Nothing Special   »   [go: up one dir, main page]

CN116887327A - A QoS prediction method and device - Google Patents

A QoS prediction method and device Download PDF

Info

Publication number
CN116887327A
CN116887327A CN202310842414.8A CN202310842414A CN116887327A CN 116887327 A CN116887327 A CN 116887327A CN 202310842414 A CN202310842414 A CN 202310842414A CN 116887327 A CN116887327 A CN 116887327A
Authority
CN
China
Prior art keywords
network
model
prediction model
qos
prediction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310842414.8A
Other languages
Chinese (zh)
Inventor
鲁根森
王昕�
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fudan University
Original Assignee
Fudan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fudan University filed Critical Fudan University
Priority to CN202310842414.8A priority Critical patent/CN116887327A/en
Publication of CN116887327A publication Critical patent/CN116887327A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/06Testing, supervising or monitoring using simulated traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/24Negotiating SLA [Service Level Agreement]; Negotiating QoS [Quality of Service]

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

The invention discloses a QoS prediction method and a QoS prediction device; the QoS prediction model is deployed into a network simulator based on network equipment, and the network simulator is used for constructing a digital twin network mapped with a physical network service flow; the network device loads a QoS prediction model in a network simulator for a network environment of the digital twin network. The method simulates the physical network environment based on the digital twin network in the network simulator, is favorable for realizing various changes based on the digital twin network simulating the physical network environment, obtains diversified QoS prediction results corresponding to the service flows under different physical network environments, is favorable for carrying out strategy adjustment aiming at the physical network environment of each situation in time, and improves the service quality of the end-to-end service flow.

Description

一种QoS预测方法及装置A QoS prediction method and device

技术领域Technical field

本发明涉及通信领域,尤其涉及一种服务质量(quality of service,QoS)预测方法及装置。The present invention relates to the field of communications, and in particular to a quality of service (QoS) prediction method and device.

背景技术Background technique

目前,基于当前物理网络环境对网络的服务质量进行预测,也就是基于当前特定的物理网络环境进行QoS预测。为了保证网络服务维持稳定运行,不能随意变动物理网络环境来进行QoS预测,因此QoS预测结果相对单一。然而,未来时段物理网络环境存在多种潜在的可能性变更,例如,未来时段网络带宽持续下降或信噪比恶化等,如何实现针对多样化的网络环境进行QoS预测是需要解决的技术问题。Currently, the service quality of the network is predicted based on the current physical network environment, that is, QoS prediction is performed based on the current specific physical network environment. In order to ensure that network services maintain stable operation, the physical network environment cannot be changed at will for QoS prediction, so the QoS prediction results are relatively simple. However, there are many potential changes in the physical network environment in the future. For example, the network bandwidth will continue to decrease or the signal-to-noise ratio will deteriorate in the future. How to predict QoS for diverse network environments is a technical problem that needs to be solved.

发明内容Contents of the invention

本发明提供一种QoS预测方法及装置,有利于实现针对多样化的网络环境进行QoS预测,进而有利于提高端到端业务流的服务质量。The present invention provides a QoS prediction method and device, which is beneficial to realizing QoS prediction for diversified network environments, and thereby is beneficial to improving the service quality of end-to-end business flows.

第一方面,本发明提供一种QoS预测方法,下面以网络设备作为该方法的执行主体为例进行阐述,该方法包括:网络设备将QoS预测模型部署到网络仿真器中,网络仿真器用于构建与物理网络业务流映射的数字孪生网络;网络设备在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型。In a first aspect, the present invention provides a QoS prediction method. The following takes a network device as the execution subject of the method as an example. The method includes: the network device deploys the QoS prediction model into a network simulator, and the network simulator is used to construct The digital twin network is mapped with the physical network business flow; the network device loads the QoS prediction model in the network simulator according to the network environment of the digital twin network.

一种可选的实施方式中,网络设备在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型,包括:网络设备在网络仿真器中设置数字孪生网络的网络环境;网络设备针对数字孪生网络的多种网络环境中的每种网络环境,加载QoS预测模型。In an optional implementation, the network device loads the QoS prediction model in the network simulator for the network environment of the digital twin network, including: the network device sets the network environment of the digital twin network in the network simulator; the network device targets the digital twin network. For each of the multiple network environments of the twin network, a QoS prediction model is loaded.

一种可选的实施方式中,QoS预测模型是网络设备与网络数据分析功能(networkdata analytics function,NWDAF)网元基于联邦学习获得的。In an optional implementation, the QoS prediction model is obtained based on federated learning between network equipment and network data analytics function (NWDAF) network elements.

一种可选的实施方式中,该方法还包括:网络设备基于网络设备的空口无线参数,确定与QoS参数对应的第一预测模型;网络设备向NWDAF网元发送第一预测模型对应的模型参数;网络设备接收来自NWDAF网元的第二预测模型对应的模型参数,第二预测模型是NWDAF网元基于来自多个网络设备中每个网络设备的第一预测模型对应的模型参数确定的。In an optional implementation, the method further includes: the network device determines a first prediction model corresponding to the QoS parameter based on the air interface wireless parameters of the network device; the network device sends the model parameters corresponding to the first prediction model to the NWDAF network element. ; The network device receives model parameters corresponding to the second prediction model from the NWDAF network element. The second prediction model is determined by the NWDAF network element based on the model parameters corresponding to the first prediction model from each network device in the plurality of network devices.

如果接收到第一指示信息,网络设备基于第二预测模型对应的模型参数确定QoS预测模型;否则,网络设备基于第二预测模型对应的模型参数和空口无线参数,更新第一预测模型对应的模型参数,并向NWDAF网元发送第一预测模型对应的更新后的模型参数。其中,第一指示信息用于指示网络设备停止更新模型。If the first indication information is received, the network device determines the QoS prediction model based on the model parameters corresponding to the second prediction model; otherwise, the network device updates the model corresponding to the first prediction model based on the model parameters corresponding to the second prediction model and the air interface wireless parameters. parameters, and sends updated model parameters corresponding to the first prediction model to the NWDAF network element. The first instruction information is used to instruct the network device to stop updating the model.

一种可选的实施方式中,该方法还包括:网络设备向策略控制功能(policycontrol function,PCF)网元发送网络环境对应的网络参数、针对网络环境加载QoS预测模型得到的QoS预测结果;PCF网元用于基于网络环境对应的网络参数以及QoS预测结果调整物理网络策略。In an optional implementation, the method further includes: the network device sends network parameters corresponding to the network environment to a policy control function (PCF) network element, and QoS prediction results obtained by loading the QoS prediction model for the network environment; PCF Network elements are used to adjust physical network policies based on network parameters corresponding to the network environment and QoS prediction results.

第二方面,本发明还提供了一种QoS预测装置,该装置包括:In a second aspect, the present invention also provides a QoS prediction device, which includes:

部署单元,用于将QoS预测模型部署到网络仿真器中,网络仿真器用于构建与物理网络业务流映射的数字孪生网络。The deployment unit is used to deploy the QoS prediction model into the network simulator, and the network simulator is used to build a digital twin network that maps the physical network service flow.

预测单元,用于在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型。The prediction unit is used to load the QoS prediction model in the network simulator for the network environment of the digital twin network.

一种可选的实施方式中,预测单元在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型,具体用于:在网络仿真器中设置数字孪生网络的网络环境;针对数字孪生网络的多种网络环境中的每种网络环境,加载QoS预测模型。In an optional implementation, the prediction unit loads the QoS prediction model in the network simulator for the network environment of the digital twin network, specifically for: setting the network environment of the digital twin network in the network simulator; targeting the digital twin network For each of the multiple network environments, load the QoS prediction model.

一种可选的实施方式中,QoS预测模型是QoS预测装置与NWDAF网元基于联邦学习获得的。In an optional implementation, the QoS prediction model is obtained by the QoS prediction device and the NWDAF network element based on federated learning.

一种可选的实施方式中,该装置还包括:In an optional implementation, the device further includes:

确定单元,用于基于网络设备的空口无线参数,确定与QoS参数对应的第一预测模型。A determining unit configured to determine a first prediction model corresponding to the QoS parameter based on the air interface wireless parameters of the network device.

发送单元,用于向NWDAF网元发送第一预测模型对应的模型参数。A sending unit, configured to send model parameters corresponding to the first prediction model to the NWDAF network element.

接收单元,用于接收来自NWDAF网元的第二预测模型对应的模型参数,第二预测模型是NWDAF网元基于来自多个装置中每个装置的第一预测模型对应的模型参数确定的。The receiving unit is configured to receive model parameters corresponding to the second prediction model from the NWDAF network element. The second prediction model is determined by the NWDAF network element based on the model parameters corresponding to the first prediction model from each device in the plurality of devices.

确定单元,还用于:在接收单元接收到第一指示信息时,基于第二预测模型对应的模型参数确定QoS预测模型;否则,基于第二预测模型对应的模型参数和空口无线参数,更新第一预测模型对应的模型参数。第一指示信息用于指示网络设备停止更新模型。The determining unit is also configured to: when the receiving unit receives the first indication information, determine the QoS prediction model based on the model parameters corresponding to the second prediction model; otherwise, update the QoS prediction model based on the model parameters corresponding to the second prediction model and the air interface wireless parameters. A model parameter corresponding to a prediction model. The first instruction information is used to instruct the network device to stop updating the model.

发送单元,还用于在确定单元更新第一预测模型对应的模型参数之后,向NWDAF网元发送第一预测模型对应的更新后的模型参数。The sending unit is also configured to send the updated model parameters corresponding to the first prediction model to the NWDAF network element after the determination unit updates the model parameters corresponding to the first prediction model.

一种可选的实施方式中,发送单元还用于向PCF网元发送网络环境对应的网络参数、针对网络环境加载QoS预测模型得到的QoS预测结果;PCF网元用于基于网络环境对应的网络参数以及QoS预测结果调整物理网络策略。In an optional implementation, the sending unit is also used to send network parameters corresponding to the network environment and QoS prediction results obtained by loading the QoS prediction model for the network environment to the PCF network element; the PCF network element is used to send network parameters corresponding to the network environment based on the network environment. Parameters and QoS prediction results adjust the physical network policy.

第三方面,本发明还提供一种通信装置,包括存储器和处理器,存储器用于存储计算机程序,计算机程序包括程序指令,处理器被配置用于调用程序指令,使通信装置执行第一方面所述的方法。In a third aspect, the present invention also provides a communication device, including a memory and a processor. The memory is used to store a computer program. The computer program includes program instructions. The processor is configured to call the program instructions to cause the communication device to execute the first aspect. method described.

第四方面,本发明还提供了一种计算机可读存储介质,计算机可读存储介质中存储有计算机可读指令,当计算机可读指令在通信装置上运行时,使得通信装置执行第一方面所述的方法。In a fourth aspect, the present invention also provides a computer-readable storage medium. Computer-readable instructions are stored in the computer-readable storage medium. When the computer-readable instructions are run on the communication device, the communication device causes the communication device to execute the first aspect. method described.

和现有技术相比,本发明的有益效果在于:Compared with the prior art, the beneficial effects of the present invention are:

本发明中,网络设备可以在网络仿真器中基于数字孪生网络模拟物理网络环境,在网络仿真器中针对数字孪生网络的网络环境进行QoS预测。该方法有利于基于数字孪生网络模拟物理网络环境的多种变化,从而有利于实现针对网络环境的多种情况进行QoS预测,进而有利于及时针对各情况的物理网络环境进行策略调整,提高端到端业务流的服务质量。In the present invention, the network device can simulate the physical network environment based on the digital twin network in the network simulator, and perform QoS prediction on the network environment of the digital twin network in the network simulator. This method is conducive to simulating various changes in the physical network environment based on the digital twin network, which is conducive to QoS prediction for various situations of the network environment, and is conducive to timely adjustment of strategies for the physical network environment in each situation, improving end-to-end The service quality of end business flows.

附图说明Description of the drawings

图1是本发明实施例提供的一种网络架构的示意图。Figure 1 is a schematic diagram of a network architecture provided by an embodiment of the present invention.

图2是本发明实施例提供的一种联邦学习的示意图。Figure 2 is a schematic diagram of federated learning provided by an embodiment of the present invention.

图3是本发明实施例提供的一种数字孪生网络架构的示意图。Figure 3 is a schematic diagram of a digital twin network architecture provided by an embodiment of the present invention.

图4是本发明实施例提供的一种QoS预测方法的流程示意图。Figure 4 is a schematic flowchart of a QoS prediction method provided by an embodiment of the present invention.

图5是本发明实施例提供的另一种QoS预测方法的示意图。Figure 5 is a schematic diagram of another QoS prediction method provided by an embodiment of the present invention.

图6是本发明实施例提供的一种QoS预测方法框架的示意图。Figure 6 is a schematic diagram of a QoS prediction method framework provided by an embodiment of the present invention.

图7是本发明实施例提供的一种QoS预测装置的结构示意图。Figure 7 is a schematic structural diagram of a QoS prediction device provided by an embodiment of the present invention.

图8是本发明实施例提供的一种通信装置的结构示意图。Figure 8 is a schematic structural diagram of a communication device provided by an embodiment of the present invention.

具体实施方式Detailed ways

下面结合本发明中的附图对本发明进行描述。The present invention will be described below with reference to the drawings in the present invention.

首先,为了更好地理解本发明,对本发明适用的通信系统进行描述。First, in order to better understand the present invention, a communication system to which the present invention is applicable is described.

本发明的技术方案可以应用于各种通信系统,例如:长期演进(long termevolution,LTE)系统、第四代移动通信技术(4th generation,4G)系统、新空口技术(newradio,NR)系统、第五代移动通信技术(5th generation mobile networks,5G)系统,以及随着通信技术的不断发展,本发明的技术方案还可用于后续演进的通信系统,如第六代移动通信技术(6th generation mobile networks,6G)系统、第七代移动通信技术(7thgeneration mobile networks,7G)系统,等等。The technical solution of the present invention can be applied to various communication systems, such as: long term evolution (LTE) system, fourth generation mobile communication technology (4th generation, 4G) system, new radio technology (newradio, NR) system, The fifth generation mobile communication technology (5th generation mobile networks, 5G) system, and with the continuous development of communication technology, the technical solution of the present invention can also be used in subsequent evolved communication systems, such as the sixth generation mobile communication technology (6th generation mobile networks) , 6G) system, seventh generation mobile communication technology (7th generation mobile networks, 7G) system, etc.

请参见图1,图1是本发明提供的一种网络架构的示意图,该网络架构为5G系统的独立组网架构,本发明的技术方案可应用于该网络架构。该网络架构包括:终端设备、无线接入网(radio access network,RAN)、5G核心网(5G core,5GC)和数据网络(datanetwork,DN)。其中,5G核心网可以分为控制面功能(controller plane function,CPF)和用户面功能(user plane function,UPF)。CPF包括NWDAF、网络开放功能(networkexposure function,NEF)、网络存储功能(network repository function,NRF)、PCF、统一数据管理功能(unified data management,UDM)、应用功能(application function,AF)、认证服务器功能(authentication server function,AUSF)、接入和移动性管理功能(access and mobility management function,AMF)、会话管理功能(session managementfunction,SMF)。另外,在图1所示的网络架构中,N1、N2、N3、N4和N6是5G网络连接通道;终端设备和RAN设备之间通过空口(over the air,OTA)进行连接,其他设备/网元之间的连接均为有线连接。因此,空口的无线参数变化对端到端业务流QoS的影响很大,RAN设备的本地数据与当前网络所能提供的5G业务服务质量关系密切。Please refer to Figure 1. Figure 1 is a schematic diagram of a network architecture provided by the present invention. The network architecture is an independent networking architecture of the 5G system. The technical solution of the present invention can be applied to this network architecture. The network architecture includes: terminal equipment, radio access network (RAN), 5G core network (5G core, 5GC) and data network (datanetwork, DN). Among them, the 5G core network can be divided into control plane function (CPF) and user plane function (UPF). CPF includes NWDAF, network exposure function (NEF), network repository function (NRF), PCF, unified data management function (UDM), application function (AF), and authentication server Function (authentication server function, AUSF), access and mobility management function (AMF), session management function (SMF). In addition, in the network architecture shown in Figure 1, N1, N2, N3, N4 and N6 are 5G network connection channels; terminal equipment and RAN equipment are connected through the air interface (over the air, OTA), and other equipment/network The connections between elements are all wired connections. Therefore, changes in the wireless parameters of the air interface have a great impact on the end-to-end service flow QoS. The local data of the RAN equipment is closely related to the 5G service quality that the current network can provide.

实施例中,NWDAF是5G网络中核心网的一种网络功能。NWDAF网元(即具有NWDAF的网元)可用于收集和分析各种网络功能和元素的数据,如收集和分析用户平面功能、会话管理功能的数据。NWDAF网元还可负责为各种网络功能网元提供实时的网络智能,如流量优化、网络切片、QoS管理等。In the embodiment, NWDAF is a network function of the core network in the 5G network. NWDAF network elements (that is, network elements with NWDAF) can be used to collect and analyze data on various network functions and elements, such as collecting and analyzing data on user plane functions and session management functions. NWDAF network elements can also be responsible for providing real-time network intelligence for various network function network elements, such as traffic optimization, network slicing, QoS management, etc.

5GC是5G网络的核心网络,其是支持5G无线接入技术的基础设施之一。5GC包括一系列网络功能,如用户数据管理、会话管理、安全功能等,5GC可以实现高速数据传输、低时延、大规模连接和更安全的通信等,从而支持各种新的应用场景和服务。5GC is the core network of 5G network and one of the infrastructure supporting 5G wireless access technology. 5GC includes a series of network functions, such as user data management, session management, security functions, etc. 5GC can achieve high-speed data transmission, low latency, large-scale connections and more secure communications, thereby supporting various new application scenarios and services. .

下一代基站(the next generation node B,gNB)是一种RAN设备,其连接到核心网并提供无线接入。gNB能够支持更高的带宽和更低的延迟,同时还支持更多的连接和设备类型,包括物联网设备、智能家居设备和车辆等。gNB还采用了更加灵活的架构,可以根据网络需求进行部署和配置以支持不同的应用场景。The next generation base station (the next generation node B, gNB) is a RAN device that is connected to the core network and provides wireless access. gNB can support higher bandwidth and lower latency, while also supporting more connections and device types, including IoT devices, smart home devices and vehicles. gNB also adopts a more flexible architecture that can be deployed and configured according to network requirements to support different application scenarios.

PCF网元(即具有PCF的网元)可用于使用统一的策略框架来管理网络行为,并协同统一数据仓储功能(unified data repository,UDR)网元(即具有UDR的网元)中的用户信息来执行相关的策略。PCF network elements (that is, network elements with PCF) can be used to use a unified policy framework to manage network behavior and coordinate user information in unified data repository (unified data repository, UDR) network elements (that is, network elements with UDR) to implement relevant strategies.

空口OTA用于在通信系统中基于无线电波接收数据和发送数据。空口OTA通常可用于描述无线电信号在发送和接收之间的过程,即无线信号从终端设备传输到基站或从基站传输到终端设备的过程。Air interface OTA is used to receive and send data based on radio waves in communication systems. Air interface OTA can usually be used to describe the process between sending and receiving radio signals, that is, the process of wireless signals being transmitted from terminal equipment to base stations or from base stations to terminal equipment.

终端设备也可以称为用户设备(user equipment,UE)。终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端等等。Terminal equipment may also be called user equipment (UE). The terminal device can be a mobile phone (mobile phone), tablet computer (Pad), computer with wireless transceiver function, virtual reality (VR) terminal, augmented reality (AR) terminal, industrial control (industrial control) wireless terminals, wireless terminals in self-driving, wireless terminals in remote medical, wireless terminals in smart grid, wireless terminals in transportation safety, smart Wireless terminals in smart cities, etc.

网络设备可为具有无线收发功能的设备或可设置于该设备的芯片,该网络设备可以为RAN设备。例如,网络设备包括但不限于:演进型节点B(evolved node B,eNB)、gNB、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、网络设备控制器(base station controller,BSC)、网络设备收发台(base transceiver station,BTS)、家庭网络设备(例如,home evolved Node B,或home Node B,HNB)、基带单元(basebandunit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为4G、5G、6G等系统中使用的设备等,这里不做限制。The network device may be a device with a wireless transceiver function or a chip that can be disposed on the device. The network device may be a RAN device. For example, network equipment includes but is not limited to: evolved node B (evolved node B, eNB), gNB, radio network controller (radio network controller, RNC), node B (Node B, NB), network equipment controller (base station controller (BSC), network equipment transceiver station (BTS), home network equipment (for example, home evolved Node B, or home Node B, HNB), baseband unit (BBU), wireless relay node, Wireless backhaul nodes, transmission points (transmission and reception point, TRP or transmission point, TP), etc., can also be equipment used in 4G, 5G, 6G and other systems. There are no restrictions here.

为了便于理解本发明公开的实施例,本发明公开的实施例中场景以5G网络的场景为例进行说明,应当指出的是,本发明公开的实施例中的方案还可以应用于其他无线通信网络中,相应的名称也可以用其他无线通信网络中的对应功能的名称进行替代。In order to facilitate understanding of the embodiments disclosed in the present invention, the scenarios in the embodiments disclosed in the present invention are described by taking the scenario of 5G network as an example. It should be noted that the solutions in the embodiments disclosed in the present invention can also be applied to other wireless communication networks. , the corresponding name can also be replaced with the name of the corresponding function in other wireless communication networks.

下面对本发明涉及的相关概念进行简单的介绍。The relevant concepts involved in the present invention are briefly introduced below.

1.服务质量1. Service quality

服务质量(即QoS)可用于针对不同应用场景的需求、针对不同服务类型和不同应用程序提供端到端的服务质量保证,从而为用户提供更好的服务体验。例如,对于实时视频流和语音通话等实时通信应用,需要低延迟和高带宽的服务质量,以确保通信质量和用户体验。又例如,对于大规模物联网应用和云计算等应用程序,需要高可靠性和高安全性的服务质量,以确保数据传输的可靠性和安全性。因此,在动态变化的网络中对服务质量进行预测,根据可能出现的服务质量变化提前做出策略调整,能够更有效地保障业务质量和用户体验。Quality of Service (i.e. QoS) can be used to provide end-to-end service quality guarantees for different application scenarios, different service types and different applications, thereby providing users with a better service experience. For example, for real-time communication applications such as real-time video streaming and voice calls, low-latency and high-bandwidth quality of service are required to ensure communication quality and user experience. For another example, for applications such as large-scale Internet of Things applications and cloud computing, high reliability and high security quality of service are required to ensure the reliability and security of data transmission. Therefore, predicting service quality in a dynamically changing network and making strategic adjustments in advance based on possible changes in service quality can more effectively ensure service quality and user experience.

在5G网络中,QoS的主要特征包括:带宽、时延、可靠性、安全性、灵活性。其中,5G网络提供高带宽,可以满足高速数据传输需求。5G网络提供低延迟服务,可以实现高速实时通信。5G网络提供高可靠性服务,可实现高可靠性数据传输。5G网络提供高安全性服务,可以保护用户数据隐私和网络安全。5G网络提供灵活的QoS服务质量,可以根据应用场景和用户需求进行调整和优化。In 5G networks, the main characteristics of QoS include: bandwidth, delay, reliability, security, and flexibility. Among them, 5G network provides high bandwidth and can meet the needs of high-speed data transmission. 5G networks provide low-latency services and enable high-speed real-time communications. 5G networks provide high-reliability services and enable high-reliability data transmission. 5G networks provide high-security services that can protect user data privacy and network security. 5G networks provide flexible QoS service quality that can be adjusted and optimized according to application scenarios and user needs.

在5G系统中,QoS参数(即与QoS相关的参数)包括:带宽(Bandwidth)、信噪比(signal to interference plus noise ratio,SNR)、误码率(bit error rate,BER)、接收信号参考功率(reference signal receiving power,RSRP)、调制和编码策略(modulationand coding scheme,MCS)、时延(Latency)、丢包率(Packet Loss)、容量(Capacity)、调度算法(Scheduling algorithm)、重传次数(Number of retransmissions)。下面以基站为例,对这些参数进行阐述。In the 5G system, QoS parameters (ie, parameters related to QoS) include: bandwidth (Bandwidth), signal to interference plus noise ratio (SNR), bit error rate (bit error rate, BER), received signal reference Power (reference signal receiving power, RSRP), modulation and coding scheme (MCS), delay (Latency), packet loss rate (Packet Loss), capacity (Capacity), scheduling algorithm (Scheduling algorithm), retransmission Number of retransmissions. Taking the base station as an example, these parameters are explained below.

其中,带宽是基站分配给每个用户的可用频谱带宽。SNR是基站接收到的信号强度与噪声水平之间的比率,SNR可用于评估信道质量。BER是在传输过程中发生错误比特的比率,BER通常用于衡量数据的可靠性。RSRP可用于在无线网络中表征无线信号强度。MCS是物理层数据流的编码方式,标准规范中有十六种MCS,按照传输效率从低到高的调制方式可包括:二进制相移键控(binary phase shift keying,BPSK)、正交相移键控(quadraturephase shift keying,QPSK)、16正交幅度调制(quadrature amplitude modulation,QAM)、64QAM。Among them, bandwidth is the available spectrum bandwidth allocated by the base station to each user. SNR is the ratio between the signal strength received by a base station and the noise level. SNR can be used to evaluate channel quality. BER is the ratio of bit errors that occur during transmission. BER is often used to measure the reliability of data. RSRP can be used to characterize wireless signal strength in wireless networks. MCS is the encoding method of physical layer data stream. There are sixteen kinds of MCS in the standard specification. The modulation methods from low to high according to the transmission efficiency can include: binary phase shift keying (BPSK), quadrature phase shift Keying (quadraturephase shift keying, QPSK), 16 quadrature amplitude modulation (quadrature amplitude modulation, QAM), 64QAM.

时延是数据从源传输到目标所需的时间,时延可用于衡量实时应用程序(如语音和视频)质量。丢包率是在数据传输过程中丢失的数据包的比率,丢包率通常会影响应用程序的响应时间和质量。容量是基站能够同时处理的用户数量,容量通常由基站中处理器的处理能力和存储容量决定。调度算法是基站用于分配带宽和资源的算法,其可用于确保满足不同用户的服务质量要求。重传次数是在数据传输过程中需要重新发送数据包的次数,重传次数通常会影响延迟和丢包率。Latency is the time it takes for data to travel from source to destination and can be used to measure the quality of real-time applications such as voice and video. Packet loss rate is the ratio of packets lost during data transmission, and packet loss rate often affects the response time and quality of an application. Capacity is the number of users that a base station can handle simultaneously. Capacity is usually determined by the processing power and storage capacity of the processor in the base station. The scheduling algorithm is the algorithm used by the base station to allocate bandwidth and resources, which can be used to ensure that the service quality requirements of different users are met. The number of retransmissions is the number of times a data packet needs to be resent during data transmission. The number of retransmissions usually affects delay and packet loss rate.

2.联邦学习2. Federated Learning

联邦学习(federated learning,FL)是一种新兴的机器学习框架,FL允许在保护数据隐私的前提下,多个参与者通过共同训练机器学习模型来实现预测或分类任务,FL是一种有效的分布式学习方法。在联邦学习中,每个参与者(例如移动设备、传感器或云服务器)都保存着自己的本地数据,并通过交换加密的模型参数来更新全局模型,而不是直接共享数据。这种方法不仅可以保护数据隐私,还可以减少通信开销和降低模型泛化误差。Federated learning (FL) is an emerging machine learning framework. FL allows multiple participants to jointly train machine learning models to achieve prediction or classification tasks while protecting data privacy. FL is an effective Distributed learning methods. In federated learning, each participant (such as a mobile device, sensor, or cloud server) saves its own local data and updates the global model by exchanging encrypted model parameters instead of sharing data directly. This method can not only protect data privacy, but also reduce communication overhead and reduce model generalization error.

其中,联邦学习不需要参与者将本地数据上传到中心服务器,可以避免数据泄露和滥用,因此联邦学习具有数据隐私保护的优点。并且,联邦学习中参与者与中心服务器之间只需要交换模型参数,而不是原始数据,因此通信开销相对较小。另外,联邦学习可以通过结合不同参与者的数据来增加训练样本,从而提高模型泛化性能,因此,联邦学习还具有更好的模型泛化性能。Among them, federated learning does not require participants to upload local data to the central server, which can avoid data leakage and abuse. Therefore, federated learning has the advantage of data privacy protection. Moreover, in federated learning, only model parameters, rather than raw data, need to be exchanged between participants and the central server, so the communication overhead is relatively small. In addition, federated learning can increase training samples by combining data from different participants, thereby improving model generalization performance. Therefore, federated learning also has better model generalization performance.

例如,结合图2,客户端(client)#1、客户端#2、客户端#3这三个参与者中每个客户端均可以在本地训练模型,得到每个客户端分别对应的本地FL模型(local FL model),每个客户端分别向联邦中心(如中心服务器)发送该客户端对应的本地FL模型所对应的模型参数(如图2中客户端#1发送ω1、客户端#2发送ω2、客户端#3发送ω3);联邦中心基于来自客户端#1、客户端#2、客户端#3分别的模型参数,确定全局FL模型(global FL model),并向客户端#1、客户端#2、客户端#3分别发送全局FL模型所对应的模型参数(如图2中联邦中心发送g)。For example, combined with Figure 2, each client among the three participants (client) #1, client #2, and client #3 can train the model locally and obtain the local FL corresponding to each client. Model (local FL model), each client sends the model parameters corresponding to the local FL model corresponding to the client to the federation center (such as the central server) (in Figure 2, client #1 sends ω 1 , client # 2 sends ω 2 and client #3 sends ω 3 ); the federation center determines the global FL model based on the model parameters from client #1, client #2, and client #3, and reports it to the client Client #1, client #2, and client #3 respectively send the model parameters corresponding to the global FL model (the federation center sends g in Figure 2).

3.数字孪生网络3. Digital twin network

数字孪生网络(digital twin network,DTN)是以数字化方式创建物理网络实体对应的虚拟孪生体,且该虚拟孪生体与与物理网络实体之间可以实时交互映射;DTN是基于现实网络数据交互的虚拟仿真环境。DTN可以是基于大数据和AI进行构建的,DTN有利于有效保障网络负载大、网络规模大的场景下的网络运维,实时优化网络,并助力网络切片、边缘计算等新业务创新。Digital twin network (DTN) is a virtual twin corresponding to a physical network entity that is digitally created, and the virtual twin can be interactively mapped with the physical network entity in real time; DTN is a virtual twin based on real network data interaction. simulation environment. DTN can be built based on big data and AI. DTN is conducive to effectively ensuring network operation and maintenance in scenarios with heavy network load and large network scale, optimizing the network in real time, and assisting new business innovations such as network slicing and edge computing.

DTN的核心要素为:数据、模型、交互、映射。可以通过实时或者非实时的数据采集方式,采集物理网络层的数据,并存储到数据仓库,为构建网络孪生体以及为网络孪生体赋能提供数据支撑,并且基于这些数据形成功能丰富的数据模型。其中,物理网络层的数据可包括:物理实体数据、空间数据、资源数据、协议、接口、路由、信令、流程、性能、日志、状态等。另外,可以通过灵活组合的方式创建多种模型实例,服务于各种网络应用,同时通过网络孪生体以高保真可视化的页面去映射物理网络实体,最终达到可视化页面、孪生网络层、物理网络层的实时交互。同时,基于人工智能和大数据分析等技术,可以对物理网络进行全生命周期的分析、诊断、仿真和控制。The core elements of DTN are: data, model, interaction, and mapping. Physical network layer data can be collected through real-time or non-real-time data collection methods and stored in the data warehouse to provide data support for building and empowering network twins, and form a feature-rich data model based on these data. . Among them, the data of the physical network layer may include: physical entity data, spatial data, resource data, protocols, interfaces, routing, signaling, processes, performance, logs, status, etc. In addition, multiple model instances can be created through flexible combination to serve various network applications. At the same time, physical network entities can be mapped through high-fidelity visualization pages through the network twin, and finally the visualization page, twin network layer, and physical network layer can be achieved. real-time interaction. At the same time, based on technologies such as artificial intelligence and big data analysis, the entire life cycle of physical networks can be analyzed, diagnosed, simulated and controlled.

请参见图3,图3是本发明实施例提供的一种数字孪生网络架构的示意图。该数字孪生网络架构包括:网络应用层、孪生网络层、物理网络层。其中,网络应用层可用于实现网络技术验证优化、网络可视化、网络管理维护,孪生网络层可用于实现服务映射模型、网络孪生体管理、网络仿真验证,网络应用层和孪生网络层之间可以进行数据交互。Please refer to Figure 3. Figure 3 is a schematic diagram of a digital twin network architecture provided by an embodiment of the present invention. The digital twin network architecture includes: network application layer, twin network layer, and physical network layer. Among them, the network application layer can be used to implement network technology verification and optimization, network visualization, and network management and maintenance. The twin network layer can be used to implement service mapping models, network twin management, and network simulation verification. The network application layer and the twin network layer can be used to implement Data interaction.

4.网络仿真器4. Network emulator

网络仿真器可用于构建数字孪生网络,网络仿真器可以是网络设备中基于代码实现的虚拟单元,还可以是部署在网络设备中的硬件,不作限制。The network simulator can be used to build a digital twin network. The network simulator can be a virtual unit implemented based on code in the network device, or it can be hardware deployed in the network device, without limitation.

本发明实施例中,网络仿真器可以是ns-3。ns-3是一个广泛使用的开源网络仿真器,其可用于模拟和评估各种通信网络协议和应用程序。ns-3提供了一组模块化的库,包括网络协议、路由、无线网络、传感器网络、移动网络、应用程序和设备等。使用ns-3,用户可以创建一个虚拟的通信网络环境,对各种网络协议和应用程序进行测试和评估。另外,本发明实施例中的网络仿真器还可以其他能够用于构建数字孪生网络的仿真器,不作限制。In this embodiment of the present invention, the network emulator may be ns-3. ns-3 is a widely used open source network simulator that can be used to simulate and evaluate various communication network protocols and applications. ns-3 provides a modular set of libraries including network protocols, routing, wireless networks, sensor networks, mobile networks, applications and devices, etc. Using ns-3, users can create a virtual communications network environment to test and evaluate various network protocols and applications. In addition, the network simulator in the embodiment of the present invention can also be used for other simulators that can be used to build a digital twin network, without limitation.

目前,5G网络服务质量是基于当前物理网络环境进行预测,其预测结果是基于当前特定物理网络状态下得到的QoS预测值。然而,为了保证网络服务维持稳定运行,不能随意变动物理网络环境来进行相关测试,所以QoS预测结果相对单一;而未来时段物理网络存在多种潜在的可能性变更(例如:未来时段网络带宽持续下降或是信噪比恶化等),其特定变更条件下的QoS变化趋势可能无法得到有效预测。Currently, 5G network service quality is predicted based on the current physical network environment, and the prediction results are based on the QoS prediction value obtained under the current specific physical network state. However, in order to ensure that network services maintain stable operation, the physical network environment cannot be changed at will to conduct relevant tests, so the QoS prediction results are relatively single; and there are many potential changes in the physical network in the future period (for example, the network bandwidth continues to decrease in the future period Or the signal-to-noise ratio deteriorates, etc.), the QoS change trend under specific changing conditions may not be effectively predicted.

本发明实施例提供一种QoS预测方法,有利于基于数字孪生网络模拟物理网络环境的多种变化,从而有利于实现针对网络环境多种情况进行QoS预测,进而有利于及时针对各情况的物理网络环境进行策略调整,提高端到端业务流的服务质量。Embodiments of the present invention provide a QoS prediction method, which is conducive to simulating various changes in the physical network environment based on the digital twin network, thereby being conducive to realizing QoS prediction for various situations of the network environment, and thereby being conducive to timely prediction of the physical network for each situation. Make strategic adjustments to the environment to improve the service quality of end-to-end business flows.

下面结合附图对本发明提供的QoS预测方法及装置进行阐述。The QoS prediction method and device provided by the present invention will be described below with reference to the accompanying drawings.

请参见图4,图4是本发明提供的一种QoS预测方法的流程示意图。该QoS预测方法的执行主体可以为网络设备,或者还可以为网络设备中的芯片等,在此不做限定。图5以网络设备作为执行主体为例进行说明。该QoS预测方法包括以下步骤:Please refer to Figure 4, which is a schematic flow chart of a QoS prediction method provided by the present invention. The execution subject of the QoS prediction method may be a network device, or may also be a chip in the network device, etc., which is not limited here. Figure 5 takes the network device as the execution subject as an example for illustration. The QoS prediction method includes the following steps:

S101、网络设备将QoS预测模型部署到网络仿真器中,该网络仿真器用于构建与物理网络业务流映射的数字孪生网络。S101. The network device deploys the QoS prediction model into a network simulator. The network simulator is used to build a digital twin network that maps to the physical network service flow.

在一种可选的实施方式中,QoS预测模型是网络设备与NWDAF网元基于联邦学习获得的。采用联邦学习的方式确定QoS预测模型有利于使得各个网络设备可以通过交互模型参数来确定QoS预测模型,而可以不用向其他设备共享本地数据,从而提高网络设备的数据隐私安全性。可见,采用联邦学习的方式可以在保证网络设备的数据隐私安全的同时,兼顾训练数据集的完整性。In an optional implementation, the QoS prediction model is obtained by network equipment and NWDAF network elements based on federated learning. Using federated learning to determine the QoS prediction model is beneficial for each network device to determine the QoS prediction model through interactive model parameters without sharing local data with other devices, thereby improving the data privacy security of network devices. It can be seen that the federated learning method can ensure the data privacy and security of network devices while taking into account the integrity of the training data set.

可选的,该方法还可以包括:多个网络设备中每个网络设备基于该网络设备的空口无线参数,确定与QoS参数对应的第一预测模型;多个网络设备中每个网络设备向NWDAF网元发送第一预测模型对应的模型参数。NWDAF网元基于来自多个网络设备中每个网络设备的第一预测模型对应的模型参数,确定第二预测模型。NWDAF网元向多个网络设备中每个网络设备发送第二预测模型对应的模型参数。Optionally, the method may also include: each network device among the plurality of network devices determines a first prediction model corresponding to the QoS parameter based on the air interface wireless parameter of the network device; each network device among the plurality of network devices reports to the NWDAF The network element sends model parameters corresponding to the first prediction model. The NWDAF network element determines the second prediction model based on model parameters corresponding to the first prediction model from each network device in the plurality of network devices. The NWDAF network element sends model parameters corresponding to the second prediction model to each network device in the plurality of network devices.

如果第二预测模型对应的模型参数收敛,NWDAF网元可向多个网络设备发送第一指示信息,第一指示信息用于指示网络设备停止更新模型。如果第二预测模型对应的模型参数不收敛,NWDAF网元不向多个网络设备发送第一指示信息。If the model parameters corresponding to the second prediction model converge, the NWDAF network element may send first instruction information to multiple network devices, and the first instruction information is used to instruct the network devices to stop updating the model. If the model parameters corresponding to the second prediction model do not converge, the NWDAF network element does not send the first indication information to the multiple network devices.

针对多个网络设备中的每个网络设备,如果该网络设备接收到第一指示信息,该网络设备基于第二预测模型对应的模型参数确定QoS预测模型;否则,该网络设备基于第二预测模型对应的模型参数和空口无线参数,更新第一预测模型对应的模型参数,并向NWDAF网元发送第一预测模型对应的更新后的模型参数。NWDAF网元基于多个网络设备中每个网络设备的第一预测模型对应的更新后的模型参数更新第二预测模型对应的模型参数,并向多个网络设备中每个网络设备发送第二预测模型对应的更新后的模型参数。For each network device in the plurality of network devices, if the network device receives the first indication information, the network device determines the QoS prediction model based on the model parameters corresponding to the second prediction model; otherwise, the network device determines the QoS prediction model based on the second prediction model. Corresponding model parameters and air interface wireless parameters, update model parameters corresponding to the first prediction model, and send updated model parameters corresponding to the first prediction model to the NWDAF network element. The NWDAF network element updates the model parameters corresponding to the second prediction model based on the updated model parameters corresponding to the first prediction model of each network device in the plurality of network devices, and sends the second prediction to each network device in the plurality of network devices. The updated model parameters corresponding to the model.

在NWDAF网元更新第二预测模型对应的模型参数之后,如果第二预测模型对应的模型参数收敛,NWDAF网元向多个网络设备发送第一指示信息;如果第二预测模型对应的模型参数不收敛,NWDAF网元不向多个网络设备发送第一指示信息。针对多个网络设备中的每个网络设备,可以基于是否接收到第一指示信息,确定执行基于最近一次接收到的第二预测模型对应的模型参数确定QoS预测模型这一操作,或者,执行基于最近一次接收到的第二预测模型对应的模型参数和空口无线参数更新第一预测模型对应的模型参数这一操作。After the NWDAF network element updates the model parameters corresponding to the second prediction model, if the model parameters corresponding to the second prediction model converge, the NWDAF network element sends the first indication information to multiple network devices; if the model parameters corresponding to the second prediction model do not converge, Convergence, the NWDAF network element does not send the first indication information to multiple network devices. For each network device in the plurality of network devices, it may be determined to perform the operation of determining the QoS prediction model based on the model parameters corresponding to the most recently received second prediction model based on whether the first indication information is received, or to perform the operation of determining the QoS prediction model based on The operation of updating the model parameters corresponding to the first prediction model with the most recently received model parameters and air interface wireless parameters corresponding to the second prediction model.

可理解地,网络设备在每次更新第一预测模型对应的模型参数之后,均执行向NWDAF网元发送第一预测模型对应的更新后的模型参数这一操作。NWDAF网元在每次接收到来自多个网络设备分别的第一预测模型对应的更新后的模型参数之后,均执行基于多个网络设备分别的第一预测模型对应的更新后的模型参数更新第二预测模型对应的模型参数,并向多个网络设备分别发送第二预测模型对应的更新后的模型参数这一操作,以及基于第二预测模型对应的更新后的模型参数是否收敛确定是否向多个网络设备分别发送第一指示信息这一操作。直至NWDAF网元确定第二预测模型对应的模型参数收敛,NWDAF网元可停止执行基于来自多个网络设备分别的模型参数更新第二预测模型对应的模型参数,并向多个网络设备中每个网络设备发送第二预测模型对应的模型参数这一操作。网络设备在接收到第一指示信息时,停止执行更新第一预测模型对应的模型参数这一操作,而执行基于最近一次接收到的第二预测模型对应的模型参数确定QoS预测模型这一操作。It can be understood that, each time the network device updates the model parameters corresponding to the first prediction model, it performs the operation of sending the updated model parameters corresponding to the first prediction model to the NWDAF network element. Each time the NWDAF network element receives updated model parameters corresponding to the first prediction models from multiple network devices, it performs an update of model parameters based on the updated model parameters corresponding to the first prediction models of the multiple network devices. The operation of sending model parameters corresponding to the second prediction model to multiple network devices respectively, and determining whether to send the updated model parameters corresponding to the second prediction model to the multiple network devices based on whether the updated model parameters corresponding to the second prediction model converge. The operation of sending the first instruction information to each network device respectively. Until the NWDAF network element determines that the model parameters corresponding to the second prediction model converge, the NWDAF network element may stop executing the update of the model parameters corresponding to the second prediction model based on the model parameters from multiple network devices, and update the model parameters corresponding to the second prediction model to each of the multiple network devices. The network device sends the model parameters corresponding to the second prediction model. When receiving the first indication information, the network device stops performing the operation of updating the model parameters corresponding to the first prediction model, and performs the operation of determining the QoS prediction model based on the most recently received model parameters corresponding to the second prediction model.

另外,如果待预测的QoS参数的数量为M(M为正整数),每个网络设备确定的第一预测模型的数量为M,每个网络设备确定的M个第一预测模型与M个QoS参数一一对应;NWDAF网元确定的第二预测模型的数量为M,该M个第二预测模型与M个QoS参数一一对应;相应的,每个网络设备确定的QoS预测模型的数量为M,该M个QoS预测模型与M个QoS参数一一对应。In addition, if the number of QoS parameters to be predicted is M (M is a positive integer), the number of first prediction models determined by each network device is M, and the M first prediction models determined by each network device are related to the M QoS Parameters correspond one to one; the number of second prediction models determined by the NWDAF network element is M, and the M second prediction models correspond to M QoS parameters one-to-one; correspondingly, the number of QoS prediction models determined by each network device The number is M, and the M QoS prediction models correspond to the M QoS parameters one-to-one.

例如,以线性模型,空口无线参数为MCS、RSRP、SINR,QoS参数为带宽、时延、丢包率为例进行示例性地阐述。n个网络设备中每个网络设备在本地训练与带宽对应的第一预测模型、与时延对应的第一预测模型、与丢包率对应的第一预测模型。其中,n个网络设备中第i个网络设备在本地训练与带宽对应的第一预测模型可如公式(1)所示,与时延对应的第一预测模型可如公式(2)所示,与丢包率对应的第一预测模型可如公式(3)所示。For example, a linear model is used as an example, the air interface wireless parameters are MCS, RSRP, and SINR, and the QoS parameters are bandwidth, delay, and packet loss rate. Each of the n network devices locally trains a first prediction model corresponding to bandwidth, a first prediction model corresponding to delay, and a first prediction model corresponding to packet loss rate. Among them, the i-th network device among the n network devices locally trains the first prediction model corresponding to the bandwidth as shown in formula (1), and the first prediction model corresponding to the delay can be shown as formula (2), The first prediction model corresponding to the packet loss rate can be as shown in formula (3).

QBandwidth_t=b1i×MCSt+b2i×RSRPt+b3i×SINRt+w1i (1)Q Bandwidth_t =b 1i ×MCS t +b 2i ×RSRP t +b 3i ×SINR t +w 1i (1)

QLatency_t=l1i×MCSt+l2i×RSRPt+l3i×SINRt+w2i (2)Q Latency_t =l 1i ×MCS t +l 2i ×RSRP t +l 3i ×SINR t +w 2i (2)

QPacketLoss_t=p1i×MCSt+p2i×RSRPt+p3i×SINRt+w3i (3)Q PacketLoss_t =p 1i ×MCS t +p 2i ×RSRP t +p 3i ×SINR t +w 3i (3)

其中,QBandwidth_t是第i个网络设备确定的与带宽对应的第一预测模型的输出,表示带宽;b1i、b2i、b3i是第i个网络设备确定的与带宽对应的第一预测模型所对应的模型参数。QLatency_t是第i个网络设备确定的与时延对应的第一预测模型的输出,表示时延;l1i、l2i、l3i是第i个网络设备确定的与时延对应的第一预测模型所对应的模型参数。QPacketLoss_t是第i个网络设备确定的与丢包率对应的第一预测模型的输出,表示丢包率;p1i、p2i、p3i是第i个网络设备确定的与丢包率对应的第一预测模型所对应的模型参数。w1i是第i个网络设备确定的与带宽对应的第一预测模型所对应的偏置参数,w2i是第i个网络设备确定的与时延对应的第一预测模型所对应的偏置参数,w3i是第i个网络设备确定的与丢包率对应的第一预测模型所对应的偏置参数。MCSt、RSRPt、SINRt是第i个网络设备确定的第一预测模型的输入,分别表示与MCS相关的数据、与RSRP相关的数据、与SINR相关的数据。Among them, Q Bandwidth_t is the output of the first prediction model corresponding to the bandwidth determined by the i-th network device, indicating the bandwidth; b 1i , b 2i , b 3i are the first prediction model corresponding to the bandwidth determined by the i-th network device the corresponding model parameters. Q Latency_t is the output of the first prediction model corresponding to the latency determined by the i-th network device, indicating the latency; l 1i , l 2i , l 3i are the first predictions corresponding to the latency determined by the i-th network device The model parameters corresponding to the model. Q PacketLoss_t is the output of the first prediction model corresponding to the packet loss rate determined by the i-th network device, indicating the packet loss rate; p 1i , p 2i , p 3i are the output of the first prediction model corresponding to the packet loss rate determined by the i-th network device The model parameters corresponding to the first prediction model. w 1i is the bias parameter corresponding to the first prediction model corresponding to bandwidth determined by the i-th network device, w 2i is the bias parameter corresponding to the first prediction model corresponding to delay determined by the i-th network device , w 3i is the bias parameter corresponding to the first prediction model corresponding to the packet loss rate determined by the i-th network device. MCS t , RSRP t , and SINR t are inputs to the first prediction model determined by the i-th network device, and respectively represent data related to MCS, data related to RSRP, and data related to SINR.

n个网络设备中每个网络设备将b1i、b2i、b3i、l1i、l2i、l3i、p1i、p2i、p3i发送给NWDAF网元,NWDAF网元基于来自多个网络设备的模型参数进行模型聚合,得到与带宽对应的第二预测模型(即与带宽对应的全局模型)、与时延对应的第二预测模型(即与时延对应的全局模型)、与丢包率对应的第二预测模型(即与丢包率对应的全局模型)。其中,第二预测模型的模型参数可如公式(4)所示。Each network device among the n network devices sends b 1i , b 2i , b 3i , l 1i , l 2i , l 3i , p 1i , p 2i , p 3i to the NWDAF network element. The NWDAF network element is based on data from multiple networks. Model parameters of the device are aggregated to obtain a second prediction model corresponding to the bandwidth (i.e., a global model corresponding to the bandwidth), a second prediction model corresponding to the delay (i.e., a global model corresponding to the delay), and a second prediction model corresponding to the packet loss. The second prediction model corresponding to the packet loss rate (that is, the global model corresponding to the packet loss rate). The model parameters of the second prediction model may be as shown in formula (4).

其中,θi为n个网络设备中第i个网络设备发送的第一预测模型所对应的模型参数。针对与带宽对应的第二预测模型,Hpre(x)表示带宽,θi=[b1i b2i b3i];针对与时延对应的第二预测模型,θi=[l1i l2i l3i];针对与丢包率对应的第二预测模型,θi=[p1i p2i p3i]。Among them, θ i is the model parameter corresponding to the first prediction model sent by the i-th network device among the n network devices. For the second prediction model corresponding to the bandwidth, H pre (x) represents the bandwidth, θ i = [b 1i b 2i b 3i ]; for the second prediction model corresponding to the delay, θ i = [l 1i l 2i l 3i ]; for the second prediction model corresponding to the packet loss rate, θ i =[p 1i p 2i p 3i ].

NWDAF网元将第二预测模型所对应的模型参数发送给n个网络设备中的每个网络设备,每个网络设备基于接收到的模型参数更新第一预测模型对应的模型参数,并向NWDAF网元发送第一预测模型对应的更新后的模型参数。NWDAF网元重复执行前述操作,直至NWDAF网元聚合得到的第二预测模型收敛,也就是第二预测模型所对应的模型参数趋于稳定。NWDAF网元在第二预测模型对应的模型参数收敛的情况下,可向n个网络设备中每个网络设备发送第一指示信息以指示该网络设备停止更新模型。那么,n个网络设备中每个网络设备在接收到第一指示信息之后,可以基于最近一次接收到的来自NWDAF网元的第二预测模型对应的模型参数确定QoS预测模型。其中,针对n个网络设备中的任一个网络设备,该网络设备确定的QoS预测模型可如公式(5)所示。The NWDAF network element sends the model parameters corresponding to the second prediction model to each of the n network devices. Each network device updates the model parameters corresponding to the first prediction model based on the received model parameters and sends them to the NWDAF network. The element sends updated model parameters corresponding to the first prediction model. The NWDAF network element repeatedly performs the foregoing operations until the second prediction model obtained by aggregation of the NWDAF network elements converges, that is, the model parameters corresponding to the second prediction model tend to be stable. When the model parameters corresponding to the second prediction model converge, the NWDAF network element may send first instruction information to each of the n network devices to instruct the network device to stop updating the model. Then, after receiving the first indication information, each network device among the n network devices can determine the QoS prediction model based on the model parameters corresponding to the most recently received second prediction model from the NWDAF network element. Wherein, for any one of the n network devices, the QoS prediction model determined by the network device can be as shown in formula (5).

Hpre(x)=θ×xt+w (5)H pre (x)=θ×x t +w (5)

其中,如果公式(5)表示与带宽对应的QoS预测模型,Hpre(x)表示带宽,θ为该网络设备距接收到第一指示信息最近一次接收到的与带宽对应的第二预测模型所对应的模型参数,w为该网络设备确定的与带宽对应的QoS预测模型所对应的偏置参数。如果公式(5)表示与时延对应的QoS预测模型,Hpre(x)表示时延,θ为该网络设备距接收到第一指示信息最近一次接收到的与时延对应的第二预测模型所对应的模型参数,w为该网络设备确定的与时延对应的QoS预测模型所对应的偏置参数。如果公式(5)表示与丢包率对应的QoS预测模型,Hpre(x)表示丢包率,θ为该网络设备距接收到第一指示信息最近一次接收到的与丢包率对应的第二预测模型所对应的模型参数,w为该网络设备确定的与丢包率对应的QoS预测模型所对应的偏置参数。Among them, if formula (5) represents the QoS prediction model corresponding to the bandwidth, H pre (x) represents the bandwidth, and θ is the second prediction model corresponding to the bandwidth received by the network device most recently since receiving the first indication information. The corresponding model parameter, w, is the bias parameter corresponding to the QoS prediction model corresponding to the bandwidth determined by the network device. If formula (5) represents the QoS prediction model corresponding to the delay, H pre (x) represents the delay, and θ is the second prediction model corresponding to the delay received by the network device most recently since the first indication information was received. The corresponding model parameter, w, is the bias parameter corresponding to the QoS prediction model corresponding to the delay determined by the network device. If formula (5) represents the QoS prediction model corresponding to the packet loss rate, H pre (x) represents the packet loss rate, and θ is the most recently received packet loss rate corresponding to the packet loss rate since the network device received the first indication information. 2. Model parameters corresponding to the prediction model, w is the bias parameter corresponding to the QoS prediction model corresponding to the packet loss rate determined by the network device.

可选的,该方法还可以包括:NWDAF网元向多个网络设备发送第一信息,第一信息用于指示模型结构;相应的,多个网络设备中每个网络设备接收第一信息。多个网络设备中每个网络设备可将第一信息所指示的模型结构作为第一预测模型的模型结构。NWDAF网元可将第一信息所指示的模型结构作为第二预测模型的模型结构。另外,可选的,第一信息可以包括模型输入参数类型、模型结构类型等。其中,模型输入参数类型为网络设备的空口无线参数类型(例如,MCS、RSRP、SINR等),那么,多个网络设备中每个网络设备可以确定第一预测模型所需的空口无线参数类型,从而采集这些类型的空口无线参数的具体值。模型结构类型例如可以是线性结构等。Optionally, the method may also include: the NWDAF network element sending first information to multiple network devices, where the first information is used to indicate the model structure; correspondingly, each network device in the multiple network devices receives the first information. Each network device in the plurality of network devices may use the model structure indicated by the first information as the model structure of the first prediction model. The NWDAF network element may use the model structure indicated by the first information as the model structure of the second prediction model. In addition, optionally, the first information may include model input parameter types, model structure types, etc. Wherein, the model input parameter type is the air interface wireless parameter type of the network device (for example, MCS, RSRP, SINR, etc.), then each network device in the multiple network devices can determine the air interface wireless parameter type required by the first prediction model, Thereby collecting the specific values of these types of air interface wireless parameters. The model structure type may be, for example, a linear structure, etc.

在一种可选的实施方式中,该方法还可以包括:网络设备采用不同时段多种物理网络条件下,不同业务流下的空口无线参数,增加数据集的多样性,从而使得确定的QoS预测模型具有一定的泛化能力。In an optional implementation, the method may also include: the network device uses air interface wireless parameters under different service flows under various physical network conditions in different periods to increase the diversity of the data set, thereby making a determined QoS prediction model Has certain generalization ability.

S102、网络设备在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型。S102. The network device loads the QoS prediction model in the network simulator according to the network environment of the digital twin network.

在一种可选的实施方式中,网络设备在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型,可以包括:网络设备在网络仿真器中设置数字孪生网络的网络环境;网络设备针对数字孪生网络的多种网络环境中的每种网络环境,加载QoS预测模型。也就是说,在网络仿真器中可以基于不同的网络变更条件,对数字孪生网络的网络环境进行多样化设置,从而实现多种网络条件下的QoS预测,得到多样化的QoS预测结果。In an optional implementation, the network device loads the QoS prediction model in the network simulator for the network environment of the digital twin network, which may include: the network device sets the network environment of the digital twin network in the network simulator; QoS prediction models are loaded for each of the multiple network environments of the digital twin network. In other words, in the network simulator, the network environment of the digital twin network can be diversified based on different network change conditions, thereby achieving QoS prediction under various network conditions and obtaining diversified QoS prediction results.

例如,针对n个网络设备中的任一个网络设备,以线性模型、空口无线参数为MCS、RSRP、SINR为例,针对数字孪生网络的网络环境的k种情况,加载与带宽对应的QoS预测模型,可得到如公式(7)所示的多样化QoS预测结果。For example, for any one of the n network devices, taking the linear model and the air interface wireless parameters as MCS, RSRP, and SINR as an example, load the QoS prediction model corresponding to the bandwidth for k situations of the network environment of the digital twin network. , the diversified QoS prediction results shown in formula (7) can be obtained.

其中,sk表示网络环境的k种情况,表示多样化的QoS预测结果,b1、b2、b3为与带宽对应的QoS预测模型所对应的模型参数。Among them, s k represents k situations of network environment, Represents diversified QoS prediction results, and b 1 , b 2 , and b 3 are model parameters corresponding to the QoS prediction model corresponding to the bandwidth.

在一种可选的实施方式中,该方法还可以包括:网络设备向PCF网元发送数字孪生网络的网络环境所对应的网络参数、针对数字孪生网络的网络环境加载QoS预测模型得到的QoS预测结果;PCF网元可基于数字孪生网络的网络环境所对应的网络参数、针对数字孪生网络的网络环境得到的QoS预测结果调整物理网络策略。In an optional implementation, the method may further include: the network device sending network parameters corresponding to the network environment of the digital twin network to the PCF network element, and QoS predictions obtained by loading the QoS prediction model for the network environment of the digital twin network. As a result, the PCF network element can adjust the physical network strategy based on the network parameters corresponding to the network environment of the digital twin network and the QoS prediction results obtained from the network environment of the digital twin network.

在网络设备在网络仿真器中针对数字孪生网络的多种网络环境中每种网络环境加载了QoS预测模型这一场景中,网络设备可以向PCF网元发送数字孪生网络的多种网络环境中每种网络环境所对应的网络参数、针对数字孪生网络的每种网络环境得到的QoS预测结果。这样,PCF网元可以从数字孪生网络的多种网络环境中确定与物理网络环境匹配的网络环境,确定网络设备针对数字孪生网络的该种网络环境得到的QoS预测结果,从而基于该QoS预测结果调整物理网络策略。可见,在网络设备得到了多样化的QoS预测结果这一场景下,网络设备可以向PCF网元发送多样化的QoS预测结果,PCF网元可结合现实物理网络的未来变更趋势,匹配合适的QoS预测结果,提前做出网络策略调整,以面对因网络条件(网络环境)变化而引起通信状态的恶化,从而保证网络的稳定性和业务服务质量。In the scenario where the network device loads the QoS prediction model in the network simulator for each of the multiple network environments of the digital twin network, the network device can send each of the multiple network environments of the digital twin network to the PCF network element. The network parameters corresponding to each network environment, and the QoS prediction results obtained for each network environment of the digital twin network. In this way, the PCF network element can determine the network environment that matches the physical network environment from various network environments of the digital twin network, determine the QoS prediction results obtained by the network equipment for this network environment of the digital twin network, and then based on the QoS prediction results Adjust physical network policies. It can be seen that in the scenario where the network equipment has obtained diversified QoS prediction results, the network equipment can send diversified QoS prediction results to the PCF network element. The PCF network element can match the appropriate QoS based on the future change trend of the real physical network. Predict the results and make network policy adjustments in advance to face the deterioration of communication status caused by changes in network conditions (network environment), thereby ensuring network stability and business service quality.

综上所述,该QoS预测方法中,网络设备将QoS预测模型部署到网络仿真器中,网络仿真器用于构建与物理网络业务流映射的数字孪生网络;网络设备在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型。可见,该方法在网络仿真器中基于数字孪生网络模拟物理网络环境,通过对数字孪生网络的网络环境进行QoS预测实现对物理网络环境的QoS预测。该方法有利于实现基于数字孪生网络模拟物理网络环境未来时段的多种变化,得到不同物理网络环境下的业务流对应的多样化QoS预测结果;并且,该方法还可以将数字孪生网络的多种网络环境分别对应的网络参数和该多种网络环境中每种网络环境下的QoS预测结果反馈给物理网络,从而PCF网元可以结合物理网络环境和/或物理网络环境的未来变更趋势,及时做出策略调整,从而保证端到端业务流的服务质量。To sum up, in this QoS prediction method, the network device deploys the QoS prediction model into the network simulator. The network simulator is used to build a digital twin network that maps the physical network business flow; the network device targets the digital twin in the network simulator. Network environment of the network, loading QoS prediction model. It can be seen that this method simulates the physical network environment based on the digital twin network in the network simulator, and achieves QoS prediction of the physical network environment by performing QoS prediction on the network environment of the digital twin network. This method is conducive to simulating various changes in the physical network environment in the future based on the digital twin network, and obtaining diversified QoS prediction results corresponding to business flows in different physical network environments; and, this method can also combine various changes in the digital twin network The network parameters corresponding to the network environment and the QoS prediction results under each network environment in the multiple network environments are fed back to the physical network, so that the PCF network element can make timely decisions based on the physical network environment and/or the future change trend of the physical network environment. Outbound policy adjustments are made to ensure the service quality of end-to-end business flows.

下面以n个网络设备(网络设备#1至网络设备#n)和NWDAF网元基于联邦学习确定QoS预测模型为例,对本发明提供的QoS预测方法进行示例性地阐述。请参见图5,图5是本发明实施例提供的另一种QoS预测方法的示意图,该QoS预测方法包括以下步骤:The following takes n network devices (network device #1 to network device #n) and NWDAF network elements to determine the QoS prediction model based on federated learning as an example to exemplify the QoS prediction method provided by the present invention. Please refer to Figure 5. Figure 5 is a schematic diagram of another QoS prediction method provided by an embodiment of the present invention. The QoS prediction method includes the following steps:

S201、NWDAF网元向n个网络设备中每个网络设备发送第一信息,第一信息用于指示模型结构。S201. The NWDAF network element sends first information to each of the n network devices, where the first information is used to indicate the model structure.

S202、n个网络设备中每个网络设备根据第一信息采集该网络设备的空口无线参数。S202. Each network device among the n network devices collects the air interface wireless parameters of the network device according to the first information.

S203、n个网络设备中每个网络设备基于该网络设备的空口无线参数进行模型训练,得到第一预测模型。具体地,网络设备#1至网络设备#n分别得到第一预测模型#1至第一预测模型#n。S203. Each network device among the n network devices performs model training based on the air interface wireless parameters of the network device to obtain a first prediction model. Specifically, the network device #1 to the network device #n obtain the first prediction model #1 to the first prediction model #n respectively.

S204、n个网络设备中每个网络设备向NWDAF网元发送第一预测模型对应的模型参数。相应的,NWDAF网元接收来自n个网络设备中每个网络设备的第一预测模型对应的模型参数。具体地,网络设备#1向NWDAF网元发送第一预测模型#1对应的模型参数,网络设备#2向NWDAF网元发送第一预测模型#2对应的模型参数,…,网络设备#n向NWDAF网元发送第一预测模型#n对应的模型参数。S204. Each network device among the n network devices sends the model parameters corresponding to the first prediction model to the NWDAF network element. Correspondingly, the NWDAF network element receives model parameters corresponding to the first prediction model from each of the n network devices. Specifically, network device #1 sends model parameters corresponding to the first prediction model #1 to the NWDAF network element, network device #2 sends model parameters corresponding to the first prediction model #2 to the NWDAF network element,..., network device #n sends The NWDAF network element sends the model parameters corresponding to the first prediction model #n.

S205、NWDAF网元基于n个网络设备中每个网络设备的第一预测模型对应的模型参数,确定第二预测模型。具体地,NWDAF网元基于第一预测模型#1至第一预测模型#n分别对应的模型参数,确定第二预测模型。S205. The NWDAF network element determines the second prediction model based on the model parameters corresponding to the first prediction model of each of the n network devices. Specifically, the NWDAF network element determines the second prediction model based on the model parameters respectively corresponding to the first prediction model #1 to the first prediction model #n.

S206、NWDAF网元向n个网络设备中每个网络设备发送第二预测模型对应的模型参数。相应的,n个网络设备中每个网络设备接收来自NWDAF网元的第二预测模型对应的模型参数。S206. The NWDAF network element sends the model parameters corresponding to the second prediction model to each of the n network devices. Correspondingly, each of the n network devices receives model parameters corresponding to the second prediction model from the NWDAF network element.

S207、NWDAF网元判断第二预测模型是否收敛。如果NWDAF网元确定第二预测模型收敛,执行步骤S208。如果NWDAF网元确定第二预测模型未收敛,不执行步骤S208。S207. The NWDAF network element determines whether the second prediction model has converged. If the NWDAF network element determines that the second prediction model converges, step S208 is executed. If the NWDAF network element determines that the second prediction model has not converged, step S208 is not performed.

S208、NWDAF网元向n个网络设备中每个网络设备发送第一指示信息,该第一指示信息用于指示网络设备停止更新模型。S208. The NWDAF network element sends first instruction information to each of the n network devices. The first instruction information is used to instruct the network device to stop updating the model.

S209、针对n个网络设备中的每个网络设备,该网络设备判断是否接收到第一指示信息。如果该网络设备未接收到第一指示信息,执行步骤S210。如果该网络设备接收到第一指示信息,执行步骤S211至S215。S209. For each network device among the n network devices, the network device determines whether the first indication information is received. If the network device does not receive the first indication information, step S210 is executed. If the network device receives the first indication information, steps S211 to S215 are executed.

S210、针对n个网络设备中的每个网络设备,该网络设备基于第二预测模型对应的模型参数和该网络设备的空口无线参数,更新第一预测模型对应的模型参数,并执行步骤S204至S209。S210. For each network device among the n network devices, the network device updates the model parameters corresponding to the first prediction model based on the model parameters corresponding to the second prediction model and the air interface wireless parameters of the network device, and performs steps S204 to S209.

其中,在再次执行的步骤S204中,n个网络设备中每个网络设备向NWDAF网元发送的是第一预测模型所对应的更新后的模型参数;在再次执行的步骤S205中,NWDAF网元是基于n个网络设备中每个网络设备的第一预测模型所对应的更新后的模型参数,更新第二预测模型对应的模型参数;在再次执行的步骤S206中,NWDAF网元向n个网络设备中每个网络设备发送的是第二预测模型所对应的更新后的模型参数。Among them, in the re-executed step S204, each network device among the n network devices sends the updated model parameters corresponding to the first prediction model to the NWDAF network element; in the re-executed step S205, the NWDAF network element Based on the updated model parameters corresponding to the first prediction model of each network device among the n network devices, the model parameters corresponding to the second prediction model are updated; in step S206 performed again, the NWDAF network element Each network device in the device sends updated model parameters corresponding to the second prediction model.

具体地,网络设备#1更新第一预测模型#1对应的模型参数,网络设备#2更新第一预测模型#2对应的模型参数,…,网络设备#n更新第一预测模型#n对应的模型参数。Specifically, network device #1 updates the model parameters corresponding to the first prediction model #1, network device #2 updates the model parameters corresponding to the first prediction model #2,..., network device #n updates the model parameters corresponding to the first prediction model #n model parameters.

S211、n个网络设备中的每个网络设备基于第二预测模型对应的模型参数,确定QoS预测模型。S211. Each network device among the n network devices determines a QoS prediction model based on the model parameters corresponding to the second prediction model.

S212、n个网络设备中的每个网络设备将QoS预测模型部署到网络仿真器中,网络仿真器用于构建与物理网络业务流映射的数字孪生网络。S212. Each network device among the n network devices deploys the QoS prediction model to a network simulator. The network simulator is used to build a digital twin network that maps to the physical network service flow.

S213、n个网络设备中的每个网络设备在网络仿真器中针对数字孪生网络的多种网络环境中每种网络环境,加载QoS预测模型。S213. Each network device among the n network devices loads the QoS prediction model in the network simulator for each of the multiple network environments of the digital twin network.

S214、n个网络设备中的每个网络设备向PCF网元发送数字孪生网络的多种网络环境中每种网络环境所对应的网络参数、针对数字孪生网络的多种网络环境中每种网络环境加载QoS预测模型得到的QoS预测结果。S214. Each network device among the n network devices sends to the PCF network element the network parameters corresponding to each of the multiple network environments of the digital twin network, and the network parameters corresponding to each of the multiple network environments of the digital twin network. QoS prediction results obtained by loading the QoS prediction model.

S215、PCF网元针对n个网络设备中每个网络设备,基于来自该网络设备的数字孪生网络的多种网络环境中每种网络环境所对应的网络参数、该网络设备针对数字孪生网络的多种网络环境中每种网络环境得到的QoS预测结果调整物理网络策略。S215. For each of the n network devices, the PCF network element provides the network parameters corresponding to each network environment in the multiple network environments of the digital twin network based on the network device, and the network device for the multiple network environments of the digital twin network. The QoS prediction results obtained in each network environment adjust the physical network policy.

可理解地,结合图6,NWDAF网元和n个网络设备可以基于联邦学习确定QoS预测模型,n个网络设备中每个网络设备可以在用于构建与物理网络业务流映射的数字孪生网络的网络仿真器中部署QoS预测模型,并在网络仿真器中加载QoS预测模型,以针对数字孪生网络的网络环境进行QoS预测,再将得到的QoS预测结果反馈给物理网络中的PCF网元。有利于在保证网络设备的数据隐私安全的同时,实现针对多种网络变更情形进行QoS预测,并将数字孪生网络的多种网络环境对应的网络参数和每种网络环境对应的QoS预测结果反馈给物理网络,从而PCF网元能够及时做出策略调整,从而保证端到端服务质量。Understandably, in conjunction with Figure 6, the NWDAF network element and n network devices can determine the QoS prediction model based on federated learning, and each of the n network devices can be used to build a digital twin network that maps to the physical network service flow. Deploy the QoS prediction model in the network simulator and load the QoS prediction model in the network simulator to make QoS predictions for the network environment of the digital twin network, and then feed back the obtained QoS prediction results to the PCF network elements in the physical network. It is conducive to ensuring the data privacy and security of network equipment while enabling QoS prediction for various network change situations, and feeding back the network parameters corresponding to various network environments of the digital twin network and the QoS prediction results corresponding to each network environment. physical network, so that PCF network elements can make timely policy adjustments to ensure end-to-end service quality.

请参见图7,图7是本发明实施例提供的一种QoS预测装置的结构示意图,该QoS预测装置可以为网络设备或具有网络设备功能的装置(例如芯片)。具体的,如图7所示,QoS预测装置700可以包括部署单元701和预测单元702。其中:Please refer to FIG. 7 . FIG. 7 is a schematic structural diagram of a QoS prediction device provided by an embodiment of the present invention. The QoS prediction device may be a network device or a device (such as a chip) with network device functions. Specifically, as shown in Figure 7, the QoS prediction device 700 may include a deployment unit 701 and a prediction unit 702. in:

部署单元701,用于将QoS预测模型部署到网络仿真器中,网络仿真器用于构建与物理网络业务流映射的数字孪生网络。The deployment unit 701 is used to deploy the QoS prediction model into a network simulator, and the network simulator is used to build a digital twin network that maps to the physical network service flow.

预测单元702,用于在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型。The prediction unit 702 is used to load the QoS prediction model in the network simulator for the network environment of the digital twin network.

在一种可选的实施方式中,预测单元702在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型,具体用于:在网络仿真器中设置数字孪生网络的网络环境;针对数字孪生网络的多种网络环境中的每种网络环境,加载QoS预测模型。In an optional implementation, the prediction unit 702 loads the QoS prediction model in the network simulator for the network environment of the digital twin network, specifically for: setting the network environment of the digital twin network in the network simulator; For each of the multiple network environments of the twin network, a QoS prediction model is loaded.

在一种可选的实施方式中,QoS预测模型是QoS预测装置700与NWDAF网元基于联邦学习获得的。In an optional implementation, the QoS prediction model is obtained by the QoS prediction device 700 and the NWDAF network element based on federated learning.

在一种可选的实施方式中,该QoS预测装置700还包括:In an optional implementation, the QoS prediction device 700 further includes:

确定单元703,用于基于网络设备的空口无线参数,确定与QoS参数对应的第一预测模型。The determining unit 703 is configured to determine the first prediction model corresponding to the QoS parameter based on the air interface wireless parameters of the network device.

发送单元704,用于向NWDAF网元发送第一预测模型对应的模型参数。The sending unit 704 is configured to send the model parameters corresponding to the first prediction model to the NWDAF network element.

接收单元705,用于接收来自NWDAF网元的第二预测模型对应的模型参数,第二预测模型是NWDAF网元基于来自多个QoS预测装置700中每个QoS预测装置700的第一预测模型对应的模型参数确定的。The receiving unit 705 is configured to receive model parameters corresponding to the second prediction model from the NWDAF network element. The second prediction model is the NWDAF network element based on the first prediction model from each QoS prediction device 700 in the plurality of QoS prediction devices 700. The model parameters are determined.

确定单元703,还用于:在接收单元705接收到第一指示信息时,基于第二预测模型对应的模型参数确定QoS预测模型;第一指示信息用于指示QoS预测装置700停止更新模型;在接收单元705未接收到第一指示信息时,基于第二预测模型对应的模型参数和空口无线参数,更新第一预测模型对应的模型参数。The determining unit 703 is further configured to: when the receiving unit 705 receives the first indication information, determine the QoS prediction model based on the model parameters corresponding to the second prediction model; the first indication information is used to instruct the QoS prediction device 700 to stop updating the model; When the receiving unit 705 does not receive the first indication information, it updates the model parameters corresponding to the first prediction model based on the model parameters corresponding to the second prediction model and the air interface wireless parameters.

发送单元704,还用于在确定单元703更新第一预测模型对应的模型参数之后,向NWDAF网元发送第一预测模型对应的更新后的模型参数。The sending unit 704 is also configured to send the updated model parameters corresponding to the first prediction model to the NWDAF network element after the determining unit 703 updates the model parameters corresponding to the first prediction model.

在一种可选的实施方式中,发送单元704,还用于向PCF网元发送数字孪生网络的网络环境对应的网络参数、针对数字孪生网络的网络环境加载QoS预测模型得到的QoS预测结果;PCF网元用于基于数字孪生网络的网络环境对应的网络参数和QoS预测结果调整物理网络策略。In an optional implementation, the sending unit 704 is also configured to send the network parameters corresponding to the network environment of the digital twin network and the QoS prediction results obtained by loading the QoS prediction model for the network environment of the digital twin network to the PCF network element; The PCF network element is used to adjust the physical network strategy based on the network parameters and QoS prediction results corresponding to the network environment of the digital twin network.

有关上述QoS预测装置700更详细的描述及其带来的技术效果可参见上述方法实施例中相关描述,在此不再赘述。For a more detailed description of the above-mentioned QoS prediction device 700 and the technical effects it brings, please refer to the relevant descriptions in the above-mentioned method embodiments, and will not be described again here.

请参见图8,图8是本发明实施例提供的一种通信装置的结构示意图,该通信装置可以为网络设备或具有网络设备功能的装置(例如芯片)。具体的,如图8所示,该通信装置800可包括处理器801和存储器802。存储器802用于存储计算机程序,计算机程序包括程序指令,处理器801被配置用于调用程序指令,使通信装置800执行前述所述的方法。Please refer to FIG. 8 , which is a schematic structural diagram of a communication device provided by an embodiment of the present invention. The communication device may be a network device or a device (such as a chip) with network device functions. Specifically, as shown in FIG. 8 , the communication device 800 may include a processor 801 and a memory 802 . The memory 802 is used to store a computer program. The computer program includes program instructions. The processor 801 is configured to call the program instructions to cause the communication device 800 to execute the aforementioned method.

其中,处理器801可以是中央处理单元(central processing unit,CPU),该处理器801还可以是其他通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field-programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。The processor 801 can be a central processing unit (CPU). The processor 801 can also be other general-purpose processors, digital signal processors (DSP), application specific integrated circuits (application specific integrated circuits). , ASIC), off-the-shelf programmable gate array (field-programmable gate array, FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.

一种方式中,该通信装置800用于执行前述方法实施例中网络设备的功能的情况:In one way, the communication device 800 is used to perform the functions of the network device in the aforementioned method embodiment:

处理器801,用于将QoS预测模型部署到网络仿真器中,网络仿真器用于构建与物理网络业务流映射的数字孪生网络。The processor 801 is used to deploy the QoS prediction model into a network simulator, and the network simulator is used to build a digital twin network that maps the physical network service flow.

处理器801,还用于在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型。The processor 801 is also used to load the QoS prediction model in the network simulator for the network environment of the digital twin network.

在一种可选的实施方式中,处理器801在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型,具体用于:在网络仿真器中设置数字孪生网络的网络环境;针对数字孪生网络的多种网络环境中的每种网络环境,加载QoS预测模型。In an optional implementation, the processor 801 loads the QoS prediction model in the network simulator for the network environment of the digital twin network, specifically for: setting the network environment of the digital twin network in the network simulator; For each of the multiple network environments of the twin network, a QoS prediction model is loaded.

在一种可选的实施方式中,QoS预测模型是通信装置800与NWDAF网元基于联邦学习获得的。In an optional implementation, the QoS prediction model is obtained by the communication device 800 and the NWDAF network element based on federated learning.

在一种可选的实施方式中,处理器801还用于基于通信装置800的空口无线参数,确定与QoS参数对应的第一预测模型。该装置还包括:收发器803,用于向NWDAF网元发送第一预测模型对应的模型参数。收发器803还用于接收来自NWDAF网元的第二预测模型对应的模型参数,第二预测模型是NWDAF网元基于来自多个通信装置800中每个通信装置800的第一预测模型对应的模型参数确定的。In an optional implementation, the processor 801 is also configured to determine a first prediction model corresponding to the QoS parameter based on the air interface wireless parameters of the communication device 800 . The device also includes: a transceiver 803, configured to send model parameters corresponding to the first prediction model to the NWDAF network element. The transceiver 803 is also configured to receive model parameters corresponding to the second prediction model from the NWDAF network element. The second prediction model is a model corresponding to the NWDAF network element based on the first prediction model from each communication device 800 in the plurality of communication devices 800 . The parameters are determined.

处理器801还用于:在收发器803接收到第一指示信息时,基于第二预测模型对应的模型参数确定QoS预测模型;第一指示信息用于指示通信装置800停止更新模型;在收发器803未接收到第一指示信息时,基于第二预测模型对应的模型参数和空口无线参数,更新第一预测模型对应的模型参数。The processor 801 is also configured to: when the transceiver 803 receives the first indication information, determine the QoS prediction model based on the model parameters corresponding to the second prediction model; the first indication information is used to instruct the communication device 800 to stop updating the model; in the transceiver 803 When the first indication information is not received, update the model parameters corresponding to the first prediction model based on the model parameters corresponding to the second prediction model and the air interface wireless parameters.

收发器803还用于在处理器801更新第一预测模型对应的模型参数之后,向NWDAF网元发送第一预测模型对应的更新后的模型参数。The transceiver 803 is also configured to send the updated model parameters corresponding to the first prediction model to the NWDAF network element after the processor 801 updates the model parameters corresponding to the first prediction model.

在一种可选的实施方式中,收发器803还用于向PCF网元发送数字孪生网络的网络环境对应的网络参数、针对数字孪生网络的网络环境加载QoS预测模型得到的QoS预测结果;PCF网元用于基于数字孪生网络的网络环境对应的网络参数和QoS预测结果调整物理网络策略。In an optional implementation, the transceiver 803 is also used to send network parameters corresponding to the network environment of the digital twin network and QoS prediction results obtained by loading the QoS prediction model for the network environment of the digital twin network to the PCF network element; PCF The network element is used to adjust the physical network strategy based on the network parameters and QoS prediction results corresponding to the network environment of the digital twin network.

有关上述通信装置800更详细的描述及其带来的技术效果可参见上述方法实施例中相关描述,在此不再赘述。For a more detailed description of the above-mentioned communication device 800 and the technical effects it brings, please refer to the relevant descriptions in the above-mentioned method embodiments, and will not be described again here.

本发明实施例还提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当其在处理器上运行时,上述方法实施例的方法流程得以实现。Embodiments of the present invention also provide a computer-readable storage medium. Instructions are stored in the computer-readable storage medium. When the instruction is run on a processor, the method flow of the above method embodiment is implemented.

本发明实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,上述方法实施例的方法流程得以实现。An embodiment of the present invention also provides a computer program product. When the computer program product is run on a processor, the method flow of the above method embodiment is implemented.

需要说明的是,以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。It should be noted that the above embodiments are only used to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, those of ordinary skill in the art should understand that: it still The technical solutions described in the foregoing embodiments can be modified, or some or all of the technical features can be equivalently replaced; and these modifications or substitutions do not cause the essence of the corresponding technical solutions to depart from the scope of the technical solutions of the embodiments of the present invention. .

Claims (12)

1.一种服务质量QoS预测方法,其特征在于,应用于网络设备,该方法包括:1. A quality of service QoS prediction method, characterized in that it is applied to network equipment, and the method includes: 将QoS预测模型部署到网络仿真器中,所述网络仿真器用于构建与物理网络业务流映射的数字孪生网络;Deploy the QoS prediction model into a network simulator, which is used to build a digital twin network that maps to the physical network service flow; 在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型。Load the QoS prediction model in the network simulator for the network environment of the digital twin network. 2.根据权利要求1所述的服务质量QoS预测方法,其特征在于,在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型的步骤包括:2. The quality of service QoS prediction method according to claim 1, characterized in that, in the network simulator, for the network environment of the digital twin network, the step of loading the QoS prediction model includes: 在网络仿真器中设置数字孪生网络的网络环境;Set the network environment of the digital twin network in the network simulator; 针对数字孪生网络的多种网络环境中的每种网络环境,加载QoS预测模型。QoS prediction models are loaded for each of the multiple network environments of the digital twin network. 3.根据权利要求1或2所述的服务质量QoS预测方法,其特征在于,所述QoS预测模型是网络设备与网络数据分析功能NWDAF网元基于联邦学习获得的。3. The quality of service QoS prediction method according to claim 1 or 2, characterized in that the QoS prediction model is obtained by network equipment and network data analysis function NWDAF network elements based on federated learning. 4.根据权利要求3所述的服务质量QoS预测方法,其特征在于,该方法还包括:4. The quality of service QoS prediction method according to claim 3, characterized in that the method further includes: 基于网络设备的空口无线参数,确定与QoS参数对应的第一预测模型;Based on the air interface wireless parameters of the network device, determine a first prediction model corresponding to the QoS parameters; 向NWDAF网元发送第一预测模型对应的模型参数;Send the model parameters corresponding to the first prediction model to the NWDAF network element; 接收来自NWDAF网元的第二预测模型对应的模型参数,所述第二预测模型是NWDAF网元基于来自多个网络设备中每个网络设备的第一预测模型对应的模型参数进行模型聚合得到的全局模型;Receive model parameters corresponding to the second prediction model from the NWDAF network element. The second prediction model is obtained by the NWDAF network element based on model aggregation corresponding to the first prediction model from each network device in the plurality of network devices. global model; 如果接收到第一指示信息,基于第二预测模型对应的模型参数确定QoS预测模型,所述第一指示信息用于指示网络设备停止更新模型;If the first indication information is received, determine the QoS prediction model based on the model parameters corresponding to the second prediction model, where the first indication information is used to instruct the network device to stop updating the model; 否则,基于第二预测模型对应的模型参数和空口无线参数,更新第一预测模型对应的模型参数,并向NWDAF网元发送第一预测模型对应的更新后的模型参数,重复执行前述操作直至NWDAF网元确定第二预测模型对应的模型参数收敛,NWDAF网元向多个网络设备发送第一指示信息。Otherwise, based on the model parameters corresponding to the second prediction model and the air interface wireless parameters, update the model parameters corresponding to the first prediction model, send the updated model parameters corresponding to the first prediction model to the NWDAF network element, and repeat the aforementioned operations until NWDAF The network element determines that the model parameters corresponding to the second prediction model have converged, and the NWDAF network element sends the first indication information to multiple network devices. 5.根据权利要求1或2所述的服务质量QoS预测方法,其特征在于,所述方法还包括:5. The quality of service QoS prediction method according to claim 1 or 2, characterized in that the method further includes: 向策略控制功能PCF网元发送网络环境对应的网络参数、针对网络环境加载QoS预测模型得到的QoS预测结果;Send the network parameters corresponding to the network environment and the QoS prediction results obtained by loading the QoS prediction model for the network environment to the policy control function PCF network element; 所述PCF网元用于基于网络环境对应的网络参数以及QoS预测结果调整物理网络策略。The PCF network element is used to adjust the physical network policy based on network parameters corresponding to the network environment and QoS prediction results. 6.一种服务质量QoS预测装置,其特征在于,其包括:6. A quality of service QoS prediction device, characterized in that it includes: 部署单元,用于将QoS预测模型部署到网络仿真器中,所述网络仿真器用于构建与物理网络业务流映射的数字孪生网络;A deployment unit configured to deploy the QoS prediction model into a network simulator, where the network simulator is used to build a digital twin network that maps to the physical network service flow; 预测单元,用于在网络仿真器中针对数字孪生网络的网络环境,加载QoS预测模型。The prediction unit is used to load the QoS prediction model in the network simulator for the network environment of the digital twin network. 7.根据权利要求6所述的服务质量QoS预测装置,其特征在于,预测单元在网络仿真器中针对所述数字孪生网络的网络环境,加载QoS预测模型,具体用于:7. The service quality QoS prediction device according to claim 6, characterized in that the prediction unit loads the QoS prediction model in the network simulator according to the network environment of the digital twin network, and is specifically used for: 在网络仿真器中设置数字孪生网络的网络环境;Set the network environment of the digital twin network in the network simulator; 针对数字孪生网络的多种网络环境中的每种网络环境,加载QoS预测模型。QoS prediction models are loaded for each of the multiple network environments of the digital twin network. 8.根据权利要求6或7所述的服务质量QoS预测装置,其特征在于,QoS预测模型是网络设备与网络数据分析功能NWDAF网元基于联邦学习获得的。8. The quality of service QoS prediction device according to claim 6 or 7, characterized in that the QoS prediction model is obtained by network equipment and network data analysis function NWDAF network elements based on federated learning. 9.根据权利要求8所述的服务质量QoS预测装置,其特征在于,该装置还包括:9. The quality of service QoS prediction device according to claim 8, characterized in that the device further includes: 确定单元,用于基于网络设备的空口无线参数,确定与QoS参数对应的第一预测模型;A determining unit configured to determine the first prediction model corresponding to the QoS parameters based on the air interface wireless parameters of the network device; 发送单元,用于向NWDAF网元发送第一预测模型对应的模型参数;A sending unit, configured to send model parameters corresponding to the first prediction model to the NWDAF network element; 接收单元,用于接收来自NWDAF网元的第二预测模型对应的模型参数,所述第二预测模型是NWDAF网元基于来自多个网络设备中每个网络设备的第一预测模型对应的模型参数确定的;A receiving unit configured to receive model parameters corresponding to the second prediction model from the NWDAF network element, where the second prediction model is the model parameter corresponding to the first prediction model of the NWDAF network element based on each network device in the plurality of network devices. definite; 所述确定单元,还用于:在所述接收单元接收到第一指示信息时,基于第二预测模型对应的模型参数确定QoS预测模型;在接收单元未接收到第一指示信息时,基于第二预测模型对应的模型参数和空口无线参数,更新第一预测模型对应的模型参数;所述第一指示信息用于指示所述装置停止更新模型;The determining unit is further configured to: when the receiving unit receives the first indication information, determine the QoS prediction model based on the model parameters corresponding to the second prediction model; when the receiving unit does not receive the first indication information, determine the QoS prediction model based on the first indication information. The model parameters and air interface wireless parameters corresponding to the second prediction model are updated, and the model parameters corresponding to the first prediction model are updated; the first instruction information is used to instruct the device to stop updating the model; 所述发送单元,还用于在确定单元更新第一预测模型对应的模型参数之后,向NWDAF网元发送第一预测模型对应的更新后的模型参数。The sending unit is also configured to send the updated model parameters corresponding to the first prediction model to the NWDAF network element after the determination unit updates the model parameters corresponding to the first prediction model. 10.根据权利要求6或7所述的服务质量QoS预测装置,其特征在于,该装置还包括:10. The quality of service QoS prediction device according to claim 6 or 7, characterized in that the device further includes: 所述发送单元,还用于向策略控制功能PCF网元发送所述网络环境对应的网络参数、针对网络环境加载QoS预测模型得到的QoS预测结果;The sending unit is also used to send the network parameters corresponding to the network environment and the QoS prediction results obtained by loading the QoS prediction model for the network environment to the policy control function PCF network element; 所述PCF网元用于基于网络环境对应的网络参数以及QoS预测结果调整物理网络策略。The PCF network element is used to adjust the physical network policy based on network parameters corresponding to the network environment and QoS prediction results. 11.一种通信装置,其特征在于,包括存储器和处理器,所述存储器用于存储计算机程序,所述计算机程序包括程序指令,所述处理器被配置用于调用所述程序指令,使所述通信装置执行如权利要求1至5中任一项所述的方法。11. A communication device, characterized in that it includes a memory and a processor, the memory is used to store a computer program, the computer program includes program instructions, and the processor is configured to call the program instructions to cause the The communication device performs the method according to any one of claims 1 to 5. 12.一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机可读指令,当所述计算机可读指令在通信装置上运行时,使得所述通信装置执行权利要求1至5中任一项所述的方法。12. A computer-readable storage medium, characterized in that computer-readable instructions are stored in the computer-readable storage medium, and when the computer-readable instructions are run on a communication device, the communication device causes the communication device to execute the right The method according to any one of claims 1 to 5.
CN202310842414.8A 2023-07-10 2023-07-10 A QoS prediction method and device Pending CN116887327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310842414.8A CN116887327A (en) 2023-07-10 2023-07-10 A QoS prediction method and device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310842414.8A CN116887327A (en) 2023-07-10 2023-07-10 A QoS prediction method and device

Publications (1)

Publication Number Publication Date
CN116887327A true CN116887327A (en) 2023-10-13

Family

ID=88263775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310842414.8A Pending CN116887327A (en) 2023-07-10 2023-07-10 A QoS prediction method and device

Country Status (1)

Country Link
CN (1) CN116887327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119172260A (en) * 2024-11-22 2024-12-20 中兴通讯股份有限公司 Data transmission method, device and storage medium

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN119172260A (en) * 2024-11-22 2024-12-20 中兴通讯股份有限公司 Data transmission method, device and storage medium

Similar Documents

Publication Publication Date Title
US11451452B2 (en) Model update method and apparatus, and system
US9274912B2 (en) Simulating burst errors in mobile data communication network system level simulations
WO2022121559A1 (en) Mobile communication system control method, network management and control agent, system, and storage medium
CN113498076A (en) O-RAN-based performance optimization configuration method and device
US12057902B2 (en) Method and device of communication in a communication system using an open radio access network
CN108028803A (en) Software definition topology for user plane(SDT)
WO2022226713A1 (en) Method and apparatus for determining policy
US20230354054A1 (en) Systems and methods for simulating wireless interference in a wired telecommunications network
US20230289615A1 (en) Training a machine learning model
JP2023534849A (en) Communication method and device
US20210385646A1 (en) End to end troubleshooting of mobility services
CN113923694A (en) Network resource arranging method, system, device and storage medium
WO2021164507A1 (en) Scheduling method, scheduling algorithm training method and related system, and storage medium
Loh et al. Efficient graph-based gateway placement for large-scale LoRaWAN deployments
CN116347635A (en) A NB-IoT wireless resource allocation method based on NOMA and multi-agent reinforcement learning
Sánchez et al. A data-driven scheduler performance model for QoE assessment in a LTE radio network planning tool
CN116887327A (en) A QoS prediction method and device
CN115189910B (en) Intentional attack survivability evaluation method based on network digital twin
Ganjalizadeh et al. An RL-based joint diversity and power control optimization for reliable factory automation
WO2023045931A1 (en) Network performance abnormality analysis method and apparatus, and readable storage medium
WO2023208043A1 (en) Electronic device and method for wireless communication system, and storage medium
Zhao et al. Design of jiutian intelligent network simulation platform
US20240275690A1 (en) Apparatus, method and computer program
CN117580057B (en) Distributed wireless network upgrade method, system, device and medium
WO2024152877A1 (en) Data processing method and apparatus

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination