsacb用引物pK18-aroEF/pK18-aroER线性化得到pk-aroE载体,引物序列如下:
pK18-aroEF:5’-CTTAAGTCTCAAGCAGAGAGACCTGCAGGCATGCAAGC-3’;SEQ ID NO.17;
pK18-aroER:5’-TAAAATCGCGGTGAGCGACTCTAGAGGATCCCCGGGTAC-3’;SEQ IDNO.18。
基因扩增体系、基因扩增程序同上,得到aroE-up、aroE-down和pK-aroE载体,连接转化验证方式同上,得到大肠杆菌EC002,质粒命名为pK18-aroE,经扩繁,提质粒,获得pK18-aroE质粒。
将质粒pK18-aroE电转至谷氨酸棒状杆菌GM1感受态中。感受态制备、电转、sacB验证、蔗糖培养基培养同上,aroE敲除验证引物为上述aroE-up-F/aroE-down-R。
通过验证引物验证已成功敲除aroE的菌株接种于LBHIS液体培养基中进行培养,并划线于LBHIS固体培养基平板上进行纯化和再次验证,确定无误后可保菌待用,将其命名为谷氨酸棒状杆菌GM2。
(3)以谷氨酸棒状杆菌ATCC13032基因组DNA为模板,使用引物pcaG/H-up-F/pcaG/H-up-R扩增pcaG/H-up(如SEQ ID NO.19所示),使用引物pcaG/H-down-F/pcaG/H-down-R扩增pcaG/H-down(如SEQ ID NO.20所示),获得敲除pcaG/H的上游和下游同源臂。引物序列为:
pcaG/H-up-F:5’-AACGTTGACGGTGATGCCATC-3’;SEQ ID NO.21;
pcaG/H-up-R:5’-ATTGACCCGATCTTTATACTCCGACCTTG-3’;SEQ ID NO.22;
pcaG/H-down-F:5’-GAGTATAAAGATCGGGTCAATGCGAGACCTTTCTGCGTCTAGTG-3’;SEQID NO.23;
pcaG/H-down-R:5’-CCATCGCATTGCCGAAAAGCTG-3’;SEQ ID NO.24。
质粒载体pk18mobsacb用引物pK18-pcaF/pK18-pcaR线性化得到pk-pca载体,引物序列如下:
pK18-pcaF:5’-TTCGGCAATGCGATGGGACCTGCAGGCATGCAAGC-3’;SEQ ID NO.25;
pK18-pcaR:5’-ATCACCGTCAACGTTGACTCTAGAGGATC-3’;SEQ ID NO.26。
基因扩增体系、基因扩增程序同上,得到pcaG/H-up、pcaG/H-down和pk-pca载体,连接转化验证方式同上,得到大肠杆菌EC003,质粒命名为pK18-pca,经扩繁,提质粒,获得pK18-pca质粒。
将质粒pK18-pca电转至谷氨酸棒状杆菌GM2感受态中。感受态制备、电转、sacB验证、蔗糖培养基培养同上,pcaG/H敲除验证引物为上述pcaG/H-up-F/pcaG/H-down-R。
通过验证引物验证已成功敲除pcaG/H的菌株接种于LBHIS液体培养基中进行培养,并划线于LBHIS固体培养基平板上进行纯化和再次验证,确定无误后可保菌待用,将其命名为谷氨酸棒状杆菌GM3。
(4)以谷氨酸棒状杆菌ATCC13032基因组DNA为模板,使用引物pyk-up-F/pyk-up-R扩增pyk-up(如SEQ ID NO.27所示),使用引物pyk-down-F/pyk-down-R扩增pyk-down(如SEQ ID NO.28所示),获得敲除pyk的上游和下游同源臂。引物序列为:
pyk-up-F:5’-CTCTAGAGTCCAACAGAGGTGCCGTTGTCAAAG-3’;SEQ ID NO.29;
pyk-up-R:5’-GGCTCGCTTAAATCTTTCAAAAAATGCGTTGACAC-3’;SEQ ID NO.30;
pyk-down-F:5’-GAAAGATTTAAGCGAGCCCATAAGCCTAGTACGTCATTCC-3’;SEQ IDNO.31;
pyk-down-R:5’-CAGGTCGTCCTTGATGCAGCGATCGTG-3’;SEQ ID NO.32。
质粒载体pk18mobsacb用引物pK18-pykF/pK18-pykR线性化得到pk-pyk载体,引物序列如下:
pK18-pykF:5’-CATCAAGGACGACCTGCAGGCATGCAAGC-3’;SEQ ID NO.33;
pK18-pykR:5’-CTCTGTTGGACTCTAGAGGATCCCCGGGTAC-3’;SEQ ID NO.34。
基因扩增体系、基因扩增程序同上,得到pyk-up、pyk-down和pk-pyk载体,连接转化验证方式同上,得到大肠杆菌EC004,质粒命名为pK18-pyk,经扩繁,提质粒,获得pK18-pyk质粒。
将质粒pK18-pyk电转至谷氨酸棒状杆菌GM3感受态中。感受态制备、电转、sacB验证、蔗糖培养基培养同上,pyk敲除验证引物为上述pyk-up-F/pyk-down-R。
通过验证引物验证已成功敲除pyk的菌株接种于LBHIS液体培养基中进行培养,并划线于LBHIS固体培养基平板上进行纯化和再次验证,确定无误后可保菌待用,将其命名为谷氨酸棒状杆菌GM4。
(5)以谷氨酸棒状杆菌ATCC13032的基因组DNA为模板,使用引物CG-catA-F/CG-catA-R扩增片段catA(如SEQ ID NO.35所示),获得带与质粒连接的无缝克隆同源臂(核糖体结合位点,如SEQ ID NO.36所示)的谷氨酸棒状杆菌来源的catA
以肺炎克雷伯菌肺炎亚种的基因组DNA为模板,使用引物aroY-F/aroY-R扩增片段aroY(如SEQ ID NO.37所示),获得带与catA连接的无缝克隆同源臂和RBS的肺炎克雷伯菌来源的aroY片段。
以肺炎克雷伯菌肺炎亚种的基因组DNA为模板,使用引物KP-kpdB-F/KP-kpdB-R扩增片段kpdB(如SEQ ID NO.38所示),获得带与aroY连接的无缝克隆同源臂的肺炎克雷伯菌来源的kpdB片段。
以肺炎克雷伯菌肺炎亚种的基因组DNA为模板,使用引物KP-kpdD-F/KP-kpdD-R扩增片段kpdD(如SEQ ID NO.39所示),获得带与kpdB、质粒连接的无缝克隆同源臂和RBS的肺炎克雷伯菌来源的kpdD片段。
引物序列为:
CG-catA-F:5’-CATATGACTTCAGCTGAACAGATCGTTGATC-3’;SEQ ID NO.40;
CG-catA-R:5’-CTAGTCTTCCTTATCCAGGACGAATGGG-3’;SEQ ID NO.41;
aroY-F:5’-CCTGGATAAGGAAGACTAGAAGGAGGATATACATATGACCGCACCGATTCAGGATC-3’;SEQ ID NO.42;
aroY-R:5’-ATCCCAATAATCAGTTTCATATGTATATCCTCCTTTTATTTTGCGCTACCCTGGTTTT TTTCC-3’;SEQ ID NO.43;
KP-kpdB-F:5’-CATATGAAACTGATTATTGGGATGACGGGG-3’;SEQ ID NO.44;
KP-kpdB-R:5’-TTATTCGATCTCCTGTGCAAATTGTTCT-3’;SEQ ID NO.45;
KP-kpdD-F:5’-GCACAGGAGATCGAATAAAAGGAGGATATACATATGATTTGTCCACGTTGCGC-3’;SEQ ID NO.46;
KP-kpdD-R:5’-GATTAACGCTTATCTTCCGGCAATAGCG-3’;SEQ ID NO.47。
质粒载体pEC-XK99E使用引物PEC-1-1F/PEC-1-1R线性化得到PEC载体,引物序列如下:
PEC-1-1F:5’-CGGAAGATAAGCGTTAATCTAGAGTCGACCTGCAGGCATG-3’;SEQ ID NO.48;
PEC-1-1R:5’-GTTCAGCTGAAGTCATATGTATATCCTCCTTGAGCTCGAATTCTTCTGTTTCCTGTG-3’;SEQ ID NO.49。
基因扩增体系、基因扩增程序同上,得到catAaroYkpdBkpdD和PEC载体,在PCR管中加入不同来源的1.5 µl catA、1.5 µl aroY、1.5 µl kpdB、1.5 µl kpdD和4 µl PEC载体,以及10 µl的Gibson酶。连接转化方式同上,挑取生长出的若干菌落送往华大基因公司进行测序,测序引物为上述CG-catA-F/KP-kpdBD-R,测序方式为测通,将正确菌株命名为大肠杆菌EC005,质粒命名为pEC-1,经扩繁,提质粒,获得pEC-1质粒。
(6)以谷氨酸棒状杆菌ATCC13032的基因组DNA为模板,使用引物qsuB-F/qsuB-R扩增片段qsuB(如SEQ ID NO.50所示),获得带与质粒连接的无缝克隆同源臂的谷氨酸棒状杆菌来源的qsuB
以谷氨酸棒状杆菌ATCC13032的基因组DNA为模板,使用引物aroB-F/aroB-R扩增片段aroB(如SEQ ID NO.51所示),获得带与qsuB连接的无缝克隆同源臂和RBS的谷氨酸棒状杆菌来源的aroB片段。
以谷氨酸棒状杆菌ATCC13032的基因组DNA为模板,使用引物aroD-F/aroD-R扩增片段aroD(如SEQ ID NO.52所示),获得带与aroB连接的无缝克隆同源臂和RBS的谷氨酸棒状杆菌来源的aroD片段。
以大肠杆菌K-12的基因组DNA为模板,使用引物tkt-F/tkt-R扩增片段tkt(如SEQID NO.53所示),获得带与aroD、质粒连接的无缝克隆同源臂和RBS的谷氨酸棒状杆菌来源的tkt片段。
引物序列为:
qsuB-F:5’-CATATGCGTACATCCATTGCCACTG-3’;SEQ ID NO.54;
qsuB-R:5’-CTAGTTTGGGATTCCCCGCTCG-3’;SEQ ID NO.55;
aroB-F:5’-GGGGAATCCCAAACTAGAAGGAGGATATACATATGAGCGCAGTGCAGATTTTCAAC-3’;SEQ ID NO.56;
aroB-R:5’-CTTTTAGTGGCTGATTGCCTCATAAGC-3’;SEQ ID NO.57;
aroD-F:5’-GCAATCAGCCACTAAAAGGAGGATATACATATGCCTGGAAAAATTCTC-3’;SEQ IDNO.58;
aroD-R:5’-CTTTACGTGAGGACATATGTATATCCTCCTTCTACTTTTTGAGATTTGCCAGGATATC GACC-3’;SEQ ID NO.59;
tkt-F:5’-GCAAATCTCAAAAAGTAGAAGGAGGATATACATATGTCCTCACGTAAAGAGCTTG-3’;SEQ ID NO.60;
tkt-R:5’-GGGGATCCTCTAGATTACAGCAGTTCTTTTGCTTTCGC-3’;SEQ ID NO.61。
质粒载体PXMJ19使用引物PXM-1-1F/PXM-1-1R线性化得到PXM载体,引物序列如下:
PXM-1-1F:5’-GTAATCTAGAGGATCCCCGGGTACC-3’;SEQ ID NO.62;
PXM-1-1R:5’-CAATGGATGTACGCATATGTATATCCTCCTTGTCGACCTGCAGGCATGC-3’;SEQID NO.63。
基因扩增体系、基因扩增程序同上,得到qsuBaroBaroDtkt和PXM载体,在PCR管中加入不同来源的1.5 µl qsuB、1.5 µl aroB、1.5 µl aroD、1.5 µl tkt和4 µl PXM载体,以及10 µl的Gibson酶。连接转化方式同上,挑取生长出的若干菌落送往华大基因公司进行测序,测序引物为上述qsuB-F/tkt-R,测序方式为测通,将正确菌株命名为大肠杆菌EC006,质粒命名为pXM-1,经扩繁,提质粒,获得pXM-1质粒。
将质粒pEC-1和pXM-1同时电转至谷氨酸棒状杆菌GM4感受态中,实验步骤如上所述。混匀涂布于含有50 g/L卡那霉素和5 g/L氯霉素的LBHIS固体培养基平板上,待长出菌落后,挑取平板上长出的单菌落进行kana(引物kana-F/kana-R)和Cm(引物Cm-F/Cm-R)基因的验证,将两者均验证正确菌株命名为谷氨酸棒状杆菌MA1。
引物序列为:
kana-F:5’-GTGAAACCAGTAACGTTATACGATGTCGC-3’;SEQ ID NO.64;
kana-R:5’-CTCACTGCCCGCTTTCCAG-3’;SEQ ID NO.65;
Cm-F:5’-CTTCACCGCCTGGCCCTG-3’;SEQ ID NO.66;
Cm-R:5’-CGCCCGGAAGAGAGTCAATTCAG-3’;SEQ ID NO.67。
将谷氨酸棒状杆菌MA1分别进行50 mL体系摇瓶发酵和5 L体系发酵罐补料验证。
① 菌株活化
挑取谷氨酸棒状杆菌MA1单菌落接种到LBHIS液体培养基,30 ℃,200 rpm培养12h,再次转接至新鲜LBG液体培养基二次活化12 h,将活化好的菌株MA1用于生长测试或发酵。
② 摇瓶发酵条件
恒温摇床条件为30℃、200 rpm,于250mL挡板瓶中装入50 mL发酵液(发酵培养基含50 µg/mL卡那霉素和5 µg/mL氯霉素),接种初始OD600为0.5,每菌株作三个平行实验,在发酵3 h时加入诱导剂IPTG(终浓度为0.8 mM),采用HPLC方法检测糖组分和发酵产物的变化。
③ 5 L发酵罐发酵条件
发酵罐条件为30 ℃,400 rpm,初始pH 7.0,接种OD600 2.0(接种量约为发酵体积的5-10%),0.2 L/min通气;发酵罐填充体积为总体积的50%;在发酵初始添加适量消泡剂,并视发酵条件是否添加,发酵过程中分别用50%磷酸及25%氨水自动调节pH,在发酵12 h时加入诱导剂IPTG(终浓度为0.8 mM),在发酵24 h后以5 mL/h的速率自动进行葡萄糖(葡萄糖浓度为800 g/L)补料,采用HPLC方法检测糖组分和发酵产物的变化。
发酵产物检测:液相质谱测试仪购买自安捷伦公司,葡萄糖的检测使用色谱柱Aminex HPX-87H column,使用示差检测器UltiMate 3000 Variable WavelengthDetector,流动相为5 mM H2SO4,柱温为65℃,流速为0.6 mL/min;MA的检测使用色谱柱Aminex HPX-87H column,流动相为5 mM H2SO4,使用紫外检测器RefractoMax 520,紫外光线为210 nm,柱温为40 ℃,流速为0.5 mL/min。根据由标准样品绘制的标准曲线对不同发酵样品的数据峰图进行含量计算,结果见表1、表2和图2。
表1 50 mL体系摇瓶发酵
时间(h) OD600 葡萄糖(g/L) MA(g/L)
0 0.50 45.30 0.00
8 13.90 35.61 1.91
12 27.00 23.90 4.63
24 41.05 0.00 11.99
36 36.05 0.00 12.04
表2 5 L体系发酵罐补料实验
时间(h) OD600 葡萄糖(g/L) MA(g/L)
0 2.50 46.73 0.00
6 22.50 41.35 0.03
16 50.90 0.00 1.68
30 80.50 42.30 9.00
40 98.00 37.94 10.01
48 150.00 44.05 16.40
54 187.00 37.92 21.66
60 171.00 32.03 23.77
72 190.00 26.55 26.90
84 199.00 24.74 31.42
96 180.00 24.16 36.12
118 170.00 18.73 45.85
136 150.00 20.08 56.31
148 165.00 25.54 60.59
160 172.00 20.62 77.91
172 150.00 23.41 90.20
185 155.00 32.88 83.20
在50 mL体系摇瓶发酵中菌株产生了12.04 g/L的MA(图2A),在5 L体系发酵罐补料实验中菌株产生了90.2 g/L的MA(图2B)。
实施例2
一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌的构建方法,包括以下步骤:以大肠杆菌EC869的基因组DNA为模板,使用引物EC-kpdB-F/EC-kpdB-R扩增片段kpdB(如SEQ ID NO.68所示),获得带与质粒连接的无缝克隆同源臂的大肠杆菌EC869来源的kpdB
以大肠杆菌EC869的基因组DNA为模板,使用引物EC-kpdD-F/EC-kpdD-R扩增片段kpdD(如SEQ ID NO.69所示),获得带与kpdB、质粒连接的无缝克隆同源臂和RBS的谷氨酸棒状杆菌来源的kpdD片段。
引物序列如下:
EC-kpdB-F:5’-CATATGAAACTGATCGTCGGGATGACAG-3’;SEQ ID NO.70;
EC-kpdB-R:5’-CTTTTATTCATTCTCCTGAGAAAAATTCCGGGC-3’;SEQ ID NO.71;
EC-kpdD-F:5’-TTCTCAGGAGAATGAATAAAAGGAGGATATACATATGATTTGTCCACGTTGTGC CG-3’;SEQ ID NO.72;
EC-kpdD-R:5’-GATTAGCGCTTACCTTCCGCCAG-3’;SEQ ID NO.73。
质粒载体pEC-1使用引物PEC-2-1F/PEC-2-1R线性化得到PECa载体,引物序列如下:
PEC-2-1F:5’-GGAAGGTAAGCGCTAATCTAGAGTCGACCTGCAGGCATG-3’;SEQ ID NO.74;
PEC-2-1R:5’-CGACGATCAGTTTCATATGTATATCCTCCTTTTATTTTGCGCTACCCTGGTTTTTTTCC-3’;SEQ ID NO.75。
基因扩增体系、基因扩增程序同实施例1,得到kpdBkpdD和PECa载体,在PCR管中加入不同来源的2 µl kpdB、2 µl kpdD和6 µl PECa载体,以及10 µl的Gibson酶。连接转化方式同实施例1,挑取生长出的若干菌落送往华大基因公司进行测序,测序引物为上述EC-kpdB-F/EC-kpdD-R,测序方式为测通,将正确菌株命名为大肠杆菌EC007,质粒命名为pEC-2,经扩繁,提质粒,获得pEC-2质粒。
将质粒pEC-2和pXM-1同时电转至谷氨酸棒状杆菌GM4感受态中,实验步骤同实施例1,同时进行kana(引物kana-F/kana-R)和Cm(引物Cm-F/Cm-R)基因的验证,将两者均验证正确菌株命名为谷氨酸棒状杆菌MA2。
将谷氨酸棒状杆菌MA2进行50 mL体系摇瓶发酵验证,发酵培养基与发酵操作同实施例1。菌株MA2在50 mL体系摇瓶发酵中菌株产生了9.4 g/L的MA(表3和图3)。
表3
时间(h) OD600 葡萄糖(g/L) MA(g/L)
0 0.50 45.30 0.00
8 13.80 35.10 1.51
12 26.15 27.65 3.60
24 42.25 0.70 9.47
36 35.70 0.00 9.37
实施例
一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌的构建方法,包括以下步骤:
以恶臭假单胞菌KT2440的基因组DNA为模板,使用引物PP-catA-F/PP-catA-R扩增片段catA(如SEQ ID NO.76所示),获得带与质粒连接的无缝克隆同源臂的恶臭假单胞菌KT2440来源的catA
引物序列如下:
PP-catA-F:5’-CATATGAGCAAGATTCTCACCACCGC-3’;SEQ ID NO.77;
PP-catA-R:5’-CTTTTAGGCGAGATTGATGCCCAGG-3’;SEQ ID NO.78。
质粒载体pEC-1使用引物PEC-3-1F/PEC-3-1R线性化得到PECb载体,引物序列如下:
PEC-3-1F:5’-CATCAATCTCGCCTAAAAGGAGGATATACATATGACCGCACC-3’;SEQ IDNO.79;
PEC-3-1R:5’-GGTGAGAATCTTGCTCATATGTATATCCTCCTTGAGCTCGAATTCTTCTGTTTCCTGTG-3’;SEQ ID NO.80。
基因扩增体系、基因扩增程序同实施例1。
使用上述实施例1的Gibson连接方式连接catA和PECb载体,经过上述同样验证步骤获得正确质粒,将正确的质粒命名为pEC-3。
将质粒pEC-3和pXM-1同时电转至谷氨酸棒状杆菌GM4感受态中,实验步骤同实施例1,继续进行kana(引物kana-F/kana-R)和Cm(引物Cm-F/Cm-R)基因的验证,将两者均验证正确菌株命名为谷氨酸棒状杆菌MA3。
将谷氨酸棒状杆菌MA3进行50 mL体系摇瓶发酵验证,发酵培养基与发酵操作同实施例1。菌株MA3在50 mL体系摇瓶发酵中菌株产生了10.0 g/L的MA(表4和图4)。
表4
时间(h) OD600 葡萄糖(g/L) MA(g/L)
0 0.50 45.25 0.00
8 8.77 38.07 1.10
12 24.71 23.09 4.00
24 40.00 1.07 9.80
36 38.50 0.00 9.99
实施例
一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌的构建方法,包括以下步骤:
以大肠杆菌K-12的基因组DNA为模板,使用引物aroG-F/aroG-R扩增片段aroG(如SEQ ID NO.81所示),获得带与质粒pXM-1连接的无缝克隆同源臂的谷氨酸棒状杆菌来源的aroG
引物序列如下:
aroG-F:5’-CATATGAATTATCAGAACGACGATTTACGCATCAAAG-3’;SEQ ID NO.82;
aroG-R:5’-CTTTTACCCGCGACGCGCTTT-3’;SEQ ID NO.83。
质粒载体pXM-1使用引物PXM-2-1F/PXM-2-1R线性化得到PXMa载体,引物序列如下:
PXM-2-1F:5’-CGTCGCGGGTAAAAGGAGGATATACATATGTCCTCACGTAAAG-3’;SEQ IDNO.84;
PXM-2-1R:5’-GTCGTTCTGATAATTCATATGTATATCCTCCTTCTACTTTTTGAGATTTGCCAGGATATCGACC-3’;SEQ ID NO.85。
基因扩增体系、基因扩增程序同实施例1。
使用上述实施例1的Gibson连接方式连接片段aroG和PXMa载体,经过上述同样验证步骤获得正确质粒,将正确的质粒命名为pXM-2。
将质粒pEC-1和pXM-2同时电转至谷氨酸棒状杆菌GM4感受态中,实验步骤同实施例1,继续进行kana(引物kana-F/kana-R)和Cm(引物Cm-F/Cm-R)基因的验证,将验证正确菌株命名为谷氨酸棒状杆菌MA4。
将谷氨酸棒状杆菌MA4进行50 mL体系摇瓶发酵验证,发酵培养基与发酵操作同实施例1。菌株MA4在50 mL体系摇瓶发酵中菌株产生了6.4 g/L的MA(表5和图5)。
表5
时间(h) OD600 葡萄糖(g/L) MA(g/L)
0 0.50 47.06 0.00
8 6.00 38.29 0.74
12 27.00 27.01 0.90
24 41.00 0.44 6.32
36 34.67 0.00 6.42
MA标准品的出峰时间为30.367 min,实施例1-4制备的基因工程菌株的发酵培养产物的出峰时间为30.367 min,与MA标品的出峰时间相一致,证明工程菌株的发酵产物是目标产品——MA。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (7)

1.一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌,其特征在于,所述基因工程菌为以谷氨酸棒状杆菌(Corynebacterium glutamicum)ATCC13032为出发菌株,经过底盘微生物改造,且包括顺,顺粘康酸途径构建模块和中间体高产模块的重组谷氨酸棒状杆菌;
所述底盘微生物改造为敲除pykaroEpcaG/HcatB基因;
所述顺,顺粘康酸途径构建模块表达原儿茶酸脱羧酶基因、黄素异戊二烯转移酶基因、4-羟基苯甲酸脱羧酶D亚基基因和邻苯二酚1,2-双加氧酶基因;
所述中间体高产模块表达3-脱氢奎宁酸合成酶基因、3-脱氢奎宁酸脱水酶基因、磷酸异构酶基因和转酮酶基因;
所述原儿茶酸脱羧酶基因为肺炎克雷伯菌(Kleber pneumoniae)来源的原儿茶酸脱羧酶基因;
所述黄素异戊二烯转移酶基因包括大肠杆菌(Escherichia coli)来源的黄素异戊二烯转移酶基因、肺炎克雷伯菌来源的黄素异戊二烯转移酶基因;
所述4-羟基苯甲酸脱羧酶D亚基基因包括大肠杆菌来源的4-羟基苯甲酸脱羧酶D亚基基因、肺炎克雷伯菌来源的4-羟基苯甲酸脱羧酶D亚基基因;
所述邻苯二酚1,2-双加氧酶基因包括恶臭假单胞菌(Pseudomonas putida)来源的邻苯二酚1,2-双加氧酶基因和谷氨酸棒状杆菌内源性的邻苯二酚1,2-双加氧酶基因;
所述3-脱氢奎宁酸合成酶基因为谷氨酸棒状杆菌内源性的3-脱氢奎宁酸合成酶基因;
所述3-脱氢奎宁酸脱水酶基因为谷氨酸棒状杆菌内源性的3-脱氢奎宁酸脱水酶基因;
所述磷酸异构酶基因为谷氨酸棒状杆菌内源性的磷酸异构酶基因;
所述肺炎克雷伯菌来源的原儿茶酸脱羧酶基因的核苷酸序列如SEQ ID NO.37所示;
所述大肠杆菌来源的黄素异戊二烯转移酶基因的核苷酸序列如SEQ ID NO.68所示;
所述肺炎克雷伯菌来源的黄素异戊二烯转移酶基因的核苷酸序列如SEQ ID NO.38所示;
所述大肠杆菌来源的4-羟基苯甲酸脱羧酶D亚基基因的核苷酸序列如SEQ ID NO.69所示;
所述肺炎克雷伯菌来源的4-羟基苯甲酸脱羧酶D亚基基因的核苷酸序列如SEQ IDNO.39所示;
所述恶臭假单胞菌来源的邻苯二酚1,2-双加氧酶基因的核苷酸序列如SEQ ID NO.76所示;
所述谷氨酸棒状杆菌内源性的邻苯二酚1,2-双加氧酶基因的核苷酸序列如SEQ IDNO.35所示;
所述谷氨酸棒状杆菌内源性的3-脱氢奎宁酸合成酶基因的核苷酸序列如SEQ IDNO.51所示;
所述谷氨酸棒状杆菌内源性的3-脱氢奎宁酸脱水酶基因的核苷酸序列如SEQ IDNO.52所示;
所述谷氨酸棒状杆菌内源性的磷酸异构酶基因的核苷酸序列如SEQ ID NO.50所示;
所述转酮酶基因的核苷酸序列如SEQ ID NO.53所示。
2.根据权利要求1所述的一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌,其特征在于,
所述原儿茶酸脱羧酶基因为肺炎克雷伯菌来源的原儿茶酸脱羧酶基因;
所述黄素异戊二烯转移酶基因为肺炎克雷伯菌来源的黄素异戊二烯转移酶基因;
所述4-羟基苯甲酸脱羧酶D亚基基因为肺炎克雷伯菌来源的4-羟基苯甲酸脱羧酶D亚基基因;
所述邻苯二酚1,2-双加氧酶基因为谷氨酸棒状杆菌内源性的邻苯二酚1,2-双加氧酶基因;
所述3-脱氢奎宁酸合成酶基因为谷氨酸棒状杆菌内源性的3-脱氢奎宁酸合成酶基因;
所述3-脱氢奎宁酸脱水酶基因为谷氨酸棒状杆菌内源性的3-脱氢奎宁酸脱水酶基因;
所述磷酸异构酶基因为谷氨酸棒状杆菌内源性的磷酸异构酶基因。
3.根据权利要求2所述的一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌,其特征在于,
所述中间体高产模块还表达2-磷酸-3-脱氢-脱氧庚酸醛缩酶基因;
所述2-磷酸-3-脱氢-脱氧庚酸醛缩酶基因的核苷酸序列如SEQ ID NO.81所示。
4.一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌的构建方法,其特征在于,包括以下步骤:
(1)以谷氨酸棒状杆菌ATCC13032为出发菌株,敲除pykaroEpcaG/HcatB基因,获得改造的谷氨酸棒状杆菌;
(2)在改造的谷氨酸棒状杆菌中表达权利要求1中所述的顺,顺粘康酸途径构建模块和中间体高产模块。
5.权利要求1-3任一项所述的基因工程菌或权利要求4所述的方法在生产顺,顺粘康酸中的应用。
6.权利要求1-3任一项所述的基因工程菌或权利要求4所述的方法在提高顺,顺粘康酸产量中的应用。
7.一种生产顺,顺粘康酸的方法,其特征在于,利用权利要求1-3任一项所述的基因工程菌或权利要求4所述的方法构建的基因工程菌进行发酵。
CN202311253745.4A 2023-09-27 2023-09-27 一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用 Active CN117004547B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202311253745.4A CN117004547B (zh) 2023-09-27 2023-09-27 一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用
US18/825,195 US20240425889A1 (en) 2023-09-27 2024-09-05 Genetic engineering bacterium for de novo synthesis of cis,cis-muconic acid by taking glucose as substrate and applications thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202311253745.4A CN117004547B (zh) 2023-09-27 2023-09-27 一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用

Publications (2)

Publication Number Publication Date
CN117004547A CN117004547A (zh) 2023-11-07
CN117004547B true CN117004547B (zh) 2023-12-22

Family

ID=88572945

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202311253745.4A Active CN117004547B (zh) 2023-09-27 2023-09-27 一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用

Country Status (1)

Country Link
CN (1) CN117004547B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099284A (zh) * 2014-07-01 2014-10-15 江南大学 一株以葡萄糖为底物合成粘康酸的大肠杆菌工程菌
WO2016207403A1 (en) * 2015-06-24 2016-12-29 Deinove Method of producing muconic acid
KR20180088145A (ko) * 2017-01-26 2018-08-03 (주)에스티알바이오텍 뮤코닉산 전구체 생산용 미생물 및 그 제조방법
KR20210136416A (ko) * 2020-05-07 2021-11-17 (주)에스티알바이오텍 뮤코닉산 전구체 생산용 미생물 및 이를 이용한 뮤코닉산 전구체 생산방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107177540A (zh) * 2012-01-30 2017-09-19 麦兰特公司 从经基因改造的微生物生产黏康酸
US11708590B2 (en) * 2017-07-18 2023-07-25 Arizona Board Of Regents On Behalf Of Arizona State University Synthetic metabolic funneling for biochemical production

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104099284A (zh) * 2014-07-01 2014-10-15 江南大学 一株以葡萄糖为底物合成粘康酸的大肠杆菌工程菌
WO2016207403A1 (en) * 2015-06-24 2016-12-29 Deinove Method of producing muconic acid
KR20180088145A (ko) * 2017-01-26 2018-08-03 (주)에스티알바이오텍 뮤코닉산 전구체 생산용 미생물 및 그 제조방법
KR20210136416A (ko) * 2020-05-07 2021-11-17 (주)에스티알바이오텍 뮤코닉산 전구체 생산용 미생물 및 이를 이용한 뮤코닉산 전구체 생산방법

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Choi S等.Recent Advances in Microbial Production of cis,cis-Muconic Acid.《Biomolecules》.2020,第10卷(第09期),第1-13页. *
Corynebacterium Cell Factory Design and Culture Process Optimization for Muconic Acid Biosynthesis;Lee HN等;《Sci Rep》;第08卷(第01期);第1-12页 *
Metabolic engineering of Corynebacterium glutamicum for the production of cis, cis-muconic acid from lignin;Becker J等;《Microb Cell Fact》;第17卷(第01期);第1-14页 *
Systems metabolic engineering upgrades Corynebacterium glutamicum to high-efficiency cis, cis-muconic acid production from lignin-based aromatics;Weiland F等;《Metab Eng》;第75卷;第153-169页 *
吴元庆等.大肠杆菌合成启动子的构建及在顺,顺-粘康酸生物合成中的应用.《生物工程学报》.2013,第29卷(第06期),第760-771页. *
宋国田等.产顺,顺-粘康酸细胞工厂的构建与优化.《生物工程学报》.2016,第32卷(第09期),第1221-1223页. *

Also Published As

Publication number Publication date
CN117004547A (zh) 2023-11-07

Similar Documents

Publication Publication Date Title
CN104593308B (zh) 一种基因工程菌及其构建方法和在生产木糖醇中的应用
CN107287143A (zh) 高产丁醇的大肠杆菌基因工程菌及其构建方法与应用
CN104278003B (zh) 生产d-乳酸的重组大肠杆菌及其应用
CN105420154A (zh) 双基因敲除重组红球菌、构建方法及其应用
CN103865869B (zh) 一株产α-酮基丁酸的基因工程菌及其应用
CN116970659B (zh) 一种生产聚羟基脂肪酸酯的方法
CN102154339A (zh) 一种产丁二酸大肠杆菌基因工程菌株的构建方法
CN117660277A (zh) 代谢工程改造大肠杆菌及其在发酵制备红景天苷中的应用
CN116064345A (zh) 高效生产岩藻糖基乳糖的无抗基因工程菌及其应用
CN102643774A (zh) 一株产丁二酸基因工程菌及其发酵生产丁二酸的方法
CN104974946A (zh) 耐高渗透压的重组大肠杆菌及其应用
CN117004547B (zh) 一种以葡萄糖为底物从头合成顺,顺-粘康酸的基因工程菌及其应用
CN117844728A (zh) 一种l-缬氨酸生产菌株及其构建方法与应用
CN104109651B (zh) 利用l-乳酸合成s-1,2-丙二醇的重组大肠杆菌及其构建方法
CN115927148A (zh) 一种无乳糖添加的高效生产乳酰-n-新四糖的基因工程菌及其应用
CN116064346A (zh) 一种高效合成乳糖的方法及其应用
US20240425889A1 (en) Genetic engineering bacterium for de novo synthesis of cis,cis-muconic acid by taking glucose as substrate and applications thereof
CN105754963A (zh) 一种提高延胡索酸产量的方法
CN112779201A (zh) 重组微生物及其用途、制备莽草酸和奥司他韦的方法
CN104830851A (zh) 一种甲酸脱氢酶的重组菌及其应用
CN114015634B (zh) 高产琥珀酸的重组大肠杆菌及其构建方法和应用
CN104450594B (zh) 生产聚羟基丁酸-戊酸酯的基因工程菌及其构建方法与应用
CN114874961B (zh) 一种利用乙醛合成乙偶姻的重组运动发酵单胞菌及其构建方法与应用
WO2023159745A1 (zh) 一种联产3-羟基丙酸和1,3-丙二醇的基因工程菌及其构建方法和应用
CN116904381B (zh) 一株产己二酸的重组大肠杆菌的构建及其应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant